Sample records for highest microbial activity

  1. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.

    PubMed

    Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar

    2017-11-01

    An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.

  2. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  3. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs.

    PubMed Central

    Jensen, B B; Jørgensen, H

    1994-01-01

    The microbial activity, composition of the gas phase, and gas production rates in the gastrointestinal tract of pigs fed either a low- or a high-fiber diet were investigated. Dense populations of culturable anaerobic bacteria, high ATP concentrations, and high adenylate energy charges were found for the last third of the small intestine, indicating that substantial microbial activity takes place in that portion of the gut. The highest microbial activity (highest bacterium counts, highest ATP concentration, high adenylate energy charge, and low pH) was found in the cecum and proximal colon. Greater microbial activity was found in the stomach and all segments of the hindgut in the pigs fed the high-fiber diet than in the pigs fed the low-fiber diet. Considerable amounts of O2 were found in the stomach (around 5%), while the content of O2 in gas samples taken from all other parts of the gastrointestinal tract was < 1%. The highest concentrations and highest production rates for H2 were found in the last third of the small intestine. No methane could be detected in the stomach or the small intestine. The rate of production and concentration of methane in the cecum and the proximal colon were low, followed by a steady increase in the successive segments of the hindgut. A very good correlation between in vivo and in vitro measurements of methane production was found. The amount of CH4 produced by pigs fed the low-fiber diet was 1.4 liters/day per animal. Substantially larger amounts of CH4 were produced by pigs fed the high-fiber diet (12.5 liters/day)(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8031085

  4. [Effects of Different Altitudes on Soil Microbial PLFA and Enzyme Activity in Two Kinds of Forests].

    PubMed

    Zeng, Qing-ping; He, Bing-hui; Mao, Qiao-zhi; Wu, Yao-peng; Huang, Qi; Li, Yuan

    2015-12-01

    The soil microbial community is an important part in soil ecosystem, and it is sensitive to the ecological environment. Phospholipid-derived fatty acids ( PLFA ) analysis was used to examine variations in soil microbial community diversity and its influencing factors. The results showed that: there existed 48 PLFAs that were significant in the soil samples from six altitudes. The PLFAs of six altitudes with the highest contents were i16:0, 10Me17:0, 10Me18:0 TBSA. The citrus forest exhibited richer soil PLFAs distribution both in type and amount than those in masson pine. The microbial activity and functional diversity of masson pine were increased with increasing altitudes, and citrus forest gradually decreased, the PLFA content of different microbial groups in each altitude were significantly different. The richness index, Shannon-Wiener index and Pielou evenness index of masson pine in low elevation were holistically higher than those in high elevation. However, the highest richness index of citrus forest was in low altitude, the highest Shannon-Wiener index and Pielou evenness index were in high altitude. The PLFAs content of different microbial groups were closely correlated to the soil enzyme activities and environmental factors. The PLFAs of bacteria, actinomycetes, G⁻ (Gram- positive), G⁺ (Gram-negative) were positively correlated with Ure(urease) , Ive(invertase) , CAT( catalase activity) and forest type, the PLFAs of fungi was significantly correlated with Ure, Ive, CAT, the PLFAs of bacteria, fungi, actinomycetes, G⁻ , G⁺ were significantly negatively or less correlated with elevation. Ure, Ive, CAT, forest type and elevation are the pivotal factors controlling the soil microbial biomass and activities.

  5. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    PubMed

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  6. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    PubMed Central

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  7. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    PubMed

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity, and the urease activity was negatively correlated with microbial biomass N, H index and D index.

  8. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana.

    PubMed

    Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro

    2017-02-12

    The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  9. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the soil and its sustainability in the rainfall-limited semiarid region. PMID:27414400

  10. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization.

    PubMed

    Singh, Rajender; Ahlawat, O P; Rajor, Anita

    2012-12-01

    The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.

  12. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.

    PubMed

    Araujo, Ademir Sérgio Ferreira; Miranda, Ana Roberta Lima; Oliveira, Mara Lucia Jacinto; Santos, Vilma Maria; Nunes, Luís Alfredo Pinheiro Leal; Melo, Wanderley José

    2015-01-01

    Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha(-1), and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO₂) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha(-1) CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha(-1) CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha(-1), while FDA hydrolysis increased up to the rate of 5 Mg ha(-1) CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha(-1) have SMB and enzymatic activities similar to those in unamended soil.

  13. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  14. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops.

    PubMed

    Saha, Supradip; Mina, B L; Gopinath, K A; Kundu, S; Gupta, H S

    2008-04-01

    Potential impact of different levels and sources of organic composts on activities of phosphatases (acid and alkaline phosphatase, phosphodiesterase, and inorganic pyrophosphatase) was studied after three years of continuous application. Enzyme activities were compared with microbial biomass P and available P. Experimental plots were divided based on the organic source into three groups: those receiving farmyard manure (FYM), vermicompost (VC) and Lantana compost (LC). Microbial biomass P (11.7 g kg(-1) soil), available P (24.0 g kg(-1) soil) and acid phosphatase (1.3 mg g(-1) p-NP g(-1) soil h(-1)) was highest in highest dose of VC. Acid phosphatase activity was high in all plots, including those where microbial biomass P levels were low. Most of the phosphatase activities were significantly correlated with available P in FYM and VC. These relationships were negative for LC treatments. Results showed that application of earthworm casts is helpful in faster transformation of organic P by facilitating better environment to microbes and plant roots.

  15. Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder

    NASA Astrophysics Data System (ADS)

    Esmaeili, Saeideh; Barzegar, Mohsen; Sahari, Mohammad Ali; Berengi-Ardestani, Samira

    2018-07-01

    This study investigated the effect of gamma irradiation (0, 5, 10, and 15 kGy) under various atmospheres of packaging (air, N₂, and vacuum) on the microbial load and physicochemical properties of turmeric powder, including antioxidant activities, total phenolic content (TPC), color parameters, and curcuminoid content. The efficiency of irradiation in reducing microbial contamination in the samples was observed even at the lowest dose. By increasing the irradiation dose, the microbial load was not detectable. Irradiation in the presence of oxygen had synergistic effects on the extraction of curcuminoids and TPC, and increased the antioxidant activity of the methanolic extracts: highest activity was observed at 15 kGy. Generally, gamma irradiation up to the dose of 10 kGy under air atmosphere not only ensured microbial safety and desirability of turmeric powder, but also improved the extraction yield of bioactive compounds and, consequently, antioxidant activities of the samples.

  16. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.

  17. Evaluation of anti-microbial activities of ZnO, citric acid and a mixture of both against Propionibacterium acnes.

    PubMed

    Bae, J Y; Park, S N

    2016-12-01

    In this study, anti-microbial activities of ZnO of three different particle sizes of citric acid (CA) and of mixtures of ZnO and CA were confirmed against Propionibacterium acnes. ZnO with the smallest particle size showed relatively high anti-microbial activity by disc diffusion assay and broth macrodilution assay. The mixtures of ZnO and CA also showed relatively high anti-microbial activity when the particle size of ZnO was the smallest. Furthermore, anti-microbial activities of ZnO, CA and the mixtures of ZnO and CA were compared through the checkerboard assay. The results indicated that a 1 : 1 ratio of ZnO and CA resulted in the highest anti-microbial activity. The substances were confirmed to have synergic anti-microbial effects. With the time-kill curve assay, the mixture of ZnO-containing CA reduced the surviving microbial content the most after 24 h. The results of our study suggest that ZnO may not only be an anti-microbial ingredient for the prevention of and treatment of acne. The results of our study suggest that ZnO may be an anti-microbial ingredient for the prevention of and treatment of acne when mixed with CA. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    PubMed

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  19. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    PubMed Central

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  20. Cultivation-dependent analysis of the microbial diversity associated with the seagrass meadows in Xincun Bay, South China Sea.

    PubMed

    Jiang, Yu-Feng; Ling, Juan; Wang, You-Shao; Chen, Biao; Zhang, Yan-Ying; Dong, Jun-De

    2015-10-01

    Microbial communities have largely existed in the seagrass meadows. A total of 496 strains of the bacteria in the seagrass meadows, which belonged to 50 genera, were obtained by the plate cultivation method from three sites of Xincun Bay, South China Sea. The results showed that Bacillales and Vibrionales accounted for the highest proportions of organisms in all communities. The diversity of the bacteria in the sediment was higher than that associated with seagrass. Thalassia hemperichii possessed the highest abundance of bacteria, followed by Enhalus acoroides and Cymodocea rotundata. Robust seasonal dynamics in microbial community composition were also observed. It was found that microbial activities were closely tied to the growth stage of the seagrass. The microbial distribution was the lowest in site 3. The abundance of the bacteria was linked to the interactions between bacteria and plants, the condition of plant and even the coastal water quality and the nutrition level in the sediment.

  1. Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperatures

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Sun, He-yun; Tan, Qiao-yi; Gao, Hong-shan; Feng, Xing-liang; Ruan, Ren-man

    2018-03-01

    The effects of temperature on chalcocite/pyrite oxidation and the microbial population in the bioleaching columns of a low-grade chalcocite ore were investigated in this study. Raffinate from the industrial bioleaching heap was used as an irrigation solution for columns operated at 20, 30, 45, and 60°C. The dissolution of copper and iron were investigated during the bioleaching processes, and the microbial community was revealed by using a high-throughput sequencing method. The genera of Ferroplasma, Acidithiobacillus, Leptospirillum, Acidiplasma, and Sulfobacillus dominated the microbial community, and the column at a higher temperature favored the growth of moderate thermophiles. Even though microbial abundance and activity were highest at 30°C, the column at a higher temperature achieved a much higher Cu leaching efficiency and recovery, which suggested that the promotion of chemical oxidation by elevated temperature dominated the dissolution of Cu. The highest pyrite oxidation percentage was detected at 45°C. Higher temperature resulted in precipitation of jarosite in columns, especially at 60°C. The results gave implications to the optimization of heap bioleaching of secondary copper sulfide in both enhanced chalcocite leaching and acid/iron balance, from the perspective of leaching temperature and affected microbial community and activity.

  2. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics.

    PubMed

    Boon, Nico; Pycke, Benny F G; Marzorati, Massimo; Hammes, Frederik

    2011-12-01

    The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    PubMed

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.

  4. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.

  5. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments.

    PubMed

    Ye, Mao; Sun, Mingming; Ni, Ni; Chen, Yinwen; Liu, Zongtang; Gu, Chengang; Bian, Yongrong; Hu, Feng; Li, Huixin; Kengara, Fredrick Orori; Jiang, Xin

    2014-01-01

    The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1%, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p < 0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.

  6. Influence of aeolian activities on the distribution of microbial abundance in glacier ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.

    2014-10-01

    Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.

  7. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  8. Plant-soil-microbe interactions regulating soil C storage

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.

    2016-12-01

    Integration across disciplines is required to identify the emergent microbial scale properties that regulate the release or occlusion of plant inputs in soil organic matter. To investigate how micro-scale processes influence soil carbon cycling, we measured microbial community composition and activity within soil aggregates monthly over two growing seasons of a long-term bioenergy field experiment. Using a biologically sensitive sieving technique, soil aggregates were isolated and microbial community activity and composition were measured. This aggregate approach revealed biogeochemical processes regulating C cycling that are not detected using whole soil approaches. Soil aggregation influenced microbe-substrate interactions, where diversified perennial grassland systems supported greater aggregation and reduced severity of aggregate turnover compared to corn systems. Aggregate turnover and concurrent increases in activity resulted in greater microbial biomass and physical protection of soil organic matter in prairie systems, especially fertilized prairies. Fertilized prairie enhanced microbial biomass, enzyme activity, and soil aggregation despite greater root biomass in unfertilized prairie. Independent of ecosystem or sampling date, N-acetyl-glucosaminidase activity and Nitrospirae abundance was greatest in large macroaggregates (>2000 µm), which harbored the highest C:N; cellobiohydrolase activity and Acidobacteria abundance was greatest in microaggregates (<250 µm) which had the lowest C:N. Aggregate fractions differed in microbial community composition (bacteria, archaea, and fungi) and potential enzyme activity, independent of cropping system. Microaggregates harbored significantly greater microbial diversity and richness across all bioenergy cropping systems. Together these results suggest that by mediating access to substrates, soil structure (aggregates) can influence the microbial community composition and extracellular enzyme activity to regulate ecosystem scale decomposition of soil organic matter.

  9. Does the different mowing regime affect soil biological activity and floristic composition of thermophilous Pieniny meadow?

    NASA Astrophysics Data System (ADS)

    Józefowska, Agnieszka; Zaleski, Tomasz; Zarzycki, Jan

    2016-04-01

    The study area was located in the Pieniny National Park in the Carpathian Mountain (Southern Poland). About 30% of Park's area is covered by meadows. The climax stage of this area is forest. Therefore extensive use is indispensable action to keep semi-natural grassland such as termophilous Pieniny meadows, which are characterized by a very high biodiversity. The purpose of this research was to answer the question, how the different way of mowing: traditional scything (H), and mechanical mowing (M) or abandonment of mowing (N) effect on the biological activity of soil. Soil biological activity has been expressed by microbial and soil fauna activity. Microbial activity was described directly by count of microorganisms and indirectly by enzymatic activity (dehydrogenase - DHA) and the microbial biomass carbon content (MBC). Enchytraeidae and Lumbricidae were chosen as representatives of soil fauna. Density and species diversity of this Oligochaeta was determined. Samples were collected twice in June (before mowing) and in September (after mowing). Basic soil properties, such as pH value, organic carbon and nitrogen content, moisture and temperature, were determined. Mean count of vegetative bacteria forms, fungi and Actinobacteria was higher in H than M and N. Amount of bacteria connected with nitrification and denitrification process and Clostridium pasteurianum was the highest in soil where mowing was discontinued 11 years ago. The microbial activity measured indirectly by MBC and DHA indicated that the M had the highest activity. The soil biological activity in second term of sampling had generally higher activity than soil collected in June. That was probably connected with highest organic carbon content in soil resulting from mowing and the end of growing season. Higher earthworm density was in mowing soil (220 and 208 individuals m-2 in H and M respectively) compare to non-mowing one (77 ind. m-2). The density of Enchytraeidae was inversely, the higher density was noted in N (34639 ind. m-2) than in mowing one (16266 and 25904 ind. m-2 H and M respectively). The species diversity of Enchytraeidae was the highest in H variant (15 - number of determined species) next N (11) and the lowest was in M variant (9). There was noted decrease in soil fauna abundance before and after mechanical mowing, it was 50% for Lumbricidae and 32% for Enchytraeidae. The study was supported by the special purpose grant for scientific research or development work and related tasks, contributing to the development of young scientists and doctoral students UR financed through a competition in 2015 No. BM - 4162/15

  10. New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity.

    PubMed

    Salgado, J; Parajó, J J; Teijeira, T; Cruz, O; Proupín, J; Villanueva, M; Rodríguez-Añón, J A; Verdes, P V; Reyes, O

    2017-10-01

    The next generation of ionic liquids must be synthetized taking into account structures that guarantee the suitable properties for a defined application as well as ecological data. Thus, searching of the right methodologies to know, quickly and efficiently, the ecological effects of these compounds is a preliminary task. The effects of two imidazolium based ionic liquids with different anions, 1-butyl-3-methylimidazolium tetrafluoroborate, [C 4 C 1 Im][BF 4 ], and 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 3 C 1 Im][NTf 2 ], on seedling emergence of six tree species and on the microbial behaviour of two soils were determined in this work. Results showed that the highest doses of both ionic liquids caused the total inhibition of germination for almost all the species studied and that the seeds are more sensitive to the presence of these compounds than soil microbial activity. Nevertheless, signals of stress and death are observed from the results of heat released by microorganisms after the addition of the highest doses of both ionic liquids. The novelty of this work resides in the enlargement of knowledge of toxicity of ILs on complex organisms such as arboreal species and microbial activity of soils studied for the first time through a microcalorimetric technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils.

    PubMed

    Schütz, Kirsten; Kandeler, Ellen; Nagel, Peter; Scheu, Stefan; Ruess, Liliane

    2010-06-01

    Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.

  12. Sediment microbial activity and its relation to environmental variables along the eastern Gulf of Finland coastline

    NASA Astrophysics Data System (ADS)

    Polyak, Yulia; Shigaeva, Tatyana; Gubelit, Yulia; Bakina, Ludmila; Kudryavtseva, Valentina; Polyak, Mark

    2017-07-01

    Sediment microbial activity and its relationship with the main environmental factors and pollutants were examined in the coastal area of the eastern Gulf of Finland, Baltic Sea. The activity of two common oxidoreductase enzymes: dehydrogenase (DA) and catalase (CA) varied significantly between 13 study sites. In the Neva Bay the highest microbial activities (DA: 2.64 mg TFF (10 g- 1) day- 1, CA: 6.29 mg H2O2 g- 1) were recorded, while in the outer estuary the minimum values of dehydrogenase and catalase were measured. DA, CA, and abundances of culturable heterotrophic bacteria (CHB) were positively correlated with each other, while biomass of green opportunistic algae was independent of both microbial activities and CHB. Enzymatic activity was found to be strongly positively correlated with sediment particle size and organic matter content, but unrelated to the other studied environmental parameters (temperature, pH, and salinity). Principal components analysis (PCA), controlling for environmental variables, supported direct effects of metal and oil contamination on sediment microbial activity. Also it had shown the similar patterns for algal biomass and metals. Our results suggest that copper and hydrocarbons are the main anthropogenic variables influencing enzyme distribution along the eastern Gulf of Finland coastline.

  13. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    PubMed

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  14. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    PubMed Central

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  15. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages.

    PubMed

    Yang, Miao; Yang, Dan; Yu, Xuan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions.

  16. Soil microbial communities and enzyme activities in sea-buckthorn (Hippophae rhamnoides) plantation at different ages

    PubMed Central

    Yang, Miao; Yang, Dan

    2018-01-01

    The aim of this study was to assess the impact of forest age and season on the soil microbial community and enzyme activities in sea-buckthorn plantation system and to determine the relative contributions to soil microbial properties. Soil sampling was carried out in the dry season (April) and wet season (September) in four areas, including: abandoned farmland (NH), an 8-year- old plantation (young plantation, 8Y), a 13-year-old plantation (middle-aged plantation, 13Y), and an 18-year-old plantation (mature plantation, 18Y). The results showed that forest age and season have a significant effect on soil microbial community structure and enzyme activities. The total, bacterial, fungal, Gram-negative (G+), and Gram-positive (G-) PLFAs increased gradually with forest age, with the highest values detected in 18Y. All the detected enzyme activities showed the trend as a consequence of forest age. The microbial PLFAs and soil enzyme activities were higher in the wet season than the dry season. However, there were no significant interactions between forest age and season. A Correlation analysis suggested that soil microbial communities and enzyme activities were significantly and positively correlated with pH, total nitrogen (TN) and available phosphorus (AP). Season had a stronger influence on soil microbial communities than forest age. In general, sea-buckthorn plantations establishment might be a potential tool for maintaining and increasing soil fertility in arid and semi-arid regions. PMID:29324845

  17. Stream microbial diversity in response to environmental changes: review and synthesis of existing research

    PubMed Central

    Zeglin, Lydia H.

    2015-01-01

    The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102

  18. Colloidal Nanomolybdenum Influence upon the Antioxidative Reaction of Chickpea Plants ( Cicer arietinum L.)

    NASA Astrophysics Data System (ADS)

    Taran, Nataliya; Batsmanova, Ludmila; Kosyk, Oksana; Smirnov, Oleksandr; Kovalenko, Mariia; Honchar, Liubov; Okanenko, Alexander

    2016-10-01

    The use of colloidal solutions of metals as micronutrients enhances plant resistance to unfavorable environmental conditions and ensures high yields of food crops. The purpose of the study was a comparative evaluation of presowing treatment with nanomolybdenum and microbiological preparation impact upon the development of adaptive responses in chickpea plants. Oxidative processes did not develop in all variants of the experiment but in variants treated with microbial preparation, and joint action of microbial and nanopreparations even declined, as evidenced by the reduction of thiobarbituric acid reactive substances in photosynthetic tissues by 15 %. The activity of superoxide dismutase increased (by 15 %) in variant "nanomolybdenum" and joint action "microbial + nanomolybdenum," but it decreased by 20 % in variants with microbial preparation treatment. The same dependence was observed in changes of catalase activity. Antioxidant status factor, which takes into account the ratio of antioxidant to pro-oxidant, was the highest in variants with joint action of microbial preparation and nanomolybdenum (0.7), the lowest in variants with microbial treatment only (0.1). Thus, the results show that the action of nanoparticles of molybdenum activated antioxidant enzymes and decreased oxidative processes, thus promoting adaptation of plants.

  19. Seasonal and spatial variations in microbial activity at various phylogenetic resolutions at a groundwater - surface water interface.

    PubMed

    Yu, Ran; Smets, Barth F; Gan, Ping; MacKay, Allison A; Graf, Joerg

    2014-05-01

    We investigated the seasonal and spatial variation in activity and density of the metabolically active in situ microbial community (AIMC) at a landfill leachate-impacted groundwater - surface water interface (GSI). A series of AIMC traps were designed and implemented for AIMC sampling and microbial activity and density examinations. Measurements were made not only at the level of bacterial domain but also at the levels of alphaproteobacterial Rhizobiales order and gammaproteobacterial Pseudomonas genus, both of which included a large number of iron-oxidizing bacteria as revealed from previous analysis. Consistently higher microbial activities with less variation in depth were measured in the AIMC traps than in the ambient sediments. Flood disturbance appeared to control AIMC activity distributions at the gradually elevated GSI. The highest AIMC activities were generally obtained from locations closest to the free surface water boundary except during the dry season when microbial activities were similar across the entire GSI. A clone library of AIMC 16S rRNA genes was constructed, and it confirmed the predominant role of the targeted alphaproteobacterial group in AIMC activity and composition. This taxon constituted 2%-14% of all bacteria with similar activity distribution profiles. The Pseudomonas group occupied only 0.1‰-0.5‰ of the total bacterial density, but its activity was 27 times higher than the bacterial average. Of the 16S rRNA sequences in the AIMC clone library, 7.5% were phylogenetically related to putative IOB, supporting the occurrence and persistence of active microbial iron oxidation across the studied iron-rich GSI ecosystem.

  20. Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    PubMed Central

    Daglia, Maria; Papetti, Adele; Mascherpa, Dora; Grisoli, Pietro; Giusto, Giovanni; Lingström, Peter; Pratten, Jonathan; Signoretto, Caterina; Spratt, David A.; Wilson, Michael; Zaura, Egija; Gazzani, Gabriella

    2011-01-01

    This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods. PMID:22013381

  1. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    PubMed

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  2. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    PubMed

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among the four transformation systems. Soil labile P faction and its potential sources (moderately labile P, occluded P, and residual P) were positively correlated with NO 3 - , but negatively correlated with AMF, suggesting that these properties play key roles in P transformation. Our study indicated that land use had an impact on microbial community composition and functions, which consequently influenced soil phosphorus availability and cycling. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.

    PubMed

    Biró, Borbála; Toscano, Giuseppe; Horváth, Nikoletta; Matics, Heléna; Domonkos, Mónika; Scotti, Riccardo; Rao, Maria A; Wejden, Bente; French, Helen K

    2014-01-01

    The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.

  4. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents.

    PubMed

    Lamie, Phoebe F; Phillopes, John N; El-Gendy, Ahmed O; Rarova, Lucie; Gruz, Jiri

    2015-09-14

    Sixteen new phthalimide derivatives were synthesized and evaluated for their in vitro anti-microbial, anti-oxidant and anti-inflammatory activities. The cytotoxicity for all synthesized compounds was also determined in cancer cell lines and in normal human cells. None of the target derivatives had any cytotoxic activity. (ZE)-2-[4-(1-Hydrazono-ethyl) phenyl]isoindoline-1,3-dione (12) showed remarkable anti-microbial activity. Its activity against Bacillus subtilis was 133%, 106% and 88.8% when compared with the standard antibiotics ampicillin, cefotaxime and gentamicin, respectively. Compound 12 also showed its highest activities in Gram negative bacteria against Pseudomonas aeruginosa where the percentage activities were 75% and 57.6% when compared sequentially with the standard antibiotics cefotaxime and gentamicin. It was also found that the compounds 2-[4-(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13b) and 2-[4-(3-methyl-5-thioxo-4-phenyl-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13c) had anti-oxidant activity. 4-(N'-{1-[4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-phenyl]-ethylidene}-hydrazino)-benzenesulfonamide (17c) showed the highest in vitro anti-inflammatory activity of the tested compounds (a decrease of 32%). To determine the mechanism of the anti-inflammatory activity of 17c, a docking study was carried out on the COX-2 enzyme. The results confirmed that 17c had a higher binding energy score (-17.89 kcal/mol) than that of the ligand celecoxib (-17.27 kcal/mol).

  5. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability

    NASA Astrophysics Data System (ADS)

    Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Bastida, Felipe; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; García, Carlos; Faz, Ángel; Mermut, Ahmet R.

    2017-04-01

    The response of soil microbial communities from soils with different soil organic matter (SOM) content to organic inputs with different stability is still poorly understood. Thus, an incubation experiment was designed to study how the addition of pig slurry (PS), its manure (M) and its biochar (BC) affect soil microbial community and activity in three soils differing in SOM content (Regosol, Luvisol and Kastanozem). The evolution of different C and N fractions, microbial biomass C and N, enzyme activities and microbial community structure by the use of phospholipid fatty acid (PLFA) analysis was assessed for 60 days. Results showed that the different amendments had different effect on microbial properties depending on the soil type. The addition of M caused the highest increase in all microbial properties in the three soils, followed by PS. These changes were more intense in the soil with the lowest SOM (Regosol). The addition of M and PS caused changes in the microbial community structure in all soils, which were more related to the presence of available sources of N than to the labile fractions of C. The addition of BC was followed by increases in the proportions of fungi and Gram positive bacteria in the Regosol, while enhanced the proportion of actinobacteria in all soil types, related to increments in pH and soil C recalcitrance. Thus, native SOM determined the response of microbial communities to external inputs with different stability, soils with low SOM being more prone to increase microbial biomass and activity and change microbial community structure.

  6. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region

    NASA Astrophysics Data System (ADS)

    Lynch, R. C.; King, A. J.; FaríAs, Mariá E.; Sowell, P.; Vitry, Christian; Schmidt, S. K.

    2012-06-01

    Here we present the first culture-independent microbiological and biogeochemical study of the mineral soils from 6000 m above sea level (m.a.s.l.) on some the highest volcanoes in the Atacama region of Argentina and Chile. These soils experience some of the harshest environmental conditions on Earth including daily temperature fluctuations across the freezing point (with an amplitude of up to 70°C) and intense solar radiation. Soil carbon and water levels are among the lowest yet measured for a terrestrial ecosystem and enzyme activity was near or below detection limits for all microbial enzymes measured. The soil microbial communities were among the simplest yet studied in a terrestrial environment and contained novel Bacteria and Fungi and only one Archaeal phylotype. No photosynthetic organisms were detected but several of the dominant bacterial phylotypes are related to organisms involved in carbon monoxide oxidation on other volcanoes (e.g.,Pseudonocardia and Ktedonobacter spp.). Focused studies of a gene responsible for carbon monoxide oxidation, the large subunit of carbon monoxide dehydrogenase (coxL of CODH), revealed several novel lineages and a broad diversity of coxL genes. Overall our results suggest that a unique microbial community, sustained by diffuse atmospheric and volcanic gases, is barely functioning on these volcanoes, which represent the highest terrestrial ecosystems yet studied.

  7. Soil microbial communities and enzyme activities under various poultry litter application rates.

    PubMed

    Acosta-Martínez, V; Harmel, R Daren

    2006-01-01

    The potential excessive nutrient and/or microbial loading from mismanaged land application of organic fertilizers is forcing changes in animal waste management. Currently, it is not clear to what extent different rates of poultry litter impact soil microbial communities, which control nutrient availability, organic matter quality and quantity, and soil degradation potential. From 2002 to 2004, we investigated the microbial community and several enzyme activities in a Vertisol soil (fine, smectitic, thermic, Udic Haplustert) at 0 to 15 cm as affected by different rates of poultry litter application to pasture (0, 6.7, and 13.4 Mg ha(-1)) and cultivated sites (0, 4.5, 6.7, 9.0, 11.2, and 13.4 Mg ha(-1)) in Texas, USA. No differences in soil pH (average: 7.9), total N (pasture: 2.01-3.53, cultivated: 1.09-1.98 g kg(-1) soil) or organic C (pasture average: 25-26.7, cultivated average: 13.9-16.1 g kg(-1) soil) were observed following the first four years of litter application. Microbial biomass carbon (MBC) and nitrogen (MBN) increased at litter rates greater than 6.7 Mg ha(-1) (pasture: MBC = >863, MBN = >88 mg kg(-1) soil) compared to sites with no applied litter (MBC = 722, MBN = 69 mg kg(-1) soil). Enzyme activities of C (beta-glucosidase, alpha-galactosidase, beta-glucosaminidase) or N cycling (beta-glucosaminidase) were increased at litter rates greater than 6.7 Mg ha(-1). Enzyme activities of P (alkaline phosphatase) and S (arylsulfatase) mineralization showed the same response in pasture, but they were only increased at the highest (9.0, 11.2, and 13.4 Mg ha(-1)) litter application rates in cultivated sites. According to fatty acid methyl ester (FAME) analysis, the pasture soils experienced shifts to higher bacterial populations at litter rates of 6.7 Mg ha(-1), and shifts to higher fungal populations at the highest litter application rates in cultivated sites. While rates greater than 6.7 Mg ha(-1) provided rapid enhancement of the soil microbial populations and enzymatic activities, they result in P application in excess of crop needs. Thus, studies will continue to investigate whether litter application at rates below 6.7 Mg ha(-1), previously recommended to maintain water quality, will result in similar improved soil microbial and biochemical functioning with continued annual litter application.

  8. Microbial Breakdown of Organic Carbon in the Diverse Sediments of Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Snider, R.; Arnosti, C.

    2015-12-01

    Guaymas Basin is characterized by sediments under conditions ranging from hemipelagic to hydrothermal. This wide range in geochemical contexts results in diverse microbial communities that may have varying abilities to access organic matter. We can address these functional differences by comparing enzyme activities initializing the breakdown of organic matter across these sediment types; however, previous direct measurements of the extracellular hydrolysis of complex organic carbon in sediments are sparse. We measured this first step of heterotrophic processing of organic matter in sediments at 5-10cm and 55-60cm depth from a wide range of environmental settings in Guaymas Basin. Sediment sources included sulfidic seeps on the Sonora Margin, hemipelagic ridge flank sediments, and hydrothermically altered Sonora Margin sediments bordering a methane seep site. Hydrolysis of organic substrates varied by depth and by sediment source, but despite high energy potential and organic carbon load in sulfidic sediments, activity was not highest where hydrothermal influence was highest. These results suggest that heterotrophic breakdown of organic carbon in Guaymas Basin sediments may be sensitive to factors including varying composition of organic carbon available in different sediment types, or differences in microbial community capacities to access specific organic substrates.

  9. [Effects of different water and fertilizer supply on cucumber soil nutrient content, enzyme activity, and microbial diversity].

    PubMed

    Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan

    2009-07-01

    With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.

  10. Sediment Enzyme Activities and Microbial Community Diversity in an Oligotrophic Drinking Water Reservoir, Eastern China

    PubMed Central

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265

  11. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.

  12. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia.

    PubMed

    Jariyal, Monu; Jindal, Vikas; Mandal, Kousik; Gupta, Virash Kamal; Singh, Balwinder

    2018-09-15

    Microbial consortia isolated from aged phorate contaminated soil were used to degrade phorate. The consortia of three microorganisms (Brevibacterium frigoritolerans, Bacillus aerophilus and Pseudomonas fulva) could degrade phorate, and the highest phorate removal (between 97.65 and 98.31%) was found in soils inoculated with mixed cultures of all the three bacterial species. However, the mixed activity of any of two of these bacteria was lower than mixed consortia of all the three bacterial species. The highest degradation by individual mixed consortia of (B. frigoritolerans+B.aerophilus, B. aerophilus+P. fulva and B. frigoritolerans+P. fulva) appeared in soil between (92.28-94.09%, 95.45-97.15% and 94.08-97.42%, respectively). Therefore, inoculation of highly potential microbial consortia isolated from in situ contaminated soil could result in most effective bioremediation consortia for significantly relieving soils from phorate residues. This much high phorate remediation from phorate contaminated soils have never been reported earlier by mixed culture of native soil bacterial isolates. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of plant harvesting on the performance of constructed wetlands during winter: radial oxygen loss and microbial characteristics.

    PubMed

    Wang, Qian; Xie, Huijun; Zhang, Jian; Liang, Shuang; Ngo, Huu Hao; Guo, Wenshan; Liu, Chen; Zhao, Congcong; Li, Hao

    2015-05-01

    The aboveground tissue of plants is important for providing roots with constant photosynthetic resources. However, the aboveground biomass is usually harvested before winter to maintain the permanent removal of nutrients. In this work, the effects of harvest on plants' involvement in oxygen input as well as in microbial abundance and activity were investigated in detail. Three series of constructed wetlands with integrated plants ("unharvested"), harvested plants ("harvested"), and fully cleared plants ("cleared") were set up. Better performance was found in the unharvested units, with the radial oxygen loss (ROL) rates ranging from 0.05 to 0.59 μmol O₂/h/plant, followed by the harvested units that had relatively lower ROL rates (0.01 to 0.52 μmol O₂/h/plant). The cleared units had the lowest removal efficiency, which had no rhizome resources from the plants. The microbial population and activity were highest in the unharvested units, followed by the harvested and cleared units. Results showed that bacterial abundances and enhanced microbial activity were ten times higher on root surfaces compared with sands. These results indicate that late autumn harvesting of the aboveground biomass exhibited negative effects on plant ROL as well as on the microbial population and activity during the following winter.

  15. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    PubMed

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  17. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE PAGES

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...

    2017-02-07

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm –2, followed by Co-AAPyr with 196 ± 1.5 μWcm –2, Ni-AAPyr with 171 ± 3.6 μWcm –2, Mn-AAPyr with 160 ± 2.8 μWcm –2 and AC 129 ± 4.2 μWcm –2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm –1 to 63.1 mScm –1. A maximum power density of 482 ± 5 μWcm –2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  18. Abundance and activity of soil microorganisms in Cedrus atlantica forests are more related to land use than to altitude or latitude

    NASA Astrophysics Data System (ADS)

    Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos

    2016-04-01

    Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.

  19. Long-term carbon exclusion alters soil microbial function but not community structure across forests of contrasting productivity

    NASA Astrophysics Data System (ADS)

    Hart, S. C.; Dove, N. C.; Stark, J.

    2017-12-01

    While it is well-documented that distinct heterotrophic microbial communities emerge under different conditions of carbon (C) availability, the response of soil microbial communities and their function to long-term conditions of C exclusion in situ has yet to be investigated. We evaluated the role of C in controlling soil microbial communities and function by experimentally excluding plant C inputs for nine years at four forest sites along a productivity gradient in Oregon, USA. Carbon exclusion treatments were implemented by root trenching to a depth of 30 cm using 25-cm diameter steel pipe, and minimizing aboveground inputs as plant litter by covering the pipe with a 1-mm mesh screen. After nine years, we measured rates of gross and net nitrogen (N) transformations and microbial respiration in situ in the upper 15-cm of mineral soil in both C excluded plots and undisturbed control soils. We measured the soil total C and N concentration and potential extracellular enzyme activities. We used phospholipid fatty acid (PLFA) analysis to determine potential changes in the microbial community structure. Nine years of C exclusion reduced soil total C by about 20%, except at the highest productivity site where no statistically significant change was observed. Although PLFA community structure and microbial C were unchanged, microbial respiration was reduced by 15-45% at all sites. Similarly, specific extracellular enzyme activities for all enzymes increased at these sites with C exclusion, suggesting that the microbial communities were substrate-limited. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest productivity site. Furthermore, C exclusion only increased net nitrification in the highest productivity site. Although these field-based results are largely consistent with previous laboratory studies indicating a strong coupling between C and N biogeochemical cycles, they build upon this earlier research by suggesting that the "C connection" to the N cycle depends on the rate of C cycling within the ecosystem.

  20. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  1. Microbial biodiversity of Sardinian oleic ecosystems.

    PubMed

    Santona, Mario; Sanna, Maria Lina; Multineddu, Chiara; Fancello, Francesco; de la Fuente, Sara Audije; Dettori, Sandro; Zara, Severino

    2018-04-01

    The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good β-glucosidase activity and yeast also showed good β-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  3. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  4. RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, R. L.; Stanhopc, A.; Franck, M. M.

    2005-05-26

    Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in themore » nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.« less

  5. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    PubMed

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  6. Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system.

    PubMed

    Zhao, Hongyan; Yu, Hairu; Yuan, Xufeng; Piao, Renzhe; Li, Hulin; Wang, Xiaofen; Cui, Zongjun

    2014-05-01

    To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of 3.3 × 10(8) copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

  7. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    NASA Astrophysics Data System (ADS)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for evaluated glyphosate behaviour in soil bioactivity and interaction with different soil factors.

  9. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N / P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.

  10. Atrazine, chlorpyrifos, and iprodione effect on the biodiversity of bacteria, actinomycetes, and fungi in a pilot biopurification system with a green cover.

    PubMed

    Elgueta, Sebastian; Correa, Arturo; Campo, Marco; Gallardo, Felipe; Karpouzas, Dimitrios; Diez, Maria Cristina

    2017-09-02

    The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg -1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.

  11. Microbial environmental contamination in Italian dental clinics: A multicenter study yielding recommendations for standardized sampling methods and threshold values.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Napoli, Christian; Castiglia, Paolo; Liguori, Giorgio; Rizzetto, Rolando; Torre, Ida; Righi, Elena; Farruggia, Patrizia; Tesauro, Marina; Torregrossa, Maria V; Montagna, Maria T; Colucci, Maria E; Gallè, Francesca; Masia, Maria D; Strohmenger, Laura; Bergomi, Margherita; Tinteri, Carola; Panico, Manuela; Pennino, Francesca; Cannova, Lucia; Tanzi, Marialuisa

    2012-03-15

    A microbiological environmental investigation was carried out in ten dental clinics in Italy. Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days, for one week per month, for a three-month period. Water and surfaces were sampled before and after clinical activity; air was sampled before, after, and during clinical activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and for the different sampling times. Before clinical activity, microbial water contamination in tap water reached 51,200cfu/mL (colony forming units per milliliter), and that in Dental Unit Water Systems (DUWSs) reached 872,000cfu/mL. After clinical activity, there was a significant decrease in the Total Viable Count (TVC) in tap water and in DUWSs. Pseudomonas aeruginosa was found in 2.38% (7/294) of tap water samples and in 20.06% (59/294) of DUWS samples; Legionella spp. was found in 29.96% (89/297) of tap water samples and 15.82% (47/297) of DUWS samples, with no significant difference between pre- and post-clinical activity. Microbial air contamination was highest during dental treatments, and decreased significantly at the end of the working activity (p<0.05). The microbial buildup on surfaces increased significantly during the working hours. This study provides data for the establishment of standardized sampling methods, and threshold values for contamination monitoring in dentistry. Some very critical situations have been observed which require urgent intervention. Furthermore, the study emphasizes the need for research aimed at defining effective managing strategies for dental clinics. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles.

    PubMed

    Skea, G L; Mountfort, D O; Clements, K D

    2007-01-01

    Enzymatic degradation of algal carbohydrates was examined in the New Zealand herbivorous fishes Parma alboscapularis (Pomacentridae), Aplodactylus etheridgii (Aplodactylidae), Girella tricuspidata and G. cyanea (Girellidae). Enzyme extract taken from the anterior gut wall, gut fluid and microbial pellet from sections sampled along the gut were tested for activity against starch, carrageenan, agarose and carboxymethylcellulose. Hydrolysis of starch was greater than for all other substrates tested. Endogenous (host-produced) activity in the anterior gut fluid varied between species in the order G. tricuspidata (7700 units mL(-1))>G. cyanea (2300 units mL(-1))>P. alboscapularis (2000)>A. etheridgii (1400 units mL(-1)) where one unit is equivalent to 1 mug of reducing sugar released per minute. Activity decreased markedly along the gut in all cases, so that at the posterior end of the gut only 0.3-8% of the anterior activity remained in the gut fluid. Enzyme activity against structural carbohydrates was lower than that against starch, and was of exogenous (produced by resident microbiota) origin in all species although the location of activity along the gut differed. The microbial extract of A. etheridgii displayed the highest activity against carrageenan and agarose in all gut sections, reaching maxima of 47 units mL(-1) against carrageenan and 35 units mL(-1) against agarose in the mid-gut microbial extract. Carrageenase and agarase activity in the other three species was <10 units mL(-1) for all gut sections. Results suggest that carrageenan and agarose are potentially important substrates for microbial fermentation, particularly in A. etheridgii, and that there is microbial activity in the mid-gut of this species, rather than primarily in the hind-gut as in other herbivorous species.

  13. Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Joye, Samantha B.; Arnosti, Carol

    2016-07-01

    A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 (;Dirty blizzard;). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments.

  14. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  15. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals.

    PubMed

    Thavamani, Palanisami; Malik, Seidu; Beer, Michael; Megharaj, Mallavarapu; Naidu, Ravi

    2012-05-30

    The co-occurrence of polyaromatic hydrocarbons (PAHs) with heavy metals and their effect on soil microbial activity have not been systematically investigated. In this study a holistic approach was employed by combining physico-chemical, biological and advanced molecular methods to determine the soil microbial activities of long-term mixed contaminated soils collected from a former manufactured gas plant (MGP) site. Concentrations of PAHs in MGP soils ranged from 335 to 8645 mg/kg. Of the potentially toxic metals, concentrations of lead were found to be highest, ranging from 88 to 671 mg/kg, cadmium 8 to 112 mg/kg, while zinc varied from 64 to 488 mg/kg. The enzyme activities were severely inhibited in soils that were contaminated with both PAHs and heavy metals. The presence of heavy metals in PAH-contaminated soils not only reduced the diversity of microbial population but also showed a few distinctive species by exerting selective pressure. The multivariate analysis revealed that there is an association between PAHs and heavy metals which influenced biological properties in mixed contaminated soils. The findings of this study have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    PubMed Central

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.; Kretz, Cecilia B.; Kolton, Max; Morton, Peter L.; Pett-Ridge, Jennifer; Weston, David J.; Schadt, Christopher W.; Kostka, Joel E.

    2017-01-01

    ABSTRACT Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4. IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. PMID:28667112

  17. Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.

    PubMed

    Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B

    2017-06-30

    Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy, and that members of the Alphaproteobacteria ( Rhizobiales ) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. Copyright © 2017 American Society for Microbiology.

  18. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites.

    PubMed

    Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M

    2018-06-11

    The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of the enzyme. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    PubMed

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed Central

    Nivelle, Elodie; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate. PMID:28552945

  1. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed

    Nivelle, Elodie; Verzeaux, Julien; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate.

  2. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes.

    PubMed

    Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang

    2018-02-01

    The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.

  3. cDNA cloning and characterization of the antibacterial peptide cecropin 1 from the diamondback moth, Plutella xylostella L.

    PubMed

    Jin, Fengliang; Sun, Qiang; Xu, Xiaoxia; Li, Linmiao; Gao, Gang; Xu, Yingjie; Yu, Xiaoqiang; Ren, Shunxiang

    2012-10-01

    Cecropins are linear cationic antibacterial peptides that have potent activities against microorganisms. In the present study, a 480bp full-length cDNA encoding diamondback moth (Plutella xylostella) cecropin 1 (designated as Px-cec1) was obtained using RT-PCR. A Northern blot analysis showed that the Px-cec1 transcript was predominantly expressed in fat bodies, hemocytes, midgut and epidermis with the highest expression level in fat bodies. The expression of Px-cec1 mRNA in fat bodies was significantly increased 24h after microbial challenge, with the highest induced expression by Staphylococcus aureus. A circular dichroism (CD) analysis revealed that the recombinant Px-cec1 mainly contained α-helixes. Antimicrobial assays demonstrated that recombinant Px-cec1 exhibited a broad spectrum of anti-microbial properties against fungi, Gram-positive and Gram-negative bacteria, but it did not exhibit hemolytic activity against human erythrocytes. Furthermore, Px-cec1 caused significant morphological alterations of S. aureus, as shown by scanning electron microscopy and transmission electron microscopy. These results demonstrated that Px-cec1 exerts its antibacterial activity by acting on the cell membrane to disrupt bacterial cell structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats.

    PubMed

    Severin, Ina; Confurius-Guns, Veronique; Stal, Lucas J

    2012-06-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.

  5. Microbial responses to multi-factor climate change: effects on soil enzymes.

    PubMed

    Steinweg, J Megan; Dukes, Jeffrey S; Paul, Eldor A; Wallenstein, Matthew D

    2013-01-01

    The activities of extracellular enzymes, the proximate agents of decomposition in soils, are known to depend strongly on temperature, but less is known about how they respond to changes in precipitation patterns, and the interaction of these two components of climate change. Both enzyme production and turnover can be affected by changes in temperature and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered climate. Soils from the Boston-Area Climate Experiment (BACE), which is located in an old field (on abandoned farmland), were used to examine how climate variables affect enzyme activities and microbial biomass carbon (MBC) in different seasons and in soils exposed to a combination of three levels of precipitation treatments (ambient, 150% of ambient during growing season, and 50% of ambient year-round) and four levels of warming treatments (unwarmed to ~4°C above ambient) over the course of a year. Warming, precipitation and season had very little effect on potential enzyme activity. Most models assume that enzyme dynamics follow microbial biomass, because enzyme production should be directly controlled by the size and activity of microbial biomass. We observed differences among seasons and treatments in mass-specific potential enzyme activity, suggesting that this assumption is invalid. In June 2009, mass-specific potential enzyme activity, using chloroform fumigation-extraction MBC, increased with temperature, peaking under medium warming and then declining under the highest warming. This finding suggests that either enzyme production increased with temperature or turnover rates decreased. Increased maintenance costs associated with warming may have resulted in increased mass-specific enzyme activities due to increased nutrient demand. Our research suggests that allocation of resources to enzyme production could be affected by climate-induced changes in microbial efficiency and maintenance costs.

  6. Changes of soil functional diversity induced by the use of different fertilizers

    NASA Astrophysics Data System (ADS)

    Onica, Bogdan-Mihai; Sandor, Valentina; Brad, Traian; Vidican, Roxana; Sandor, Mignon

    2017-04-01

    Agricultural practices like fertilization can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamic related to different factors can be a powerful tool for understanding basic and applied ecological contexts. An important tool to assess changes of community level physiological profile is MicroResp, a colorimetric method that uses a 96-well microtitre plate, 16 carbon sources and a detection plate to quantify the respiratory activity of the soil microbial community. The main objective of this work is to assess the changes of the community level physiological profile when different fertilizers were used. In order to achieve this goal, a microcosm experiment was designed and performed under controlled temperature and humidity, and the soil samples were analyzed using the MicroResp technique. The experiment was designed with two types of soil (chernozem and luvisol), four types of fertilizers (mineral fertilizer, mustard as green manure, slurry manure and cattle manure) with three replicates for each and a control. Soil samples analyzed with MicroResp technique were prepared and loaded into the deep-well plates and incubated for six hours at 25 oC with the 15 carbon sources which were used at the concentration of 30 mg g-1 soil H2O, one in each well and water as control. The detection plates were read with a spectrophotometer before and after six hours incubation at a wavelength of 570 nm. Highest respiratory activity between the two types of soil used in experiment was given by the luvisol compared with chernozem. Regarding to the differences between the types of fertilizers, we observed that the highest microbial metabolic activity was given by green manure followed in order by cattle manure, slurry manure, control and mineral fertilizer with the lowest respiratory values. This pattern was same for both soils. However, highest respiratory activity was given by α-ketoglutaric acid, malic acid, oxalic acid, citric acid carbon sources, while the lowest respiratory activity was obtained in case of arginine.

  7. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  8. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  9. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    NASA Astrophysics Data System (ADS)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. In order to predict how disturbance affects belowground carbon storage, it is important to understand how the forest floor and soil microbial community respond to changes in land cover, and the consequences on SOM formation and stabilization. We are measuring microbial functional diversity and activity across a long-term successional chronosequence of secondary forests regrowing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Here we report intra- and interannual data on soil and litter microbial community composition (via phospholipid fatty acid analysis, PLFA) and microbial activity (via extracellular enzyme activity) from active pastures, secondary forests aged 20, 30, 40, 70, and 90-years, and primary forests. Microbial community composition and extracellular enzyme activity differed significantly by season in these wet subtropical ecosystems, even though differences in mean monthly precipitation between the middle of the dry season (January) and the wet season (July) is only 30mm. Despite seasonal differences, there was a persistent strong effect of land cover type and forest successional stage, or age, on overall microbial community PLFA structure. Using principal component analysis, we found differences in microbial community structure among active pastures, early, and late successional forests. The separation of soil microbes into early and late successional communities parallels the clustering of tree composition data. While the successional patterns held across seasons, the importance of different microbial groups driving these patterns differed seasonally. Biomarkers for gram-positive and actinobacteria (i15:0 and 16:0 10Me) were associated with early (20, 30 & 40 year old) secondary forests in the dry season. These younger forest communities were identified by the biomarker for anaerobic gram-negative bacteria (c19:0) in the wet season, which suggests the presence of anaerobic microsites in these very clayey Oxisols. Enzymatic activity did not differ with succession but was highest in the dry season. We expect this may be due to decreased turnover of enzymes with low soil moisture. Interannual sampling has revealed a very rapid microbial response to changes in aboveground cover. Within a year following woody biomass encroachment, we detected a shift in the soil microbial community from a pasture-associated community to an early secondary forest community in one of our replicate pasture sites. This very rapid response in the belowground microbial community structure to changes in vegetation has not been strongly documented in the literature. This data supports a direct link between aboveground and belowground biotic community structures and highlights the importance of long-term repeated sampling of microbial communities in dynamic ecosystems. Our findings have implications for predicting rapid ecological responses to land-cover change.

  10. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi

    2014-01-01

    The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.

  11. The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.

    PubMed

    Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata

    2017-03-01

    This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pH KCl 5.6 was contaminated with zinc (ZnCl 2 ) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg -1 ) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.

  12. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    NASA Astrophysics Data System (ADS)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  13. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  14. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.

  15. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes

    USGS Publications Warehouse

    Burger, M.; Jackson, L.E.; Lundquist, E.J.; Louie, D.T.; Miller, R.L.; Rolston, D.E.; Scow, K.M.

    2005-01-01

    The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs ("organic" management) or one of low OM and inorganic fertilizer inputs ("conventional" management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N 2O efflux in the organically managed soil (0.94 mg N2O-N m-2 h-1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m-2 h-1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0-150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.

  16. Italian multicentre study on microbial environmental contamination in dental clinics: a pilot study.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Castiglia, Paolo; Liguori, Giorgio; Montagna, Maria Teresa; Napoli, Christian; Rizzetto, Rolando; Torre, Ida; Masia, Maria Dolores; Di Onofrio, Valeria; Colucci, Maria Eugenia; Tinteri, Carola; Tanzi, Marialuisa

    2010-09-01

    The dental practice is associated with a high risk of infections, both for patients and healthcare operators, and the environment may play an important role in the transmission of infectious diseases. A microbiological environmental investigation was carried out in six dental clinics as a pilot study for a larger multicentre study that will be performed by the Italian SItI (Society of Hygiene, Preventive Medicine and Public Health) working group "Hygiene in Dentistry". Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days of the week, before and during treatments. Air and surfaces were also examined at the end of the daily activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and relative to the different sampling times. Microbial water contamination in Dental Unit Water Systems (DUWS) reached values of up to 26x10(4)cfu/mL (colony forming units per millilitre). P. aeruginosa was found in 33% of the sampled DUWS and Legionella spp. in 50%. A significant decrease in the Total Viable Count (TVC) was recorded during the activity. Microbial air contamination showed the highest levels during dental treatments and tended to decrease at the end of the working activity (p<0.05). Microbial buildup on surfaces increased significantly during the working hours. As these findings point out, research on microbial environmental contamination and the related risk factors in dental clinics should be expanded and should also be based on larger collections of data, in order to provide the essential knowledge aimed at targeted preventive interventions. Copyright 2010 Elsevier B.V. All rights reserved.

  17. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community.

    PubMed

    Marinozzi, Maria; Coppola, Laura; Monaci, Elga; Karpouzas, Dimitrios G; Papadopoulou, Evangelia; Menkissoglu-Spiroudi, Urania; Vischetti, Costantino

    2013-04-01

    Biopurification systems (BPS) have been introduced to minimise the risk for point source contamination of natural water resources by pesticides. Their depuration efficiency relies mostly on the high biodegradation of their packing substrate (biomixture). Despite that, little is known regarding the interactions between biomixture microflora and pesticides, especially fungicides which are expected to have a higher impact on the microbial community. This study reports the dissipation of the fungicides azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC), commonly used in vineyards, in a biomixture composed of pruning residues and straw used in vineyard BPS. The impact of fungicides on the microbial community was also studied via microbial biomass carbon, basal respiration and phospholipid fatty acid analysis. AZX dissipated faster (t1/2 = 30.1 days) than PC (t1/2 = 99.0 days) and FL (t1/2 = 115.5 days). Fungicides differently affected the microbial community. PC showed the highest adverse effect on both the size and the activity of the biomixture microflora. A significant change in the structure of the microbial community was noted for PC and FL, and it was attributed to a rapid inhibition of the fungal fraction while bacteria showed a delayed response which was attributed to indirect effects by the late proliferation of fungi. All effects observed were transitory and a full recovery of microbial indices was observed 60 days post-application. Overall, no clear link between pesticide persistence and microbial responses was observed stressing the complex nature of interactions between pesticides in microflora in BPS.

  18. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  19. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.

    PubMed

    Mondav, Rhiannon; McCalley, Carmody K; Hodgkins, Suzanne B; Frolking, Steve; Saleska, Scott R; Rich, Virginia I; Chanton, Jeff P; Crill, Patrick M

    2017-08-01

    Biogenic production and release of methane (CH 4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.

  1. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil.

    PubMed

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.

  3. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection?

    PubMed Central

    2014-01-01

    Introduction All bird eggs are exposed to microbes in the environment, which if transmitted to the developing embryo, could cause hatching failure. However, the risk of trans-shell infection varies with environmental conditions and is higher for eggs laid in wetter environments. This might relate to generally higher microbial abundances and diversity in more humid environments, including on the surface of eggshells, as well as the need for moisture to facilitate microbial penetration of the eggshell. To protect against microbial infection, the albumen of avian eggs contains antimicrobial proteins, including lysozyme and ovotransferrin. We tested whether lysozyme and ovotransferrin activities varied in eggs of larks (Alaudidae) living along an arid-mesic gradient of environmental aridity, which we used as a proxy for risk of trans-shell infection. Results Contrary to expectations, lysozyme activity was highest in eggs from hotter, more arid locations, where we predicted the risk of trans-shell infection would be lower. Ovotransferrin concentrations did not vary with climatic factors. Temperature was a much better predictor of antimicrobial protein activity than precipitation, a result inconsistent with studies stressing the importance of moisture for trans-shell infection. Conclusions Our study raises interesting questions about the links between temperature and lysozyme activity in eggs, but we find no support for the hypothesis that antimicrobial protein deposition is higher in eggs laid in wetter environments. PMID:25057281

  4. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection?

    PubMed

    Horrocks, Nicholas Pc; Hine, Kathryn; Hegemann, Arne; Ndithia, Henry K; Shobrak, Mohammed; Ostrowski, Stéphane; Williams, Joseph B; Matson, Kevin D; Tieleman, B Irene

    2014-01-01

    All bird eggs are exposed to microbes in the environment, which if transmitted to the developing embryo, could cause hatching failure. However, the risk of trans-shell infection varies with environmental conditions and is higher for eggs laid in wetter environments. This might relate to generally higher microbial abundances and diversity in more humid environments, including on the surface of eggshells, as well as the need for moisture to facilitate microbial penetration of the eggshell. To protect against microbial infection, the albumen of avian eggs contains antimicrobial proteins, including lysozyme and ovotransferrin. We tested whether lysozyme and ovotransferrin activities varied in eggs of larks (Alaudidae) living along an arid-mesic gradient of environmental aridity, which we used as a proxy for risk of trans-shell infection. Contrary to expectations, lysozyme activity was highest in eggs from hotter, more arid locations, where we predicted the risk of trans-shell infection would be lower. Ovotransferrin concentrations did not vary with climatic factors. Temperature was a much better predictor of antimicrobial protein activity than precipitation, a result inconsistent with studies stressing the importance of moisture for trans-shell infection. Our study raises interesting questions about the links between temperature and lysozyme activity in eggs, but we find no support for the hypothesis that antimicrobial protein deposition is higher in eggs laid in wetter environments.

  5. Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil

    PubMed Central

    Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng

    2017-01-01

    This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. ‘Neva’) trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil. PMID:29117215

  6. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, Christina A.

    2010-01-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  7. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kellogg, Christina A.

    2010-11-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  8. How Redox Fluctuation Shapes Microbial Community Structure and Mineral-Organic Matter Relationships in a Humid Tropical Forest Soil

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Bhattacharyya, A.; Lin, Y.; Tfaily, M. M.; Paša-Tolić, L.; Chu, R. K.; Silver, W. L.; Nico, P. S.; Pett-Ridge, J.

    2016-12-01

    Wet tropical soils can alternate frequently between fully oxygenated and anaerobic conditions, constraining both the metabolism of tropical soil microorganisms, and the mineral-organic matter relationships that regulate many aspects of soil C cycling. Tropical forests are predicted to experience a 2-5°C temperature increase and substantial differences in the amount and timing of rainfall in the coming half century. Yet we have a poor understanding of how soil microbial activity and C cycling in these systems will respond to changes in environmental variability caused by climate change. Using a 44 day redox manipulation and isotope tracing experiment with soils from the Luquillo Experimental Forest, Puerto Rico, we examined patterns of tropical soil microorganisms, metabolites and soil chemistry when soils were exposed to different redox regimes - static oxic, static anoxic, high frequency redox fluctuation (4 days oxic, 4 days anoxic), or low frequency redox fluctuation (8 days oxic, 4 days anoxic). Replicate microcosms were harvested throughout the incubation to understand how changes in redox oscillation frequency altered microbial community structure and activity, organic matter turnover and fate, and soil chemistry. While gross soil respiration was highest in static oxic soils, respiration derived from added litter was highest in static anoxic soils, suggesting that decomposition of preexisting SOM was limited by O2 availability in the anoxic treatment. Microbial communities responded to shifting O2 availability in the different treatments, resulting in significant differences in DOC concentration and molecular composition (measured by FTICR-MS). DOC and Fe2+ concentrations were positively correlated for all four redox treatments, and rapidly increased following oscillation from oxic to anoxic conditions. These results, along with parallel studies of biogeochemical responses (Fe speciation, pH, P availability), suggest a highly responsive microbial and geochemical system, where the frequency of low-redox events controls exchanges of C between mineral-sorbed and aqueous pools.

  9. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes

    DOE PAGES

    Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; ...

    2015-10-20

    Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less

  10. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.

    Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less

  11. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    PubMed

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assessment of anti-oxidant activity of plant extracts using microbial test systems.

    PubMed

    Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G

    2009-04-01

    To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.

  13. Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

    2012-12-01

    Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

  14. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    PubMed

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  15. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nostrand, J.D. Van; Wu, L.; Wu, W.M.

    2010-08-15

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less

  16. Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer▿‡

    PubMed Central

    Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong

    2011-01-01

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771

  17. Influence of organic and inorganic sources of nutrients on the functional diversity of microbial communities in the vegetable cropping system of the Indo-Gangetic plains.

    PubMed

    Manjunath, Mallappa; Kumar, Upendra; Yadava, Raj Bahadur; Rai, Awadhesh Bahadur; Singh, Bijendra

    2018-05-31

    The aim of the present study was to assess the effects of different organic and inorganic fertilizers on the functional diversity of soil microbial community under a vegetable production system. The Biolog ® Eco-plate technique and indices, such as average well-colour development (AWCD), McIntosh and Shannon diversity were employed to study the diversity of soil microorganisms. The AWCD, i.e. overall utilization of carbon sources, suggested that different organic treatments had a significant impact on the metabolic activity of soil microorganisms. After 120h, the highest AWCD values were observed in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.63) and farm yard manure (FYM) (10 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.61). After 72h, the highest value of the McIntosh diversity index was recorded in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (3.87), followed by poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 )+biofertilizers (Azotobacter 500 g·ha -1 applied as seed treatment) (3.12). In the case of the Shannon diversity index, the highest values were noticed in organic treatments; however, there was no significant differences between organic and inorganic treatments. Biplot analysis showed a clear differentiation of organic treatments from the inorganic control. The amino acids, phenolics and polymer utilizing microorganisms were dominant in organic treatments. Inorganic control recorded the lowest values of the microbial diversity indices. Through this study, we have identified the best combination of organic nutrients, i.e. poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) for the stimulation of metabolically active soil microbial communities. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  18. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.

    PubMed

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A

    2007-08-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.

  19. High Rates of Sulfate Reduction in a Low-Sulfate Hot Spring Microbial Mat Are Driven by a Low Level of Diversity of Sulfate-Respiring Microorganisms▿

    PubMed Central

    Dillon, Jesse G.; Fishbain, Susan; Miller, Scott R.; Bebout, Brad M.; Habicht, Kirsten S.; Webb, Samuel M.; Stahl, David A.

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation. PMID:17575000

  20. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    PubMed Central

    Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.

    2017-01-01

    The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817

  1. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. ß-glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  2. Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases

    NASA Astrophysics Data System (ADS)

    Matsui, Mihoko; Kawamata, Akinori; Kosugi, Makiko; Imura, Satoshi; Kurosawa, Norio

    2017-09-01

    Despite being an extreme environment, the water temperature of freshwater lakes in Antarctica reaches 10 °C in summer, accelerating biological activity. In these environments, proteolytic microbial decomposers may play a large role in protein hydrolysis. We isolated 71 microbial strains showing proteolytic activity at 4 °C from three Antarctic freshwater lakes. They were classified as bacteria (63 isolates) and eukaryotes (8 isolates). The bacterial isolates were classified into the genera Flavobacterium (28 isolates), Pseudomonas (14 isolates), Arthrobacter (10 isolates), Psychrobacter (7 isolates), Cryobacterium (2 isolates), Hymenobacter (1 isolate), and Polaromonas (1 isolate). Five isolates of Flavobacterium and one of Hymenobacter seemed to belong to novel species. All eukaryotic isolates belonged to Glaciozyma antarctica, a psychrophilic yeast species originally isolated from the Weddell Sea near the Joinville Island, Antarctica. A half of representative strains were psychrophilic and did not grow at temperatures above 25 °C. The protease secreted by Pseudomonas prosekii strain ANS4-1 showed the highest activity among all proteases from representative isolates. The results of inhibitor tests indicated that nearly all the isolates secreted metalloproteases. Proteases from four representative isolates retained more than 30% maximal activity at 0 °C. These results expand our knowledge about microbial protein degradation in Antarctic freshwater lakes.

  3. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex interaction between temporal changes in soil environmental factors and biological changes in the plant and microbial community that affect soil respiratory metabolism.

  4. The safety of non-incineration waste disposal devices in four hospitals of Tehran

    PubMed Central

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    Background: The safe management of hospital waste is a challenge in many developing countries. Objectives: The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. Methods: VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. Results: There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. Conclusions: There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries. PMID:25000113

  5. The safety of non-incineration waste disposal devices in four hospitals of Tehran.

    PubMed

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    The safe management of hospital waste is a challenge in many developing countries. The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries.

  6. Carbon-cycle effects of differences in soil moisture and soil extracellular enzyme activity at sites representing different land-use histories in high-elevation Ecuadorian páramo landscapes

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Harden, C. P.; Schaeffer, S. M.

    2016-12-01

    Ecuadorian páramo grasslands are important regional soil carbon sinks. In the páramo of the Mazar Wildlife Reserve, differences in soil carbon content among different types of land use may reflect changes in soil carbon-acquisition related microbial enzyme activity after land cover and soil moisture are altered; however, this hypothesis has not been tested explicitly for Ecuadorian páramos. This study used a fluorescence enzyme assay to assess the activities of four different extracellular enzymes representing carbon acquisition: α-glucosidase, β-glucosidase, β-D-cellulobiohydrolase, and β-xylosidase in Andean páramo soils. Acquisition activities were also measured for nitrogen (N-acetyl-β-glucosidase and leucine aminopeptidase) and phosphorus (phosphatase) to assess stoichiometric differences between land-uses, which can affect soil microbial activity related to carbon acquisition. Soils were analyzed from four land uses: native forest, grass páramo, recently burned grass páramo, and non-native pine plantation. Carbon acquisition activity was highest at the pine site (678 nmol h-1 g-1) and lowest at the recently burned páramo site (252 nmol h-1 g-1), indicating the lowest and highest available soil carbon, respectively. Carbon-acquisition EE activity was significantly higher at the grass páramo site (595 nmol h-1 g-1) than at the recently burned páramo and native forest sites. At the grass páramo site, a history of burning as a management strategy and high carbon-acquisition EE activity could indicate the presence of pyrogenic soil organic matter, which is more resistant to microbial decomposition. Soils at the native forest and both grassland sites were phosphorus limited, and soil at the pine site had higher nitrogen-acquisition activity, indicative of a shift to nitrogen-limited soil stoichiometric conditions. To our knowledge these are the first data reported for soil extracellular enzyme activities for Ecuadorian páramos.

  7. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system.

    PubMed

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-04

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S 0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S 0 and Fe 2+ , which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  8. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    NASA Astrophysics Data System (ADS)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  9. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    PubMed Central

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-01-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381

  10. Unraveling the potential of a combined nitritation-anammox biomass towards the biodegradation of pharmaceutically active compounds.

    PubMed

    Kassotaki, Elissavet; Pijuan, Maite; Joss, Adriano; Borrego, Carles M; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi

    2018-05-15

    In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  13. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    PubMed Central

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  14. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    PubMed

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  15. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    USGS Publications Warehouse

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semi-volatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

  16. [Microbial air monitoring in operating theatre: active and passive samplings].

    PubMed

    Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L

    2004-01-01

    Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.

  17. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as assessed by CO2 production and sulfate depletion, in two of the four soils, but resulted in a up to a 40% decrease in two other soils. AC amendment has little effect on slurry pH, but decreased aqueous Fe, sulfide and DOC concentrations.

  18. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  19. Influence of Pig Slurry on Microbial and Biochemical Characteristics of Soil in Albacete Region, SE Spain

    NASA Astrophysics Data System (ADS)

    Halil Yanardaǧ, Ibrahim

    2013-04-01

    Soil quality is very important in terms of agricultural sustainability, ecosystem and terrestrial carbon (C) cycle. In turn, soil microbial and biochemical characteristics are indicative of nutrient cycling and soil organic matter dynamics. We investigated the effects of the pig slurries (raw pig slurry (RPS) and treated pig slurry (TPS) from liquid and solid feeding diets) on microbial and biochemical characteristics of soil under barley cropping system. Application doses of slurries are identified with legal doses of Castilla La Mancha Region, which is 210 kg N ha-1 year-1. Microbial biomass C, soluble C, black C and three soil enzymes (β-Glucosidase, β-galactosidase and Arylesterase enzymes) are studied to determine effect slurry on soil biochemical characteristics, which are very important in terms of C cycle in soil. Black carbon content and β-Glucosidase enzyme activities are increased with all pig slurry applications from liquid and traditional feeding diet, as well as microbial biomass and organic carbon content and β-galactosidase enzyme activities are increased with slurry from liquid feeding diet doses. However, pig slurry application from liquid feeding diet doses have increased yield, quality, length and total biomass content of barley. Bioavailable metal contents are increased with all slurry application and with using high doses of slurry can be caused soil pollution. Pig slurries from liquid feeding diet had positive impacts on microbial and biochemical characteristics in terms of soil quality in comparison to the different feeding diets. PS addition to soil had a very significant stimulating effect on the enzyme activities, microbial biomass, soluble and black C compared with different kind of PS and control plots on Mediterranean soil in barley monoculture. This effect may originate from the organic C, N, P and S compounds added with PS. The highest enzyme activity and microbial biomass were observed on the soil samples from the RPS treatment, whereas, black and soluble C was decreased with PS addition. There may have been a transient positive effect of the RPS treatments on the soil biochemical parameters. However, the effect could not be detected because of less labile C content during the experiment. The beneficial effects of the PS additions were less pronounced in the 0-30 cm. soil layer. In this monoculture barley production system and under these Mediterranean climate conditions, applications of TPS should be avoided, so they were associated with a decline in microbial counts and a leveling of almost all the enzymatic activities and microbial biomass C. Keywords: Pig slurry, Microbial biomass C, soluble C, black C, β-Glucosidase, β-galactosidase and Arylesterase enzyme activities.

  20. Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste.

    PubMed

    Amha, Yamrot M; Sinha, Pooja; Lagman, Jewls; Gregori, Matt; Smith, Adam L

    2017-10-15

    Despite growing interest in co-digestion and demonstrated process improvements (e.g., enhanced stability and biogas production), few studies have evaluated how co-digestion impacts the anaerobic digestion (AD) microbiome. Three sequential bench-scale respirometry experiments were conducted at thermophilic temperature (50 °C) with various combinations of primary sludge (PS); thickened waste activated sludge (TWAS); fats, oils, and grease (FOG); and food waste (FW). Two additional runs were then performed to evaluate microbial inhibition at higher organic fractions of FOG (30-60% volatile solids loading (VSL; v/v)). Co-digestion of PS, TWAS, FOG, and FW resulted in a 26% increase in methane production relative to digestion of PS and TWAS. A substantial lag time was observed in biogas production for vessels with FOG addition that decreased by more than half in later runs, likely due to adaptation of the microbial community. 30% FOG with 10% FW showed the highest increase in methane production, increasing 53% compared to digestion of PS and TWAS. FOG addition above 50% VSL was found to be inhibitory with and without FW addition and resulted in volatile fatty acid (VFA) accumulation. Methane production was linked with high relative activity and abundance of syntrophic fatty-acid oxidizers alongside hydrogenotrophic methanogens, signaling the importance of interspecies interactions in AD. Specifically, relative activity of Syntrophomonas was significantly correlated with methane production. Further, methane production increased over subsequent runs along with methyl coenzyme M reductase (mcrA) gene expression, a functional gene in methanogens, suggesting temporal adaptation of the microbial community to co-digestion substrate mixtures. The study demonstrated the benefits of co-digestion in terms of performance enhancement and enrichment of key active microbial populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].

    PubMed

    Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli

    2010-07-01

    To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.

  2. Response of soil microbial activity and community structure to land use changes in a mountain rainforest region of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Potthast, Karin; Hamer, Ute; Makeschin, Franz

    2010-05-01

    Over the past several decades the mountain rainforest region of Southern Ecuador, a hotspot of biodiversity, is undergoing a rapid conversion to pastureland through slash and burn practice. Frequently this pastureland is invaded by the tropical bracken fern. When the bracken becomes dominant on the pasture sites the productivity decreases and the sites are abandoned. To assess the effect of these land use changes on nutrient turnover and on ecosystem functioning, a study was conducted in the area of the German research station Estación Científica San Francisco (ECSF) in Southern Ecuador. At 2000 m above sea level three adjacent sites were selected: a mountain rainforest site, an active pasture site dominated by the grass species Setaria sphacelata and an abandoned pasture site overgrown by bracken. Mineral soil samples of all three sites (0-5, 5-10 and 10-20 cm) as well as samples from the organic layer (Oi and Oa) of the natural forest site were taken to analyze biogeochemical properties. Besides pH-value, total organic C and N contents, the amounts of microbial biomass (CFE-method), microbial activity (basal respiration, net N mineralization (KCl-extraction); gross N mineralization (15N dilution technique) rates) and microbial community structure (PLFA-analysis) were determined. 17 years after pasture establishment, twofold higher stocks of soil microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as significant lower C:N ratios were determined compared to the natural forest including the 11 cm thick organic layer. 10 years after bracken invasion and pasture abandonment the microbial biomass (Cmic) decreased and the C:N ratio increased again to forest levels. Generally, land use change from forest to pasture and from pasture to abandoned pasture induced shifts in the soil microbial community structure. The relative abundance of the fast growing copiotrophic Gram(-) bacteria was positively correlated with the amounts of readily available organic carbon (DOC_KCl) and nitrogen (TDN_KCl). Thereby, the highest amounts of DOC_KCl and TDN_KCl were associated with high carbon and nitrogen mineralization rates which resulted from the supply of fresh organic substrate from the litter in the forest as well as from easily degradable organic substrate from root exudates of the dense fine-root system of the Setaria grass. Comparing 0 to 5 cm depth, the active pasture showed the highest carbon mineralization, gross N mineralization and ammonium consumption rates which corresponded to the lowest net N mineralization rates indicating an active microbial immobilization of inorganic N. Furthermore, this was associated with the lowest Cmic:Nmic ratio compared to the other land uses. The metabolic quotient of 0 to 5 cm depth increased from 1.1 (forest) to 1.8 (pasture) to 2.7 mg CO2-C g-1 Cmic h-1 (abandoned pasture) indicating the lowest substrate use efficiency after the invasion of bracken due to a higher C:N ratio and lignin content of the bracken residues (Potthast et al., 2010). Mineralization rates of all three land use types were affected by the amount of organic matter susceptible to decomposition. Thereby, the land use change from an active to an abandoned pasture showed an impact on nutrient transfer and on the amount of soil N supplied to plants. Potthast, K., Hamer, U., Makeschin, F., 2010. Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry 42, 56-64.

  3. Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest.

    PubMed

    Anaya, Carlos A; García-Oliva, Felipe; Jaramillo, Víctor J

    2007-01-01

    N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH (4) (+) and NO (3) (-) showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.

  4. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of redox mediators and salinity level on the (bio)transformation of Direct Blue 71: kinetics aspects.

    PubMed

    Alvarez, Luis H; Meza-Escalante, Edna R; Gortáres-Moroyoqui, Pablo; Morales, Luz; Rosas, Krystal; García-Reyes, Bernardo; García-González, Alicone

    2016-12-01

    The rate-limiting step of azo dye decolorization was elucidated by exploring the microbial reduction of a model quinone and the chemical decolorization by previously reduced quinone at different salinity conditions (2-8%). Microbial experiments were performed in batch with a marine consortium. The decolorization of Direct Blue 71 (DB71) by the marine consortium at 2% salinity, mediated with anthraquinone-2,6-disulfonate (AQDS), showed the highest rate of decolorization as compared with those obtained with riboflavin, and two samples of humic acids. Moreover, the incubations at different salinity conditions (0-8%) performed with AQDS showed that the highest rate of decolorization of DB71 by the marine consortium occurred at 2% and 4% salinity. In addition, the highest microbial reduction rate of AQDS occurred in incubations at 0%, 2%, and 4% of salinity. The chemical reduction of DB71 by reduced AQDS occurred in two stages and proceeded faster at 4% and 6% salinity. The results indicate that the rate-limiting step during azo decolorization was the microbial reduction of AQDS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. New applications of carbon nanostructures in microbial fuel cells (MFC)

    NASA Astrophysics Data System (ADS)

    Kaca, W.; Żarnowiec, P.; Keczkowska, Justyna; Suchańska, M.; Czerwosz, E.; Kozłowski, M.

    2014-11-01

    In the studies presented we proposed a new application for nanocomposite carbon films (C-Pd). These films were evaluated as an anode material for Microbial Fuel Cells (MFCs) used for electrical current generation. The results of characterization of C-Pd films composed of carbon and palladium nanograins were obtained using the Physical Vapor Deposition (PVD) method. The film obtained by this method exhibits a multiphase structure composed of fullerene nanograins, amorphous carbon and palladium nanocrystals. Raman Spectroscopy (RS) and scanning electron microscopy (SEM) are used to characterize the chemical composition, morphology and topography of these films. We observed, for MFC with C-Pd anode, the highest electrochemical activity and maximal voltage density - 458 mV (20,8 mV/cm2) for Proteus mirabilis, 426 mV (19,4 mV/cm2) for Pseudomonas aeruginosa and 652 mV (29,6 mV/cm2) for sewage bacteria as the microbial catalyst.

  7. [Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].

    PubMed

    Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao

    2009-04-15

    The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.

  8. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    PubMed

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  9. Carbon turnover in topsoil and subsoil: The microbial response to root litter additions and different environmental conditions in a reciprocal soil translocation experiment

    NASA Astrophysics Data System (ADS)

    Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen

    2017-04-01

    At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.

  10. Shifts in microbial communities and soil nutrients along a fire chronosequence in Alaskan boreal forest

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Mack, M. C.; Cross, A.

    2002-12-01

    Fires are important pathways of carbon loss from boreal forests, while microbial communities form equally important mechanisms for carbon accumulation between fires. We used a chronosequence in Alaska to examine shifts in microbial abundance and community composition in the several decades following severe fire, and then related these responses to soil characteristics in the same sites. The sites are located in upland forests near Delta Junction, Alaska, and represent stages at 3-, 15-, 45-, and over 100-yr following fire. Plant communities shift from herbaceous species in the youngest site, to deciduous shrubs and trees (e.g. Populus tremuloides and Salix) in the intermediate sites, to black spruce (Picea mariana) forest in the oldest site. Soil organic matter accumulated 2.8-fold over time. Potential mineralization was highest in the intermediate-aged sites, as was nitrification and standing pools of inorganic nitrogen. In contrast, inorganic phosphorus pools were highest immediately following fire, and then decreased nine-fold with age. As measured with BiologTM plates, bacterial diversity and abundance were greatest in the oldest sites. Plant roots in the intermediate-aged sites displayed higher colonization by ecto- and arbuscular mycorrhizal fungi than those in the youngest and oldest sites. Likewise, glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was most abundant in the 14-yr old site. Glomalin is believed to contribute to the formation of water-stable aggregates in the soil. However, water stable aggregates were most abundant in the younger sites and did not follow the pattern of glomalin or arbuscular mycorrhizal abundance. Our results indicate that fire may maintain landscape-level diversity of microbial functional groups, and that carbon sequestration in microbial tissues (e.g. glomalin and fungal biomass) may be greatest in areas that have burned several decades earlier. Changes in soil structure may not be directly attributable to microbial activity.

  11. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less

  12. Regulation of electron transfer processes affects phototrophic mat structure and activity

    DOE PAGES

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...

    2015-09-03

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less

  13. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2016-03-15

    The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.) growing in a semiarid soil contaminated by heavy metals. We analysed the phospholipid fatty acids (PLFAs), neutral lipids fatty acids (NLFAs) and enzyme activities to study the soil microbial community composition and function, respectively. The combined treatment was not effective for increasing plant growth. The SBR promoted the growth of both plant species, whilst the AM fungus was effective only for D. pentaphyllum. The effect of the treatments on plant growth was linked to shifts in the rhizosphere microbial community composition and function. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended soil. The SBR increased the abundance of marker PLFAs for saprophytic fungi, Gram+ and Gram- bacteria and actinobacteria, whereas the AM fungus enhanced the abundance of AM fungi-related NLFA and marker PLFAs for Gram- bacteria. Measurement of the soil microbial community composition and function was useful to assess the success of phytomanagement technologies in a semiarid, contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra.

    PubMed

    Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra

    2016-02-01

    Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their superiority and emphasized the utility of combining microbiological and molecular tools in the selection of effective microbial inoculants.

  15. Long-term Effects of Shrub Encroachment and Grazing on Soil Microbial Composition and Function

    NASA Astrophysics Data System (ADS)

    Gallery, R. E.; O'Shea, C.; Kwiecien, A.; Predick, K.; Archer, S. R.

    2014-12-01

    Drylands account for ca. 35% of terrestrial net primary productivity and thus play a significant role in global water and biogeochemical cycles. Replacement of grasses by shrubs has been widespread in these systems and has altered rates of erosion and native plant biodiversity and productivity. The net effect of these changes on biogeochemical cycling is not well understood. Projected warmer and drier conditions may further alter the function and stability of these ecosystems and soil resources through direct effects on soil microbiota and plant-microbe interactions. We quantified microbial community responses to long-term livestock grazing and shrub encroachment in a Sonoran Desert grassland. We sought to characterize tipping points where biotic controls over ecosystem processes shift from being 'grass-driven' to 'shrub-driven.' We asked: How do livestock grazing (the predominant land use in dryland ecosystems) and shrub invasion (a predominant land cover change) interact to influence microbial biomass and the relative abundance of bacteria, archaea, and fungi and their extracellular enzyme activities? Surface soil from bare-ground patches, native and invasive grass rhizospheres, and bole and canopy dripline locations in patches of mature mesquite trees in long-term grazed and long-term (70+ y) protected pastures were collected and analyzed for microbial community composition, biomass, potential exoenzyme activities, and a suite of biogeochemical characteristics. We found no differences in microbial communities or the soils associated with native vs. exotic grasses. Overall, mesquite bole patches differed from other patches in all soil characteristics except potential enzyme activity: soil temperature was significantly lower, and total carbon (C) and soil moisture were significantly higher. Potential activities were lowest for bare ground and highest at shrub dripline patches for all seven exoenzymes tested. Mean potential activities for C and phosphorous (P) hydrolyzing enzymes in long-term protected pastures (C: 21.4 ug activity g-1 h-1 ± 2.3; P: 29.8 ug activity g-1 h-1 ± 3.5) were significantly higher than those in grazed pastures (C: 16.6 ug activity g-1 h-1 ± 2.1; P: 15.8 ug activity g-1 h-1 ± 2.5), suggesting long-term effects of past land use on current soil microbial populations.

  16. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    PubMed Central

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  17. Microbial dynamics in acetate-enriched ballast water at different temperatures.

    PubMed

    Stehouwer, Peter Paul; van Slooten, Cees; Peperzak, Louis

    2013-10-01

    The spread of invasive species through ships' ballast water is considered as a major ecological threat to the world's oceans. For that reason, the International Maritime Organization (IMO) has set performance standards for ballast water discharge. Ballast water treatment systems have been developed that employ either UV-radiation or 'active substances' to reduce the concentration of living cells to below the IMOs standards. One such active substance is a chemical mixture known as Peraclean(®) Ocean. The residual of Peraclean(®) Ocean is acetate that might be present at high concentrations in discharged ballast water. In cold coastal waters the breakdown of acetate might be slow, causing a buildup of acetate concentrations in the water if regularly discharged by ships. To study the potential environmental impact, microbial dynamics and acetate degradation were measured in discharge water from a Peraclean(®) Ocean treatment system in illuminated microcosms. In addition, microbial dynamics and acetate degradation were studied at -1, 4, 10, 15 and 25°C in dark microcosms that simulated enclosed ballast water tanks. Acetate breakdown indeed occurred faster at higher temperatures. At 25°C the highest bacteria growth, fastest nutrient and oxygen consumption and highest DOC reduction occurred. On the other hand, at -1°C bacterial growth was strongly delayed, only starting to increase after 12 days. Furthermore, at 25°C the acetate pool was not depleted, probably due to nutrient and oxygen limitation. This means that not all acetate will be broken down in ballast water tanks, even during long voyages in warm waters. In addition, at low temperatures acetate breakdown in ballast water tanks and in discharged water will be extremely slow. Therefore, regular discharge of acetate enriched ballast water in harbors and bays may cause eutrophication and changes in the microbial community, especially in colder regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide.

    PubMed

    Wang, Yuguang; Li, Kai; Chen, Xinhua; Zhou, Hongbo

    2018-02-01

    The microbial diversity and dynamics in the leachates and on the ore surfaces of different depth of the column were analyzed during bioleaching of low grade copper sulfide at different pH, after inoculation with the same inoculum containing mesophiles and moderate thermophiles. The results indicate that low pH was beneficial to enhance copper extraction. The highest copper extraction (86%) was obtained when pH was controlled at 1.0-1.5. The microbial structures on the ore surfaces were independent of community structures in the leachate, even at the top portion of column. Microbial richness and evenness increased with decreasing pH during bioleaching. pH had significant effects on microbial community structure in the leachate and on the mineral surface of different depth of the column. Leptospirillum ferriphilum accounted for the highest proportions of the community at most times when pH was operated during bioleaching, especially at the end of run. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Changes in the ginsenoside content during the fermentation process using microbial strains.

    PubMed

    Lee, So Jin; Kim, Yunjeong; Kim, Min-Gul

    2015-10-01

    Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

  20. The capacity of some newly bacteria and fungi for biodegradation of herbicide trifluralin under agiated culture media.

    PubMed

    Erguven, G O; Bayhan, H; Ikizoglu, B; Kanat, G; Nuhoglu, Y

    2016-05-30

    Bioremediation is the use of microorganisms to degrade environmental contaminants (pesticides, polyaromatic hydrocarbons etc.) into less toxic forms or compounds. In this study microbial biodegradation of trifluralin was performed in liquid media with 11 different types of identified fungi and bacteria cultures and their mixtures in agiated culture media. The isolated fungi and bacteria mixtures showed the highest degradation, reaching 93% in the chemical oxygen demand (COD) parameter in four days and 82% as trifluralin active ingredient in five days. Bacteria and fungi mixtures achieved 69% and 66% degradations of trifluralin active ingredient respectively. In the fungi studies, the best removal was achieved by M.Chlamydosporia at 80%, in the bacteria studies, the best removal was achieved by Bacillus simplex about 95% in five days. These different removal rates were due to the microbial differencies.

  1. Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora.

    PubMed

    Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E

    2013-04-01

    Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    PubMed

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  3. [The relationship between abiotic factors and microbial activities of microbial eco-system in contaminated soil with petroleum hydrocarbons].

    PubMed

    Jia, Jian-li; Li, Guang-he; Zhong, Yi

    2004-05-01

    By means of the biostimulation and bioaugmentation in the micro-ecological environment of contaminated soil with petrochemical hydrocarbons, the biodegradation rates and mode of the contaminants were significantly improved. Based on the investigations carried out in some oilfields and petrochemical industrial area of Northern China, the relationship between the abiotic factors such as nutrient, pH, contaminants, water content, alkalinity, etc., and microbial activities was interpreted and identified in this paper. The results from the investigations and indoor and in-situ experiments conducted recent years indicated that the soils in the areas, to the extent, have been polluted by the different kinds of organic compounds composed of monoaromatic benzene, PAHs, chlorinated solvent, and alkanes, and the concentrations of the compounds mostly were elevated as compared to the background, with the highest 34,000 mg/kg dry soil. The column chromatography analysis results showed that the alkyl and aromatic compounds were accounted for more than 50% of the total hydrocarbon contents, which was readily degraded by degrading bacteria and improved the degrading microbe activities. The effective nitrogen and phosphorus encountered in the soil was less than 30 mg/kg dry soil and 10 mg/kg dry soil, only about 5% of total contents of them respectively. Based on the stoichiometric calculation and reasonable ratio of carbon to nutrient content regarding the biodegradation of organic compounds, the nutrient levels mainly composed of nitrogen and phosphorus in polluted soil as importantly limiting factors to degrading bacterial growth and activity were insufficient to the biodegradation of petrochemicals, and it is needed to add the nutrient for the bioremediation of contaminated soil. It is undoubted that the optimization of abiotic factors play significant role in increasing the microbial activity and improving the biodegradation rates.

  4. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    NASA Astrophysics Data System (ADS)

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  5. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.

    PubMed

    Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping

    2016-02-01

    Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Types of microbial contaminants in pharmaceutical raw materials].

    PubMed

    Martínez-Bermúdez, A; Rodríguez-de Lecea, J; Soto-Esteras, T; Vázquez-Estévez, C; Chena-Cañete, C

    1991-01-01

    In order to analyze the significance of the microbial content of pharmaceutical raw materials contributed to the finished pharmaceutical products, we have carried out a study of contamination taking into account aerobic bacteria, anaerobic bacteria and fungi. None or only low numbers of pathogenic microorganisms was found in most analyzed products but in some materials, specially those of natural origin, we have detected high bacterial and fungal contamination. Microorganisms of the genus Bacillus have been the aerobic bacteria most frequently isolated; Bifidobacterium and Clostridium were the most common anaerobic bacteria and with respect to the fungi, Penicillium and Aspergillus have been found with the highest frequency. These microorganisms can produce problems in pharmaceutical finished products, due to their enzymatic or toxigenic activities.

  7. Effects of soil water repellency on microbial community structure and functions in Mediterranean pine forests

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge

    2015-04-01

    Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary results suggest a possible influence of SWR on microbial structure and its activity in soils. References: Lozano, E., García-Orenes, F., Bárcenas-Moreno, G., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Morugán-Coronado, A., Mataix-Beneyto, J., 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech., 62, 101-107 Müller, K., Deurer, M., Newton, P.C.D., 2010. Is there a link between elevated atmospheric carbon dioxide concentration, soil water repellency and soil carbon mineralization? Agric. Ecosyst. Environ., 139, 98-109. Acknowledgements: to the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R), Generalitat Valenciana for PhD grant, and Spanish Soil Science Society and FUEGORED for their support.

  8. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    NASA Astrophysics Data System (ADS)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial diversity was assessed by new generation sequencing (NGS) of 16S rDNA. Microbiological analyses of samples collected from selected vertical profiles in the soil, where temperatures were up to 60 °C, revealed total prokaryotic abundances ranging from 7.23×106 to 439×106 cell/g WW. The highest abundances were recorded in sites affected by the highest and the lowest CO2 (3,350 and 110 gm-2day-1, respectively) and CH4 (0.059 and 0.00021 gm-2day-1, respectively) soil fluxes, and H2S concentrations ranging from 0.05 to 1.9 mmol/mol. The composition of both archaeal and bacterial communities showed remarkable changes depending on the sampling site, the most abundant phyla being represented by Proteobacteria, Firmicutes, Actinobacteria and Euryarchaeota at the highest inputs of hydrothermal fluids, corresponding to VOCs concentrations up to 898 nmol/mol (mainly alkanes and aromatics). Conversely, Proteobacteria, Acidobacteria, Firmicutes, Chloroflexi and Thaumarchaeota dominated in those sites where low gas fluxes and VOCs contents (≤300 nmol/mol; mainly alkanes and O-bearing species) were recognized. The intimate relation between microbial distribution and hydrothermal gas concentrations and gas fluxes demonstrated the critical interplay between soil gases and microorganisms, remarking the potential biodegradation efficiency at extremely high VOCs concentrations in the soil.

  9. Soil inoculation with microbial communities - can this become a useful tool in soil remediation?

    NASA Astrophysics Data System (ADS)

    Krug, Angelika; Wang, Fang; Dörfler, Ulrike; Munch, Jean Charles; Schroll, Reiner

    2010-05-01

    We artificially loaded different type of agricultural soils with model 14C-labelled chemicals, and we inoculated such soils with different microbial communities as well as isolated strains to enhance the mineralization of such chemicals. Inocula were introduced by different approaches: (i) soil inocula, (ii) application of isolated strain as well as microbial community via media, (iii) isolated strain as well as microbial community attached to a carrier material. Most of the inoculation experiments were conducted in laboratory but we also tested one of these approaches under real environmental conditions in lysimeters and we could show that the approach was successful. We already could show that inoculating soils with microbial communities attached on a specific carrier material shows the highest mineralization effectiveness and also the highest sustainability. Microbes attached on clay particles preserved their function over a long time period even if the specific microbial substrate was already degraded or at least not detectable any more. Additionally we already could show that in specific cases some soil parameters might reduce the effectiveness of such an approach. Results on isoproturon as a model for phenylurea-herbicides and 1,2,4-trichlorobenzene as an example for an industrially used chemical as well as the corresponding chemicals` degrading microbial communities and isolated strain will be presented.

  10. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures

    DOE PAGES

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; ...

    2015-07-17

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here in this study, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHgmore » using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Lastly, above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production.« less

  11. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    PubMed

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) < arylsulfatase (38-97 %) ≤ urease (1-100 %) ≤ β-galactosidase (30-100 %) < dehydrogenase (69-100 %). The high variability among soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  12. Transport Functions Dominate the SAR11 Metaproteome at Low-Nutrient Extremes in the Sargasso Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, Sarah M.; Wilhelm, Larry; Norbeck, Angela D.

    2009-01-01

    The northwestern Sargasso Sea is part of the North Atlantic subtropical oceanic gyre that is characterized as seasonally oligotrophic with pronounced stratification in the summer and autumn. Essentially a marine desert, the biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorous and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary LC-tandem mass spectrometry to study the composition of microbial proteomes in surface samples collected in September 2005. A total of 2279 peptides that mapped to 236 SAR11 proteins, andmore » 3208 peptides that mapped to 404 Synechococcus proteins, were detected. Mass spectra from SAR11 periplasmic binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars, and spermidine. Although the data showed that a large fraction of microbial protein synthesis in the Sargasso Sea is devoted to inorganic and organic nutrient acquisition, the proteomes of both SAR11 and Synechococcus also indicated that these populations were actively growing. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme but sufficient to sustain microbial community activity.« less

  13. [Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China].

    PubMed

    Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua

    2014-09-01

    The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem.

  14. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the basic microbial metabolism of C3 molecules in glycolysis. Reconstruction of microbial transformation pathways showed that the C-2 position of Alanine was lost as CO2 faster than its C-3 position regardless of whether the molecule was used ana- or catabolically. The highest incorporations of all positions in PLFA were accomplished by Gram negatives. Free Alanine was preferentially used by highly competitive prokaryotes, while sorbed Alanine was preferred by filamentous microorganisms. In detail, the free living osmotrophic Gram negative bacteria utilize more easily accessible dissolved substances. The utilization of sorbed substances are achieved by less mobile microorganisms, e.g. eukaryotic fungi and Actinomycetes, which form biofilms. None of these findings could have been achieved without the position-specific labeling approach, therefore this method will strongly improve our understanding of stabilization processes and soil C fluxes.

  15. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2, +3, or +5 °C for 6 months. The pH decreased in all samples (5.5 to 5.9). The proportions of carbon in labile and intermediate turnover pools from permafrost samples decreased during incubation, while microbial biomass carbon increased in all cases. Microcosm samples and original core material were analyzed by 16S rDNA pyrosequencing and showed increased populations of bacteria that ferment simple and complex carbohydrates, as well as acidophilic bacteria. Microbial diversity declined in permafrost samples. Concentrations of CO2 and CH4 were measured monthly by gas chromatography. CO2 production was highest in the surface/near surface incubations (4-14%) while CH4 was undetectable. Active layer sediments produced considerably less CO2 (0.2-0.7%) but CH4 was detected up to 0.25%. Concentrations of CO2 found in the deep permafrost incubations were comparable to those in the active layer, while CH4 was considerably higher ranging from 0.2-0.6%. Overall, the CO2 generation rate (0.02-0.12 μmol/g/month) was roughly 50 times that of methanogenesis (0.002-0.007 μmol/g/month). GHG levels peaked after 4 months, and the decreasing pH suggested that organic acid accumulation could control GHG biogenesis. Surprisingly, increasing temperature and water content did not necessarily increase GHG emission rates or proportions of CO2 and CH4.

  16. Mississippi River Plume Enriches Microbial Diversity in the Northern Gulf of Mexico

    PubMed Central

    Mason, Olivia U.; Canter, Erin J.; Gillies, Lauren E.; Paisie, Taylor K.; Roberts, Brian J.

    2016-01-01

    The Mississippi River (MR) serves as the primary source of freshwater and nutrients to the northern Gulf of Mexico (nGOM). Whether this input of freshwater also enriches microbial diversity as the MR plume migrates and mixes with the nGOM serves as the central question addressed herein. Specifically, in this study physicochemical properties and planktonic microbial community composition and diversity was determined using iTag sequencing of 16S rRNA genes in 23 samples collected along a salinity (and nutrient) gradient from the mouth of the MR, in the MR plume, in the canyon, at the Deepwater Horizon wellhead and out to the loop current. Analysis of these datasets revealed that the MR influenced microbial diversity as far offshore as the Deepwater Horizon wellhead. The MR had the highest microbial diversity, which decreased with increasing salinity. MR bacterioplankton communities were distinct compared to the nGOM, particularly in the surface where Actinobacteria and Proteobacteria dominated, while the deeper MR was also enriched in Thaumarchaeota. Statistical analyses revealed that nutrients input by the MR, along with salinity and depth, were the primary drivers in structuring the microbial communities. These results suggested that the reduced salinity, nutrient enriched MR plume could act as a seed bank for microbial diversity as it mixes with the nGOM. Whether introduced microorganisms are active at higher salinities than freshwater would determine if this seed bank for microbial diversity is ecologically significant. Alternatively, microorganisms that are physiologically restricted to freshwater habitats that are entrained in the plume could be used as tracers for freshwater input to the marine environment. PMID:27458442

  17. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah

    USGS Publications Warehouse

    Boyd, Eric S.; Yu, Ri-Qing; Barkay, Tamar; Hamilton, Trinity L.; Baxter, Bonnie K.; Naftz, David L.; Marvin-DiPasquale, Mark

    2017-01-01

    Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

  18. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.

    PubMed

    Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M

    2015-02-01

    The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.

  19. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.

    PubMed

    Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción

    2018-06-01

    Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable cover in the composting of sewage sludge allow a noticeable reduction in the process-time comparing to conventional open windrows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microbial Insights into Shifting Methane Production Potential in Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Crossen, K.; Wilson, R.; Raab, N.; Neumann, R.; Chanton, J.; Saleska, S. R.; Rich, V. I.

    2017-12-01

    Permafrost, which stores 50% of global soil carbon, is thawing rapidly due to climate change, and resident microbes are contributing to changing carbon gas emissions. Predictions of the fate of carbon in these regions is poorly constrained; however, improved, careful mapping of microbial community members influencing CO2 and CH4 emissions will help clarify the system response to continued change. In order to more fully understand connections between the microbial communities, major geochemical transformations, and CO2 and CH4 emissions, peat cores were collected from the active layers of three permafrost habitats spanning a thaw gradient (collapsed palsa, bog, and fen) at Stordalen Mire, Abisko, Sweden. Anaerobic incubations of shallow and deep subsamples from these sites were performed, with time-course characterization of the changes in microbial communities, peat geochemistry, and carbon gas production. The latter were profiled with 16S rRNA amplicon sequencing, and targeted metagenomes. The communities within each habitat and depth were statistically distinct, and changed significantly over the course of the incubations. Acidobacteria was consistently the dominant bacterial phylum in all three habitat types. With increased thaw, the relative abundance of Actinobacteria tended to decrease, while Chloroflexi and Bacteroidetes increased with thaw. The relative abundance of methanogens increased with thaw and with depth within each habitat. Over time in the incubations, the richness of the communities tended to decrease. Homoacetogenesis (CO2 + H2 -> CH3COOH) has been documented in other peatlands, and homoacetogens can influence CH4 production by interacting with methanogens, competing with hydrogenotrophs while providing substrate for acetoclasts. Modelling of microbial reaction networks suggests potential for highest homoacetogenesis rates in the collapsed palsa, which also contains the highest relative abundances of lineages taxonomically affiliated with known homoacetogens. We are working to link changes in the relative abundances of specific, differentiating lineages with observed geochemical transformations and measured carbon gas production. This work will increase our knowledge of factors influencing greenhouse gas emissions from this climatically important habitat.

  1. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis.

    PubMed

    Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali

    2013-10-01

    Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.

  2. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  3. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  4. Factors influencing microbial colonies in the air of operating rooms.

    PubMed

    Fu Shaw, Ling; Chen, Ian Horng; Chen, Chii Shya; Wu, Hui Hsin; Lai, Li Shing; Chen, Yin Yin; Wang, Fu Der

    2018-01-02

    The operating room (OR) of the hospital is a special unit that requires a relatively clean environment. The microbial concentration of an indoor OR extrinsically influences surgical site infection rates. The aim of this study was to use active sampling methods to assess microbial colony counts in working ORs and to determine the factors affecting air contamination in a tertiary referral medical center. This study was conducted in 28 operating rooms located in a 3000-bed medical center in northern Taiwan. The microbiologic air counts were measured using an impactor air sampler from May to August 2015. Information about the procedure-related operative characteristics and surgical environment (environmental- and personnel-related factors) characteristics was collected. A total of 250 air samples were collected during surgical procedures. The overall mean number of bacterial colonies in the ORs was 78 ± 47 cfu/m 3 . The mean number of colonies was the highest for transplant surgery (123 ± 60 cfu/m 3 ), followed by pediatric surgery (115 ± 30.3 cfu/m 3 ). A total of 25 samples (10%) contained pathogens; Coagulase-negative staphylococcus (n = 12, 4.8%) was the most common pathogen. After controlling for potentially confounding factors by a multiple regression analysis, the surgical stage had the significantly highest correlation with bacterial counts (r = 0.346, p < 0.001). Otherwise, independent factors influencing bacterial counts were the type of surgery (29.85 cfu/m 3 , 95% CI 1.28-58.42, p = 0.041), site of procedure (20.19 cfu/m 3 , 95% CI 8.24-32.14, p = 0.001), number of indoor staff (4.93 cfu/m 3 , 95% CI 1.47-8.38, p = 0.005), surgical staging (36.5 cfu/m 3 , 95% CI 24.76-48.25, p < 0.001), and indoor air temperature (9.4 cfu/m 3 , 95% CI 1.61-17.18, p = 0.018). Under the well-controlled ventilation system, the mean microbial colony counts obtained by active sampling in different working ORs were low. The number of personnel and their activities critically influence the microbe concentration in the air of the OR. We suggest that ORs doing complex surgeries with more surgical personnel present should increase the frequency of air exchanges. A well-controlled ventilation system and infection control procedures related to environmental and surgical procedures are of paramount importance for reducing microbial colonies in the air.

  5. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations.

    PubMed

    Pereira, Arthur P A; Zagatto, Maurício R G; Brandani, Carolina B; Mescolotti, Denise de Lourdes; Cotta, Simone R; Gonçalves, José L M; Cardoso, Elke J B N

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0-20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis , and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient ( q CO 2 ) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development.

  6. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations

    PubMed Central

    Pereira, Arthur P. A.; Zagatto, Maurício R. G.; Brandani, Carolina B.; Mescolotti, Denise de Lourdes; Cotta, Simone R.; Gonçalves, José L. M.; Cardoso, Elke J. B. N.

    2018-01-01

    Intercropping forest plantations of Eucalyptus with nitrogen-fixing trees can increase soil N inputs and stimulate soil organic matter (OM) cycling. However, microbial indicators and their correlation in specific fractions of soil OM are unclear in the tropical sandy soils. Here, we examined the microbial indicators associated with C and N in the soil resulting from pure and intercropped Eucalyptus grandis and Acacia mangium plantations. We hypothesized that introduction of A. mangium in a Eucalyptus plantation promotes changes in microbial indicators and increases C and N concentrations on labile fractions of the soil OM, when compared to pure eucalyptus plantations. We determined the microbial and enzymatic activity, and the potential for C degradation by the soil microbial community. Additionally, we evaluated soil OM fractions and litter parameters. Soil (0–20 cm) and litter samples were collected at 27 and 39 months after planting from the following treatments: pure E. grandis (E) and A. mangium (A) plantations, pure E. grandis plantations with N fertilizer (E+N) and an E. grandis, and A. mangium intercropped plantations (E+A). The results showed that intercropped plantations (E+A) increase 3, 45, and 70% microbial biomass C as compared to A, E+N, and E, at 27 months after planting. The metabolic quotient (qCO2) showed a tendency toward stressful values in pure E. grandis plantations and a strong correlation with dehydrogenase activity. A and E+A treatments also exhibited the highest organic fractions (OF) and C and N contents. A canonical redundancy analysis revealed positive correlations between microbial indicators of soil and litter attributes, and a strong effect of C and N variables in differentiating A and E+A from E and E+N treatments. The results suggested that a significant role of A. mangium enhance the dynamics of soil microbial indicators which help in the accumulation of C and N in soil OF in intercropped E. grandis plantations. Our results are mostly relevant to plantations in sandy soil areas with low levels of OM, suggesting and efficient method for improving nutrient availability in the soil and optimizing eucalyptus growth and development. PMID:29670606

  7. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish.

    PubMed

    Chanarat, Sochaya; Benjakul, Soottawat; H-Kittikun, Aran

    2012-03-15

    Microbial transglutaminase (MTGase) has been used to increase the gel strength of surimi. Nevertheless, its effectiveness varies with fish species. The aim of this study was to elucidate the effect of MTGase at different levels on protein cross-linking and gel property of surimi from threadfin bream, Indian mackerel and sardine in the presence and absence of endogenous transglutaminase. Breaking force of all surimi gels increased as MTGase levels (0-0.6 U g⁻¹) increased except for threadfin bream surimi gel, where the breaking force decreased at 0.6 U g⁻¹ (P < 0.05). In the presence of EDTA, the gel strengthening effect was lower, suggesting the combined effect of endogenous transglutaminase with MTGase. With the addition of MTGase, the gel with the highest increase in breaking force showed highest decrease in myosin heavy chain. When cross-linking activity of MTGase on natural actomyosin (NAM) was determined, the highest decreasing rate in ε-amino group content with the concomitant increased formation of cross-linked proteins was found in NAM from threadfin bream. The reactivity of muscle proteins toward MTGase-induced cross-linking was in agreement with surimi gel strengthening. The composition and properties of muscle proteins of varying fish species more likely determined protein cross-linking induced by MTGase, thereby affecting their gel properties.

  8. Microbial degradation at a shallow coastal site: Long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Del Negro, Paola

    2012-12-01

    The degradation of organic matter along the water column is mediated by enzymes released into the environment by planktonic organisms. Variations in enzymes profiles (types and levels of activity) reflect the trophic status of the environment and could be caused by shifts in the dominant species or in the level of enzyme expression by the same species in response to changes in the spectrum of organic substrates. To explore this issue, we examined the maximum rates of hydrolysis of 6 different enzymes (protease, α-glucosidase, β-glucosidase, β-galactosidase, alkaline phosphatase and lipase) along the water column (4 depths) at a coastal station in the Gulf of Trieste (northern Adriatic Sea), from 2000 to 2005. Most of the studied enzymes exhibited a pronounced seasonal variability with winter minima and maxima from April to October. During summer, alkaline phosphatase, lipase and protease reached the highest activities, while polysaccharide degradation prevailed in spring and autumn, associated to phytoplankton blooms. Phosphatase/protease activities ratio was generally low, indicating that microbial communities were rarely P-limited, possibly because of the use of organic P sources. A pronounced interannual variability of degradation patterns was found, with maximum rates of protease being the highest in most of the samples, followed by the alkaline phosphatase's ones. Water column features greatly affected hydrolysis rates, being degradation of linear polysaccharides, lipids, phosphorilated compounds and polypeptides significantly different at different depths during stratified condition. Mixing processes affected especially α-glucosidase activity, possibly as a consequence of resuspension of organic matter from the seabed. Large-impact phenomena such as the 2003 heat wave and mucilage influenced the degradation of specific substrates. Mucilage enhanced lipase, phosphatase and protease, whereas a pronounced inhibition characterised phosphatase and protease during summer 2003.

  9. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China

    PubMed Central

    Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming

    2014-01-01

    The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils. PMID:25302996

  10. Antimicrobial activity of essential oil and aqueous and ethanol extracts of Teucrium polium L. subsp. gabesianum (L.H.) from Tunisia.

    PubMed

    Ben Othman, Mahmoud; Bel Hadj Salah-Fatnassi, Karima; Ncibi, Saida; Elaissi, Amer; Zourgui, Lazhar

    2017-07-01

    The antimicrobial effects of essential oil, ethanol and aqueous extracts of Teucrium polium L. were investigated against 13 microorganisms. Extracts and essential oil were obtained from maceration, decoction and hydrodistillation respectively. Samples were tested for their antimicrobial activity using the disk diffusion, the agar dilution and the agar incorporation method. Essential oil was analysed using GC/MS, results showed that β-pinene (35.97%) and α-pinene (13.32%) were the main components. Furthermore, essential oil exhibited the highest antimicrobial activity, it was most effective against Proteus mirabilis, Staphylococcus aureus and Citrobacter freundei where inhibition zone ranged between 15 and 25 mm, and with the microbial inhibitory concentration (MIC) values of 0.078-0.156 mg/ml. The oil and ethanol extract showed the best antifungal activity against Microsporum canis , Scopulariopsis brevicaulis , and Trichophyton rubrum with the inhibition percentage (I%) ranging from 18.94 to 100%. However, none of the samples exhibited antifungal activity against Aspergillus fumigatus . In this study, the obtained results showed significant effects of essential oils and ethanol extracts of T. polium which may used as a substitute to the synthetic drugs against certain microbial diseases.

  11. Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF).

    PubMed

    Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao

    2017-11-01

    Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of Different Organic Manures on the Biochemical and Microbial Characteristics of Albic Paddy Soil in a Short-Term Experiment

    PubMed Central

    Zhang, Qian; Zhou, Wei; Liang, Guoqing; Wang, Xiubin; Sun, Jingwen; He, Ping; Li, Lujiu

    2015-01-01

    This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile. PMID:25879759

  13. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment.

    PubMed

    Zhang, Qian; Zhou, Wei; Liang, Guoqing; Wang, Xiubin; Sun, Jingwen; He, Ping; Li, Lujiu

    2015-01-01

    This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, β-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, β-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on β-xylosidase, β-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile.

  14. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    PubMed Central

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-01-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507

  15. [Effects of re-vegetation on soil microbial functional diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China.

    PubMed

    Wen, Dong Xin; Yang, Ning; Yang, Man Yuan

    2016-08-01

    The aim of the study was to explore the effects of re-vegetation on soil microbial functio-nal diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China. By using the spatial series to replace time series, four typical sampling plots, grass (Setaria viridi, GS), frutex and grass (Lagerstroemia indica-Setaria viridi, FG), frutex (Vitex negundo var. cannabifolia+Robinia pseudoacacia, FX), as well as arbor and frutex (Liquidamdar formosana+Melia azedarach-Vitex negundo var. cannabifolia, AF) community were selected to study the soil microbial functional diversity by using the Biolog-ECO micro-plate technique. The four communities in purple soils on sloping-land were similar and denoted four different re-vegetation stages. The results showed that the soil microbial metabolic activity increased after re-vegetation significantly, and the average well color development (AWCD) which represented soil microbial activity and functional diversity followed the order of AF community>FX community>FG community>GS community at different re-vegetation stages, and followed the order of 0-10 cm >10-20 cm in different soil layers. Principal component analysis (PCA) identified that FG and FX community had similar C sources utilization mode and metabolic function, and GS and AF community were diffe-rent. The carbohydrates, amino acids, intermediate metabolites, and secondary metabolites were the main carbon sources separating the two principal component factors. The Shannon species richness index (H), Shannon evenness index (E), Simpson dominance index (D), McIntosh index (U) at four re-vegetation stages were the highest in AF community, the second in FG and FX community, and the lowest in GS community. The results of correlation analysis indicated that the content of soil water content (SWC), soil total organic carbon (STOC), total nitrogen (TN), total phospho-rus (TP) and available phosphorus (AP) had important influence on the soil microbial metabolic function and functional diversity indices. There existed significant correlation between the activities of urease (URE), alk-phosphatase (APE), invertase (INV), catalase (CAT) and the soil microbial metabolic function and functional diversity indices. All the results indicated that re-vegetation could enhance the soil microbial metabolic function, which was beneficial to the reproduction of soil micro-organisms, thereby promoting an increase of soil carbon source utilization intensity.

  16. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.

    PubMed

    Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong

    2017-09-02

    Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.

  17. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese.

    PubMed

    Calasso, Maria; Mancini, Leonardo; Di Cagno, Raffaella; Cardinali, Gianluigi; Gobbetti, Marco

    2015-09-01

    Freeze-dried cell-free extracts (CFE) from Lactobacillus casei LC01, Weissella cibaria 1XF5, Hafnia alvei Moller ATCC 51815, and Debaryomyces hansenii LCF-558 were used as sources of enzyme activities for conditioning the ripening of ewe milk cheese. Compared with control cheese (CC), CFE did not affect the gross composition and the growth of the main microbial groups of the cheeses. As shown through urea-PAGE electrophoresis of the pH 4.6-soluble nitrogen fraction and the analysis of free AA, the secondary proteolysis of the cheeses with CFE added was markedly differed from that of the CC. Compared with CC, several enzyme activities were higher in the water-soluble extracts from cheeses made with CFE. In agreement, the levels of 49 volatile compounds significantly differentiated CC from the cheeses made with CFE. The level of some alcohols, ketones, sulfur compounds, and furans were the lowest in the CC, whereas most aldehydes were the highest. Each CFE seemed to affect a specific class of chemical compounds (e.g., the CFE from H. alvei ATCC 51815 mainly influenced the synthesis of sulfur compounds). Apart from the microbial source used, the cheeses with the addition of CFE showed higher score for acceptability than the control cheese. Cheese ripening was accelerated or conditioned using CFE as sources of tailored enzyme activities. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.

    PubMed

    Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G

    2006-04-01

    To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.

  19. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland).

    PubMed

    Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Stefanowicz, Anna M

    2011-06-01

    Effects of metal contamination on soil biota activity were investigated at 43 sites in 5 different habitats (defined by substratum and vegetation type) in a post-mining area. Sites were characterised in terms of soil pH and texture, nutrient status, total and exchangeable metal concentrations, as well as plant species richness and cover, abundances of enchytraeids, nematodes and tardigrades, and microbial respiration and biomass. The concentrations of total trace metals were highest in soils developed on mining waste (metal-rich dolomite), but these habitats were more attractive than sandy sites for plants and soil biota because of their higher content of organic matter, clay and nutrients. Soil mesofauna and microbes were strongly dependent on natural habitat properties. Pollution (exchangeable Zn and Cd) negatively affected only enchytraeid density; due to a positive relationship between enchytraeids and microbes it indirectly reduced microbial activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Non-microbial sources of microbial volatile organic compounds.

    PubMed

    Choi, Hyunok; Schmidbauer, Norbert; Bornehag, Carl-Gustaf

    2016-07-01

    The question regarding the true sources of the purported microbial volatile organic compounds (MVOCs) remains unanswered. To identify microbial, as well as non-microbial sources of 28 compounds, which are commonly accepted as microbial VOCs (i.e. primary outcome of interest is Σ 28 VOCs). In a cross-sectional investigation of 390 homes, six building inspectors assessed water/mold damage, took air and dust samples, and measured environmental conditions (i.e., absolute humidity (AH, g/m(3)), temperature (°C), ventilation rate (ACH)). The air sample was analyzed for volatile organic compounds (μg/m(3)) and; dust samples were analyzed for total viable fungal concentration (CFU/g) and six phthalates (mg/g dust). Four benchmark variables of the underlying sources were defined as highest quartile categories of: 1) the total concentration of 17 propylene glycol and propylene glycol ethers (Σ17 PGEs) in the air sample; 2) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) in the air sample; 3) semi-quantitative mold index; and 4) total fungal load (CFU/g). Within severely damp homes, co-occurrence of the highest quartile concentration of either Σ17 PGEs or TMPD-MIB were respectively associated with a significantly higher median concentration of Σ 28 VOCs (8.05 and 13.38μg/m(3), respectively) compared to the reference homes (4.30 and 4.86μg/m(3), respectively, both Ps ≤0.002). Furthermore, the homes within the highest quartile range for Σ fungal load as well as AH were associated with a significantly increased median Σ 28 VOCs compared to the reference group (8.74 vs. 4.32μg/m(3), P=0.001). Within the final model of multiple indoor sources on Σ 28 VOCs, one natural log-unit increase in summed concentration of Σ17 PGEs, plus TMPD-MIB (Σ 17 PGEs + TMPD-MIB) was associated with 1.8-times (95% CI, 1.3-2.5), greater likelihood of having a highest quartile of Σ 28 VOCs, after adjusting for absolute humidity, history of repainting at least one room, ventilation rate, and mold index (P-value =0.001). Homes deemed severely mold damaged (i.e., mold index =1) were associated with 1.7-times (95% CI, 0.8-3.6), greater likelihood of having a highest quartile of Σ 28 VOCs, even though such likelihood was not significant (P-value =0.164). In addition, absolute humidity appeared to positively interact with mold index to significantly elevate the prevalence of the highest quartile category of Σ 28 VOCs. The indoor concentration of Σ 28 VOCs, which are widely accepted as MVOCs, are significantly associated with the markers of synthetic (i.e. Σ17 PGEs and TMPD-MIB), and to less extent, microbial (i.e., mold index) sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Using 13C labeled glucose to determine soil microbial and physical controls of new C incorporation under drying-rewetting cycles and conservation agricultural management

    NASA Astrophysics Data System (ADS)

    Li, L.; Schaeffer, S. M.

    2017-12-01

    Drying-rewetting cycles can induce carbon (C) depletion in soil, while conservation agricultural management aims at soil C sequestration. Understanding the combined effect of drying-rewetting cycles and conservation management is critical for sustaining agricultural soil under climate change. Soil organic C can be stored in a relatively rapidly cycling active pool, or a more slowly cycling passive pool. We conducted a 24-days mesocosm incubation using an agricultural soil from western Tennessee under 35-years of conservation management. Different lengths of drought period before rewetting of 0, 3, 6, and 24 days were applied on the mesocosms. To trace the fate of newly added C, 13C labeled glucose was added to the mesocosms at the beginning of the incubation. After 24 days, dissolvable organic C, microbial biomass C, accumulative microbial respiration, and extracellular enzyme activity were analyzed to evaluate the active C pool; hydrogen peroxide oxidation and aggregate size fractionation were used to examine the passive C pool. The highest cumulative microbial respiration was found in the 6-days treatment combining a N-fixing cover crop with no-tillage, and the lowest in the 24-day treatment with a wheat cover crop combined with conventional-tillage (1000.0±20.5 and 106.8±17.5 µg C-CO2 g-1 dry soil, respectively). The 6-days treatment induced 0.5-4.3 times higher cumulative C-CO2 emission than the 3-days treatment. The proportion of macroaggregates in bulk soil varied between 97.2% and 76.7%, and it was negatively correlated with drying-rewetting frequency. The proportion of microaggregates in bulk soil varied between 21.9% and 2.1%, and it was positively correlated with drying-rewetting frequency. 13C recovery rate in bulk soil varied between 11-53%. The vetch-cover-crop-with-no-tillage treatment facilitated 13C accumulation the most. Our results show that the N fixing cover crops combined with no-tillage treatment induced the highest C accumulation in bulk soil, while the no cover crop combined with conventional tillage induced the lowest C concentration. Our results show that frequent drying-rewetting cycles disrupt macroaggregates and release the microaggregates within macroaggregates, and favor greater C loss combined with greater C storage in less stable aggregate fractions.

  2. Anti-bacterial, free radical scavenging activity and cytotoxicity of acetone extracts of Grewia flava.

    PubMed

    Lamola, Stella Makgabo; Dzoyem, Jean Paul; Botha, Francien; van Wyk, Candice

    2017-09-01

    Bacterial infections of the gastrointestinal tract (GIT) cause vomiting, diarrhoea and even systemic disease. There is a need for the development of natural products into alternative and safer medicines. This study evaluated the anti-microbial activity of extracts prepared from berries, leaves, bark and roots of the edible plant Grewia flava . The anti-bacterial activity was evaluated by the broth microdilution method. Anti-oxidant activity of the most active extracts was performed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The cytotoxicity of the extracts was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acetone extracts of the leaves and roots showed the best activity with MIC values as low as 0.03 mg/mL against Staphylococcus aureus and Salmonella typhimurium and 0.07 mg/mL against Bacillus cereus, Escherichia coli and Staphylococcus aureus . Quantitative analysis of the scavenging ability showed that acetone extracts exhibited good free radical scavenging activity in a dose-dependent manner. The berries extract had the highest LC 50 (lowest toxicity) of 551.68 68 µg/mL. Acetone extract of leaves and roots of Grewia flava contain anti-microbial and anti-oxidant compounds and could therefore be used as a natural product with little toxicity to host cells.

  3. Permeability structure and its influence on microbial activity at off-Shimokita basin, Japan

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Yamada, Y.; Sanada, Y.; Kubo, Y.; Inagaki, F.

    2016-12-01

    The microbial populations and the limit of microbial life are probably limited by chemical, physical, and geological conditions, such as temperature, pore water chemistry, pH, and water activity; however, the key parameters affecting growth in deep subseafloor sediments remain unclarified (Hinrichs and Inagaki 2012). IODP expedition 337 was conducted near a continental margin basin off Shimokita Peninsula, Japan to investigate the microbial activity under deep marine coalbed sediments down to 2500 mbsf. Inagaki et al. (2015) discovered that microbial abundance decreased markedly with depth (the lowest cell density of <1 cell/cm3 was recorded below 2000 mbsf), and that the coal bed layers had relatively higher cell densities. In this study, permeability was measured on core samples from IODP Expedition 337 and Expedition CK06-06 in the D/V Chikyu shakedown cruise. Permeability was measured at in-situ effective pressure condition. Permeability was calculated by the steady state flow method by keeping differential pore pressure from 0.1 to 0.8 MPa.Our results show that the permeability for core samples decreases with depth from 10-16 m2 on the seafloor to 10-20 m2 at the bottom of hole. However, permeability is highly scattered within the coal bed unit (1900 to 2000 mbsf). Permeabilities for sandstone and coal is higher than those for siltstone and shale, therefore the scatter of the permeabilities at the same unit is due to the high variation of lithology. The highest permeability was observed in coal samples and this is probably due to formation of micro cracks (cleats). Permeability estimated from the NMR logging using the empirical parameters is around two orders of magnitude higher than permeability of core samples, even though the relative permeability variation at vertical direction is quite similar between core and logging data.The higher cell density is observed in the relatively permeable formation. On the other hand, the correlation between cell density, water activity, and porosity is not clear. On the assumption that pressure gradient is constant through the depth, flow rate can be proportional to permeability of sediments. Flow rate probably restricts the availability of energy and nutrient for microorganism, therefore permeability might have influenced on the microbial activity in the coalbed basin.

  4. Microbial biodiversity in glacier-fed streams

    PubMed Central

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-01-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  5. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  6. Effects of P and C inputs on microbial activities in P limiting bulk and rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Bilyera, Nataliya

    2017-04-01

    Keywords: phosphorus, soil ATP, phosphatase, microbial biomass, Cambisol. Phosphorus (P) is the second important nutrient for plants and limiting element in many ecosystems. P is a non-renewable resource, and based on its current rate of use, it has been estimated that the worlds known reserves of P rocks may be depleted within the current century. Soils with high-sorption P capacity require higher P additions, but, do not provide plants with sufficient available P. Therefore, it is necessary to reduce P application rates, but facilitate soil microbiological activity to maintain good P availability for plants. We aimed to study soil adenosine triphosphate (ATP), microbial biomass (MBC) and phosphatase activity as microbial response to contrasting P input in a low P Cambisol in a 5 days incubation experiment. The treatments were i) bulk soil (no C), ii) rhizosphere soil (10 μg C g-1 soil day-1 - root exudates imitation) and iii) glucose addition to soil (50 μg C g-1 soil - for microbial activation). Three rates of P as KH2PO4 were applied at each C treatments: i) no P (P0) - for P severe limitation; ii) 10% P from initial extractable soil P (P10) - low P input; and iii) 50% P from initial extractable soil P (P50) - high P input. We tested the following hypotheses: 1) the better response of MBC and ATP to P is expected to be in the rhizosphere soil, as continuous C input resulted in gradual microbial activation; 2) phosphatase activity will decrease with increasing P rates in all soils. Microbial biomass grew linear (R2=0.99) and simultaneously with incremental P addition in bulk soil. In rhizosphere and C-amended soils, on contrary, the MBC response to P level was represented by quadratic model (y=-0.06x2+2.84x+37.03; R2=0.93). This model shows the highest MBC value at P23, which indicates optimal and the most effective application rate for this soil type. The correlation between soil ATP content and P rates ascended in the order bulk soil (R2=0.34) > C-amended soil (R2=0.51) > rhizosphere soil (R2=0.97). That proves our hypothesis that continuous C input (similar to root exudations) stimulates gradual microorganism activation. The soil ATP content per gram of microbial biomass C increased linearly (y=5.09x + 21.4; R2= 0.99) with increasing P rates in rhizosphere, whereas in bulk and C-amendment soils the effect of P was less pronounced. Phosphatase activity declined (57 and 64%) exponentially with increasing P rates for rhizosphere (R2=0.84) and C-amended (R2=0.98) soils, that complies with our hypothesis. In bulk soil, on contrary, phosphatase activity increased (35%) at P10 and remained constant at P50. P0 was resulted in 5-folds higher phosphatase activity in rhizosphere and C-amended soils compared to bulk soil. This proves the significance of root exudates in facilitation of microbial phosphatase production. Our results show that P (re)cycling can be accelerated in P-deficient soils by C addition and so, excessive P fertilization can be avoided to maintain ecosystem sustainability.

  7. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  8. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials,more » in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.« less

  9. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    PubMed Central

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  10. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    PubMed

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-07

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  11. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    NASA Astrophysics Data System (ADS)

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2- contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg-1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.

  12. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  13. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    PubMed

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  14. Freeze-thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú.

    PubMed

    Schmidt, S K; Darcy, J L; Sommers, Pacifica; Gunawan, Eva; Knelman, J E; Yager, Karina

    2017-05-01

    This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.

  15. Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.

    PubMed

    Heerd, Doreen; Tari, Canan; Fernández-Lahore, Marcelo

    2014-09-01

    Strain improvement is a powerful tool in commercial development of microbial fermentation processes. Strains of Aspergillus sojae which were previously identified as polygalacturonase producers were subjected to the cost-effective mutagenesis and selection method, the so-called random screening. Physical (ultraviolet irradiation at 254 nm) and chemical mutagens (N-methyl-N'-nitro-N-nitrosoguanidine) were used in the development and implementation of a classical mutation and selection strategy for the improved production of pectic acid-degrading enzymes. Three mutation cycles of both mutagenic treatments and also the combination of them were performed to generate mutants descending from A. sojae ATCC 20235 and mutants of A. sojae CBS 100928. Pectinolytic enzyme production of the mutants was compared to their wild types in submerged and solid-state fermentation. Comparing both strains, higher pectinase activity was obtained by A. sojae ATCC 20235 and mutants thereof. The highest polygalacturonase activity (1,087.2 ± 151.9 U/g) in solid-state culture was obtained by mutant M3, which was 1.7 times increased in comparison to the wild strain, A. sojae ATCC 20235. Additional, further mutation of mutant M3 for two more cycles of treatment by UV irradiation generated mutant DH56 with the highest polygalacturonase activity (98.8 ± 8.7 U/mL) in submerged culture. This corresponded to 2.4-fold enhanced polygalacturonase production in comparison to the wild strain. The results of this study indicated the development of a classical mutation and selection strategy as a promising tool to improve pectinolytic enzyme production by both fungal strains.

  16. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    USGS Publications Warehouse

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  17. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the mechanisms involved in this economically important activity.

  18. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Zhang, Xin-Yu; Zou, Hong-Tao; Kou, Liang; Yang, Yang; Wen, Xue-Fa; Li, Sheng-Gong; Wang, Hui-Min; Sun, Xiao-Min

    2017-10-01

    The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.

  19. Green tea yogurt: major phenolic compounds and microbial growth.

    PubMed

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p < 0.05) in air-dried green tea-yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  20. Similar potential ATP-P production and enzymatic activities in the microplankton community off Concepción (Chile) under oxic and suboxic conditions

    NASA Astrophysics Data System (ADS)

    González, Rodrigo R.; Gutiérrez, Marcelo H.; Quiñones, Renato A.

    2007-11-01

    The effects of the oxygen minimum zone on the metabolism of the heterotrophic microplankton community (0.22-100 μm) in the Humboldt Current System, as well as the factors controlling its biomass production, remain unknown. Here we compare the effect of four sources of dissolved organic carbon (glucose, oxaloacetate, glycine, leucine) on microbial biomass production (such as ATP-P) and the potential enzymatic activities involved in catabolic pathways under oxic and suboxic conditions. Our results show significant differences ( p < 0.05) in the ATP-P production when induced by the different substrates that are used as dissolved organic carbon herein. The induction of ATP-P production is enhanced from glucose < oxaloacetate < glycine < leucine. Nevertheless, for individual substrates, no significant differences were found between incubation under oxic and suboxic conditions except in the case of leucine. For this amino acid, the induction of ATP-P synthesis was higher under suboxic than oxic conditions. The data sets of all the substrates used showed greater potential ATP-P production under suboxic than oxic conditions. The results of the potential enzymatic activities suggest that malate dehydrogenase has the highest signal of NADH oxidization activity in the microbial assemblage. Furthermore, for all experiments, the malate dehydrogenase activity data set had a significant relationship with ATP-P production. These findings suggest that the microbial community inhabiting the oxygen minimum zone has the same or greater potential growth than the community inhabiting more oxygenated strata of the water column and that malate dehydrogenase is the activity that best represents the metabolic potential of the community.

  1. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site and in other petrochemical-contaminated areas. Furthermore, they are probably helpful for reducing health risks to the general public from contaminated groundwater.

  2. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    PubMed

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water resource exploitation and a more realistic prevision of the impact of pollutants in temporary waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. CHANGES IN ENANTIOMERIC FRACTIONS DURING MICROBIAL REDUCTIVE DECHLORINATION OF PCB132, PCB149, AND AROCLOR 1254 IN LAKE HARTWELL SEDIMENT MICROCOSMS

    EPA Science Inventory

    Enantioselectivity of microbial reductive dechlorination of chiral PCBs in sediments from Lake Hartwell, SC, was determined by microcosm studies and enantiomer-specific GC analysis. Sediments from two locations in the vicinity of the highest levels of PCB contamination were used...

  4. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    PubMed

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C.

  5. Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems.

    PubMed

    Charpy, Loic; Palinska, Katarzyna A; Casareto, Beatriz; Langlade, Marie José; Suzuki, Yoshimi; Abed, Raeid M M; Golubic, Stjepko

    2010-01-01

    Dinitrogen-fixing organisms in cyanobacterial mats were studied in two shallow coral reef ecosystems: La Reunion Island, southwestern Indian Ocean, Sesoko (Okinawa) Island, and northwestern Pacific Ocean. Rapidly expanding benthic miniblooms, frequently dominated by a single cyanobacterial taxon, were identified by microscopy and molecular tools. In addition, nitrogenase activity by these blooms was measured in situ. Dinitrogen fixation and its contribution to mat primary production were calculated using (15)N(2) and (13)C methods. Dinitrogen-fixing cyanobacteria from mats in La Reunion and Sesoko showed few differences in taxonomic composition. Anabaena sp. among heterocystous and Hydrocoleum majus and Symploca hydnoides among nonheterocystous cyanobacteria occurred in microbial mats of both sites. Oscillatoria bonnemaisonii and Leptolyngbya spp. occurred only in La Reunion, whereas Hydrocoleum coccineum dominated in Sesoko. Other mats dominated by Hydrocoleum lyngbyaceum, Phormidium laysanense, and Trichocoleus tenerrimus occurred at lower frequencies. The 24-h nitrogenase activity, as measured by acetylene reduction, varied between 11 and 324 nmoles C(2)H(2) reduced microg(-1) Chl a. The highest values were achieved by heterocystous Anabaena sp. performed mostly during the day. Highest values for nonheterocystous cyanobacteria were achieved by H. coccineum mostly during the night. Daily nitrogen fixation varied from nine (Leptolyngbya) to 238 nmoles N(2) microg(-1) Chl day(-1) (H. coccineum). Primary production rates ranged from 1,321 (S. hydnoides) to 9,933 nmoles C microg(-1) Chl day(-1) (H. coccineum). Dinitrogen fixation satisfied between 5% and 21% of the nitrogen required for primary production.

  6. Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile.

    PubMed

    Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia

    2012-05-01

    Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.

  7. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    PubMed

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  8. Purification and characterization of a melanin biodegradation enzyme from Geotrichum sp.

    PubMed

    Kim, B S; Blaghen, M; Hong, H-S; Lee, K-M

    2016-12-01

    Melanin is a black or brown phenolic polymer present mainly in skin and hair. Although melanin can be degraded by some microbial species, the melanin degradation capacity of Geotrichum sp. is unknown. The aim of this study was to characterize a melanin biodegradation enzyme from Geotrichum sp. In this study, we assessed the melanin degradation activity of Geotrichum sp. in comparison with the major melanin-degrading enzymes, manganese-dependent peroxidase (MnP), manganese-independent peroxidase, lignin peroxidase and laccase. Furthermore, the effect of several carbohydrates on melanin degradation by Geotrichum sp. was determined. The MnP enzyme was purified using ammonium sulphate precipitation and Sephadex G-200 column chromatography, and then the conditions for optimal enzymatic activity were determined by adjusting the pH, temperature and Tween-80 concentration. Compared with extracellular ligninolytic enzymes of Geotrichum sp., MnP had the highest ligninolytic enzyme activity; and the highest enzymatic activity was observed in the presence of glucose. The final purified MnP enzyme exhibited 6 U mL -1 activity and had a molecular weight of 54.2 kDa. The enzymatic activity was highest at pH 4.5 and 25-35°C in the absence of Tween-80. These results indicate the potential of MnP purified from Geotrichum sp. as a skin-lightening agent in the cosmetic industry. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice for the recovery of degraded soils, because these soils have the highest levels of enzymatic activities.

  10. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment. PMID:26102286

  11. Comparative analysis on microbial community associated with different gastrointestinal regions of wild northern snakehead Channa argus Cantor, 1842

    NASA Astrophysics Data System (ADS)

    Miao, Shuyan; Zhao, Chenze; Zhu, Jinyu; Pan, Mingzhu

    2018-03-01

    Microbial communities in different gastrointestinal regions (stomach, foregut, midgut, and hindgut) of the northern snakehead Channa argus (Cantor, 1842) were compared by polymerase chain reaction and partial 16S rDNA sequencing. A total of 194, 140, 212, and 122 OTUs were detected in the stomach, foregut, midgut, and hindgut, respectively. Significant differences were found in the Sobs, ACE, Shannon, and Simpson indices among samples ( P<0.05). The gastrointestinal microbial community of C. argus consisted predominantly of Proteobacteria with either Halomonas, Shewanella, Plesiomonas, or Sphingomonas. Fusobacteria, Firmicutes, and Bacteroidetes also existed in the gastrointestinal tracts. However, significant differences were found in the compositions of microbial community among the four regions ( P<0.05). Cyanobacteria and Spirochetes were significantly higher in the midgut and hindgut ( P<0.05). Fusobacteria and Firmicutes were dominant in the hindgut and foregut, respectively ( P<0.05). Proteobacteria was the lowest in the hindgut ( P<0.05). At genus level, Cetobacterium and Plesiomonas were significantly higher in the hindgut than in the other three samples ( P<0.05). Clostridium and Prevotella were the highest in the midgut ( P<0.05). Halomonas, Shewanella, and Sphingomonas were the highest in the foregut ( P<0.05). Paracoccus and Vibrio were the highest in the stomach. Several genera were only detected in certain regions, as follows: stomach, Paracoccus and Vibrio; foregut, Halomonas, Shewanella, and Sphingomonas; midgut, Clostridium and Prevotella; and hindgut, Cetobacterium and Plesiomonas ( P<0.05). At the species level, Acinetobacter rhizosphaerae was only detected in the stomach. Prevotella copri and Clostridium perfring were not detected in the foregut and midgut, respectively, whereas Prevotella copri and Faecalibacterium pra were not detected in the hindgut. These findings provide valuable information on the microbial community in each gastrointestinal region of C. argus. Moreover, this study indicated that microbial community was not only related to rearing environment but also to the physico-chemical characteristics of each gastrointestinal region.

  12. Isotopic Composition of Methane and Inferred Methanogenic Substrates Along a Salinity Gradient in a Hypersaline Microbial Mat System

    NASA Astrophysics Data System (ADS)

    Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  13. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    PubMed

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  14. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.

    2014-05-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.

  15. Unique honey bee (Apis mellifera) hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    PubMed

    Grubbs, Kirk J; Scott, Jarrod J; Budsberg, Kevin J; Read, Harry; Balser, Teri C; Currie, Cameron R

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  16. Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses

    PubMed Central

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  17. Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.

    2009-12-01

    Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.

  18. Bacterial Diversity within the Extreme Arid Atacama Desert Soils of the Yungay Region, Chile

    NASA Astrophysics Data System (ADS)

    Connon, S. A.; Lester, E. D.; Shafaat, H. S.; Obenhuber, D. C.; Ponce, A.

    2006-12-01

    Surface and subsurface soil samples analyzed for this study were collected from the hyper-arid Yungay region of the Atacama Desert, Chile. This is the first report of microbial diversity from DNA extracted directly from these extremely desiccated soils. Our data shows that 94% of the 16S rRNA genes cloned from these soils belong to the Actinobacteria phylum. A 24-hour time course series showed a diurnal water activity (aw) cycle that peaked at 0.52 in the early predawn hours, and ranged from 0.08 0.01 during the day. All measured water activity values were below the level required for microbial growth or enzyme activity. Total organic carbon (TOC) levels in this region were just above the limits of detection and ranged from 220 660 μg/g of soil. Phospholipid fatty acid (PLFA) levels indicated cellular biomass ranging from 2 ×105 to 7 ×106 cell equivalents per gram of soil. The culturable counts were low with most samples showing no growth on standard plates of R2A medium; the highest single count was 47 colony forming units (CFU) per gram.

  19. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  20. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor.

    PubMed

    Alvarado-Gutiérrez, María Luisa; Ruiz-Ordaz, Nora; Galíndez-Mayer, Juvencio; Santoyo-Tepole, Fortunata; Curiel-Quesada, Everardo; García-Mena, Jaime; Ahuatzi-Chacón, Deifilia

    2017-04-01

    The fungicide carbendazim is an ecotoxic agent affecting aquatic biota. Due to its suspected hormone-disrupting effects, it is considered a "priority hazard substance" by the Water Framework Directive of the European Commission, and its degradation is of major concern. In this work, a horizontal tubular biofilm reactor (HTBR) operating in plug-flow regime was used to study the kinetics of carbendazim removal by an acclimated microbial consortium. The reactor was operated in steady state continuous culture at eight different carbendazim loading rates. The concentrations of the fungicide were determined at several distances of the HTBR. At the loading rates tested, the highest instantaneous removal rates were observed in the first section of the tubular biofilm reactor. No evidence of inhibition of the catabolic activity of the microbial community was found. Strains of the genera Flectobacillus, Klebsiella, Stenotrophomonas, and Flavobacterium were identified in the biofilm; the last three degrade carbendazim in axenic culture.

  1. Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel.

    PubMed

    Ryu, Byung-Gon; Kim, Jungmin; Yoo, Gursong; Lim, Jun-Taek; Kim, Woong; Han, Jong-In; Yang, Ji-Won

    2014-04-01

    In this work, a method for simultaneously degrading the toxic pollutant, thiocyanate, and producing microalgal lipids using mixed microbial communities was developed. Aerobic activated sludge was used as the seed culture and thiocyanate was used as the sole nitrogen source. Two cultivation methods were sequentially employed: a lithoautotrophic mode and a photoautotrophic mode. Thiocyanate hydrolysis and a nitrification was found to occur under the first (lithoautotrophic) condition, while the oxidized forms of nitrogen were assimilated by the photoautotrophic consortium and lipids were produced under the second condition. The final culture exhibited good settling efficiency (∼ 70% settling over 10 min), which can benefit downstream processing. The highest CO2 fixation rate and lipid productivity were observed with 2.5% and 5% CO2, respectively. The proposed integrated algal-bacterial system appears to be a feasible and even beneficial option for thiocyanate treatment and production of microbial lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    USGS Publications Warehouse

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the USA.

  3. Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean.

    PubMed

    Liu, Jinlin; Jia, Zhijuan; Li, Sha; Li, Yan; You, Qiang; Zhang, Chunyan; Zheng, Xiaotong; Xiong, Guomei; Zhao, Jin; Qi, Chao; Yang, Jihong

    2016-09-15

    The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH7.4 and 28°C, respectively. The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Column experiment on activation aids and biosurfactant application to the persulphate treatment of chlorophene-contaminated soil.

    PubMed

    Bolobajev, J; Öncü, N Bilgin; Viisimaa, M; Trapido, M; Balcıoğlu, I; Goi, A

    2015-01-01

    An innovative strategy integrating the use of biosurfactant (BS) and persulphate activated by chelated iron for the decontamination of soil from an emerging pollutant chlorophene was studied in laboratory down-flow columns along with other persulphate activation aids including combined application of persulphate and hydrogen peroxide, and persulphate activation with sodium hydroxide. Although BS addition improved chlorophene removal by the persulphate treatment, the addition of chelated iron did not have a significant influence. Combined application of persulphate with hydrogen peroxide resulted in a significant (p≤.05) overall improvement of chlorophene removal compared with treatment with persulphate only. The highest removal rate (71%) of chlorophene was achieved with the base-activated persulphate, but only in the upper part (of 0.0-3.5 cm in depth) of the column. The chemicals at the applied dosages did not substantially influence the Daphnia magna toxicity of the effluent. Dehydrogenase activity (DHA) measurements indicated no substantial changes in the microbial activity during the persulphate treatment. The highest oxygen consumption and a slight increase in DHA were observed with the BS addition. The combined application of persulphate and BS at natural soil pH is a promising method for chlorophene-contaminated soil remediation. Hydroquinone was identified among the by-products of chlorophene degradation.

  6. Antimicrobial compounds of porcine mucosa

    NASA Astrophysics Data System (ADS)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW <5 kDa were obtained. All ultrafiltrates had antimicrobial activity against Escherichia coli and Proteus vulgaris. NCM ultrafiltrates revealed the highest antibacterial activity in respect to negative control: for the fraction with MW >30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  7. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells.

    PubMed

    Lim, Swee Su; Yu, Eileen Hao; Daud, Wan Ramli Wan; Kim, Byung Hong; Scott, Keith

    2017-08-01

    The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36A/m 2 and 0.37A/m 2 at applied potential 0 and +0.6V, respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential, in the range from -0.5 to -1.0V. The highest production rate was 7.4L H 2 /(m 2 cathode area)/day at -1.0V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84V without overloading the bioanode. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.

    PubMed

    Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata

    2018-04-16

    Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.

  9. The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish.

    PubMed

    Xu, Yanshun; Li, Lin; Regenstein, Joe Mac; Gao, Pei; Zang, Jinhong; Xia, Wenshui; Jiang, Qixing

    2018-08-01

    To investigate the contribution of autochthonous microflora on free fatty acids (FFA) release and flavor development in low-salt fermented fish, three groups of processed fish, including bacteriostatic-acidification group (BAG), bacteriostatic group (BG), and spontaneous fermented fish (CG) were established. Results showed that addition of NaN 3 reduced microbial load in BAG and BG below 3.5 log CFU/g after 3 weeks of incubation. Activities of lipases and lipoxygenase declined markedly with increasing time, where BG had the highest activities, followed by CG and BAG. There is a 36.3% higher in the total FFA content in CG than that in BAG, indicating both microbial and endogenous lipases contributed to the FFA liberation in fermented fish while endogenous lipases play a major role. However, compared to BAG and BG, largely higher levels of volatile compounds were observed in CG, suggesting that autochthonous microflora dominated the generation of volatile flavor compounds in fermented fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of DNA extraction methods for the analysis of microbial community in biological activated carbon.

    PubMed

    Zheng, Lu; Gao, Naiyun; Deng, Yang

    2012-01-01

    It is difficult to isolate DNA from biological activated carbon (BAC) samples used in water treatment plants, owing to the scarcity of microorganisms in BAC samples. The aim of this study was to identify DNA extraction methods suitable for a long-term, comprehensive ecological analysis of BAC microbial communities. To identify a procedure that can produce high molecular weight DNA, maximizes detectable diversity and is relatively free from contaminants, the microwave extraction method, the cetyltrimethylammonium bromide (CTAB) extraction method, a commercial DNA extraction kit, and the ultrasonic extraction method were used for the extraction of DNA from BAC samples. Spectrophotometry, agarose gel electrophoresis and polymerase chain reaction (PCR)-restriction fragment length polymorphisms (RFLP) analysis were conducted to compare the yield and quality of DNA obtained using these methods. The results showed that the CTAB method produce the highest yield and genetic diversity of DNA from BAC samples, but DNA purity was slightly less than that obtained with the DNA extraction-kit method. This study provides a theoretical basis for establishing and selecting DNA extraction methods for BAC samples.

  11. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    PubMed

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Antioxidant and antimicrobial activity of commercial propolis extract in beef patties.

    PubMed

    Vargas-Sánchez, Rey D; Torrescano-Urrutia, Gastón R; Acedo-Félix, Evelia; Carvajal-Millán, Elizabeth; González-Córdova, Aarón F; Vallejo-Galland, Belinda; Torres-Llanez, María J; Sánchez-Escalante, Armida

    2014-08-01

    The objective of this study was to evaluate the efficacy of propolis extract (PE) to reduce lipid oxidation and microbial growth on beef patties during refrigerated storage. Beef patties were manufactured by incorporating PE in 4 different treatments: (1) Control (no PE addition); (2) commercial propolis 1 (2% w/w; CP1); (3) commercial propolis 2 (2% w/w; CP2); and (4) noncommercial propolis (2% w/w; NCP). Raw patties were wrapped with polyvinyl chloride and stored at 2 °C for 8 d. Total phenolic content (TPC), free-radical scavenging activity (FRS), and polyphenolic content of the PE were evaluated using high-performance liquid chromatography (HPLC). Lipid oxidation (thiobarbituric acid-reactive substances (TBARS), conjugated dienes (CnDs), metmyoglobin (MetMb%), pH variation, and color (L*, a*, b*, C*, and h*), and microbial growth (mesophilic and psychrotrophic bacteria) of patty samples were measured. NCP treatment demonstrated the highest FRS (64.8% at 100 μg/mL), which correlated with TPC and the presence of polyphenolic compounds. Lipid oxidation (78.54%, TBARS; 45.53%, CnD; 58.57%, MetMb) and microbial mesophilic and psychrotrophic growth (19.75 and 27.03%, respectively) values were reduced by NCP treatment in refrigerated samples after 8 d. These results indicate that PE has great potential as a natural antioxidant and antimicrobial additive to extend the shelf life of beef patties. © 2014 Institute of Food Technologists®

  13. Marine heatwaves and optimal temperatures for microbial assemblage activity.

    PubMed

    Joint, Ian; Smale, Dan A

    2017-02-01

    The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria.

    PubMed

    Jung, Dong-Hyun; Seo, Dong-Ho; Kim, Ga-Young; Nam, Young-Do; Song, Eun-Ji; Yoon, Shawn; Park, Cheon-Seok

    2018-06-01

    Resistant starch (RS) in the diet reaches the large intestine without degradation, where it is decomposed by the commensal microbiota. The fermentation of RS produces secondary metabolites including short-chain fatty acids (SCFAs), which have been linked to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a current issue. The objectives of this study were (1) to use metagenomics to observe microbial flora changes in Bos taurus coreanae rumen fluid in the presence of RS and (2) to isolate RS-degrading microorganisms. The major microbial genus in a general rumen fluid was Succiniclasticum sp., whereas Streptococcus sp. immediately predominated after the addition of RS into the culture medium and was then drastically replaced by Lactobacillus sp. The presence of Bifidobacterium sp. was also observed continuously. Several microorganisms with high RS granule-degrading activity were identified and isolated, including B. choerinum FMB-1 and B. pseudolongum FMB-2. B. choerinum FMB-1 showed the highest RS-hydrolyzing activity and degraded almost 60% of all substrates tested. Coculture experiments demonstrated that Lactobacillus brevis ATCC 14869, which was isolated from human feces, could grow using reducing sugars generated from RS by B. choerinum FMB-1. These results suggest that Bifidobacterium spp., especially B. choerinum FMB-1, are the putative primary degrader of RS in rumen microbial flora and could be further studied as probiotic candidates.

  15. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell.

    PubMed

    Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa

    2014-10-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.

    PubMed

    Fang, Zemin; Li, Tongliang; Wang, Quan; Zhang, Xuecheng; Peng, Hui; Fang, Wei; Hong, Yuzhi; Ge, Honghua; Xiao, Yazhong

    2011-02-01

    Laccases are blue multicopper oxidases with potential applications in environmental and industrial biotechnology. In this study, a new bacterial laccase gene of 1.32 kb was obtained from a marine microbial metagenome of the South China Sea by using a sequence screening strategy. The protein (named as Lac15) of 439 amino acids encoded by the gene contains three conserved Cu(2+)-binding domains, but shares less than 40% of sequence identities with all of the bacterial multicopper oxidases characterized. Lac15, recombinantly expressed in Escherichia coli, showed high activity towards syringaldazine at pH 6.5-9.0 with an optimum pH of 7.5 and with the highest activity occurring at 45 °C. Lac15 was stable at pH ranging from 5.5 to 9.0 and at temperatures from 15 to 45 °C. Distinguished from fungal laccases, the activity of Lac15 was enhanced twofold by chloride at concentrations lower than 700 mM, and kept the original level even at 1,000 mM chloride. Furthermore, Lac15 showed an ability to decolorize several industrial dyes of reactive azo class under alkalescent conditions. The properties of alkalescence-dependent activity, high chloride tolerance, and dye decolorization ability make the new laccase Lac15 an alternative for specific industrial applications.

  17. Synthesis, characterization and in silico designing of diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxylate derivative as anti-proliferative and anti-microbial agents.

    PubMed

    Malani, Kalpesh; Thakkar, Sampark S; Thakur, Mukund Chandra; Ray, Arabinda; Doshi, Hiren

    2016-10-01

    A series of eight compounds diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxilate (KM10-17) analogues have been prepared by conventional methods and characterized by IR, Mass, NMR and elemental analysis. In silico docking studies on Human topoisomerase IIbeta (PDB Id: 3QX3) have been performed for all molecules (KM10-17) synthesized. The compounds were tested for in vitro anti-proliferative activity on VERO and 786-O cell lines. Out of all the synthesized compounds, KM11 &KM16 showed moderate activity on both cell lines. In vitro anti-microbial activity was also checked against Bacillus subtilis (BS), Staphylococcus aurous (SA), Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Candida albicans (CA) by well diffusion method. The compound KM11 was found to have highest zone of inhibition against BS, SA, PA and EC. The molecules KM13 and KM16 exhibited good activity against CA. The compounds KM14 and KM16 indicated good zone of inhibition against BS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    PubMed

    Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.

  19. The Unique Chemistry of Eastern Mediterranean Water Masses Selects for Distinct Microbial Communities by Depth

    PubMed Central

    Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; Joyner, Dominique C.; Linley, Thomas D.; Pfiffner, Susan M.; Hazen, Terry C.

    2015-01-01

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column. PMID:25807542

  20. Metabolic Response of Soil Microorganisms to Frost: A New Perspective from Position-specific 13C Labeling

    NASA Astrophysics Data System (ADS)

    Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.

    2016-12-01

    Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions. Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions.

  1. Climate effect on soil enzyme activities and dissolved organic carbon in mountain calcareous soils: a soil-transplant experiment

    NASA Astrophysics Data System (ADS)

    Puissant, Jérémy; Cécillon, Lauric; Mills, Robert T. E.; Gavazov, Konstantin; Robroek, Bjorn J. M.; Spiegelberger, Thomas; Buttler, Alexandre; Brun, Jean-Jacques

    2013-04-01

    Mountain soils store huge amounts of carbon as soil organic matter (SOM) which may be highly vulnerable to the strong climate changes that mountain areas currently experience worldwide. Climate modifications are expected to impact microbial activity which could change the rate of SOM decomposition/accumulation, thereby questioning the net C source/sink character of mountain soils. To simulate future climate change expected in the 21st century in the calcareous pre-Alps, 15 blocks (30 cm deep) of undisturbed soil were taken from a mountain pasture located at 1400 m a.s.l. (Marchairuz, Jura, Switzerland) and transplanted into lysimeters at the same site (control) and at two other sites located at 1000 m a.s.l. and 600 m a.s.l. (5 replicates per site). This transplantation experiment which started in 2009 simulates a climate warming with a temperature increase of 4° C and a decreased humidity of 40 % at the lowest site. In this study, we used soil extracellular enzyme activities (EEA) as functional indicators of SOM decomposition to evaluate the effect of climate change on microbial activity and SOM dynamics along the seasons. Dissolved organic carbon (DOC) was also measured to quantify the assimilable carbon for microorganism. In autumn 2012, a first sampling step out of four (winter, spring and summer 2013) has been realized. We extracted 15 cm deep soil cores from each transplant (x15) and measured (i) DOC and (ii) the activities of nine different enzymes. Enzymes were chosen to represent the degradation of the most common classes of biogeochemical compounds in SOM. β-glucosidase, β-D-cellubiosidase, β-Xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, lipase, phenoloxidase respectively represented the degradation of sugar, cellulose, hemicellulose, chitin, protein, lipid and lignin. Moreover, the fluorescein diacetate (FDA) hydrolysis was used to provide an estimate of global microbial activity and phosphatase was used to estimate phosphorus mineralization. The autumn results showed no differences for global microbial activity along the climate gradient (0.37 nKatal g-1 dry soil), no differences and a very low activity for leucine aminopeptidase and β-glucosidase and β-Xylosidase (about 0.09 nKatal g-1 dry soil) and no differences for cellulose, chitin and phosphorus mineralization. Conversely, we measured a greater activity at the highest elevation site for lipase and phenoloxydase (ANOVA test, p

  2. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.

  3. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw.

    PubMed

    Meng, Lingyu; Xie, Li; Kinh, Co Thi; Suenaga, Toshikazu; Hori, Tomoyuki; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2018-03-01

    This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55 °C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55 °C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7 m 3 /t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Approaching trophic structure in Late Jurassic neritic shelves: A western Tethys example from southern Iberia

    NASA Astrophysics Data System (ADS)

    Olóriz, Federico; Reolid, Matías; Rodríguez-Tovar, Francisco J.

    2006-11-01

    The palaeoenvironmental conditions and trophic structure of a mid-outer neritic biota (microfossils, mainly forams, and macroinvertebrate assemblages) have been approached in middle Oxfordian-lowermost Kimmeridgian deposits from the Prebetic Zone (Betic Cordillera) in south-eastern Spain. According to relationships between fossil assemblages and lithofacies, a general seaward trend is identified which displays decreasing sedimentation rates and nutrient inputs, but increasing substrate consistency and presumably depth. Midshelf, terrigenous-rich deposits in the External Prebetic relate to the highest sedimentation rates and nutrient availability. These two parameters correlate with the highest content in vagile-benthic, calcareous perforate, epifaunal forams, as well as with potentially deep infaunal forams and infaunal macroinvertebrates. Outer-shelf lumpy deposits in the Internal Prebetic show the lowest sedimentation rates and nutrient availability and the highest records for macro-micro nektonics and planktics. In contrast, vagile-benthic, calcareous perforate epifaunal and potentially deep infaunal forams are scarcer in the midshelf environments. Colonial encrusting forams, benthic microbial communities and sessile benthic macro-invertebrates increase from the middle to outer shelf. Trophic-analysis structuring through the integration of benthic microbial communities, foraminiferal and macroinvertebrate fossil assemblages makes it possible to interpret: (a) a trophic-level frame composed of producers and primary and secondary consumers; (b) a main trophic-group differentiation in suspension-feeders, detritus-feeders, browsers, grazers, carnivores and scavengers; (c) a preliminary approach to food-chain structure supported by suspension-feeders, deposit-feeders and predators (active prey-selection carnivores); and (d) a food-pyramid model, which takes into account both recorded fossils and envisaged —i.e., ecologically inferred-organisms.

  5. Microbial carbon turnover in the plant-rhizosphere-soil continuum

    NASA Astrophysics Data System (ADS)

    Malik, Ashish; Dannert, Helena; Griffiths, Robert; Thomson, Bruce; Gleixner, Gerd

    2014-05-01

    Soil microbial biomass contributes significantly to maintenance of soil organic matter (SOM). It is well known that biochemical fractions of soil microorganisms have varying turnover and therefore contribute differentially to soil C storage. Here we compare the turnover rates of different microbial biochemical fractions using a pulse chase 13CO2 plant labelling experiment. The isotope signal was temporally traced into rhizosphere soil microorganisms using the following biomarkers: DNA, RNA, fatty acids and chloroform fumigation extraction derived microbial biomass size classes. C flow into soil microbial functional groups was assessed through phospholipid and neutral lipid fatty acid (PLFA/NLFA) analyses. Highest 13C enrichment was seen in the low molecular weight (LMW) size class of microbial biomass (Δδ13C =151) and in nucleic acids (DNA: 38o RNA: 66) immediately after the pulse followed by a sharp drop. The amount of 13C in the high molecular weight (HMW) microbial biomass (17-81) and total fatty acids (32-54) was lower initially and stayed relatively steady over the 4 weeks experimental period. We found significant differences in turnover rates of different microbial biochemical and size fractions. We infer that LMW cytosolic soluble compounds are rapidly metabolized and linked to respiratory C fluxes, whereas mid-sized products of microbial degradation and HMW polymeric compounds have lower renewal rate in that order. The turnover of cell wall fatty acids was also very slow. DNA and RNA showed faster turnover rate; and as expected RNA renewal was the fastest due to its rapid production by active microorganisms independent of cell replication. 13C incorporation into different functional groups confirmed that mutualistic arbuscular mycorrhizal fungi rely on root C and are important in the initial plant C flux. We substantiated through measurements of isotope incorporation into bacterial RNA that rhizosphere bacteria are also important in the initial C conduit from plants. Other saprophytic fungi and bacteria show a delayed 13C incorporation pattern which could suggest secondary 13C assimilation often indicative of trophic interactions. Thus, different soil microbial biochemical fractions as well as functional groups show differential C turnover which could have implications on soil C storage.

  6. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem.

  7. Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing

    PubMed Central

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem. PMID:25078273

  8. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  9. Microbial Contamination on Touch Surfaces in Sick- and Well-Child Waiting Rooms in Pediatric Outpatient Facilities.

    PubMed

    Gudakova, Irina; Kim, JinYoung; Meredith, Jennifer F; Webb, Ginny

    2017-12-01

    Healthcare-associated infections are a significant public health burden resulting in approximately 1.7 million infections each year. Much work is done to study the contributing factors in inpatient settings; however, little has been done to study outpatient facilities and their roles in healthcare-associated infections. While many pediatric outpatient offices utilize separated waiting areas for sick and well children to decrease the spread of disease, research has not been done to determine whether this practice is of benefit. In this study, we aimed to determine whether there is a difference in microbial burden between sick- and well-child waiting areas and to identify surfaces with the highest levels of contamination. Touch surfaces in waiting rooms were swabbed and surveyed for total microbial growth, staphylococcal growth and Gram-negative enteric bacterial growth. Selected bacteria were identified to screen for pathogenic organisms. Surfaces sampled included seats, tables, children's tables, children's seats, magazines and books. We found seats, children's seats and children's books to have the highest microbial burden. No conclusions can be made on the differences in microbial contamination in sick- and well-child waiting areas because of high variation. Streptococcus pyogenes was isolated as were several opportunistic pathogens. This study suggests the need for better cleaning practices by pediatric outpatient facilities, to include the disinfection of additional surfaces as well as more frequent and thorough cleaning.

  10. The effect of thermal stratification on microbial community diversity and structure in a temperate reservoir

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Jia, Chengxia; Zhao, Meng; Li, Wentong; Liu, Pan; Yang, Mu; Zhang, Qingjing

    2018-02-01

    Miyun reservoir is a typical temperate deep reservoir located in the northeast of Beijing, China. In order to explore the effect of thermal stratification on microbial community diversity, structure and its influencing environmental factors, stratified sampling at three sites was conducted during the summer period. Field observations indicate that the water temperature and dissolved oxygen concentrations dropped to 11.9 °C and 1.57 mg/L, respectively, leading to the development of anoxia in the hypolimnetic layer. The Illumina Miseq sequencing results showed that microbial communities from different thermal stratification showed obvious differences, the highest microbial diversity and richness in the hypolimnion samples. RDA ordination analysis suggested that the microbial communities in the epilimnion and metalimnion were mainly affected by water temperature, pH and dissolved oxygen, while total nitrogen was the key environmental factor which shaped the microbial structure in hypolimnion.

  11. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches.

    PubMed

    Jiménez, Diego Javier; de Lima Brossi, Maria Julia; Schückel, Julia; Kračun, Stjepan Krešimir; Willats, William George Tycho; van Elsas, Jan Dirk

    2016-12-01

    The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, β-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less

  13. Composition, indigenous proteolytic enzymes and coagulating behaviour of ewe milk as affected by somatic cell count.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Schena, Laura; Russo, Donatella Esterina; Sevi, Agostino

    2011-11-01

    This study was undertaken to assess the effect of somatic cell count in ewe milk on i) composition and hygienic traits; ii) plasmin, cathepsin and elastase activities; iii) leukocyte differential count; iv) renneting parameters. Individual ewe milk samples were grouped according to somatic cell count (SCC) into five classes: SC300 (<300 000 cells/ml), SC500 (from 301 000 to 500 000 cells/ml), SC1000 (from 501 000 to 1 000 000 cells/ml), SC2000 (from 1 001 000 to 2 000 000 cells/ml) and SC>2000 (>2 001 000 cells/ml). Individual milk samples were analysed for pH, chemical composition, microbial features, indigenous proteolytic enzymes, differential leukocyte population, and renneting parameters. Milk yield, lactose, protein, non casein nitrogen, microbial features were affected by SCC level. Plasmin and elastase activities were the highest in samples with more than 1 000 000 cells/ml; plasmin had intermediate values in samples with 300 000 to 1 000 000 cells/ml and the lowest in samples with less than 300 000 cells/ml of milk. Cathepsin D showed significantly lower values in SC300 and SC1000 classes than in SC500, SC2000 and SC>2000 classes. The highest percentages of lymphocyte were found in samples with less than 1 000 000 cells/ml, while the highest levels of polymorphonuclear leukocyte were found in samples with more than 1 000 000 cells/ml of milk. Longer clotting time was found in SC>2000 samples, while reduced clot firmness was observed in SC500 and SC>2000 samples. Results on milk yield and on compositional parameters evidenced an impairment of udder efficiency in ewe milk samples starting from 300 000 cells/ml. Plasmin activity in milk can be considered as a marker of the synthetic and secreting ability of the mammary gland; furthermore plasmin and elastase were consistent with the health status of the udder. Finally cathepsin D played a role in the worsening of renneting properties of ewe milk.

  14. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells

    PubMed Central

    Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.

    2013-01-01

    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357

  15. Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.

    PubMed

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

  16. Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment

    PubMed Central

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James

    2012-01-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  17. Role of vegetation and edaphic factors in controlling diversity and use of different carbon sources in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; McLain, J. E.; Harman, C. J.; Sivapalan, M.; Troch, P. A.

    2010-12-01

    Microbially-mediated soil carbon cycling is closely linked to soil moisture and temperature. Climate change is predicted to increase intra-annual precipitation variability (i.e. less frequent yet more intense precipitation events) and alter biogeochemical processes due to shifts in soil moisture dynamics and inputs of carbon. However, the responses of soil biology and chemistry to predicted climate change, and their concomitant feedbacks on ecosystem productivity and biogeochemical processes are poorly understood. We collected soils at three different elevations in the Santa Catalina Mountains, AZ and quantified carbon utilization during pre-monsoon precipitation conditions. Contrasting parent materials (schist and granite) were paired at each elevation. We expected climate to determine the overall activity of soil fungal and bacterial communities and diversity of soil C utilization, and differences in parent material to modify these responses through controls on soil physical properties. We used EcoPlateTM C utilization assays to determine the relative abundance of soil bacterial and fungal populations and rate and diversity of carbon utilization. Additional plates were incubated with inhibitors selective to fungal or bacterial activity to assess relative contribution of these microbial groups to overall C utilization. We analyzed soils for soil organic matter, total C and N, particle size analysis and soil moisture content via both gravimetric and volumetric methods to assess the influences of soil physical and chemical properties on the measured biological responses. Consistent with our expectations, overall microbial activity was highest at the uppermost conifer elevation sites compared to the middle and lower elevation sites. In contrast to our expectations, however, overall activity was lower at the mid elevation oak woodland sites compared to the low elevation desert sites. Also consistent with our expectations was the observation that overall activities were consistently higher in schist parent material compared to granite. Though differences between canopy and intercanopy carbon utilization were subtle, the diversity of carbon utilization differed, suggesting a potential role of root exudates in governing C utilization in these semiarid soils. Findings from this study suggest that soil physical properties due to parent material have primary impacts in constraining microbial growth and carbon utilization under changing climate conditions.

  18. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage.

    PubMed

    Huang, Zhan; Liu, Xiaochang; Jia, Shiliang; Zhang, Longteng; Luo, Yongkang

    2018-02-02

    Antimicrobial and antioxidant effects of essential oils (oregano, thyme, and star anise) on microbial composition and quality of grass carp fillets were investigated. Essential oils treatment was found to be effective in inhibiting microbial growth, delaying lipid oxidation, and retarding the increase of TVB-N, putrescine, hypoxanthine, and K-value. Based on sensory analysis, shelf-life of grass carp fillets was 6days for control and 8days for treatment groups. Among the essential oils, oregano essential oil exhibited the highest antimicrobial and antioxidant activities. GC-MS analysis of essential oils components revealed that carvacrol (88.64%) was the major component of oregano essential oil. According to the results of high-throughput sequencing, Aeromonas, Glutamicibacter, and Aequorivita were the predominant microbiota in fresh control samples. However, oregano essential oil decreased the relative abundance of Aeromonas, while thyme and star anise essential oils decreased the relative abundance of Glutamicibacter and Aequorivita in fresh treated samples. The microbial composition of both control and treatment groups became less diverse as storage time increased. Aeromonas and Pseudomonas were dominant in spoiled samples and contributed to fish spoilage. Compared to the control, essential oils effectively inhibited the growth of Aeromonas and Shewanella in grass carp fillets during chilled storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    PubMed

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment.

  20. Quality Sample Collection, Handling, and Preservation for an Effective Microbial Forensics Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budowle, Bruce; Schutzer, Steven E.; Burans, James P.

    2006-10-01

    Science can be part of an effective investigative response to a bioterrorism event or a biocrime by providing capabilities to analyze biological and associated signatures in collected evidence. Microbial forensics, a discipline comprised of several scientific fields, is dedicated to the analysis of evidence from such criminal acts to help determine the responsible party and to exonerate the innocent. A partnership has been formed amount a number of government agencies, academia, and the private sector to better respond and deter potential perpetrators of bioterrorism or biocrimes. This partnership leverages our national scientific and analytical capabilities to support activities of lawmore » enforcement agencies. The Department of Homeland Security (DHS), whose mission is, in part, to respond to and to prevent acts of terrorism against the United States, has established the national Bioforensics Analysis Center (NBFAC). The NBFAC, in partnership with the FBI, (1) provides a state-of-the-art central laboratory for the analysis of microbial forensic evidence; and (2) serves as a nexus for integrating the national resources to increase the effectiveness of law enforcement in obtaining the highest level of attribution possible in criminal cases where the weapon is a biological agent.« less

  1. Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections

    PubMed Central

    Turker, Hakan; Yıldırım, Arzu Birinci

    2015-01-01

    The antibacterial activity of ethanolic and aqueous crude extracts from 36 plants in Turkey, including seven endemic species, against fish pathogens was studied using the disc diffusion assay. The extract that was most active against all microbial strains, except Aeromonas salmonicida, was that of Dorycnium pentaphyllum. Some of the extracts also showed a very broad spectrum of potent antimicrobial activity. The extract of Anemone nemorosa showed the highest antimicrobial activity against Vibrio anguillarum. V. anguillarum, a Gram-negative bacterium, appeared to be the most susceptible to the plant extracts used in this experiment. To the best of our knowledge, this is the first report on the antimicrobial activity of 11 of the studied plants. The preliminary screening assay indicated that some of the Turkish plants with antibacterial properties may offer alternative therapeutic agents against bacterial infections in aquaculture industry. PMID:26019642

  2. Microbial biomass and basal respiration in Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations

    NASA Astrophysics Data System (ADS)

    Abakumov, E.; Mukhametova, N.

    2014-03-01

    Antarctica is the unique place for pedological investigations. Soils of Antarctica have been studied intensively during the last century. Antarctic logistic provides the possibility to scientists access the terrestrial landscapes mainly in the places of polar stations. That is why the main and most detailed pedological investigations were conducted in Mc Murdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann hills and Schirmacher Oasis. Investigations were conducted during the 53rd and 55th Russian Antarctic expeditions on the base of soil pits and samples collected in Sub-Antarctic and Antarctic regions. Soils of diverse Antarctic landscapes were studied with aim to assess the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. The investigation conducted shows that soils of Antarctic are quite different in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as the upper organic layer. The most developed organic layers were revealed in peat soils of King-George Island, where its thickness reach even 80 cm. These soils as well as soils under guano are characterized by the highest amount of total organic carbon (TOC) 7.22-33.70%. Coastal and continental soils of Antarctic are presented by less developed Leptosols, Gleysols, Regolith and rare Ornhitosol with TOC levels about 0.37-4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones which can be interpreted as result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. Also the soils of King-George island have higher portion of microbial biomass (max 1.54 mg g-1) than coastal (max 0.26 mg g-1) and continental (max 0.22 mg g-1) Antarctic soils. Sub-Antarctic soils mainly differ from Antarctic ones in increased organic layers thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration and metabolic activity levels.

  3. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  4. Microbiological tap water profile of a medium-sized building and effect of water stagnation.

    PubMed

    Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas

    2014-01-01

    Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.

  5. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species.

    PubMed

    Ghaffar, Abdul; Yameen, Muhammad; Kiran, Shumaila; Kamal, Shagufta; Jalal, Fatima; Munir, Bushra; Saleem, Sadaf; Rafiq, Naila; Ahmad, Aftab; Saba, Iram; Jabbar, Abdul

    2015-11-18

    Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs) extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan). EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%), α-pinene (31.4%), citrinyl acetate (13.3%), eugenol (11.8%) and terpenene-4-ol (10.2%) were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani). Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH) radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively) followed by E. camaldulensis (81.9% and 83.3%, respectively). The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  6. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  7. Effect of Inoculation of Acacia senegal mature trees with Mycorrhiza and Rhizobia on soil properties and microbial community structure

    NASA Astrophysics Data System (ADS)

    Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.

    2012-04-01

    Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different diazotrophic and denitrifying communities fingerprints, indicating that the inoculation with microsymbionts have modified the genetic structure of the two functional communities in soil. Further, the diazotrophic community richness was reduced over the control indicating the impact of the addition of symbionts on the free-living N2-fixing bacterial (nifH) diversity. This study shows that inoculation of A. senegal mature trees with rhizobium and arbuscular mycorrhizal fungus has enhanced soil biofunctioning and modified the genetic structure of microbial community involved in N-cycling. Combined inoculation of AM fungi and Rhizobium have improved these effects on chemical characteristics, microbial community abundance and activity demonstrating synergism between the two microsymbionts.

  8. The distribution of active β-glucosidase-producing microbial communities in composting.

    PubMed

    Zang, Xiangyun; Liu, Meiting; Wang, Han; Fan, Yihong; Zhang, Haichang; Liu, Jiawen; Xing, Enlu; Xu, Xiuhong; Li, Hongtao

    2017-12-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several β-glucosidase-producing bacteria and fungi identified in this study may represent potential indicators of composting in cellulose degradation.

  9. Microbiology of Ultrabasic Groundwaters of the Coast Range Ophiolite, California

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Cardace, D.; Hoehler, T. M.; McCollom, T. M.

    2013-12-01

    Upon exposure to water, ultramafic rocks characteristic of the Earth's mantle undergo a process known as serpentinization. These water-rock reactions lead to highly reducing conditions and some of the highest pH values reported in nature. In contrast to alkaline soda lakes, actively serpentinizing environments exposed on land are commonly associated with low salinity freshwaters, imparting unique challenges upon their resident microbial communities. These environments are especially prevalent along continental margins, and cover extensive portions of the west coast of North America. Most studies of serpentinizing environments have focused upon springs that emanate from fractures in the subsurface. Here, we present microbiological data from a series of groundwater wells associated with active serpentinization in the California Coast Range, an ophiolite complex near Lower Lake, California. Waters from ultrabasic wells had lower microbial cell concentrations and diversity than were found in moderate pH wells in the same area. Bacteria consistently made up a higher proportion of the microbial communities compared to Archaea as determined by qPCR. High pH wells were dominated by taxa within the Betaproteobacteria and Clostridia, whereas moderate pH wells predominantly contained common soil taxa related to Gammaproteobacteria and Bacilli. Multivariate statistical analyses incorporating key environmental parameters supported these observations and also highlighted correlations between the high-pH taxa and the abundance of hydrogen and methane gas. Similarly, colony forming units of alkaliphilic microorganisms were consistently 1-2 orders of magnitude higher in the ultrabasic wells and were taxonomically distinct from the moderate pH groundwaters. Together, these results show that distinct populations inhabit subsurface environments associated with active serpentinization, consistent with previous observations, and suggest that Betaproteobacteria and Clostridia probably play significant roles in the microbiology of these ecosystems. The low diversity microbial communities of serpentinizing subsurface habitats are likely sustained by the high hydrogen and methane fluxes that emanate from such systems and further investigations will directly test their roles in mediating biogeochemical cycles in these environments.

  10. Relationships between soil microbial communities and soil carbon turnover along a vegetation and moisture gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.

    2010-12-01

    Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the δ15N of SOM, and the difference between δ13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems are bacterial dominated with mesofaunal grazing, whereas slowly cycling systems have characteristic higher fungal:bacterial ratios.

  11. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano.

    PubMed

    Hernández, Klaudia L; Yannicelli, Beatriz; Olsen, Lasse M; Dorador, Cristina; Menschel, Eduardo J; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B; Jeffrey, Wade H

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3 H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m -2 s -1 , 72 W m -2 and 12 W m -2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO 4 3- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3 H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO 4 3- , NO 3 - ) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco.

  12. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano

    PubMed Central

    Hernández, Klaudia L.; Yannicelli, Beatriz; Olsen, Lasse M.; Dorador, Cristina; Menschel, Eduardo J.; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B.; Jeffrey, Wade H.

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m-2 s-1, 72 W m-2 and 12 W m-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO43-, NO3-) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco. PMID:27920763

  13. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    PubMed

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells. PMID:27287325

  15. Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings.

    PubMed

    Blaya, Josefa; Lloret, Eva; Ros, Margarita; Pascual, Jose Antonio

    2015-05-01

    The lack of reliable prediction tools for evaluation of the level and specificity of compost suppressiveness limits its application. In our study, different chemical, biological and microbiological parameters were used to evaluate their potential use as a predictor parameter for the suppressive effect of composts against Fusarium oxysporum f. sp. melonis (FOM) and Phytophthora capsici (P. capsici) in muskmelon and pepper seedlings respectively. Composts were obtained from artichoke sludge, chopped vineyard pruning waste and various agro-industrial wastes (C1: blanched artichokes; C2: garlic waste; C3: dry olive cake). Compost C3 proved to offer the highest level of resistance against FOM, and compost C2 the highest level of resistance against P. capsici. Analysis of phospholipid fatty acids isolated from compost revealed that the three composts showed different microbial community structures. Protease, NAGase and chitinase activities were significantly higher in compost C3, as was dehydrogenase activity in compost C2. The use of specific parameters such as general (dehydrogenase activity) and specific enzymatic activities (protease, NAGase and chitinase activities) may be useful to predict compost suppressiveness against both pathogens. The selection of raw materials for agro-industrial composts is important in controlling Fusarium wilt and Phytophthora root rot. © 2014 Society of Chemical Industry.

  16. Geoelectrical Evidence of Microbial Degradation of Diesel Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Werkema, D. D.; Atekwana, E. A.; Rossbach, S.; Sauck, W. A.

    2003-12-01

    The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynamics were determined by the rDNA intergenic spacer analysis (RISA), microbial mineralization of diesel fuel was assessed using dissolved inorganic carbon (DIC), enhanced mineral dissolution was determined by dissolved calcium, and the vertical geoelectrical profile was measured using DC resistivity (converted to conductivity). The columns simulated a saturation profile and contained sanitized, uniform sand with the following experimental treatments: diesel + microbes, diesel, microbes, and no treatment. After 16 months, two important conclusions were drawn. First, the relative increase in magnitude of the parameters measured was highest in the diesel + microbe column (showing at least 110% increase), lower in the diesel column and lowest (actually showing a decrease) in the column with no treatment. Further, the diesel + microbe column showed the greatest increase in oil degrading microbial populations (135%) compared to the column with no treatment, which showed no changes. Secondly, the depth at which the conductivity reached the maximum occurred within and slightly above the diesel layer (which represents a depth that was originally water wet). It was further observed that the relative change in bulk conductivity below the saturated zone is of a lower magnitude than above (<10%). These results suggest the diesel layer, and the zone slightly above, were the most biologically active. Additionally, the diesel + microbe column showed RISA fragments attributed to microbial succession typically observed in organic contaminant plumes. A simple Archie's Law analysis was used to estimate the pore water conductivities necessary to reproduce the bulk conductivity measured. This analysis shows that relative to the column with only microbes (selected as the control to be most representative of field conditions), the diesel column revealed a 2.3 fold increase and the diesel + microbe column showed a 3 fold increase in pore water conductivity. This increase was located within the diesel layer above the water saturated zone. Within the saturated zone, the no treatment column showed a 0.81 fold increase, the diesel column a 1.28, and the diesel + microbe column 1.45. We conclude from this study that microbial activity and the resultant biogeochemical changes played an important role in modifying the geoelectrical properties of aquifers and sediments rich in organic carbon and mineralized by bacteria by increasing the bulk conductivity. This conductive zone occurred within and immediately above the free-phase petroleum layer. In natural environments with high concentrations of organic compounds available as electron donors, geophysical techniques may potentially be used as indicators of microbial activity. Notice: This is an abstract of a proposed presentation and does not necessarily reflect the United States Environmental Protection Agency (EPA) policy. The actual presentation has not been peer reviewed by EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  17. Microbial interference mitigates Meloidogyne incognita mediated oxidative stress and augments bacoside content in Bacopa monnieri L.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Ajayakumar, P V; Pandey, Rakesh

    2017-06-01

    Microbial interference plays an imperative role in plant development and response to various stresses. However, its involvement in mitigation of oxidative stress generated by plant parasitic nematode in plants remains elusive. In the present investigation, the efficacy of microbe's viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 single and in combinations was examined to mitigate oxidative stress generated by M. incognita in medicinal plant, Bacopa monnieri. Microbial combination with and without pathogen also enhanced the growth parameters along with secondary metabolites (bacoside) of B. monnieri than the pathogen inoculated control. The study showed that initially the production of hydrogen peroxide (H 2 O 2 ) was higher in dual microbes infected with pathogen which further declined over M. incognita inoculated control plants. Superoxide dismutase and free radical scavenging activity were also highest in the same treatment which was linearly related with least lipid peroxidation and root gall formation in B. monnieri under the biotic stress. Microscopic visualization of total reactive oxygen species (ROS), H 2 O 2 , superoxide radical and programmed cell death in host plant further extended our knowledge and corroborated well with the above findings. Furthermore, scanning electron microscopy confirmed good microbial colonization on the host root surface around nematode penetration sites in plants treated with dual microbes under pathogenic stress. The findings offer novel insight into the mechanism adopted by the synergistic microbial strains in mitigating oxidative stress and simultaneously stimulating bacoside production under pathogenic stress. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Large-scale controls on potential respiration and denitrification in riverine floodplains

    PubMed Central

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-01-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037

  19. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil.

    PubMed

    Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee

    2018-06-01

    Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.

  20. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    PubMed

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  1. Quality evaluation of processed clay soil samples.

    PubMed

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  2. The role of UV-irradiation pretreatment on the degradation of 2,4-dichlorophenoxyacetic acid in water.

    PubMed

    Tchaikovskaya, O; Sokolova, I; Mayer, G V; Karetnikova, E; Lipatnikova, E; Kuzmina, S; Volostnov, D

    2011-01-01

    The degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in water by the combination process of UV-irradiation, humic acids and activated sludge treatment has been studied. The photoreaction rate of all irradiated samples was lowest for the sample irradiated at 308 nm (the XeCl excilamp) in the absence and in the presence of humic acids, and highest for the sample irradiated at 222 nm (the KrCl excilamp). Photolysis of 2,4-D has been shown to enhance the subsequent microbial degradation. Copyright © 2010 John Wiley & Sons, Ltd.

  3. An Overview of Phytoconstituents, Biotechnological Applications, and Nutritive Aspects of Coconut (Cocos nucifera).

    PubMed

    Roopan, Selvaraj Mohana

    2016-08-01

    Cocos nucifera is one of the highest nutritional and medicinal value plants with various fractions of proteins which play a major role in several biological applications such as anti-microbial, anti-inflammatory, anti-diabetic, anti-neoplastic, anti-parasitic, insecticidal, and leishmanicidal activities. This review is focused on several biotechnological, biomedical aspects of various solvent extracts collected from different parts of coconut and the phytochemical constituents which are present in it. The results obtained from this source will facilitate most of the researchers to focus their work toward the process of diagnosing diseases in future.

  4. Monitoring of Microbial Contaminants of Beef, Pork, and Chicken in HACCP Implemented Meat Processing Plants of Korea.

    PubMed

    Kim, Jung Hyun; Hur, Sun Jin; Yim, Dong Gyun

    2018-04-01

    This research was to evaluate microbial contamination levels in meat samples at hazard analysis critical control point (HACCP)-implemented processing plants that produce beef, pork, and chicken. During a period of about a year, a total of 178 samples (76 from beef, 89 from pork, and 13 from chicken) were obtained from raw materials (21.3%) and final products (78.7%). All samples were determined for each 25 g homogenized one. Samples were analyzed to determine the total aerobic plate count (APC), coliform count (CC), and E. coli count (ECC). By month, APC levels were the highest in September and the lowest in February ( p <0.001). In comparison among season, APC levels in meat samples were the highest in the summer and the lowest in winter ( p <0.001). By month, the highest CC prevalence was found in August, followed by October and then July ( p <0.001). By season, the highest CC was obtained in summer, followed by autumn and then spring ( p <0.001). All samples were negative for ECC. There was a direct correlation between the product form and coliform presence ( p <0.001). In addition, there was a positive correlation between the APC and CC (r=0.261). The APCs in analyzed samples ranged from below <10 1 CFU/g to <10 7 CFU/g. In conclusion, the month and season had significant effects on microbial contamination levels at HACCP implemented processing plants. Interrelationships between (i) the product form and coliform, (ii) the APC and CC were revealed.

  5. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth

    DOE PAGES

    Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; ...

    2015-03-25

    The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less

  6. Soluble microbial products (SMPs) release in activated sludge systems: a review

    PubMed Central

    2012-01-01

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231

  7. Soluble microbial products (SMPs) release in activated sludge systems: a review.

    PubMed

    Azami, Hamed; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza

    2012-12-18

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as "the pool of organic compounds that are released into solution from substrate metabolism and biomass decay"'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  8. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  9. Microbial response to modified precipitation patterns in tallgrass prairie soil: molecular mechanisms, activity rates and organic matter dynamics

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; David, M.; Bottomley, P.; Hettich, R. L.; Jansson, J.; Jumpponen, A.; Rice, C. W.; Tringe, S.; VerBerkmoes, N. C.; Myrold, D.

    2011-12-01

    A significant amount of carbon (C) is processed and stored in prairie soils: grasslands cover 6.1-7.4% of the earth's land surface and hold 7.3-11.4% of global soil C. Global change models predict that the future precipitation regime across the North American Great Plains will entail less frequent but larger rainfall events. The response of prairie soil microbial C processing and allocation to this scenario of higher hydrologic variability is not known, but will be a key determiner of the future capacity for prairie soil C sequestration. We are approaching this problem by assessing soil microbial function (respiration, C utilization efficiency, extracellular enzyme activity) and molecular indicators of dominant C allocation pathways (soil transcriptome, proteome and metabolome) under ambient and experimentally modified precipitation regimes. The rainfall manipulation plots (RaMPs) at the Konza Prairie Long-Term Ecological Research (LTER) site in eastern Kansas, USA is a replicated field manipulation of the magnitude and frequency of natural precipitation that was established in 1998. We collected soil before, during and after a rainfall event in both ambient and modified precipitation treatments and measured the microbial response. Microbial respiration doubled in both treatments during the water addition, and cellobiohydrolase enzyme potential activity (a catalyst of cellulose hydrolysis) increased slightly, but no significant effect of altered precipitation treatment has emerged. The fungal and bacterial ribosomal gene composition was also similar between precipitation treatments. Although pools of genes and extracellular enzymes may be relatively static during short-term dynamic conditions, transcript and intracellular protein abundances may be more indicative of the active microbial metabolic response to rapid shifts in soil moisture. Thus, analysis of transcript and protein composition is underway. In addition, we have implemented a series of lab experiments to optimize and link transcript and protein recovery and analysis procedures using the model soil bacterium Arthrobacter chlorophenicolus strain A6 (ArtchA6). Konza prairie soil was inoculated with ArchA6 and incubated for 72 h with no supplemental C, with acetate or with 4-chlorophenol (a xenobiotic compound that ArtchA6 can utilize as its sole C source), then RNA and protein were extracted from the soil. Quantitatively representative recovery of ArtchA6 genes, rRNA, mRNA and protein was successful. The ratio of ArtchA6 isocitrate lyase (icl, indicative of 2-C metabolism) to succinyl CoA synthetase (suCAB, indicative of total respiratory activity) transcript was highest in soils amended with acetate. Proteomic signatures were distinct in soils with different supplemental C sources. This experiment confirms our capability of recovering transcript and protein from the study soil and of identifying the functional molecules representative of distinct C metabolism pathways.

  10. Pasture degradation modifies soil organic matter properties and biochemical functioning in Tibetan grasslands

    NASA Astrophysics Data System (ADS)

    Spielvogel, Sandra; Steingräber, Laura; Schleuß, Per; Kuzyakov, Yakov; Guggenberger, Georg

    2015-04-01

    Kobresia pastures of the Tibetan Plateau represent the world's largest alpine ecosystem. Moderate husbandry on Kobresia pastures is beneficial for the storage of soil organic carbon (OC), nitrogen (N) and other nutrients and prevents erosion by establishment of sedge-turf root mats with high OC allocation rates below ground. However, undisturbed root mats are affected by freezing and thawing processes, which cause initial ice cracks. As a consequence decomposition of root mat layers will be accelerated and current sedentarization programs with concomitant increased grazing intensity may additionally enhance root mat degradation. Finally, cracks are enlarged by water and wind erosion as well as pika activities until bare soil surface areas without root mat horizons occur. The aim of this study was to understand the impact of the root mat layer on soil organic carbon stabilization and microbial functioning depending on soil depths and to predict future changes (OC, N and nutrient losses, soil microbial functioning in SOM transformation) by overgrazing and climate change. We investigated the mineral soil below Kobresia root mats along a false time degradation sequence ranging from stage 1 (intact root mat) to stage 4 (mats with large cracks and bare soil patches). Vertical gradients of δ13C values, neutral sugar, cutin and suberin contents as well as microbial biomass estimated by total phospholipid fatty acid (PLFA), microbial community composition (PLFA profiles) and activities of six extracellular enzymes involved in the C, N, and P cycle were assessed. Soil OC and N contents as well as C/N ratios indicate an increasing illuviation of topsoil material into the subsoil with advancing root mat degradation. This was confirmed by more negative δ13C values as well as significantly (p ≤ 0.05) increasing contributions of cutin derived hydroxy fatty acids to OC in the subsoils from degradation stages 1 to 4. PLFA profiles were surprisingly similar in the subsoils of degradation stages 1, 2 and 3 although OC contents and composition in the subsoil changed progressively from stage 1 to 4. Only the PLFA profiles of stage 4 differed from those of the other subsoils, suggesting that microbial communities were mainly controlled by other factors than C and N contents and SOM composition. These findings were also confirmed by the activities of β-glucosidase, xylanase, amino-peptidases and proteases. Those enzyme activities were highest in the subsoil of degradation stage 4, whereas degradation stages 2 and 3 showed low enzyme activities in the subsoil if related to soil OC amount and composition. We conclude that pasture degradation decreases not only mechanical protection of soil surface by Kobresia root mats, but also changes their biochemical and microbial functions.

  11. New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract.

    PubMed

    Ezquerra-Brauer, Josafat Marina; Miranda, José M; Chan-Higuera, Jesús Enrique; Barros-Velázquez, Jorge; Aubourg, Santiago P

    2017-08-01

    An advanced strategy for chilled fish preservation, based on the inclusion in ice of an extract of jumbo squid (Dosidicus gigas) skin (JSS), is proposed. Aqueous solutions including acetic acid-ethanol extracts of JSS were tested at two different concentrations as icing media, with the effects on the quality evolution of chilled hake (Merluccius merluccius) being monitored. A significant inhibition (P < 0.05) of microbial activity (aerobes, psychrotrophs, Enterobacteriaceae, proteolytic bacteria; pH, trimethylamine) was obtained in hake corresponding to the icing batch including the highest JSS concentration. Additionally, fish specimens from such icing conditions showed an inhibitory effect (P < 0.05) on lipid hydrolysis development, while no effect (P > 0.05) was depicted for lipid oxidation. Sensory analysis (skin and mucus development; eyes; gills; texture; external odour; raw and cooked flesh odour; flesh taste) indicated a shelf life extension of chilled hake stored in ice including the highest JSS concentration. A profitable use of JSS, an industrial by-product during jumbo squid commercialisation, has been developed in the present work, which leads to a remarkable microbial inhibition and a significant shelf life extension of chilled hake. In agreement with previous research, ommochrome pigments (i.e. lipophilic-type compounds) would be considered responsible for this preservative effect. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    PubMed Central

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  13. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank

    PubMed Central

    Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.

    2017-01-01

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425

  14. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    PubMed

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  15. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  16. Biodiversity of the microbial mat of the Garga hot spring.

    PubMed

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.

  17. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure.

    PubMed

    Islas-Espinoza, Marina; Reid, Brian J; Wexler, Margaret; Bond, Philip L

    2012-07-01

    Persistence or degradation of synthetic antibiotics in soil is crucial in assessing their environmental risks. Microbial catabolic activity in a sandy loamy soil with pig manure using 12C- and 14C-labelled sulfamethazine (SMZ) respirometry showed that SMZ was not readily degradable. But after 100 days, degradation in sulfadiazine-exposed manure was 9.2%, far greater than soil and organic manure (0.5% and 0.11%, respectively, p < 0.05). Abiotic degradation was not detected suggesting microbial catabolism as main degradation mechanism. Terminal restriction fragment length polymorphism showed biodiversity increases within 1 day of SMZ spiking and especially after 200 days, although some species plummeted. A clone library from the treatment with highest degradation showed that most bacteria belonged to α, β and γ classes of Proteobacteria, Firmicutes, Bacteroidetes and Acidobacteria. Proteobacteria (α, β and γ), Firmicutes and Bacteroidetes which were the most abundant classes on day 1 also decreased most following prolonged exposure. From the matrix showing the highest degradation rate, 17 SMZ-resistant isolates biodegraded low levels of 14C-labelled SMZ when each species was incubated separately (0.2-1.5%) but biodegradation was enhanced when the four isolates with the highest biodegradation were incubated in a consortium (Bacillus licheniformis, Pseudomonas putida, Alcaligenes sp. and Aquamicrobium defluvium as per 16S rRNA gene sequencing), removing up to 7.8% of SMZ after 20 days. One of these species (B. licheniformis) was a known livestock and occasional human pathogen. Despite an environmental role of these species in sulfonamide bioremediation, the possibility of horizontal transfer of pathogenicity and resistance genes should caution against an indiscriminate use of these species as sulfonamide degraders.

  18. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC).

    PubMed

    Liu, Wei; Niu, Xiaojun; Chen, Weiyi; An, Shaorong; Sheng, Hong

    2017-04-01

    Phosphine (PH 3 ) emission from conventional biological wastewater treatment is very inefficient (ng-μg m -3 ). In this work, we investigated the feasibility of promoting PH 3 formation from inorganic phosphorus (IP) or organic phosphorus (OP) containing synthetic wastewater treatment by Microbial Electrolysis Cell (MEC) for the first time. Positive effect of applied potential on PH 3 production was observed after methanogens was inhibited. The highest production of PH 3 (1103.10 ± 72.02 ng m -3 ) was obtained in IP-fed MEC operated at -0.6 V, which was about 5-fold and 2-fold compared to that in open circuit experiment and OP-fed MEC, respectively. Meanwhile, PH 3 formation corresponded positively with current density and alkaline phosphatase activity. This result showed that suitable potential could enhance the activity of relevant enzymes and boost the biosynthesis of PH 3 . Bacterial communities analysis based on high-throughput sequencing revealed that applied potential was conductive to the enrichment of phosphate-reducing organisms in contrast to the control test. These results provide a new idea for resource utilization of phosphorus in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  20. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro.

    PubMed

    Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K

    2015-01-01

    In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.

  1. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture

    PubMed Central

    Qi, Qi; Zhao, Mengxin; Wang, Shiping; Ma, Xingyu; Wang, Yuxuan; Gao, Ying; Lin, Qiaoyan; Li, Xiangzhen; Gu, Baohua; Li, Guoxue; Zhou, Jizhong; Yang, Yunfeng

    2017-01-01

    As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. The range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures. PMID:28659870

  3. Anti-cancer, anti-inflammatory and anti-microbial activities of plant extracts used against hematological tumors in traditional medicine of Jordan.

    PubMed

    Assaf, Areej M; Haddadin, Randa N; Aldouri, Nedhal A; Alabbassi, Reem; Mashallah, Sundus; Mohammad, Mohammad; Bustanji, Yasser

    2013-02-13

    Mercurialis annua L., Bongardia chrysogonum L., and Viscum cruciatum Sieb have been traditionally used by local herbalists in Jordan for the treatment of hematopoietic neoplasms. To determine the anti-cancer, anti-inflammatory and anti-microbial potentials of the three extracts against two of the most common hematopoietic malignancies in the Jordanian populations; Burkitt's lymphoma and Multiple myeloma. The anti-cancer activity was tested against the two cell lines (BJAB Burkitt's lymphoma and U266 multiple myeloma) using the MTT and trypan blue assays. The agar dilution assay was used to study the anti-microbial activity against Gram-positive bacteria, Gram-negative bacteria, anaerobic bacteria and yeast. The pro-inflammatory cytokines interleukin (IL) -1β, IL-8 and tumor necrosis factor-α (TNF-α) were measured in the pretreated cell lines using ELISA assay to determine the anti-inflammatory activity of Viscum cruciatum Sieb against the two cell lines. The results show no evidence of stimulation of tumor growth by any of the three extracts comprising cell lines from hematological malignancies, but Viscum cruciatum Sieb showed a selective anticancer activity against BJAB cells, with IC(50) value of 14.21μg/ml. The antimicrobial effect was only noticed with Viscum cruciatum extract by inhibiting Staphylococcus aureus, Candida albicans and Propionibacterium acne, but not Pseudomonas aeruginosa at MIC of 1.25, 1.25, 0.625 and <5mg/ml, respectively. The highest activity was against the anaerobic bacteria Propionibacterium acne. Viscum cruciatum Sieb extract showed an inhibitory effect on the pro-inflammatory cytokine IL-8, but it increased TNF-α and IL-1β secretions in BJAB cells. Whereas, it had an inhibitory effect on TNF-α and IL-1β cytokines while it enhanced IL-8 secretions in U266 cells. Among the three tested herbal extracts used in the traditional medicine in Jordan, only Viscum cruciatum Sieb showed high anti-cancer and anti-microbial potentials. They also had an anti-inflammatory effect. These observations raise the prospects of using Viscum cruciatum Sieb for treatment of diseases associated with some bacterial and fungal infections, for imbalanced cytokine production and for enhancing cancer and other immunotherapies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Optimization of chitosan treatments for managing microflora in lettuce seeds without affecting germination.

    PubMed

    Goñi, M G; Moreira, M R; Viacava, G E; Roura, S I

    2013-01-30

    Many studies have focused on seed decontamination but no one has been capable of eliminating all pathogenic bacteria. Two objectives were followed. First, to assess the in vitro antimicrobial activity of chitosan against: (a) Escherichia coli O157:H7, (b) native microflora of lettuce and (c) native microflora of lettuce seeds. Second, to evaluate the efficiency of chitosan on reducing microflora on lettuce seeds. The overall goal was to find a combination of contact time and chitosan concentration that reduces the microflora of lettuce seeds, without affecting germination. After treatment lettuce seeds presented no detectable microbial counts (<10(2)CFU/50 seeds) for all populations. Moreover, chitosan eliminated E. coli. Regardless of the reduction in the microbial load, a 90% reduction on germination makes imbibition with chitosan, uneconomical. Subsequent treatments identified the optimal treatment as 10 min contact with a 10 g/L chitosan solution, which maintained the highest germination percentage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Impact of volcanic ash on anammox communities in deep sea sediments.

    PubMed

    Song, Bongkeun; Buckner, Caroline T; Hembury, Deborah J; Mills, Rachel A; Palmer, Martin R

    2014-04-01

    Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    NASA Astrophysics Data System (ADS)

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-02-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the `greener' technology of second-generation biofuels.

  7. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    PubMed

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin

    2017-10-01

    Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.

  9. Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach

    PubMed Central

    Woebken, Dagmar; Burow, Luke C; Behnam, Faris; Mayali, Xavier; Schintlmeister, Arno; Fleming, Erich D; Prufert-Bebout, Leslie; Singer, Steven W; Cortés, Alejandro López; Hoehler, Tori M; Pett-Ridge, Jennifer; Spormann, Alfred M; Wagner, Michael; Weber, Peter K; Bebout, Brad M

    2015-01-01

    Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N2 fixation. Dinitrogenase reductase (nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that both sulfate reducers and members of the Cyanobacteria contributed to N2 fixation, whereas 15N2 tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of 15N2-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in 15N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% 15N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. Our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N2 fixation in the intertidal mats, whereas support for significant N2 fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found. PMID:25303712

  10. Revisiting N 2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach

    DOE PAGES

    Woebken, Dagmar; Burow, Luke C.; Behnam, Faris; ...

    2014-10-10

    Photosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N 2 fixation. Dinitrogenase reductase ( nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N 2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico. Acetylene reduction assays with specific metabolic inhibitors suggested that bothmore » sulfate reducers and members of the Cyanobacteria contributed to N 2 fixation, whereas 15N 2 tracer experiments at the bulk level only supported a contribution of Cyanobacteria. Cyanobacterial and nifH Cluster III (including deltaproteobacterial sulfate reducers) sequences dominated the nifH gene pool, whereas the nifH transcript pool was dominated by sequences related to Lyngbya spp. Single-cell isotope analysis of 15N 2-incubated mat samples via high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that Cyanobacteria were enriched in 15N, with the highest enrichment being detected in Lyngbya spp. filaments (on average 4.4 at% 15N), whereas the Deltaproteobacteria (identified by CARD-FISH) were not significantly enriched. We investigated the potential dilution effect from CARD-FISH on the isotopic composition and concluded that the dilution bias was not substantial enough to influence our conclusions. As a result, our combined data provide evidence that members of the Cyanobacteria, especially Lyngbya spp., actively contributed to N 2 fixation in the intertidal mats, whereas support for significant N 2 fixation activity of the targeted deltaproteobacterial sulfate reducers could not be found.« less

  11. Microbial community structure and methane-cycling activity of subsurface sediments at Mississippi Canyon 118 before the Deepwater Horizon disaster

    NASA Astrophysics Data System (ADS)

    Underwood, Sarah; Lapham, Laura; Teske, Andreas; Lloyd, Karen G.

    2016-07-01

    The Deepwater Horizon disaster caused a shift in microbial communities in Gulf of Mexico seawater, but less is known about the baseline for microbial communities in the underlying sediments. We compared 16S rRNA and functional gene sequences deriving from DNA and RNA with geochemical profiles (sulfate and methane concentrations, δ13C of methane and carbon dioxide, and chloride concentrations) of a sediment gravity core from the upper continental slope of the northwestern Gulf of Mexico (MC118) in 2008, 15 km from the spill site. The highest number of archaeal sequences were ANME-1 and ANME-2 archaea in the sulfate-reducing upper core segments (12 and 42 cmbsf), ANME-1 and Methanomicrobiales in the middle methanogenic depths (200 and 235 cmbsf), and ANME-1 at the deepest depths (309, 400, and 424 cmbsf). The presence of mcrA gene transcripts showed that members of the ANME-1 group are active throughout the core and transcribe the mcrA gene, a key gene of methanogenesis and anaerobic methane oxidation. The bacterial community consists mostly of members of the Deltaproteobacteria, Chloroflexi, Cytophaga, Epsilonproteobacteria, and the Japan Sea Group 1 throughout the core. The commonly detected genera of gammaproteobacterial hydrocarbon-degrading bacteria in the water column are not found in this sediment survey, indicating that the benthic sediment is an unlikely reservoir for these aerobes. However, the sediments contain members of the sulfate-reducing families Desulfobulbaceae and Desulfobacteraceae, some members of which degrade and completely oxidize aromatic hydrocarbons and alkanes, and the Desulfobacterium anilini lineage of obligately aromatics-degrading sulfate reducers. Thus, the benthic sediments are the most likely reservoir for the active deltaproteobacterial populations that were observed repeatedly after the Deepwater Horizon spill in the fall of 2010.

  12. Soil organic components distribution in a podzol and the possible relations with the biological soil activities

    NASA Astrophysics Data System (ADS)

    Alvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Curcio, Elena; Cools, Nathalie; Lozano-Garcia, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2016-04-01

    This research reports the preliminary results of a study based on the SOC (Soil Organic Carbon) fractionation in a pine forest soil (Pinus nigra). Hyperskeletic Albic Podzol soil (P113005, World Reference Base, 2014), described by the following sequence O-Ah-E-Bh-Bs-Cg, was investigated at Zoniën, Belgium. Total (TOC) and extractable (TEC) soil contents were determined by Italian official method of soil analysis. Different soil C fractions were also determined: Humic Acid Carbon (HAC) and Fulvic Acid Carbon (FAC). Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. Along the mineral soil profile, therefore, were also tested some enzymatic activities, such as cellulase, xylanase, laccase and peroxidase, involved in the degradation of the main organic substance components, and dehydrogenase activity, like soil microbial biomass index. The results shows a differential TEC fractions distribution in the soil profile along three fronts of progress: (i) An E leaching horizon of TEC; Bh horizon (humic) of humic acids preferential accumulation, morphologically and analytically recognizable, in which humic are more insoluble that fulvic acids, and predominate over the latter; (ii) horizon Bs (spodic) in which fulvic acids are more soluble that humic acid, and predominate in their turn. All enzyme activities appear to be highest in the most superficial part of the mineral profile and decrease towards the deeper layers with different patterns. It is known that the enzymes production in a soil profile reflects the organic substrates availability, which in turn influences the density and the composition of the microbial population. The deeper soil horizons contain microbial communities adapted and specialized to their environment and, therefore, different from those present on the surface The results suggest that the fractionation technique of TEC is appropriate to interpret the podsolisation phenomenon that is the preferential distribution of the different fractions of the SOC. It can form the base study for evaluation of changes in some biological activity along soil profile.

  13. Potential ecosystem service delivery by endemic plants in New Zealand vineyards: successes and prospects.

    PubMed

    Shields, Morgan W; Tompkins, Jean-Marie; Saville, David J; Meurk, Colin D; Wratten, Stephen

    2016-01-01

    Vineyards worldwide occupy over 7 million hectares and are typically virtual monocultures, with high and costly inputs of water and agro-chemicals. Understanding and enhancing ecosystem services can reduce inputs and their costs and help satisfy market demands for evidence of more sustainable practices. In this New Zealand work, low-growing, endemic plant species were evaluated for their potential benefits as Service Providing Units (SPUs) or Ecosystem Service Providers (ESPs). The services provided were weed suppression, conservation of beneficial invertebrates, soil moisture retention and microbial activity. The potential Ecosystem Dis-services (EDS) from the selected plant species by hosting the larvae of a key vine moth pest, the light-brown apple moth (Epiphyas postvittana), was also quantified. Questionnaires were used to evaluate winegrowers' perceptions of the value of and problems associated with such endemic plant species in their vineyards. Growth and survival rates of the 14 plant species, in eight families, were evaluated, with Leptinella dioica (Asteraceae) and Acaena inermis 'purpurea' (Rosaceae) having the highest growth rates in terms of area covered and the highest survival rate after 12 months. All 14 plant species suppressed weeds, with Leptinella squalida, Geranium sessiliforum (Geraniaceae), Hebe chathamica (Plantaginaceae), Scleranthus uniflorus (Caryophyllaceae) and L. dioica, each reducing weed cover by >95%. Plant species also differed in the diversity of arthropods that they supported, with the Shannon Wiener diversity index (H') for these taxa ranging from 0 to 1.3. G. sessiliforum and Muehlenbeckia axillaris (Polygonaceae) had the highest invertebrate diversity. Density of spiders was correlated with arthropod diversity and G. sessiliflorum and H. chathamica had the highest densities of these arthropods. Several plant species associated with higher soil moisture content than in control plots. The best performing species in this context were A. inermis 'purpurea' and Lobelia angulata (Lobeliaceae). Soil beneath all plant species had a higher microbial activity than in control plots, with L. dioica being highest in this respect. Survival proportion to the adult stage of the moth pest, E. postvittana, on all plant species was poor (<0.3). When judged by a ranking combining multiple criteria, the most promising plant species were (in decreasing order) G. sessiliflorum, A. inermis 'purpurea', H. chathamica, M. axillaris, L. dioica, L. angulata, L. squalida and S. uniflorus. Winegrowers surveyed said that they probably would deploy endemic plants around their vines. This research demonstrates that enhancing plant diversity in vineyards can deliver SPUs, harbour ESPs and therefore deliver ES. The data also shows that growers are willing to follow these protocols, with appropriate advice founded on sound research.

  14. Combined Plasma Elevation of CRP, Intestinal-Type Fatty Acid-Binding Protein (I-FABP), and sCD14 Identify Older Patients at High Risk for Health Care-Associated Infections.

    PubMed

    Paillaud, Elena; Bastuji-Garin, Sylvie; Plonquet, Anne; Foucat, Emile; Fournier, Bénédicte; Boutin, Emmanuelle; Le Thuaut, Aurélie; Levy, Yves; Hue, Sophie

    2018-01-16

    We hypothesized that low-grade inflammation was driven by microbial translocation and associated with an increased risk of health care-associated infections (HAIs). We included 121 patients aged 75 years or over in this prospective cohort study. High-sensitivity C-reactive protein (hs-CRP), I-FABP, and sCD14-as markers for low-grade inflammation, intestinal epithelial barrier integrity, and monocyte activation, respectively-were measured at admission. HAIs occurred during hospitalization in 62 (51%) patients. Elevated hs-CRP (≥6.02 mg/L, ie, the median) was associated with a significantly higher HAI risk when I-FABP was in the highest quartile (odds ratio [OR], 4; 95% confidence interval [95% CI], 1.39-11.49; p = .010). In patients with hs-CRP elevation and highest-quartile I-FABP, sCD14 elevation (≥0.65 µg/mL, ie, the median) was associated with an 11-fold higher HAI risk (OR, 10.8; 95% CI, 2.28-51.1; p = .003). Multivariate analyses adjusted for invasive procedures and comorbidities did not change the associations linking the three markers to the HAI risk. Increased levels of hs-CRP, I-FABP, and sCD14 may reflect loss of intestinal epithelial barrier integrity with microbial translocation leading to monocyte activation and low-grade inflammation. In our cohort, these markers identified patients at high risk for HAIs. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  16. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.

    PubMed

    Saz, Çağdaş; Türe, Cengiz; Türker, Onur Can; Yakar, Anıl

    2018-03-01

    An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 - removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

  17. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    NASA Astrophysics Data System (ADS)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest that current ideas about plant-microbe-SOM relationships are unraveling. If so, our reconsideration of the mechanisms stabilizing SOM will also challenge long-held views about how to optimize plant community management to increase SOM.

  18. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    PubMed

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.

    PubMed

    Xie, Binghan; Gong, Weijia; Ding, An; Yu, Huarong; Qu, Fangshu; Tang, Xiaobin; Yan, Zhongsen; Li, Guibai; Liang, Heng

    2017-10-01

    Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this work, two types of allochthonous inoculum including activated sludge (AS) and domestic sewage (DS) were added into the MFC systems to enhance anode biofilm formation and electricity generation. Results indicated that MFCs (AS + CMS) obtained the maximum electricity output with voltage approaching 577 ± 7 mV (~ 196 h), followed by MFCs (DS + CMS) (520 ± 21 mV, ~ 236 h) and then MFCs with autochthonous inoculum (429 ± 62 mV, ~ 263.5 h). Though the raw cattle manure slurry (RCMS) could facilitate electricity production in MFCs, the addition of allochthonous inoculum (AS/DS) significantly reduced the startup time and enhanced the output voltage. Moreover, the maximum power (1.259 ± 0.015 W/m 2 ) and the highest COD removal (84.72 ± 0.48%) were obtained in MFCs (AS + CMS). With regard to microbial community, Illumina HiSeq of the 16S rRNA gene was employed in this work and the exoelectrogens (Geobacter and Shewanella) were identified as the dominant members on all anode biofilms in MFCs. For anode microbial diversity, the MFCs (AS + CMS) outperformed MFCs (DS + CMS) and MFCs (RCMS), allowing the occurrence of the fermentative (e.g., Bacteroides) and nitrogen fixation bacteria (e.g., Azoarcus and Sterolibacterium) which enabled the efficient degradation of the slurry. This study provided a feasible strategy to analyze the anode biofilm formation by adding allochthonous inoculum and some implications for quick startup of MFC reactors for CMS treatment.

  20. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F

    2008-02-01

    Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.

  1. Coupled hydrology and biogeochemistry of Paleocene–Eocene coal beds, northern Gulf of Mexico

    USGS Publications Warehouse

    McIntosh, Jennifer C.; Warwick, Peter D.; Martini, Anna M.; Osborn, Stephen G.

    2010-01-01

    Thirty-six formation waters, gas, and microbial samples were collected and analyzed from natural gas and oil wells producing from the Paleocene to Eocene Wilcox Group coal beds and adjacent sandstones in north-central Louisiana, USA, to investigate the role hydrology plays on the generation and distribution of microbial methane. Major ion chemistry and Cl−Br relations of Wilcox Group formation waters suggest mixing of freshwater with halite-derived brines. High alkalinities (up to 47.8 meq/L), no detectable SO4, and elevated δ13C values of dissolved inorganic carbon (up to 20.5‰ Vienna Peedee belemnite [VPDB]) and CO2 (up to 17.67‰ VPDB) in the Wilcox Group coals and adjacent sandstones indicate the dominance of microbial methanogenesis. The δ13C and δD values of CH4, and carbon isotope fractionation of CO2 and CH4, suggest CO2 reduction is the major methanogenic pathway. Geochemical indicators for methanogenesis drop off significantly at chloride concentrations above ∼1.7 mol/L, suggesting that high salinities inhibit microbial activity at depths greater than ∼1.6 km. Formation waters in the Wilcox Group contain up to 1.6% modern carbon (A14C) to at least 1690 m depth; the covariance of δD values of co-produced H2O and CH4 indicate that the microbial methane was generated in situ with these Late Pleistocene or younger waters. The most enriched carbon isotope values for dissolved inorganic carbon (DIC) and CO2, and highest alkalinities, were detected in Wilcox Group sandstone reservoirs that were CO2 flooded in the 1980s for enhanced oil recovery, leading to the intriguing hypothesis that CO2 sequestration may actually enhance methanogenesis in organic-rich formations.

  2. The potentiality of cross-linked fungal chitosan to control water contamination through bioactive filtration.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F; Elguindy, Nihal M

    2016-07-01

    Water contamination, with heavy metals and microbial pathogens, is among the most dangerous challenges that confront human health worldwide. Chitosan is a bioactive biopolymer that could be produced from fungal mycelia to be utilized in various applied fields. An attempt to apply fungal chitosan for heavy metals chelation and microbial pathogens inhibition, in contaminated water, was performed in current study. Chitosan was produced from the mycelia of Aspergillus niger, Cunninghamella elegans, Mucor rouxii and from shrimp shells, using unified production conditions. The FT-IR spectra of produced chitosans were closely comparable. M. rouxii chitosan had the highest deacetylation degree (91.3%) and the lowest molecular weight (33.2kDa). All chitosan types had potent antibacterial activities against Escherichia coli and Staphylococcus aureus; the most forceful type was C. elegans chitosan. Chitosan beads were cross-linked with glutaraldehyde (GLA) and ethylene-glycol-diglycidyl ether (EGDE); linked beads became insoluble in water, acidic and alkaline solutions and could effectively adsorb heavy metals ions, e.g. copper, lead and zinc, in aqueous solution. The bioactive filter, loaded with EGDE- A. niger chitosan beads, was able to reduce heavy metals' concentration with >68%, and microbial load with >81%, after 6h of continuous water flow in the experimentally designed filter. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antimicrobial activity of different disinfection methods against biofilms in root canals.

    PubMed

    Gergova, Raina T; Gueorgieva, Tzvetelina; Dencheva-Garova, Mariya S; Krasteva-Panova, Assya Z; Kalchinov, Vasil; Mitov, Ivan; Kamenoff, Julia

    2016-08-01

    The aim of the present study was to evaluate the bactericidal effects of different disinfection methods against microbial biofilms grown in root canals. A total of 300 freshly-extracted human teeth were infected with microbial pathogens. The biofilm formation and the effects of laser therapy, photodynamic therapy (PDT), iontophoresis, and disinfection with irrigating solutions were evaluated by counting the generations of microbial cells in the samples of root canals and by scanning electron microscopy. Enterococcus faecalis and other Gram-positive cocci demonstrated highest sensitivity to the methods of antibacterial action compared here. In most of the cases observed, the antibacterial treatment was less effective against Gram-negative bacteria in dental biofilms. The biofilms that were most difficult to eliminate were those formed by Pseudomonas aeruginosa. Iontophoresis treatment with iodine and chemical disinfection with hypochlorite and chlorhexidine demonstrated the most powerful bactericidal effect. When PDT was applied with Fotosan as a photosensitizer, better disinfection was achieved in comparison to the other lasers alone. The comparison of these different strategies for endodontic treatment showed that hypochlorite, followed by the chlorhexidine irrigant in our experimental conditions, gave the most satisfactory results against the formation of bacterial biofilms in the root canals. © 2015 Wiley Publishing Asia Pty Ltd.

  4. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5-7 years post fire (70.70±8.94 ppm CO2-CO and 21.67±2.62 mg kg-1, respectively). Microbial activity measured with the Solvita test was significantly correlated (R Pearson > 0.7; P < 0.001) with microbial parameters analysed with PLFA such as microbial biomass, bacteria biomass or mycorrhizhal fungi. This method has proven to be reliable, fast and easy to interpret for assessment of soil microbial activity in the recovery of soil quality during the recovery after fire. Keywords Pilbara region, biodiverse ecosystems, microbial biomass, microbial respiration, Solvita test, CO2 burst.

  5. Strong linkage between active microbial communities and microbial carbon usage in a deglaciated terrain of the High Arctic

    NASA Astrophysics Data System (ADS)

    Kim, M.; Gyeong, H. R.; Lee, Y. K.

    2017-12-01

    Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.

  6. Assessment of the trophic state of a hypersaline-carbonatic environment: Vermelha Lagoon (Brazil)

    PubMed Central

    Martins, Maria Virginia Alves; Frontalini, Fabrizio; Ballalai, João M.; Belart, Pierre; Habib, Renan; Fontana, Luiz F.; Clemente, Iara M. M. M.; Lorini, Maria Lucia; Mendonça Filho, João G.; Laut, Vanessa M.; Figueiredo, Marcos de Souza Lima

    2017-01-01

    Vermelha Lagoon is a hypersaline shallow transitional ecosystem in the state of Rio de Janeiro (Brazil). This lagoon is located in the protected area of Massambaba, between the cities of Araruama and Saquarema (Brazil), and displays two quite uncommon particularities: it exhibits carbonate sedimentation and displays the development of Holocene stromatolites. Due to both particularities, the salt industry and property speculation have been, increasingly, generating anthropic pressures on this ecosystem. This study aims to apply a multiproxy approach to evaluate the trophic state of Vermelha Lagoon based on physicochemical parameters and geochemical data for the quantification and qualification of organic matter (OM), namely total organic carbon (TOC), total sulfur (TS), total phosphorus (TP) and biopolymeric carbon (BPC), including carbohydrates (CHO), lipids (LIP) and proteins (PTN). The CHO/TOC ratio values suggest that OM supplied to the sediment is of autochthonous origin and results, essentially, from microbial activity. The cluster analyses allowed the identification of four regions in Vermelha Lagoon. The Region I included stations located in shallow areas of the eastern sector of Vermelha lagoon affected by the impact of the artificial channel of connection with Araruama Lagoon. The Region II, under the influence of salt pans, is characterized by the highest values of BPC, namely CHO promoted by microbiological activity. The Region III include stations spread through the lagoon with high values of dissolved oxygen and lower values of TP. Stromatolites and microbial mattes growth was observed in some stations of this sector. Region IV, where the highest values of TOC and TS were found, represents depocenters of organic matter, located in general in depressed areas. Results of this work evidences that the Vermelha Lagoon is an eutrophic but alkaline and well oxygenated environment (at both water column and surface sediment) where the autotrophic activity is greater than heterotrophic one. These particular conditions make this a special and rare ecosystem. PMID:28934270

  7. Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application.

    PubMed

    Wongputtisin, P; Khanongnuch, C; Kongbuntad, W; Niamsup, P; Lumyong, S; Sarkar, P K

    2014-09-01

    Soya bean hull (SBH) is a cheap and high-fibre content feed ingredient that obtained after soya bean oil extraction. Microbial fermentation was expected to improve SBH qualities before applying to animals, especially monogastric animals. Two bacterial strains, Bacillus subtilis MR10 and TK8 that were isolated from Tua-nao, a traditional fermented soya bean in northern Thailand, were used for fermented soya bean hull (FSBH) production. Both could easily grow at 37°C in SBH as the sole substrate. MR10 produced the highest β-mannanase activity (400 U g(-1) SBH) on day 2, while TK8 produced the highest cellulase activity (14·5 U g(-1) SBH) on day 3. After fermentation, the nutritional quality of SBH was obviously improved by an increase in soluble sugars, soluble proteins, crude protein and crude lipid, and a decrease in the content of raffinose family oligosaccharides. Scavenging activity (%) of SBH against ABTS radical cation was also increased from 14 to 27 and 20% by MR10 and TK8 fermentation, respectively. According to the GRAS property of these both strains and various improvements of nutritional values, the fermented SBH proved to be a potential feed ingredient, especially for the monogastric animals. Normally, soya bean hull has been recognized as only a worthless by-product from soya bean oil production process because of its low utilizable nutrients. Our study introduced an alternative way to utilize this worthless residue using biotechnological knowledge. The nutritional quality of soya bean hull was improved by microbial fermentation. Fermented soya bean hull can be used as a cheap, safe and high-nutrient feed ingredient for livestock production, especially monogastric animals, to promote their growth performances, instead of using antibiotics in some regions of the world. © 2014 The Society for Applied Microbiology.

  8. Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils.

    PubMed

    Hossain, Mohammad M; Scott, Ian M; Berruti, Franco; Briens, Cedric

    2016-12-01

    Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300-400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300-350 and 350-400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC 50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300-350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.

  9. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  10. Quality evaluation of processed clay soil samples

    PubMed Central

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    Introduction This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Results Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. “Small” market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. Conclusion The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed. PMID:27642456

  11. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    NASA Astrophysics Data System (ADS)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  12. Potential microbial contamination during sampling of permafrost soil assessed by tracers.

    PubMed

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S

    2017-02-23

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  13. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    PubMed Central

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  14. Tracking microbial colonization patterns associated with micro-environments of rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Eickhorst, Thilo

    2015-04-01

    The interface between soil and roots (i.e. the rhizosphere) represents a highly dynamic micro-environment for microbial populations. Root-derived compounds are released into the rhizosphere and may attract, stimulate, or inhibit native soil microorganisms. Microbes associated with the rhizosphere, in turn, may have deleterious, neutral, or promoting effects on the plant. Such influences of microbial populations on the plant and vice versa are likely to be greatest in close vicinity to the root surface. It is therefore essential to detect and visualize preferential micro-sites of microbial root colonization to identify potential areas of microbe-plant interaction. We present a single-cell based approach allowing for the localization, quantification, and visualization of native microbial populations in the rhizosphere and on the rhizoplane of soil-grown roots in situ. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with confocal laser scanning microscopy was applied to observe colonization densities and patterns of microbial populations associated with wetland rice. Hybridizations with domain- and phylum-specific oligonucleotide probes showed that the growth stage of the rice plant as well as the distance to the root surface had a strong influence on microbial colonization patterns. Three-dimensional visualizations of root-associated microbes revealed micro-sites of preferential colonization. Highest cell numbers of archaea and bacteria were found at flowering stage of rice plant development. Irregular distribution patterns of microbiota observed at early growth stages shifted towards more uniform colonization with plant age. Accordingly, the highest colonization densities shifted from the tip to more mature regions of rice roots. Methanogenic archaea and methanotrophic bacteria were found to be co-localized at basal regions of lateral roots. Beneficial effects of a close association with root surfaces were indicated by proportionally higher numbers of methane-oxidizing bacteria on the rhizoplane compared to the rhizosphere. Such spatial effects could not be observed for methanogenic archaea. As a consequence, the detection and visualization of microbial colonization patterns on a micro-scale via CARD-FISH represents an instrumental approach in revealing potential sites of interaction between microbes and plants in soil micro-environments.

  15. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  16. Stoichiometry constrains microbial response to root exudation - insights from a model and a field experiment in a temperate forest

    NASA Astrophysics Data System (ADS)

    Drake, J. E.; Darby, B. A.; Giasson, M.-A.; Kramer, M. A.; Phillips, R. P.; Finzi, A. C.

    2012-06-01

    Healthy plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exo-enzymes they synthesize, leading to accelerated rates of carbon (C) mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The causal role of exudation, however, is difficult to isolate with in-situ observations, given the complex nature of the rhizosphere environment. We investigated the potential effects of root exudation on microbial and exo-enzyme activity using a theoretical model of decomposition and a field experiment, with a specific focus on the stoichiometric constraint of nitrogen (N) availability. The field experiment isolated the effect of exudation by pumping solutions of exudate mimics through microlysimeter "root simulators" into intact forest soils over two 50-day periods. Using a combined model-experiment approach, we tested two hypotheses: (1) exudation alone is sufficient to stimulate microbial and exo-enzyme activity in rhizosphere soils, and (2) microbial response to C-exudates (carbohydrates and organic acids) is constrained by N-limitation. Experimental delivery of exudate mimics containing C and N significantly increased microbial respiration, microbial biomass, and the activity of exo-enzymes that decompose labile components of soil organic matter (SOM, e.g., cellulose, amino sugars), while decreasing the activity of exo-enzymes that degrade recalcitrant SOM (e.g., polyphenols, lignin). However, delivery of C-only exudates had no effect on microbial biomass or overall exo-enzyme activity, and only increased microbial respiration. The theoretical decomposition model produced complementary results; the modeled microbial response to C-only exudates was constrained by limited N supply to support the synthesis of N-rich microbial biomass and exo-enzymes, while exuding C and N together elicited an increase in modeled microbial biomass, exo-enzyme activity, and decomposition. Thus, hypothesis (2) was supported, while hypothesis (1) was only supported when C and N compounds were exuded together. This study supports a cause-and-effect relationship between root exudation and enhanced microbial activity, and suggests that exudate stoichiometry is an important and underappreciated driver of microbial activity in rhizosphere soils.

  17. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less

  18. The effect of ionizing radiation on microbiological decontamination of medical herbs and biologically active compounds

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.

    1998-06-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.

  19. The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Qi; Zhao, Mengxin; Wang, Shiping

    As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. Themore » range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures.« less

  20. Back to the future of soil metagenomics

    DOE PAGES

    Nesme, Joseph; Achouak, Wafa; Agathos, Spiros N.; ...

    2016-02-10

    Here, direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial,more » agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?« less

  1. Back to the future of soil metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesme, Joseph; Achouak, Wafa; Agathos, Spiros N.

    Here, direct extraction and characterization of microbial community DNA through PCR amplicon surveys and metagenomics has revolutionized the study of environmental microbiology and microbial ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of the “uncultivated majority.” Accelerated by advances in sequencing technology, microbiologists have discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a half of the twenty-first century than since these “many very little living animalcules” were first discovered by van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a range of industrial,more » agricultural, and environmental functions. The ability to explore soil microbial communities with increasing capacity offers the highest promise for answering many outstanding who, what, where, when, why, and with whom questions such as: Which microorganisms are linked to which soil habitats? How do microbial abundances change with changing edaphic conditions? How do microbial assemblages interact and influence one another synergistically or antagonistically? What is the full extent of soil microbial diversity, both functionally and phylogenetically? What are the dynamics of microbial communities in space and time? How sensitive are microbial communities to a changing climate? What is the role of horizontal gene transfer in the stability of microbial communities? Do highly diverse microbial communities confer resistance and resilience in soils?« less

  2. How do microlocal environmental variations affect microbial activities of a Pinus halepensis litter in a Mediterranean coastal area?

    PubMed

    Qasemian, Leila; Guiral, Daniel; Farnet, Anne-Marie

    2014-10-15

    Mediterranean coastal ecosystems suffer many different types of natural and anthropogenic environmental pressure. Microbial communities, major conductors of organic matter decomposition are also subject to these environmental constraints. In this study, our aim was to understand how microbial activities vary at a small spatio-temporal scale in a Mediterranean coastal environment. Microbial activities were monitored in a Pinus halepensis litter collected from two areas, one close to (10 m) and one far from (300 m) the French Mediterranean coast. Litters were transferred from one area to the other using litterbags and studied via different microbial indicators after 2, 5 and 13 months. Microbial Basal Respiration, qCO₂, certain enzyme activities (laccase, cellulase, β-glucosidase and acid phosphatase) and functional diversity via Biolog microplates were assayed in litterbags left in the area of origin as well as in litterbags transferred from one area to the other. Results highlight that microbial activities differ significantly in this short spatial scale over time. The influence of microlocal conditions more intensified for litters situated close to the sea, especially during summer seems to have a stressful effect on microbial communities, leading to less efficient functional activities. However, microbial activities were more strongly influenced by temporal variations linked to seasonality than by location. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  4. Long-term effects of nickel oxide nanoparticles on performance, microbial enzymatic activity, and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Li, Zhiwei; Gao, Mengchun; She, Zonglian; Guo, Liang; Zheng, Dong; Zhao, Yangguo; Ma, Bingrui; Gao, Feng; Wang, Xuejiao

    2017-02-01

    The nitrogen and phosphorus removal, microbial enzymatic activity, and microbial community of a sequencing batch reactor (SBR) were evaluated under long-term exposure to nickel oxide nanoparticles (NiO NPs). High NiO NP concentration (over 5 mg L -1 ) affected the removal of chemical oxygen demand, nitrogen, and phosphorus. The presence of NiO NP inhibited the microbial enzymatic activities and reduced the nitrogen and phosphorus removal rates of activated sludge. The microbial enzymatic activities of the activated sludge showed a similar variation trend to the nitrogen and phosphorus removal rates with the increase in NiO NP concentration from 0 to 60 mg L -1 . The Ni content in the effluent and activated sludge showed an increasing trend with the increase in NiO NP concentration. Some NiO NPs were absorbed on the sludge surface or penetrate the cell membrane into the interior of microbial cells in the activated sludge. NiO NP facilitated the increase in reactive oxygen species by disturbing the balance between the oxidation and anti-oxidation processes, and the variation in lactate dehydrogenase demonstrated that NiO NP could destroy the cytomembrane and cause variations in the microbial morphology and physiological function. High-throughput sequencing demonstrated that the microbial community of SBR had some obvious changes at 0-60 mg L -1 NiO NPs at the phyla, class and genus levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic microcosms inoculated with substrates (80:20 H2/CO2, 30 mM acetate or methanol) were prepared from replicate samples of D2 and D3 and monitored for CH4 and CO2 production during incubation at either 4° or 22o C for 60-80 days. Both CH4 and CO2 production were highest at 22o C and using the CO2/H2 substrate. 16S pyrosequencing analyses of the archaeal diversity indicated Thermoproteales dominated in all microcosms (80-90% of reads) while methanogens belonging to Methanobacteriaceae were also found (0.6 to 11.5%), with the highest amount in the D3 amended with methanol at 22o C. This sample had the highest CH4 production (2.8 nmol g-1 day-1) as well as the only appearance of Methanosarcinaceae (1.4%). Twelve microcosms unresponsive to amendments were transferred to aerobic conditions with a subsequent increase in respiration rate up to 0.4 mmol CO2 g-1 day-1. The current study indicates that increase in temperature, changes in oxygen and nutrition availability enhances metabolic activity in permafrost microbial communities.

  6. Use of indigenous technology for the production of high quality cassava flour with similar food qualities as wheat flour.

    PubMed

    Eleazu, Ogbonnaya Chinedum; Eleazu, Kate Chinedum; Kolawole, Segun

    2014-01-01

    The aim of the paper was to compare the food qualities of 2 varieties (SME 1 and 2) of high quality cassava flour (HQCF) produced from indigenous technology and that of some commercially sold wheat/HQCF samples. The pH, proximate, phytochemical, antioxidant, functional properties and starch yield of the flours were carried out using standard techniques. The wheat flours had higher bulk densities and lipids than the HQCF samples while the oil absorption capacity of the HQCF (SME 2) was higher than other fl our samples investigated. The antioxidant assays of the flours showed that they contained considerable levels of antioxidants with the HQCF sample from DAT having higher antioxidants than other flour samples studied. The HQCF (SME 1) had significantly higher (P < 0.05) starch content among the flour samples. The bacteria counts of the HQCF samples ranged from 0 to 1.4 × 10(4) cfu/ml while the fungal count ranged from 0 to 2 × 10(-3) with the unbranded wheat fl our having the highest microbial load compared with other flour samples studied. The use of this indigenous technology produces HQCF with lower lipids, microbial contamination but higher flavour retaining ability, flavonoids and starch contents than wheat flour. The significant positive correlation (R2 = 0.872) between reducing power of the samples and their DPPH antioxidant activity indicate that either could be used to assay for the total antioxidant activity of cassava and wheat flour. The study underscores the need to buy flour from branded companies to reduce the risks of microbial contamination.

  7. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health.

    PubMed

    Bach Knudsen, Knud Erik

    2015-03-01

    Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate polyphenolic ether lignin. The highest concentration of NSPs and lignin is found in the outer cell layers of the grain, and refined flour will consequently be depleted of a large proportion of insoluble DF components. The flow and composition of carbohydrates to the large intestine are directly related to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown to augment SCFA production, with the strongest relative effect on butyrate. When arabinoxylans were provided as a concentrate, the effect was only on total SCFA production. Increased SCFA production in the large intestine was shown by the concentration in the portal vein, whereas the impact on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting as signaling molecules between the gut and the peripheral tissues. The latter can have implications for insulin sensitivity and glucose homeostasis. © 2015 American Society for Nutrition.

  8. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil.

    PubMed

    Priha; Grayston; Pennanen; Smolander

    1999-10-01

    The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in their influence on soil microbes.

  9. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material. PMID:24705618

  10. Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea.

    PubMed

    Wang, Jiaqi; Shen, Lidong; He, Zhanfei; Hu, Jiajie; Cai, Zhaoyang; Zheng, Ping; Hu, Baolan

    2017-11-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 10 4 to 2.8 × 10 5 copy g -1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO 2  g -1 soil day -1 , contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.

  11. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for microbial biomass, was significantly higher in topsoil organic horizons than in cryoturbated and mineral horizons. Changes in the microbial community composition were mainly caused by the relative amount of fungal biomarkers. Within the fungal community the biomarker 18:2w6, which is often associated with ectomycorrhiza, was negatively correlated to the general fungal biomarker 18:1w9. This negative correlation indicates a shift from mycorrhizal to saprotrophic fungi from topsoil towards cryoturbatad and mineral subsoil horizons. In summary, the measured oxidative and hydrolytic (potential) enzyme activities cannot explain the previously observed retarded decomposition in cryoturbated horizons. The measured actual cellulase activity however was strongly reduced in cryoturbated material compared to topsoil horizons. A possible explanation for the observed strong reduction of actual cellulase activity could lie within the fungal community structure which shifted towards saprotrophic fungi from topsoil to cryoturbated horizons.

  12. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue, which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  13. Diversity of Arbuscular Mycorrhizal Fungi in a Brazilian Atlantic Forest Toposequence.

    PubMed

    Bonfim, Joice Andrade; Vasconcellos, Rafael Leandro Figueiredo; Gumiere, Thiago; de Lourdes Colombo Mescolotti, Denise; Oehl, Fritz; Nogueira Cardoso, Elke Jurandy Bran

    2016-01-01

    The diversity of arbuscular mycorrhizal fungi (AMF) was studied in the Atlantic Forest in Serra do Mar Park (SE Brazil), based on seven host plants in relationship to their soil environment, altitude and seasonality. The studied plots along an elevation gradient are located at 80, 600, and 1,000 m. Soil samples (0-20 cm) were collected in four seasons from SE Brazilian winter 2012 to autumn 2013. AMF spores in rhizosperic soils were morphologically classified and chemical, physical and microbiological soil caracteristics were determined. AMF diversity in roots was evaluated using the NS31/AM1 primer pair, with subsequent cloning and sequencing. In the rhizosphere, 58 AMF species were identified. The genera Acaulospora and Glomus were predominant. However, in the roots, only 14 AMF sequencing groups were found and all had high similarity to Glomeraceae. AMF species identities varied between altitudes and seasons. There were species that contributed the most to this variation. Some soil characteristics (pH, organic matter, microbial activity and microbial biomass carbon) showed a strong relationship with the occurrence of certain species. The highest AMF species diversity, based on Shannon's diversity index, was found for the highest altitude. Seasonality did not affect the diversity. Our results show a high AMF diversity, higher than commonly found in the Atlantic Forest. The AMF detected in roots were not identical to those detected in rhizosperic soil and differences in AMF communities were found in different altitudes even in geographically close-lying sites.

  14. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity increased. Silicase activity did not change across nitrogen treatments despite a shift in microbial community with varied nitrogen concentration. Samples treated with different nitrogen concentrations had similar levels of diversity, however the microbial community composition differed with added nitrogen. The results demonstrated that adding nitrogen to rice straw during thermophilic decomposition nurtured a more active microbial community and promoted enzyme secretion thus improving the ability to discover enzymes for rice straw deconstruction. These results can inform future experiments for cultivating a unique, thriving compost-derived microbial community that can successfully decompose rice straw. Understanding the silicase activity of microorganisms may alleviate the challenges associated with silica in various feedstocks.

  15. Comparison in antioxidant and antitumor activities of pine polyphenols and its seven biotransformation extracts by fungi

    PubMed Central

    Li, Hui

    2017-01-01

    Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092

  16. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Fleck, Jacob A.; Alpers, Charles N.; Stricker, Craig A.

    2014-01-01

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible ‘reactive’ mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall–winter period may be effective in limiting MeHg production within agricultural wetlands.

  17. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.

    PubMed

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A

    2014-06-15

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall-winter period may be effective in limiting MeHg production within agricultural wetlands. © 2013.

  18. Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime.

    PubMed

    Siebielec, Sylwia; Siebielec, Grzegorz; Stuczyński, Tomasz; Sugier, Piotr; Grzęda, Emilia; Grządziel, Jarosław

    2018-09-15

    Smelter wastelands containing high amounts of zinc, lead, cadmium, and arsenic constitute a major problem worldwide. Serious hazards for human health and ecosystem functioning are related to a lack of vegetative cover, causing fugitive dust fluxes, runoff and leaching of metals, affecting post-industrial ecosystems, often in heavily populated areas. Previous studies demonstrated the short term effectiveness of assisted phytostabilisation of zinc and lead smelter slags, using biosolids and liming. However, a long term persistence of plant communities introduced for remediation and risk reduction has not been adequately evaluated. The work was aimed at characterising trace element solubility, plant and microbial communities of the top layer of the reclaimed zinc and lead smelter waste heaps in Piekary Slaskie, Poland, 20 years after the treatment and revegetation. The surface layer of the waste heaps treated with various rates of biosolids and the by-product lime was sampled for measuring chemical and biochemical parameters, which are indicative for metals bioavailability as well as for microorganisms activity. Microbial processes were characterised by enzyme activities, abundance of specific groups of microorganisms and identification of N fixing bacteria. Plant communities of the area were characterised by a percent coverage of the surface and by a composition of plant species and plant diversity. The study provides a strong evidence that the implemented remediation approach enables a sustainable functioning of the ecosystem established on the toxic waste heaps. Enzyme activities and the count of various groups of microorganisms were the highest in areas treated with both biosolids and lime, regardless their rates. A high plant species diversity and microbial activities are sustainable after almost two decades from the treatment, which is indicative of a strong resistance of the established ecosystem to a metal stress and a poor physical quality of the anthropogenic soil formed by the treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kim, Moon S.; Hwang, Jeeseong

    2012-03-01

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially lifethreatening infections. Other types of medical devices such as bronchoscopes and duodenoscopes account for the highest number of reported endoscopic infections where microbial biofilm is one of the major causes for these infections. We applied a hyperspectral imaging method to detect biofilm contamination on the surface of several common materials used for medical devices. Such materials include stainless steel, titanium, and stainless-steeltitanium alloy. Potential uses of hyperspectral imaging technique to monitor biofilm attachment to different material surfaces are discussed.

  20. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    NASA Astrophysics Data System (ADS)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  1. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover.

    PubMed

    Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo

    2013-01-01

    Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Capturing the genetic makeup of the active microbiome in situ.

    PubMed

    Singer, Esther; Wagner, Michael; Woyke, Tanja

    2017-09-01

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.

  3. Capturing the genetic makeup of the active microbiome in situ

    PubMed Central

    Singer, Esther; Wagner, Michael; Woyke, Tanja

    2017-01-01

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions. PMID:28574490

  4. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    PubMed

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  5. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.

    PubMed

    Wang, Jun; Lv, Shenghong; Zhang, Manyun; Chen, Gangcai; Zhu, Tongbin; Zhang, Shen; Teng, Ying; Christie, Peter; Luo, Yongming

    2016-05-01

    Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.

    PubMed

    Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D

    2009-04-15

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from atmospheric sources.

  7. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.

  8. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    PubMed

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metrological aspects of enzyme production

    NASA Astrophysics Data System (ADS)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  10. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  12. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia.

    PubMed

    Uyaguari-Díaz, Miguel I; Croxen, Matthew A; Luo, Zhiyao; Cronin, Kirby I; Chan, Michael; Baticados, Waren N; Nesbitt, Matthew J; Li, Shaorong; Miller, Kristina M; Dooley, Damion; Hsiao, William; Isaac-Renton, Judith L; Tang, Patrick; Prystajecky, Natalie

    2018-01-01

    The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes ( intI ) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI . Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1 , and groEL/ intI1 genes and 12 quaternary ammonium compounds ( qac ) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1 ), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations.

  13. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse, and the lowest concentrations were recorded following the trough in river stage.

  14. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia

    PubMed Central

    Uyaguari-Díaz, Miguel I.; Croxen, Matthew A.; Luo, Zhiyao; Cronin, Kirby I.; Chan, Michael; Baticados, Waren N.; Nesbitt, Matthew J.; Li, Shaorong; Miller, Kristina M.; Dooley, Damion; Hsiao, William; Isaac-Renton, Judith L.; Tang, Patrick; Prystajecky, Natalie

    2018-01-01

    The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations. PMID:29765365

  15. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  16. Comparative analysis of the antioxidant properties of Icelandic and Hawaiian lichens.

    PubMed

    Hagiwara, Kehau; Wright, Patrick R; Tabandera, Nicole K; Kelman, Dovi; Backofen, Rolf; Ómarsdóttir, Sesselja; Wright, Anthony D

    2016-09-01

    Antioxidant activity of symbiotic organisms known as lichens is an intriguing field of research because of its strong contribution to their ability to withstand extremes of physical and biological stress (e.g. desiccation, temperature, UV radiation and microbial infection). We present a comparative study on the antioxidant activities of 76 Icelandic and 41 Hawaiian lichen samples assessed employing the DPPH- and FRAP-based antioxidant assays. Utilizing this unprecedented sample size, we show that while highest individual sample activity is present in the Icelandic dataset, the overall antioxidant activity is higher for lichens found in Hawaii. Furthermore, we report that lichens from the genus Peltigera that have been described as strong antioxidant producers in studies on Chinese, Russian and Turkish lichens also show high antioxidant activities in both Icelandic and Hawaiian lichen samples. Finally, we show that opportunistic sampling of lichens in both Iceland and Hawaii will yield high numbers of lichen species that exclusively include green algae as photobiont. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Influence of Herbicide Triasulfuron on Soil Microbial Community in an Unamended Soil and a Soil Amended with Organic Residues

    PubMed Central

    Pose-Juan, Eva; Igual, José M.; Sánchez-Martín, María J.; Rodríguez-Cruz, M. S.

    2017-01-01

    The effect of organic amendments and pesticides on a soil microbial community has garnered considerable interest due to the involvement of microorganisms in numerous soil conservation and maintenance reactions. The aim of this work was to assess the influence on a soil microbial community of the simultaneous application of the herbicide triasulfuron at three doses (2, 10, and 50 mg kg-1), with an organic amendment [sewage sludge (SS) or green compost (GC)]. Dissipation kinetics, soil microbial biomass, dehydrogenase activity (DHA) and respiration, and the profile of phospholipid fatty acids (PLFAs) extracted from the soil, were determined in unamended (S) soil and amended (S+SS and S+GC) ones. Triasulfuron dissipation followed the single first-order kinetics model. Half-life (DT50) values were higher in the amended soils than in the unamended one for the 10 and 50 mg kg-1 doses. The dissipation rates were lower in the S+GC soil for the three herbicide doses applied. In general, soil biomass, DHA and respiration values increased in SS- and GC-amended soils compared to the unamended one. DHA values decreased (S and S+SS) or increased (S+GC) with the incubation time of soil with herbicide at the different doses applied. Respiration values increased with the herbicide doses applied and decreased with the incubation time, although maximum values were obtained for soils treated with the highest dose after 70 days of incubation. PLFA analysis indicated different effects of triasulfuron on the soil microbial community structure depending on the organic amendments. While the increasing triasulfuron doses resulted in deeper alterations in the S soil, the time after triasulfuron application was the most important variation in the S+SS and S+GC soils. The overall results indicate that the soil amendment has an effect on herbicide dissipation rate and the soil microbial community. Initially, a high dose of triasulfuron had detrimental effects on the soil microbial community, which is important in the case of the long-term use of this compound. PMID:28337188

  18. The resistance of the active microbiome as a fundamental compartment of soil quality in the face of climate change

    NASA Astrophysics Data System (ADS)

    Bastida, Felipe; Andrés, Manuela; Torres, Irene; García, Carlos; Ruiz Navarro, Antonio; Moreno, Francisco R.; López Serrano, Francisco R.

    2017-04-01

    Arid and semiarid ecosystems will be severely affected by drought derived from climate change. Forest management can promote the adaptations of plant and microbial communities to drought. For instance, thinning reduces competition for resources through a decrease in tree density and the promotion of plant survival. The resistance of soil microbial communities must be strongly related to the soil quality. However, in order to evaluate these properties, the active (and not only the total) microbial community should be carefully assessed. Here, we studied the functional and phylogenetic responses of the microbial community to six years of drought induced by rainfall exclusion and how thinning shapes its resistance to drought, in a semiarid ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel strategies against drought. The diversity and the composition of the total and active soil microbial communities were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially-mediated ecosystem multifunctionality was studied by the evaluation of enzyme activities related to C, N, and P dynamics. The microbial biomass and ecosystem multifunctionality decreased in plots subjected to drought, but this decrease was greater in unthinned plots. The diversity of the total bacterial and fungal communities were resistant to drought but were shaped by seasonal dynamics. However, the active community was more sensitive to drought and related to multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of multifunctionality to drought by changes in the active microbiome. Protein-based phylogeny was a better predictor of the impacts of drought and the adaptations of microbial communities. We highlight that the resistance of the microbial community and the active microbial community are ecological concepts strongly related to the concept of soil quality in the face of climate change.

  19. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    NASA Astrophysics Data System (ADS)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  20. Effect of biochar and digestate on microbial respiration and pesticide degradation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Santanu; Tappe, Wolfgang; Hofmann, Diana; Köppchen, Stephan; Disko, Ulrich; Weihermüller, Lutz; Burauel, Peter; Vereecken, Harry

    2014-05-01

    To overcome the problem of on farm point sources of pollution stemming from improper handling, spillages, and leakages of pesticides during filling and cleaning of spraying equipment, environmental friendly and low cost technology filter systems are currently under development. Based on a laboratory screening approach, where different biomixtures (soil, with biochar and/or digestate) are tested a full scale outdoor system will be developed. Therefore, different fundamental processes like pesticide mineralization, metabolization, sorption-desorption, and transport behavior of three radiolabelled pesticides (Bentazone, Boscalid and Pyrimethanil) will be investigated. Biochar and digestate mixtures with two contrasting soils (sandy and silt loam) had been used as a novel biofilter material for respiration study instead of conventional soil and straw mixtures. To analyze the pesticide degradation potential and to gain information about the temporal evolution of the degradation process of the biochar and digestate soil mixtures microbial respiration was measured over the course of three month. As expected, digestate acts as an easily available C-source leading to highest release of CO2 compared to other biomixtures used. In contrast, the addition of even small amounts (1 %) of biochar caused a profound suppression in the CO2 release from digestate based mixtures. The exact driving mechanism for this suppression can be manifold likes negative priming or chemisorption of CO2 on biochar or NH3 toxicity induced by the large amount of digestate applied in the experiment (30 %) or can be combination of all effects. Surprisingly, a repeated experiment with same but aged digestate did not show such negative priming. On the other hand, the fate of applied organic contaminants to biomixtures depends on several factors like soil properties and climatic conditions as well as biological degradation. To analyze the degradation potential of the different soil/amendment mixtures a degradation study was performed to determine the effects of biochar and digestate in different mixing rates on the metabolization behavior of the studied pesticides, and to identify and quantify the metabolites derived during the degradation process. The results from the 14C Bentazone study indicate that 5 % digestate and 5 % biochar mixture showed highest (nearly~ 15 %) and 1 % biochar lowest rate of mineralization (~1 %), whereby highest microbial activity was measured in the soil/digestate mixture.

  1. Antimicrobial Activities of a Plethora of Medicinal Plant Extracts and Hydrolates against Human Pathogens and Their Potential to Reverse Antibiotic Resistance

    PubMed Central

    Njimoh, Dieudonné Lemuh; Assob, Jules Clement N.; Mokake, Seraphine Ebenye; Nyhalah, Dinga Jerome; Yinda, Claude Kwe; Sandjon, Bertrand

    2015-01-01

    Microbial infections till date remain a scourge of humanity due to lack of vaccine against some infections, emergence of drug resistant phenotypes, and the resurgence of infections amongst others. Continuous quest for novel therapeutic approaches remains imperative. Here we (i) assessed the effects of extracts/hydrolates of some medicinal plants on pathogenic microorganisms and (ii) evaluated the inhibitory potential of the most active ones in combination with antibiotics. Extract E03 had the highest DZI (25 mm). Extracts E05 and E06 were active against all microorganisms tested. The MICs and MBCs of the methanol extracts ranged from 16.667 × 103  μg/mL to 2 μg/mL and hydrolates from 0.028 to 333333 ppm. Extract E30 had the highest activity especially against S. saprophyticus (MIC of 6 ppm) and E. coli (MIC of 17 ppm). Combination with conventional antibiotics was shown to overcome resistance especially with E30. Analyses of the extracts revealed the presence of alkaloids, flavonoids, triterpenes, steroids, phenols, and saponins. These results justify the use of these plants in traditional medicine and the practice of supplementing decoctions/concoctions with conventional antibiotics. Nauclea pobeguinii (E30), the most active and synergistic of all these extracts, and some hydrolates with antimicrobial activity need further exploration for the development of novel antimicrobials. PMID:26180528

  2. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover.

    PubMed

    Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo

    2015-12-01

    To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time-decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.

  3. Effect of Malathion on the Microbial Ecology of Activated Sludge

    DTIC Science & Technology

    2015-03-26

    EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant

  4. A Comparison of Response Surface Methodology and a One-Factor-At-A-Time Approach as Calibration Techniques for the Bioplume-II Simulation Model of Contaminant Biodegradation

    DTIC Science & Technology

    1995-12-01

    Technology, 26:1404-1410 (July 1992). 4. Atlas , Ronald M. and Richard Bartha . Microbial Ecology , Fundamentals and Applica- tions (3rd Edition). Redwood... microbial metabolic activity. Leahy and Colwell (35:307) note the impact of physical factors on microbial activity. They cite research by Atlas and... Bartha observing that low temperatures inhibit microbial activity and research by Bossert and Bartha observing that higher temperatures increase activity

  5. Microbial methane production in oxygenated water column of an oligotrophic lake

    PubMed Central

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  6. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities.

    PubMed

    Wang, Xiaohui; Wang, Changdong; Sui, Junkang; Liu, Zhaoyang; Li, Qian; Ji, Chao; Song, Xin; Hu, Yurong; Wang, Changqian; Sa, Rongbo; Zhang, Jiamiao; Du, Jianfeng; Liu, Xunli

    2018-04-20

    Rhizospheric microorganisms can increase phosphorus availability in the soil. In this regard, the ability of phosphofungi to dissolve insoluble phosphorus compounds is greater than that of phosphate-solubilizing bacteria. The aim of the current study was to identify efficient phosphofungi that could be developed as commercial microbial agents. Among several phosphate-solubilizing fungal isolates screened, strain CS-1 showed the highest phosphorus-solubilization ability. Based on phylogenetic analysis of the internal transcribed spacer region sequence, it was identified as Aspergillus niger. High-performance liquid chromatography analysis revealed that the mechanism of phosphorus solubilization by CS-1 involved the synthesis and secretion of organic acids, mainly oxalic, tartaric, and citric acids. Furthermore, strain CS-1 exhibited other growth-promoting abilities, including efficient potassium release and degradation of crop straw cellulose. These properties help to returning crop residues to the soil, thereby increasing nutrient availability and sustaining organic matter concentration therein. A pot experiment revealed that CS-1 apparently increased the assessed biometric parameters of wheat seedlings, implying the potential of this strain to be developed as a commercial microbial agent. We used Illumina MiSeq sequencing to investigate the microbial community composition in the rhizosphere of uninoculated wheat plants and wheat plants inoculated with the CS-1 strain to obtain insight into the effect of the CS-1 strain inoculation. The data clearly demonstrated that CS-1 significantly reduced the content of pathogenic fungi, including Gibberella, Fusarium, Monographella, Bipolaris, and Volutella, which cause soil-borne diseases in various crops. Strain CS-1 may hence be developed into a microbial agent for plant growth improvement.

  7. Soil quality of a degraded urban area

    NASA Astrophysics Data System (ADS)

    Panico, Speranza; Memoli, Valeria; Maisto, Giulia; De Marco, Anna

    2017-04-01

    Human activities cause modifications of the soil characteristics, leading to a significant reduction of the soil fertility and quality. The aim of this study was to evaluate the relationships between microbial activity or biomass and chemical characteristics (i.e. heavy metal and organic matter contents) of a degraded urban soil. The study area is located in an urban park (about 10 ha, called Quarantena) near to the Fusaro Lake of Campi Flegrei (Southern Italy); the Park was established in 1953 to shelter animals coming from any place of the Planet and execute veterinary checks before their delivery to different European zoos. In 1997, the park was abandoned and nowadays in it a large amount of urban wastes accumulates. Surface soils (0-10 cm) were sampled at three points: two of them covered by Holm Oak specimens (P1 and P2) and one covered by herbaceous species, particularly legumes (P3). P1 was localized at the border of the park and next to a busy road; P2 at the centre of the Quarantena Park; P3 at a gap area near the Fusaro Lake. The results showed that the soil sampled at P1 showed the highest Cr and Ni concentrations; the soil sampled at P3 had high levels of Cu and Pb, exceeding the threshold values of 100 µg g-1 d.w. fixed by the Italian law for urban soils, probably due to boat traffic, fishing practice and agricultural activities; the soil sampled at P2 had intermediate values of metal concentrations but the highest amount of organic matter (more than 20% d.w.). Despite of metal contamination, P1 and P3 showed higher soil microbial biomass and activity as compared to P2. Therefore, at this site, the organic matter accumulation could be due to the scarce litter degradation. In conclusion, although the studied area was not too large, a wide heterogeneity of soil quality (in terms of the investigated chemical and biological characteristics) was detected, depending on the local human impact.

  8. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    PubMed Central

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-01-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199

  9. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments.

    PubMed

    Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L

    2016-09-26

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

  10. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-09-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

  11. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae.

    PubMed

    Czarnotta, Eik; Dianat, Mariam; Korf, Marcel; Granica, Fabian; Merz, Juliane; Maury, Jérôme; Baallal Jacobsen, Simo A; Förster, Jochen; Ebert, Birgitta E; Blank, Lars M

    2017-11-01

    Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering. © 2017 Wiley Periodicals, Inc.

  12. Chemolithoautotrophic arsenite oxidation by a thermophilic Anoxybacillus flavithermus strain TCC9-4 from a hot spring in Tengchong of Yunnan, China

    PubMed Central

    Jiang, Dawei; Li, Ping; Jiang, Zhou; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Guo, Qinghai; Wang, Yanxin

    2015-01-01

    A new facultative chemolithoautotrophic arsenite (AsIII)-oxidizing bacterium TCC9-4 was isolated from a hot spring microbial mat in Tengchong of Yunnan, China. This strain could grow with AsIII as an energy source, CO2–HCO3- as a carbon source and oxygen as the electron acceptor in a minimal salts medium. Under chemolithoautotrophic conditions, more than 90% of 100 mg/L AsIII could be oxidized by the strain TCC9-4 in 36 h. Temperature was an important environmental factor that strongly influenced the AsIII oxidation rate and AsIII oxidase (Aio) activity; the highest Aio activity was found at the temperature of 40∘C. Addition of 0.01% yeast extract enhanced the growth significantly, but delayed the AsIII oxidation. On the basis of 16S rRNA phylogenetic sequence analysis, strain TCC9-4 was identified as Anoxybacillus flavithermus. To our best knowledge, this is the first report of arsenic (As) oxidation by A. flavithermus. The Aio gene in TCC9-4 might be quite novel relative to currently known gene sequences. The results of this study expand our current understanding of microbially mediated As oxidation in hot springs. PMID:25999920

  13. Development of soil chemical and biological properties in the initial stages of post-mining deposition sites.

    PubMed

    Monokrousos, Nikolaos; Boutsis, George; Diamantopoulos, John D

    2014-12-01

    The aim of this study was to assess the seasonal development of the physicochemical (pH, organic C, organic N, extractable P, Ca(2+), Mg(2+)) and biological soil properties (microbial biomass, activities of urease, dehydrogenase and alkaline phosphatase) of the topsoil of mine deposition sites that differed based on the material used exclusively for their creation: (a) marlstones, (b) red-grey formations (RGF), and (c) fly ash (FA), during the first year after their creation. Our hypothesis was that all deposition sites, regardless the material they consist of, present equal opportunities for the establishment of spontaneous vegetation. All macronutrients concentrations (P, Ca(2+), and Mg(2+)) remained constant with time and were found to be higher in the FA sites. Organic C, organic N, all enzyme activities, and microbial biomass were higher in the RGF and marl depositions, with marl sites presenting the highest values. All values of biological variables, with the exception of alkaline phosphatase, increased with time. The alkaline environment along with the slow improvement in soil biological properties of the FA sites seemed to present the most unfavorable conditions for spontaneous vegetation growth. On the contrary, the other two spoil materials presented significant improvement in the initial stages of soil formation in terms of soil functionality.

  14. Phytoremediation of diphenylarsinic-acid-contaminated soil by Pteris vittata associated with Phyllobacterium myrsinacearum RC6b.

    PubMed

    Teng, Ying; Feng, Shijiang; Ren, Wenjie; Zhu, Lingjia; Ma, Wenting; Christie, Peter; Luo, Yongming

    2017-05-04

    A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA)-spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities, and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35-47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation. In addition, the activities of dehydrogenase and fluorescein diacetate hydrolysis and the average well-color development values increased by 41-91%, 37-78%, and 35-73%, respectively, in the treatments with P. vittata and/or P. myrsinacearum compared with the control, with the highest increase in the presence of P. vittata and P. myrsinacearum together. Both fern and bacterium alone greatly enhanced the removal of DPAA and the recovery of soil ecological function and these effects were further enhanced by P. vittata and P. myrsinacearum together. Our findings provide a new strategy for remediation of DPAA-contaminated soil by using a hyperaccumulator/microbial inoculant alternative to traditional physicochemical method or biological degradation.

  15. Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure.

    PubMed

    Tatariw, Corianne; Chapman, Elise L; Sponseller, Ryan A; Mortazavi, Behzad; Edmonds, Jennifer W

    2013-10-01

    Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.

  16. Improving quality of an innovative pea puree by high hydrostatic pressure.

    PubMed

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. A patent landscape on application of microorganisms in construction industry.

    PubMed

    Dapurkar, Dipti; Telang, Manasi

    2017-07-01

    Construction biotechnology includes research and development of construction materials and processes that make use of various microbes. The present technology landscape gives a perspective on how microbes have been used in construction industry as cement and concrete additives by analyzing patents filed in this technology arena. All patents related to the technology of interest published globally to date have been reviewed. The earliest patent filing in this technology domain was recorded in the year 1958 and the patenting activity reached its peak around mid to late 1990s. The early technology was mainly focused on microbial polysaccharides and other metabolic products as additives. Year 2002 onwards, biomineralization has taken precedence over the other technologies with consistent patent filings indicating a shift in innovation focus. Japan has been the global leader with highest number of patents filed on application of microbes in construction industry. Southeast University, China has topped the patent assignee list with maximum number of filings followed by Kajima Corp. and Shin-Etsu Chemical Co., Ltd. Most patent applications have claimed microbe based bio-products. Construction-related microbial technologies are mainly based on activity of different microorganisms such as urease-producing, acidogenic, halophilic, alkaliphilic, nitrate and iron-reducing bacteria. Sporosarcina pasteurii has been the most widely used microbe for biomineralization.

  18. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    PubMed

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  19. N2O and N2 emissions from contrasting soil environments - interactive effects of soil nitrogen, hydrology and microbial communities

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara

    2016-04-01

    Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site dependent indicating different capacities for N turnover of the microbial community. These findings indicate a positive feedback between increased soil N and wetter soils that promotes N2O relative to N2. These interactions may be site specific due to differential functional diversity of the soil microbial community. Future characterization of the community structure will shed light on the link between the role of microbial groups related to soil N cycling pathways and the resultant partitioning of N2O and N2 emissions in these contrasting environments.

  20. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337)

    NASA Astrophysics Data System (ADS)

    Ijiri, A.; Inagaki, F.

    2015-12-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 337 in 2012, the riser-drilling vessel Chikyu extended the previous world depth record of scientific ocean drilling and made one of the deepest scientific borehole down to 2466 m below the seafloor (mbsf) at Site C0020 Hole A off the Shimokita Peninsula, Japan. The sedimentary sequence consists of 17 lignite layers below 1.5 km bellow the seafloor. Microbiological and geochemical data consistently showed evidence for the existence of microbial communities associated with lignite coal beds in the coal-bearing sediments (Inagaki and Hinrichs et al., Science, 2015). Since lignite coals produce substantial dissolved organic compounds during the burial alternation process, volatile fatty acids may play important roles for microbial life and its activity in the deep sedimentary environment. To address this hypothesis, we measured methanogenic and acetate-oxidation activities by radiotracer incubation experiments using 14C-labelled substrate ([2-14C]-acetate) immediately after core recovery. Activity of aceticlastic methanogenesis was observed in the sediment above the coal-baring layers (>1990 mbsf), ranging from 0.2 to 1.2 pmol cm-3 d-1. The highest activity was observed in a coal-bed horizon at 1990 mbsf. However, aceticlastic methanogenesis was below the detection limit in sediment samples below the 2 km-coal layers. Activity of acetate oxidation to CO2 was measured by 14CO2 production rate from [2-14C]-acetate. Interestingly, the acetate-oxidation activity was observed in sediments above the coal beds, which values were generally higher than those of methanogenesis with the maximum value of 33 pmol cm-3 d-1 at 1800 mbsf. The rates gradually decreased with increasing depth from 1800 mbsf and reached below the detection limit (i.e., 0.05 pmol cm-3 d-1) in 2 km-deep coal-bed samples. The occurrence of relatively high acetate oxidation at ~1800 mbsf above the coal formation suggests that microbes respire acetate with available electron acceptors such as glauconitic iron oxides in the deep sedimentary environment.

  1. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    PubMed Central

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-01-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the ‘greener' technology of second-generation biofuels. PMID:25641069

  2. The effects of wastewater discharge on the microbiological nitrogen cycle of the lake sediments

    NASA Astrophysics Data System (ADS)

    Saarenheimo, Jatta; Aalto, Sanni L.; Tiirola, Marja

    2016-04-01

    Anthropogenic wastewater inputs alter the natural dynamics of nitrogen (N) cycle by providing high concentrations of nitrate and organic matter to the sediment microbes. It can also change the microbial community composition and N removal potential but this is currently not that well studied. To study these aspects, we conducted ecosystem-scale experiment in Lake Keurusselkä, Finland. In the experiment, the wastewater discharge to the recipient lake was optimized with sediment filtration, which increased the surface and retention time of the nitrified wastewater with the sediment. In addition to N transformation rates, which showed that optimization enhanced denitrification, we studied the microbial responses at the sediment. Genetic potential of nitrogen transformation processes, such as denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrification were studied by targeting the functional genes (i.e. nirS, nirK, nosZI, nosZII, nrfA, amoAarchaea and amoAbacteria) with quantitative PCR and digital droplet PCR. In addition, changes in the microbial community composition along the wastewater gradient were examined by using next generation sequencing of the 16S rRNA genes. In line with our hypothesis, the relative abundance of denitrifying genes followed the observed denitrification rates, being highest near the nitrate-rich wastewater discharge. Furthermore the microbial community composition in the discharge point differed clearly from the control and downstream sites, having also the highest numbers of rare OTUs. Abundance of nitrifying bacteria was higher than nitrifying archaea near the waste water discharge, whereas the opposite was seen at the control site. The results indicate that wastewater is not only increasing the denitrification rates, but can also alter the structure and genetic potential microbial communities.

  3. Microbial Diversity of Commercial Makgeolli and Its Influence on the Organoleptic Characteristics of Korean Rice Sourdough, Jeung-Pyun.

    PubMed

    Park, Jaehyung; Seo, Ji Sun; Kim, Seul-Ah; Shin, So-Yeon; Park, Jong-Hyun; Han, Nam Soo

    2017-10-28

    Sourdough is made by fermentation of dough by lactic acid bacteria (LAB) and yeast to improve bread properties like volume, flavor, and texture. A Korean traditional sourdough was made by fermenting rice flour with rice wine (makgeolli) and used to make sponge-like bread (jeung-pyun). The aim of this study was to investigate the microbial diversity of makgeolli products and their influence on the organoleptic quality of jeung-pyun. Three commercial makgeolli were tested for jeung-pyun production, with each product exhibiting varied dough swelling rates and organoleptic qualities, and among them, J-product was ranked highest in texture and taste. Microbial analysis of the three makgeolli also showed a big difference in their population and diversity. J-product had the highest LAB and yeast counts, and the predominant species were Lactobacillus casei, Lactobacillus brevis, Leuconostoc pseudomenteroides, and Saccharomyces cerevisiae . Using J-product, sourdough was fermented at 25°C, 30°C, and 35°C, and the microbial growth in and textural properties of jeung-pyun were examined by instrumental and sensory tests. At high temperature (35°C), the rates of dough swelling and acidification were fast due to rapid microbial growth mainly caused by LAB, resulting in a short leavening time and soft and sour jeung-pyun. Sensory tests showed consumer preference for the soft and mild-sour jeung-pyun. This study shows that LAB in makgeolli play key roles in production of jeung-pyun, influencing the textural and sensory properties. For the production of high-quality jeung-pyun, development of LAB starters with high gas productivity and low acidity and establishment of an optimal fermentation procedure for rice dough are necessary.

  4. [Analysis of causes and whole microbial structure in a case of rampant caries].

    PubMed

    Hu, Xiao-Yu; Yao, Yu-Fei; Cui, Bo-Miao; Lv, Jun; Shen, Xin; Ren, Biao; Li, Ming-Yun; Guo, Qiang; Huang, Rui-Jie; Li, Yan

    2016-10-20

    To analyze the whole microbial structure in a case of rampant caries to provide evidence for its prevention and treatment. Clinical samples including blood, supragingival plaque, plaque in the caries cavity, saliva, and mucosal swabs were collected with the patient's consent. The blood sample was sent for routine immune test, and the others samples were stained using Gram method and cultured for identifying colonies and 16S rRNA sequencing. DNA was extracted from the samples and tested for the main cariogenic bacterium (Streptococcus mutans) with qPCR, and the whole microbial structure was analyzed using DGGE. The patient had a high levels of IgE and segmented neutrophils in his blood. Streptococci with extremely long chains were found in the saliva samples under microscope. Culture of the samples revealed the highest bacterial concentration in the saliva. The relative content of hemolytic bacterium was detected in the samples, the highest in the caries cavity; C. albicans was the highest in the dental plaque. In addition, 33 bacterial colonies were identified by VITEK system and 16S rDNA sequence phylogenetic analysis, and among them streptococci and Leptotrichia wade were enriched in the dental plaque sample, Streptococcus mutans, Fusobacterium nucleatum, and Streptococcus tigurinus in the caries cavity, and Lactobacillus in the saliva. S. mutans was significantly abundant in the mucosal swabs, saliva and plaque samples of the caries cavity as shown by qPCR. Compared to samples collected from a healthy individual and another two patients with rampant caries, the samples from this case showed a decreased bacterial diversity and increased bacterial abundance shown by PCR-DGGE profiling, and multiple Leptotrichia sp. were detected by gel sequencing. The outgrowth of such pathogenic microorganisms as S. mutans and Leptotrichia sp., and dysbiosis of oral microbial community might contribute to the pathogenesis of rampant caries in this case.

  5. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?

    PubMed

    Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P

    2018-03-20

    Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).

  6. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  7. [Effects of bio-mulching on rhizosphere soil microbial population, enzyme activity and tree growth in poplar plantation].

    PubMed

    Liu, Jiu-Jun; Fang, Sheng-Zuo; Xie, Bao-Dong; Hao, Juan-Juan

    2008-06-01

    Coriaria nepalensis, Pteridium aquilinum var. latiuscukum, Imperata cylindrical var. major, and Quercus fabric were used as mulching materials to study their effects on the rhizosphere soil microbial population and enzyme activity and the tree growth in poplar plantation. The results showed that after mulching with test materials, the populations of both bacteria and fungi in rhizosphere soil were more than those of the control. Of the mulching materials, I. cylindrical and Q. fabric had the best effect, with the numbers of bacteria and fungi being 23.56 and 1.43 times higher than the control, respectively. The bacterial and fungal populations in rhizosphere soil increased with increasing mulching amount. When the mulching amount was 7.5 kg m(-2), the numbers of bacteria and fungi in rhizosphere soil were 0.5 and 5.14 times higher than the control, respectively. Under bio-mulching, the bacterial and fungal populations in rhizosphere soil had a similar annual variation trend, which was accorded with the annual fluctuation of soil temperature and got to the maximum in July and the minimum in December. The urease and phosphatase activities in rhizosphere soil also increased with increasing mulching amount. As for the effects of different mulching materials on the enzyme activities, they were in the order of C. nepalensis > P. aquilinum > I. cylindrical > Q. fabric. The annual variation of urease and phosphatase activities in rhizosphere soil was similar to that of bacterial and fungal populations, being the highest in July and the lowest in December. Bio-mulching promoted the tree height, DBH, and biomass of poplar trees significantly.

  8. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  9. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.

  10. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microbial monitoring by molecular tools of an upflow anaerobic filter treating abattoir wastewaters.

    PubMed

    Gannoun, Hana; Khelifi, Eltaief; Omri, Ilhem; Jabari, Linda; Fardeau, Marie-Laure; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar

    2013-08-01

    The performance of anaerobic digestion of abattoir wastewaters (AW) in an upflow anaerobic filter (UAF) was investigated under mesophilic (37°C) and thermophilic (55°C) conditions. The effects of increasing temperature on the performance of the UAF and on the dynamics of the microbial community of the anaerobic sludge were studied. The results showed that chemical oxygen demand (COD) removal efficiency of 90% was achieved for organic loading rates (OLRs) up to 4.5g CODL(-1)d(-1) in mesophilic conditions, while in thermophilic conditions, the highest OLRs of 9 g CODL(-1)d(-1) led to the efficiency of 72%. The use of molecular and microbiological methods to recover microbial populations involved in this process showed that fermentative bacteria were the prominent members of the sludge microbial community. Three novel strains were identified as Macellibacteroides fermentans, Desulfotomaculum peckii and Defluviitalea saccharophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Distinct microbiological signatures associated with triple negative breast cancer.

    PubMed

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S

    2015-10-15

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.

  13. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %).

  14. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    PubMed

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2017-06-01

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m -2 .

  16. Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhou, Feichi; Xiao, Kui; Cui, Tianyu; Qian, Hongchong; Li, Xiaogang

    2015-07-01

    Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.

  17. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility.

    PubMed

    D'Antuono, Isabella; Bruno, Angelica; Linsalata, Vito; Minervini, Fiorenza; Garbetta, Antonella; Tufariello, Maria; Mita, Giovanni; Logrieco, Antonio F; Bleve, Gianluca; Cardinali, Angela

    2018-05-15

    The effects of fermentation by autochthonous microbial starters on phenolics composition of Apulian table olives, Bella di Cerignola (BDC), Termite di Bitetto (TDB) and Cellina di Nardò (CEL) were studied, highlighting also the cultivars influence. In BDC with starter, polyphenols amount doubled compared with commercial sample, while in TDB and CEL, phenolics remain almost unchanged. The main phenolics were hydroxytyrosol, tyrosol, verbascoside and luteolin, followed by hydroxytyrosol-acetate detected in BDC and cyanidine-3-glucoside and quercetin in CEL. Scavenger capacity in both DPPH and CAA assays, assessed the highest antioxidant effect for CEL with starters (21.7 mg Trolox eq/g FW; 8.5 μmol hydroxytyrosol eq/100 g FW). The polyphenols were highly in vitro bioaccessible (>60%), although modifications in their profile, probably for combined effect of environment and microorganisms, were noted. Finally, fermented table olives are excellent source of health promoting compounds, since hydroxytyrosol and tyrosol are almost 8 times more than in olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Bioelectric production from sediment of pond fishing and molasses using microbial fuel cell (MFC) technology-base with the influence of substrate concentration variety

    NASA Astrophysics Data System (ADS)

    Syafitri, L. M.; Saputro, Y. A.; Hana, P. N.; Hardiani, D.; Raharjo, B.

    2018-03-01

    Indonesia is currently faced the problem of the need for electrical energy. MFC is a technology that can be used to generate electricity by utilizing microbial activity. The aims of this study is to manage the molasses waste and sediment of fishery as a substrate in the MFC system. The research method was performed by preparing anode and cathode connected by a salt bridge forming the system of MFC Double Chamber. The result of bacteriology test using Total Plate Count (TPC) method showed that the number of bacterial colonies on the sediment substrate was 4.1 × 106 cfu/gr, while the molasses substrate was 7,1 × 104 cfu/gr. The measurement result of electricity showed that 25% sediment and 75% molasses substrate variation resulted in the highest average voltage and power density that are 0.372 V and 813.191 mW/m2. The conclusion of this research is that the mixture of sediment with molasses substrate can increase the production of electricity produced by MFC system.

  20. Capturing the genetic makeup of the active microbiome in situ

    DOE PAGES

    Singer, Esther; Wagner, Michael; Woyke, Tanja

    2017-06-02

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and thatmore » have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.« less

  1. Capturing the genetic makeup of the active microbiome in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Wagner, Michael; Woyke, Tanja

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and thatmore » have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.« less

  2. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  3. The Effect of a Reduction in Microbial Diversity on Greenhouse Gas Production in Alaskan Tundra Soils.

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Oechel, W. C.; Lipson, D.

    2017-12-01

    Atmospheric methane accounts for 20% of the warming potential of all greenhouse gases, has increased by 150% since pre-industrial times, and has the potential to double again over the next century. Microbially mediated CH4 emissions from natural wetlands represent the highest uncertainty in relative contributions to atmospheric CH4 levels of all CH4 sources, with Arctic wetlands currently experiencing twice the rate of warming as the rest of the planet. Notwithstanding the central role that the soil microbial community plays, and the high uncertainty in CH4 emissions from this ecosystem, surprisingly little research has been done to directly connect the microbial community structure to methane production rates. This is especially disconcerting given that most current CH4 emission models completely neglect microbial characteristics, despite the fact that the soil microbial community is predicted to be heavily impacted by a changing climate. Here, the effect of an artificial reduction in soil microbial α-diversity was investigated with regard to methane production and respiration rates. The microbial community was serially diluted followed by re-inoculation of sterilized Arctic soils in a mesocosm experiment. Methane production and respiration rates were measured, metagenomic sequencing was performed to determine microbial community diversity measures, and the effect of the oxidation state of iron was investigated. Preliminary results indicate that microbial communities with reduced α-diversity have lowered respiration rates in these soils. Analyses are ongoing and are expected to provide critical observations linking the role of soil microbial community diversity and greenhouse gas production in Arctic tundra ecosystems.

  4. Global abundance of planktonic heterotrophic protists in the deep ocean

    PubMed Central

    Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2015-01-01

    The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web. PMID:25290506

  5. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery.

    PubMed

    Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao

    2017-08-01

    Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.

  6. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.

  7. Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing.

    PubMed

    Mobberley, Jennifer M; Ortega, Maya C; Foster, Jamie S

    2012-01-01

    Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  9. Global abundance of planktonic heterotrophic protists in the deep ocean.

    PubMed

    Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2015-03-01

    The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml(-1) in mesopelagic waters down to 11±1 cells ml(-1) in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml(-1). The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web.

  10. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  11. In-vitro antimicrobial activity and identification of bioactive components using GC-MS of commercially available essential oils in Saudi Arabia.

    PubMed

    Ashraf, Syed Amir; Al-Shammari, Eyad; Hussain, Talib; Tajuddin, Shaikh; Panda, Bibhu Prasad

    2017-11-01

    This study was designed to evaluate antimicrobial activity and chemical composition of four different plant essential oils i.e. Ginger oil (GiO), Black seed oil (BSO), Oregano oil (OO) and Rose oil (RO) against different bacterial and fungal strains. Anti-microbial activities of selected essential oils were determined by the microbiological technique using Agar well diffusion assay. After in vitro study, most of the essential oils showed antimicrobial activity against all the selected pathogens. Among all the tested oils, GiO showed strong antimicrobial activity. GiO showed highest antimicrobial activity against Shigella (119.79%), Enteococcus hirae (110.61%) and Escherichia coli (106.02%), when compared with the tetracycline (50 µg/mL) activity. However, Antifungal activity of GiO was found to be present against Candida albicans and Aspergilluas flavus , when compared with clotrimazole (50 µg/mL) activity. Among all the selected bacteria, BSO showed maximum antimicrobial activity against the E. coli followed by Citrobacter freundii. Moreover, BSO had highest zone of inhibition against the C. ablicans (33.58%). OO indicated that, Shigella had the highest sensitivity (12.6 ± 0.58, 131.25%), followed by E. hirae (19.1 ± 0.61, 96.46%) and Salmonella typhi (15.2 ± 0.27, 83.06%) when compared with tetracycline activity. OO showed poor sensitivity against all the selected fungal strains. Furthermore, Gas Chromatography analysis revealed that, Gingerol (10.86%) was the chief chemical constituents found in GiO followed by α -Sesquiphellandrene (6.29%), Zingiberene (5.88%). While, BSO, OO and RO had higher percentage of p-Cymene (6.90%), Carvacrol (15.87%) and Citronellol (8.07%) respectively. The results exhibited that the essential oils used for this study was the richest source for antimicrobial activity which indicates the presence of broad spectrum antimicrobial compounds in these essential oils. Hence, essential oils and their components can be recommended for therapeutic purposes as source of an alternative medicine.

  12. Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough▿ †

    PubMed Central

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-01-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and microbial ecosystems in marine environments. PMID:20228114

  13. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system.

    PubMed

    Zeng, Lu-Sheng; Liao, Min; Chen, Cheng-Li; Huang, Chang-Yong

    2006-10-01

    The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (<300 mg kg-1) as lead acetate resulted in a slight increase in soil microbial activities compared with the control, and had an inhibitory influence at high concentration (>500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.

  14. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  15. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  16. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  17. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover

    PubMed Central

    Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo

    2015-01-01

    To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time–decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity. PMID:25989371

  19. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization.

    PubMed

    Ma, Yingfang; Shen, Wei; Chen, Xianzhong; Liu, Long; Zhou, Zhemin; Xu, Fei; Yang, Haiquan

    2016-01-01

    Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168. The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#. The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis . Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.

  20. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  1. Temporal dynamics of the compositions and activities of soil microbial communities post-application of the insecticide chlorantraniliprole in paddy soils.

    PubMed

    Wu, Meng; Liu, Jia; Li, Weitao; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2017-10-01

    Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There has been few studies evaluating the toxicological effects of CAP on soil-associated microbes. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP in three types of paddy soils in subtropical China. The effects of CAP on microbial activities (microbial biomass carbon-MBC, basal soil respiration-BSR, microbial metabolic quotient-qCO 2 , acid phosphatase and sucrose invertase activities) in the soils were periodically evaluated. Microbial phospholipid fatty acid (PLFA) analysis was used to evaluate the change of soil microbial community composition on day 14 and 50 of the experiment. CAP residues were extracted using the quick, easy, cheap, effective, rugged, and safe (QuChERS) method and quantification was measured by high performance liquid chromatography (HPLC). The half-lives (DT 50 ) of CAP were in the range of 41.0-53.0 days in the three soils. The results showed that CAP did not impart negative effects on MBC during the incubation. CAP inhibited BSR, qCO 2 , acid phosphatase and sucrose invertase activities in the first 14 days of incubation in all the soils. After day 14, the soil microbial parameters of CAP-treated soils became statistically at par with their controls. Principal component analysis (PCA) determining abundance of biomarker PLFAs indicated that the application of CAP significantly changed the compositions of microbial communities in all three paddy soils on day 14 but the compositions of soil microbial communities recovered by day 50. This study indicates that CAP does not ultimately impair microbial activities and microbial compositions of these three paddy soil types. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.

    PubMed

    Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E

    2014-12-01

    We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    PubMed

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.

    PubMed

    Sui, Xueyan; Wu, Zhipeng; Lin, Chen; Zhou, Shenglu

    2017-07-01

    Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.

  5. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    PubMed

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  6. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    USGS Publications Warehouse

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert

    2010-01-01

    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  7. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic fractions of suspended sediments. Copper is distributed in all but the carbonate fraction of suspended sediments. Vanadium was bound primarily to the oxide and residual fractions with Si, which is probably found as opal-α. In contrast, biofilm sediments had the highest concentrations of Fe, Si, Cd, Al, Zn, Ag, and Ni. Trace metals were sequestered mainly in the organic fraction in decreasing concentrations of: Cu

  8. Influence of housing systems on microbial load and antimicrobial resistance patterns of Escherichia coli isolates from eggs produced for human consumption.

    PubMed

    Alvarez-Fernández, Elena; Domínguez-Rodríguez, Jessica; Capita, Rosa; Alonso-Calleja, Carlos

    2012-05-01

    Microbial counts (aerobic bacteria, psychrotrophs, Enterobacteriaceae, coliforms, Pseudomonas spp., Enterococcus spp., Staphylococcus spp., and molds and yeasts) were obtained for the shells of 240 table eggs in northwestern Spain. Eggs from six sources (40 samples in each) were analyzed: chicken eggs from five different housing systems (conventional battery cages, barn, free range, organic, and domestic breeding) and quail eggs (cages). A total of 120 Escherichia coli strains (20 from each source) were tested by the disk diffusion method for resistance to 12 antimicrobial drugs of veterinary and human health significance. Aerobic plate counts ranged from 1.96 ± 1.0 (barn) to 3.69 ± 0.7 (domestic) log CFU/cm(2). Counts for most microbial groups differed significantly between sources. Eggs from domestic production had the highest contamination loads (P < 0.05) for aerobic bacteria, Enterococcus spp., and molds and yeasts and the highest prevalence of E. coli. Twenty-three E. coli isolates (19.17%) were susceptible to all antimicrobials tested, and 80.83 % were resistant to one (22.50%) or more (58.33%) antimicrobials. The housing system had a significant influence (P < 0.05) on the average resistance per strain, with the highest resistance in conventional cage (2.85) and barn (3.10) systems followed by free range (1.55) and quail (1.95). Eggs from organic (1.00) and domestic (0.75) production systems had the lowest resistance per strain. The highest prevalence of resistance was observed for the groups of antimicrobials more frequently used on poultry farms. Our results suggest that a relationship exists between the prevalence of antimicrobial resistance in E. coli strains and the more frequent use of antimicrobials in conventional (cage, barn, and free range) than in domestic and organic chicken housing systems. Education covering good sanitary practices for handling eggs to avoid cross-contamination or inadequate cooking is needed.

  9. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    PubMed

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha -1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  10. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    PubMed

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  11. Effects of biochar amendments on soil microbial biomass and activity.

    PubMed

    Zhang, H; Voroney, R P; Price, G W

    2014-11-01

    Environmental benefits reported in the literature of using biochar as a soil amendment are generally increased microbial activity and reduced greenhouse gas (GHG) emissions. This study determined the effects of amendment with biomass feedstocks (spent coffee grounds, wood pellets, and horse bedding compost) and that of biochars (700°C) produced from these feedstocks on soil microbial biomass (C and N) and activity. Soils were amended with these substrates at 0.75% by weight and incubated for up to 175 d under laboratory conditions. Biochar residual effects on soil microbial activity were also studied by amending these soils with either ammonium nitrate (NHNO, 35 mg N kg) or with glucose (864 mg C kg) plus NHNO. Soil microbial biomass C and N, net N mineralization, and CO, NO, and CH emissions were measured. Amendment with biomass feedstocks significantly increased soil microbial biomass and activity, whereas amendment with the biochars had no significant effect. Also, biochar amendment had no significant effect on either net N mineralization or NO and CH emissions from soil. These results indicate that production of biochars at this high temperature eliminated potential substrates. Microbial biomass C in biochar-amended and unamended soils was not significantly different following additions of NHNO or glucose plus NHNO, suggesting that microbial access to otherwise labile C and N was not affected. This study shows that biochars produced at 700°C, regardless of feedstock source, do not enhance soil microbial biomass or activity. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  13. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    PubMed

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.

  14. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fuqing; Shi Jian; Lv Wen

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less

  16. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    PubMed Central

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  17. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  18. Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms

    PubMed Central

    Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877

  19. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  20. Effects of resource chemistry on the composition and function of stream hyporheic biofilms.

    USGS Publications Warehouse

    Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  1. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE PAGES

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; ...

    2017-09-28

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  2. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng

    2017-10-01

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.

  3. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  4. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression

    PubMed Central

    Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas

    2017-01-01

    Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609

  5. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  6. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media. PMID:23799081

  7. Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome.

    PubMed

    Jensen, Marianne S; Fredriksen, Lasse; MacKenzie, Alasdair K; Pope, Phillip B; Leiros, Ingar; Chylenski, Piotr; Williamson, Adele K; Christopeit, Tony; Østby, Heidi; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2018-01-01

    Enzymatic depolymerization of recalcitrant polysaccharides plays a key role in accessing the renewable energy stored within lignocellulosic biomass, and natural biodiversities may be explored to discover microbial enzymes that have evolved to conquer this task in various environments. Here, a metagenome from a thermophilic microbial community was mined to yield a novel, thermostable cellulase, named mgCel6A, with activity on an industrial cellulosic substrate (sulfite-pulped Norway spruce) and a glucomannanase side activity. The enzyme consists of a glycoside hydrolase family 6 catalytic domain (GH6) and a family 2 carbohydrate binding module (CBM2) that are connected by a linker rich in prolines and threonines. MgCel6A exhibited maximum activity at 85°C and pH 5.0 on carboxymethyl cellulose (CMC), but in prolonged incubations with the industrial substrate, the highest yields were obtained at 60°C, pH 6.0. Differential scanning calorimetry (DSC) indicated a Tm(app) of 76°C. Both functional data and the crystal structure, solved at 1.88 Å resolution, indicate that mgCel6A is an endoglucanase. Comparative studies with a truncated variant of the enzyme showed that the CBM increases substrate binding, while not affecting thermal stability. Importantly, at higher substrate concentrations the full-length enzyme was outperformed by the catalytic domain alone, underpinning previous suggestions that CBMs may be less useful in high-consistency bioprocessing.

  8. Microbial community and performance of slaughterhouse wastewater treatment filters.

    PubMed

    Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C

    2014-06-16

    The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.

  9. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing.

    PubMed

    Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan

    2016-11-01

    Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.

    PubMed

    Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B

    2011-06-06

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.

  11. Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: Application to historical objects.

    PubMed

    Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; del Hoyo-Meléndez, Julio M

    2015-08-28

    The main goal of this work was to optimize the SPME sampling method for measuring microbial volatile organic compounds (MVOCs) emitted by active molds that may deteriorate historical objects. A series of artificially aged model materials that resemble those found in historical objects was prepared and evaluated after exposure to four different types of fungi. The investigated pairs consisted of: Alternaria alternata on silk, Aspergillus niger on parchment, Chaetomium globosum on paper and wool, and Cladosporium herbarum on paper. First of all, a selection of the most efficient SPME fibers was carried out as there are six different types of fibers commercially available. It was important to find a fiber that absorbs the biggest number and the highest amount of MVOCs. The results allowed establishing and selecting the DVB/CAR/PDMS fiber as the most effective SPME fiber for this kind of an analysis. Another task was to optimize the time of MVOCs extraction on the fiber. It was recognized that a time between 12 and 24h is adequate for absorbing a high enough amount of MVOCs. In the last step the temperature of MVOCs desorption in the GC injection port was optimized. It was found that desorption at a temperature of 250°C allowed obtaining chromatograms with the highest abundances of compounds. To the best of our knowledge this work constitutes the first attempt of the SPME method optimization for sampling MVOCs emitted by molds growing on historical objects. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    PubMed

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes.

    PubMed

    Farías, María E; Rascovan, Nicolás; Toneatti, Diego M; Albarracín, Virginia H; Flores, María R; Poiré, Daniel G; Collavino, Mónica M; Aguilar, O Mario; Vazquez, Martin P; Polerecky, Lubos

    2013-01-01

    We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20-24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.

  14. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    NASA Astrophysics Data System (ADS)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures.

  15. Deep subsurface life in Bengal Fan sediments (IODP Exp. 354)

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Heuer, V. B.; Elvert, M.; Kallmeyer, J.; Kitte, J. A.; Wörmer, L.; Hinrichs, K. U.

    2017-12-01

    We collected Bengal Fan sediment samples along a 8°N transect during International Ocean Discovery Program Expedition 354 (February - March 2015, Singapore - Colombo, Sri Lanka) to study subseafloor life in this, as yet unstudied, area. Among other biogeochemical parameters, we quantified microbial biomass by analyzing prokaryotic cells using epifluorescence microscopy after detaching cells from the sediment, and bacterial endospores by analyzing the diagnostic biomarker dipicolinic acid (DPA) by detection of fluorescence of the terbium-DPA complex. To gain understanding of total microbial activity, we quantified hydrogen utilization potential of hydrogenase enzymes, which are ubiquitous in subsurface microorganisms, by using a tritium assay. We measured highest cell concentrations of ca. 108 cells g-1 in shallow sediments close to the seafloor. These concentrations are one to two orders of magnitude lower than in most marine continental margin settings [1]. Similar to the global trend [1], cell concentrations decreased with depth according to a power-law function. Endospore concentrations scattered between ca. 105 and 107 cells g-1 sediment at all sites and depths. We could not observe a clear relationship of endospore concentration and sediment depth; instead, it appears to be linked to lithology and total organic carbon content. Bulk Hydrogenase enzyme activity ranged from nmolar to μmolar range of H2 g-1d-1. Similar to previous observations [2], per-cell hydrogen utilization depends on vertical biogeochemical zones, which could be due to the differences in hydrogen utilization requirements/efficiency of the respective metabolic processes such as sulfate reduction, methanogenesis, fermentation etc. Bengal fan is highly dynamic due to channel and levee systems and the sediments are dominated by turbidites, thick sand layers and hemipelagic deposits, which may control biogeochemical zonation. Based on our microbial biomass and activity data, we suggest that the nature, quality and origin of sedimentary material influence the deep subsurface life. [1] Kallmeyer et al., (2012) PNAS 109(40), 16213-16216 [2] Adhikari et al., (2016) Frontiers in Microbiology 7:8

  16. The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes

    PubMed Central

    Farías, María E.; Rascovan, Nicolás; Toneatti, Diego M.; Albarracín, Virginia H.; Flores, María R.; Poiré, Daniel G.; Collavino, Mónica M.; Aguilar, O. Mario; Vazquez, Martin P.; Polerecky, Lubos

    2013-01-01

    We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20–24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth. PMID:23308236

  17. The Extent of Fermentative Transformation of Phenolic Compounds in the Bioanode Controls Exoelectrogenic Activity in a Microbial Electrolysis Cell

    DOE PAGES

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.; ...

    2016-11-27

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less

  18. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  19. Structures of benthic prokaryotic communities and their hydrolytic enzyme activities resuspended from samples of intertidal mudflats: An experimental approach

    NASA Astrophysics Data System (ADS)

    Mallet, Clarisse; Agogué, Hélène; Bonnemoy, Frédérique; Guizien, Katell; Orvain, Francis; Dupuy, Christine

    2014-09-01

    Resuspended sediment can increase plankton biomass and the growth of bacteria, thus influencing the coastal planktonic microbial food web. But little is known about resuspension itself: is it a single massive change or a whole series of events and how does it affect the quantity and quality of resuspended prokaryotic cells? We simulated the sequential erosion of mud cores to better understand the fate and role of benthic prokaryotes resuspended in the water column. We analyzed the total, attached and free-living prokaryotic cells resuspended, their structure and the activities of their hydrolytic enzymes in terms of the biotic and abiotic factors that affect the composition of microphytobenthic biofilm. Free living prokaryotes were resuspended during the fluff layer erosion phase (for shear velocities below 5 cm · s- 1) regardless of the bed sediment composition. At the higher shear velocities, resuspended prokaryotes were attached to particulate matter. Free and attached cells are thus unevenly distributed, scattered throughout the organic matter (OM) in the uppermost mm of the sediment. Only 10-27% of the total cells initially resuspended were living and most of the Bacteria were Cyanobacteria and Gamma-proteobacteria; their numbers increased to over 30% in parallel with the hydrolytic enzyme activity at highest shear velocity. These conditions released prokaryotic cells having different functions that lie deep in the sediment; the most important of them are Archaea. Finally, composition of resuspended bacterial populations varied with resuspension intensity, and intense resuspension events boosted the microbial dynamics and enzyme activities in the bottom layers of sea water.

  20. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes.

    PubMed

    Militon, Cécile; Jézéquel, Ronan; Gilbert, Franck; Corsellis, Yannick; Sylvi, Léa; Cravo-Laureau, Cristiana; Duran, Robert; Cuny, Philippe

    2015-10-01

    To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.

Top