THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strandet, M. L.; Weiss, A.; Vieira, J. D.
2016-05-10
We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a singlemore » line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.« less
The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey
NASA Astrophysics Data System (ADS)
Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.
2016-05-01
We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C I], [N II], H2O and NH3. We further present Atacama Pathfinder Experiment [C II] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.; et al.
We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy ofmore » $$\\sim0.02$$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $$\\texttt{COSMOS}$$ 30-band photometry and find that our two very different methods produce consistent constraints.« less
Indications of negative evolution for the sources of the highest energy cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan
2015-09-14
Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.
Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R
2013-03-21
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvato, M.; Hasinger, G.; Ilbert, O.
2011-12-01
In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library onmore » the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.« less
Photometric Redshifts of High-z BL Lacs from 3FGL Catalog
NASA Astrophysics Data System (ADS)
Kaur, A.; Rau, Arne; Ajello, Marco; Paliya, Vaidehi; Hartmann, Dieter; Greiner, Jochen; Bolmer, Jan; Schady, Patricia
2017-08-01
Determining redshifts for BL Lacertae (BL Lac) objects using the traditional spectroscopic method is challenging due to the absence of strong emission lines in their optical spectra. We employ the photometric dropout technique to determine redshifts for this class of blazars using the combined 13 broad-band filters from Swift-UVOT and the multi-channel imager GROND at the MPG 2.2 m telescope at ESO's La Silla Observatory. The wavelength range covered by these 13 filters extends from far ultraviolet to the near-Infrared. We report results on 40 new Fermi detected BL Lacs with the photometric redshifts determinations for 5 sources, with 3FGL J1918.2-4110 being the most distance in our sample at z=2.16. Reliable upper limits are provided for 20 sources in this sample. Using the highest energy photons for these Fermi-LAT sources, we evaluate the consistency with the Gamma-ray horizon due to the extragalactic background light.
Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.
Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J
2001-12-21
The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.
General relativistic corrections in density-shear correlations
NASA Astrophysics Data System (ADS)
Ghosh, Basundhara; Durrer, Ruth; Sellentin, Elena
2018-06-01
We investigate the corrections which relativistic light-cone computations induce on the correlation of the tangential shear with galaxy number counts, also known as galaxy-galaxy lensing. The standard-approach to galaxy-galaxy lensing treats the number density of sources in a foreground bin as observable, whereas it is in reality unobservable due to the presence of relativistic corrections. We find that already in the redshift range covered by the DES first year data, these currently neglected relativistic terms lead to a systematic correction of up to 50% in the density-shear correlation function for the highest redshift bins. This correction is dominated by the fact that a redshift bin of number counts does not only lens sources in a background bin, but is itself again lensed by all masses between the observer and the counted source population. Relativistic corrections are currently ignored in the standard galaxy-galaxy analyses, and the additional lensing of a counted source populations is only included in the error budget (via the covariance matrix). At increasingly higher redshifts and larger scales, these relativistic and lensing corrections become however increasingly more important, and we here argue that it is then more efficient, and also cleaner, to account for these corrections in the density-shear correlations.
Is There a Maximum Star Formation Rate in High-redshift Galaxies?
NASA Astrophysics Data System (ADS)
Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.
2014-03-01
We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific Research. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Intergalactic Extinction of High Energy Gamma-Rays
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1998-01-01
We discuss the determination of the intergalactic pair-production absorption coefficient as derived by Stecker and De Jager by making use of a new empirically based calculation of the spectral energy distribution of the intergalactic infrared radiation field as given by Malkan and Stecker. We show that the results of the Malkan and Stecker calculation agree well with recent data on the infrared background. We then show that Whipple observations of the flaring gamma-ray spectrum of Mrk 421 hint at extragalactic absorption and that the HEGRA observations of the flaring spectrum of Mrk 501 appear to strongly indicate extragalactic absorption. We also discuss the determination of the y-ray opacity at higher redshifts, following the treatment of Salamon and Stecker. We give a predicted spectrum, with absorption included for PKS 2155-304. This XBL lies at a redshift of 0.12, the highest redshift source yet observed at an energy above 0.3 TeV. This source should have its spectrum steepened by approx. 1 in its spectral index between approx. 0.3 and approx. 3 TeV and should show an absorption cutoff above approx. 6 TeV.
The Chandra Deep Field-South Survey: 7 Ms Source Catalogs
NASA Technical Reports Server (NTRS)
Luo, B.; Brandt, W. N.; Xue, Y. Q.; Lehmer, B.; Alexander, D. M.; Bauer, F. E.; Vito, F.; Yang, G.; Basu-Zych, A. R.; Comastri, A.;
2016-01-01
We present X-ray source catalogs for the approx. 7 Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin2. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and significance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5-7.0 keV, 0.5-2.0 keV, and 2-7 keV. A supplementary source catalog is also provided, including 47 lower-significance sources that have bright (Ks < or = 23) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous approx. 4 Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central approx. 1 arcmin2 region of 1.9 x 10(exp -17), 6.4 x 10(exp -18), and 2.7 x 10(exp -17) erg/sq cm/s in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5-2.0 keV flux levels. The highest X-ray source density reaches approx. 50,500/sq deg, and 47% +/- 4 of these sources are AGNs (approx. 23,900/sq deg).
Red, redder, reddest: SCUBA-2 imaging of colour-selected Herschel sources
NASA Astrophysics Data System (ADS)
Duivenvoorden, S.; Oliver, S.; Scudder, J. M.; Greenslade, J.; Riechers, D. A.; Wilkins, S. M.; Buat, V.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Coppin, K. E. K.; Dannerbauer, H.; De Zotti, G.; Dunlop, J. S.; Eales, S. A.; Efstathiou, A.; Farrah, D.; Geach, J. E.; Holland, W. S.; Hurley, P. D.; Ivison, R. J.; Marchetti, L.; Petitpas, G.; Sargent, M. T.; Scott, D.; Symeonidis, M.; Vaccari, M.; Vieira, J. D.; Wang, L.; Wardlow, J.; Zemcov, M.
2018-06-01
High-redshift, luminous, dusty star-forming galaxies (DSFGs) constrain the extremity of galaxy formation theories. The most extreme are discovered through follow-up on candidates in large area surveys. Here, we present extensive 850 μm SCUBA-2 follow-up observations of 188 red DSFG candidates from the Herschel Multitiered Extragalactic Survey (HerMES) Large Mode Survey, covering 274 deg2. We detected 87 per cent with a signal-to-noise ratio >3 at 850 μm. We introduce a new method for incorporating the confusion noise in our spectral energy distribution fitting by sampling correlated flux density fluctuations from a confusion limited map. The new 850 μm data provide a better constraint on the photometric redshifts of the candidates, with photometric redshift errors decreasing from σz/(1 + z) ≈ 0.21 to 0.15. Comparison spectroscopic redshifts also found little bias (<(z - zspec)/(1 + zspec)> = 0.08). The mean photometric redshift is found to be 3.6 with a dispersion of 0.4 and we identify 21 DSFGs with a high probability of lying at z > 4. After simulating our selection effects we find number counts are consistent with phenomenological galaxy evolution models. There is a statistically significant excess of WISE-1 and SDSS sources near our red galaxies, giving a strong indication that lensing may explain some of the apparently extreme objects. Nevertheless, our sample includes examples of galaxies with the highest star formation rates in the Universe (≫103 M⊙ yr-1).
Concentrations of Simulated Dark Matter Halos
NASA Astrophysics Data System (ADS)
Child, Hillary
2017-01-01
We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.
Aghanim, N.; Altieri, B.; Arnaud, M.; ...
2015-09-30
We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These “cold” Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a 4'.5 beam atmore » the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. In this paper, we perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of T d = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 10 12L ⊙, yielding star formation rates of typically 700 M ⊙ yr -1. If the observed overdensities are actual gravitationally-bound structures, the total IR luminosity of all their SPIRE-detected sources peaks at 4 × 10 13L ⊙, leading to total star formation rates of perhaps 7 × 10 3M ⊙ yr -1 per overdensity. Taken together, these sources show the signatures of high-z (z> 2) protoclusters of intensively star-forming galaxies. Finally, all these observations confirm the uniqueness of our sample compared to reference samples and demonstrate the ability of the all-skyPlanck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Altieri, B.; Arnaud, M.
We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These “cold” Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353–857 GHz. This colour-selection favours galaxies in the redshift range z = 2–4, which we consider as cold peaks in the cosmic infrared background. With a 4'.5 beam atmore » the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. In this paper, we perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of T d = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 10 12L ⊙, yielding star formation rates of typically 700 M ⊙ yr -1. If the observed overdensities are actual gravitationally-bound structures, the total IR luminosity of all their SPIRE-detected sources peaks at 4 × 10 13L ⊙, leading to total star formation rates of perhaps 7 × 10 3M ⊙ yr -1 per overdensity. Taken together, these sources show the signatures of high-z (z> 2) protoclusters of intensively star-forming galaxies. Finally, all these observations confirm the uniqueness of our sample compared to reference samples and demonstrate the ability of the all-skyPlanck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Altieri, B.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beelen, A.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Canameras, R.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Crill, B. P.; Curto, A.; Danese, L.; Dassas, K.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Falgarone, E.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frye, B.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guéry, D.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Floc'h, E.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacKenzie, T.; Maffei, B.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martinache, C.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Novikov, D.; Novikov, I.; Omont, A.; Pagano, L.; Pajot, F.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Valtchanov, I.; Van Tent, B.; Vieira, J. D.; Vielva, P.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Zacchei, A.; Zonca, A.
2015-10-01
We have used the Planck all-sky submillimetre and millimetre maps to search for rare sources distinguished by extreme brightness, a few hundred millijanskies, and their potential for being situated at high redshift. These "cold" Planck sources, selected using the High Frequency Instrument (HFI) directly from the maps and from the Planck Catalogue of Compact Sources (PCCS), all satisfy the criterion of having their rest-frame far-infrared peak redshifted to the frequency range 353-857 GHz. This colour-selection favours galaxies in the redshift range z = 2-4, which we consider as cold peaks in the cosmic infrared background. With a 4.´5 beam at the four highest frequencies, our sample is expected to include overdensities of galaxies in groups or clusters, lensed galaxies, and chance line-of-sight projections. We perform a dedicated Herschel-SPIRE follow-up of 234 such Planck targets, finding a significant excess of red 350 and 500μm sources, in comparison to reference SPIRE fields. About 94% of the SPIRE sources in the Planck fields are consistent with being overdensities of galaxies peaking at 350μm, with 3% peaking at 500μm, and none peaking at 250μm. About 3% are candidate lensed systems, all 12 of which have secure spectroscopic confirmations, placing them at redshifts z> 2.2. Only four targets are Galactic cirrus, yielding a success rate in our search strategy for identifying extragalactic sources within the Planck beam of better than 98%. The galaxy overdensities are detected with high significance, half of the sample showing statistical significance above 10σ. The SPIRE photometric redshifts of galaxies in overdensities suggest a peak at z ≃ 2, assuming a single common dust temperature for the sources of Td = 35 K. Under this assumption, we derive an infrared (IR) luminosity for each SPIRE source of about 4 × 1012L⊙, yielding star formation rates of typically 700 M⊙ yr-1. If the observed overdensities are actual gravitationally-bound structures, the total IR luminosity of all their SPIRE-detected sources peaks at 4 × 1013L⊙, leading to total star formation rates of perhaps 7 × 103M⊙ yr-1 per overdensity. Taken together, these sources show the signatures of high-z (z> 2) protoclusters of intensively star-forming galaxies. All these observations confirm the uniqueness of our sample compared to reference samples and demonstrate the ability of the all-skyPlanck-HFI cold sources to select populations of cosmological and astrophysical interest for structure formation studies. Appendices are available in electronic form at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.
1999-01-01
We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of such obscuration. The highest-z objects might be preferentially obscured because like 3C318 they are inevitably observed very shortly after the jet-triggering event, or because their host galaxies are richer in dust and gas at earlier cosmic epochs, or because of some combination of these two effects.
Spectroscopic confirmation of a galaxy at redshift z = 8.6.
Lehnert, M D; Nesvadba, N P H; Cuby, J-G; Swinbank, A M; Morris, S; Clément, B; Evans, C J; Bremer, M N; Basa, S
2010-10-21
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique
2007-02-15
Integrated Sachs-Wolfe (ISW) measurements, which involve cross-correlating the microwave background anisotropies with the foreground large-scale structure (e.g. traced by galaxies/quasars), have proven to be an interesting probe of dark energy. We show that magnification bias, which is the inevitable modulation of the foreground number counts by gravitational lensing, alters both the scale dependence and amplitude of the observed ISW signal. This is true especially at high redshifts because (1) the intrinsic galaxy-temperature signal diminishes greatly back in the matter-dominated era, (2) the lensing efficiency increases with redshift and (3) the number count slope generally steepens with redshift in a magnitudemore » limited sample. At z > or approx. 2, the magnification-temperature correlation dominates over the intrinsic galaxy-temperature correlation and causes the observed ISW signal to increase with redshift, despite dark energy subdominance--a result of the fact that magnification probes structures all the way from the observer to the sources. Ignoring magnification bias therefore can lead to (significantly) erroneous conclusions about dark energy. While the lensing modulation opens up an interesting high z window for ISW measurements, high redshift measurements are not expected to add much new information to low redshift ones if dark energy is indeed the cosmological constant. This is because lensing introduces significant covariance across redshifts. The most compelling reasons for pursuing high redshift ISW measurements are to look for potential surprises such as early dark energy domination or signatures of modified gravity. We conclude with a discussion of existing measurements, the highest redshift of which is at the margin of being sensitive to the magnification effect. We also develop a formalism which might be of more general interest: to predict biases in estimating parameters when certain physical effects are ignored in interpreting observations.« less
NASA Astrophysics Data System (ADS)
Hayden, Brian; Aldering, Gregory; Amanullah, Rahman; Barbary, Kyle; Bohringer, Hans; Boone, Kyle Robert; Brodwin, Mark; Cunha, Carlos; Currie, Miles; Deustua, Susana; Dixon, Samantha; Eisenhardt, Peter; Fassbender, Rene; Fruchter, Andrew; Gladders, Michael; Gonzalez, Anthony; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, Myungkook James; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Ruiz-Lapuente, Pilar; Rykoff, Eli; Santos, Joana; Myers Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, Spencer; Stern, Daniel; Suzuki, Nao; Webb, Tracy; Wechsler, Risa; Williams, Steven; Willis, Jon; Wilson, Gillian; Yen, Mike
2018-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. We present the status of the ongoing blinded cosmology analysis, demonstrating substantial improvement to the uncertainty on the Dark Energy density above z~1. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.8, which is the highest spectroscopic redshift SN Ia currently known.
NASA Technical Reports Server (NTRS)
Weedman, Daniel W.
1987-01-01
The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.
Radio polarization properties of quasars and active galaxies at high redshifts
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.
2018-04-01
We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z < 3) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of 50 ± 22 rad m-2 for z > 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.
CLASH: DISCOVERY OF A BRIGHT z {approx_equal} 6.2 DWARF GALAXY QUADRUPLY LENSED BY MACS J0329.6-0211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, A.; Moustakas, J.; Bradley, L.
2012-03-15
We report the discovery of a z{sub phot} = 6.18{sup +0.05}{sub -0.07} (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z{sub l} = 0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman break in the 18-band photometry, making this galaxy one of the highest-redshift multiply lensed objects known to date with an observed magnitude of F125W =24.00 {+-} 0.04 AB mag for its most magnified image. We also present the first strong-lensing analysis ofmore » this cluster uncovering 15 additional multiply imaged candidates of five lower-redshift sources spanning the range z{sub s} {approx_equal} 2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6{sup +8.9}{sub -4.1}, 17.6{sup +6.2}{sub -3.9}, 3.9{sup +3.0}{sub -1.7}, and 3.7{sup +1.3}{sub -0.2}, respectively, for the four images of the high-redshift galaxy. By delensing the most magnified image we construct an image of the source with a physical resolution of {approx}200 pc when the universe was {approx}0.9 Gyr old, where the z {approx_equal} 6.2 galaxy occupies a source-plane area of approximately 2.2 kpc{sup 2}. Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of {approx}10{sup 9} M{sub Sun }, subsolar metallicity (Z/Z{sub Sun} {approx} 0.5), low dust content (A{sub V} {approx} 0.1 mag), a demagnified star formation rate (SFR) of {approx}3.2 M{sub Sun} yr{sup -1}, and a specific SFR of {approx}3.4 Gyr{sup -1}, all consistent with the properties of local dwarf galaxies.« less
Probing black hole accretion in quasar pairs at high redshift
NASA Astrophysics Data System (ADS)
Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.
2018-06-01
Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here, we present the X-ray properties of two systems of dual quasars at z = 3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z = 5 (separation of 21 arcsec, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3 per cent probability that it is by chance.
How Well Do Submillimeter Galaxies Trace Protoclusters?
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.
2017-07-01
It has been suggested that associations of (or even individual) high-redshift submillimeter galaxies (SMGs) may serve as beacons of protoclusters because SMGs are high-mass galaxies undergoing rapid assembly. Moreover, it has been claimed that the protocluster environment may lead to 'synchronized' starbursts and thus multiple SMGs within the protocluster region. We investigate this possibility using the Bolshoi cosmological N-body simulation and a model for populating the simulation with SMGs. We find that although SMG associations correspond to some of the highest overdensities at z > 2.5, they are highly incomplete tracers because of stochastic sampling effects. At lower redshift, because of 'downsizing' (i.e. the most massive galaxies have already ceased forming stars and are thus not SMGs), the highest dark matter overdensities are not well traced by SMG associations. I will close by discussing the implications of this work for observational studies of protoclusters and how the highest-redshift SMGs can be used to maximize the potential of JWST for studying very high redshift galaxies.
Tracing Large-Scale Structure with Radio Sources
NASA Astrophysics Data System (ADS)
Lindsay, S. N.
2015-02-01
In this thesis, I investigate the spatial distribution of radio sources, and quantify their clustering strength over a range of redshifts, up to z _ 2:2, using various forms of the correlation function measured with data from several multi-wavelength surveys. I present the optical spectra of 30 radio AGN (S1:4 > 100 mJy) in the GAMA/H-ATLAS fields, for which emission line redshifts could be deduced, from observations of 79 target sources with the EFOSC2 spectrograph on the NTT. The mean redshift of these sources is z = 1:2; 12 were identified as quasars (40 per cent), and 6 redshifts (out of 24 targets) were found for AGN hosts to multiple radio components. While obtaining spectra for hosts of these multi-component sources is possible, their lower success rate highlights the difficulty in acheiving a redshift-complete radio sample. Taking an existing spectroscopic redshift survey (GAMA) and radio sources from the FIRST survey (S1:4 > 1 mJy), I then present a cross-matched radio sample with 1,635 spectroscopic redshifts with a median value of z = 0:34. The spatial correlation function of this sample is used to find the redshiftspace (s0) and real-space correlation lengths (r0 _ 8:2 h Mpc), and a mass bias of _1.9. Insight into the redshift-dependence of these quantities is gained by using the angular correlation function and Limber inversion to measure the same spatial clustering parameters. Photometric redshifts! from SDSS/UKIDSS are incorporated to produce a larger matched radio sample at z ' 0:48 (and low- and high-redshift subsamples at z ' 0:30 and z ' 0:65), while their redshift distribution is subtracted from that taken from the SKADS radio simulations to estimate the redshift distribution of the remaining unmatched sources (z ' 1:55). The observed bias evolution over this redshift range is compared with model predictions based on the SKADS simulations, with good agreement at low redshift. The bias found at high redshift significantly exceeds these predictions, however, suggesting a more massive population of galaxies than expected, either due to the relative proportions of different radio sources, or a greater typical halo mass for the high-redshift sources. Finally, the reliance on a model redshift distribution to reach to higher redshifts is removed, as the angular cross-correlation function is used with deep VLA data (S1:4 > 90 _Jy) and optical/IR data from VIDEO/CFHTLS (Ks < 23:5) over 1 square degree. With high-quality photometric redshifts up to z _ 4, and a high signal-to-noise clustering measurement (due to the _100,000 Ks-selected galaxies), I am able to find the bias of a matched sample of only 766 radio sources (as well as of v vi the VIDEO sources), divided into 4 redshift bins reaching a median bias at z ' 2:15. Again, at high redshift, the measured bias appears to exceed the prediction made from the SKADS simulations. Applying luminosity cuts to the radio sample at L > 1023 WHz and higher (removing any non-AGN sources), I find a bias of 8-10 at z _ 1:5, considerably higher than for the full sample, and consistent with the more numerous FRI AGN having similar mass to the FRIIs (M _ 10^14 M_), contrary to the assumptions made in the SKADS simulations. Applying this adjustment to the model bias produces a better fit to the observations for the FIRST radio sources cross-matched with GAMA/SDSS/UKIDSS, as well as for the high-redshift radio sources in VIDEO. Therefore, I have shown that we require a more robust model of the evolution of AGN, and their relation to the underlying dark matter distribution. In particular, understanding these quantities for the abundant FRI population is crucial if we are to use such sources to probe the cosmological model as has been suggested by a number of authors (e.g. Raccanelli et al., 2012; Camera et al., 2012; Ferramacho et al., 2014).
NASA Technical Reports Server (NTRS)
Kapahi, Vijay K.; Kulkarni, Vasant K.
1990-01-01
VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.
The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos;
2012-01-01
We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample
The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.;
2012-01-01
We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2015-11-15
We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less
Radio spectra of bright compact sources at z > 4.5
NASA Astrophysics Data System (ADS)
Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.
2017-05-01
High-redshift quasars are important to study galaxy and active galactic nuclei evolution, test cosmological models and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multifrequency Giant Metrewave Radio Telescope observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultrasteep spectra. Recently, a new method has been proposed to identify these objects based on their megahertz-peaked spectra. No method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
The QDOT all-sky IRAS galaxy redshift survey
NASA Astrophysics Data System (ADS)
Lawrence, A.; Rowan-Robinson, M.; Ellis, R. S.; Frenk, C. S.; Efstathiou, G.; Kaiser, N.; Saunders, W.; Parry, I. R.; Xiaoyang, Xia; Crawford, J.
1999-10-01
We describe the construction of the QDOT survey, which is publicly available from an anonymous FTP account. The catalogue consists of infrared properties and redshifts of an all-sky sample of 2387 IRAS galaxies brighter than the IRAS PSC 60-μm completeness limit (S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10 deg, after removing a small number of Galactic sources, the redshift completeness is better than 98per cent (2086/2127). New redshifts for 1401 IRAS sources were obtained to complete the catalogue; the measurement and reduction of these are described, and the new redshifts tabulated here. We also tabulate all sources at |b|>10 deg with no redshift so far, and sources with conflicting alternative redshifts either from our own work, or from published velocities. A list of 95 ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is also provided. Of these, ~20per cent are AGN of some kind; the broad-line objects typically show strong Feii emission. Since the publication of the first QDOT papers, there have been several hundred velocity changes: some velocities are new, some QDOT velocities have been replaced by more accurate values, and some errors have been corrected. We also present a new analysis of the accuracy and linearity of IRAS 60-μm fluxes. We find that the flux uncertainties are well described by a combination of 0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty. This is not enough to cause the large Malmquist-type errors in the rate of evolution postulated by Fisher et al. We do, however, find marginal evidence for non-linearity in the PSC 60-μm flux scale, in the sense that faint sources may have fluxes overestimated by about 5per cent compared with bright sources. We update some of the previous scientific analyses to assess the changes. The main new results are as follows. (1) The luminosity function is very well determined overall but is uncertain by a factor of several at the very highest luminosities (L_60μm>5x10^12L_solar), as this is where the remaining unidentified objects are almost certainly concentrated. (2) The best-fitting rate of evolution is somewhat lower than our previous estimate; expressed as pure density evolution with density varying as (1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible (but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3) The dipole amplitude decreases a little, and the implied value of the density parameter, assuming that IRAS galaxies trace the mass, is Ω=0.9(+0.45, -0.25). (4) Finally, the estimate of density variance on large scales changes negligibly, still indicating a significant discrepancy from the predictions of simple cold dark matter cosmogonies.
NASA Astrophysics Data System (ADS)
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapahi, V.K.; Kulkarni, V.K.
1990-05-01
VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less
Exploring the multiband emission of TXS 0536+145: the most distant -γray flaring blazar
Orienti, M.; D'Ammando, F.; Giroletti, M.; ...
2014-09-15
We report results of a multi-band monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6×1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicinamore » single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.« less
Exploring the multiband emission of TXS 0536+145: the most distant γ-ray flaring blazar
NASA Astrophysics Data System (ADS)
Orienti, M.; D'Ammando, F.; Giroletti, M.; Finke, J.; Ajello, M.; Dallacasa, D.; Venturi, T.
2014-11-01
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6 × 1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high-resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.
The Star Formation History of SHADES Sources
NASA Astrophysics Data System (ADS)
Aretxaga, Itziar; SHADES Consortium; AzTEC Team
2006-12-01
We present the redshift distribution of the SHADES 850um selected galaxy population based on the rest-frame radio-mm-FIR colours of 120 robustly detected sources in the Lockman Hole East (LH) and Subaru XMM-Newton Deep Field (SXDF). The redshift of sources constrained with at least two photometric bands peaks at z 2.4 and has a near-Gaussian distribution. The inclusion of sources detected only at 850um, for which only very weak redshift constraints are available, leads to the possibility of a high-redshit tail. We find a small difference between the redshift distributions in the two fields; the SXDF peaking at a slightly lower redshift than the LH, which we mainly attribute to the noise properties of the photometry used. We discuss the impact of the AzTEC data on the further precission of these results. Finally we present a brief comparison with sub-mm galaxy formation models and their predicted and assumed redshift distributions and derive the contribution of these sources to the star formation rate density at different epochs.
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies
NASA Technical Reports Server (NTRS)
Staguhn, J.
2007-01-01
The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.
NASA Astrophysics Data System (ADS)
Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.
2017-12-01
We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyle, B.; Gruen, D.; Bernstein, G. M.
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
Hoyle, B.; Gruen, D.; Bernstein, G. M.; ...
2018-04-18
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less
Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyle, B.; et al.
2017-08-04
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less
NASA Technical Reports Server (NTRS)
Rau, A.; Schady, P.; Greiner, J.; Salvato, M.; Ajello, M.; Bottacini, E.; Gehrels, N.; Afonso, P. M. J.; Elliott, J.; Filgas, R.;
2011-01-01
Context. Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Aims. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. Methods. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. Results. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z > or approx. 1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615, with the best-fit solution at z approx. = 1.9.
RELICS: Reionization Lensing Cluster Survey
NASA Astrophysics Data System (ADS)
Coe, Dan A.; RELICS Team
2017-01-01
Hubble and Spitzer imaging programs observing galaxy cluster lenses have delivered some of the highest redshift galaxy candidates to date (z ~ 9 - 11, or 540 - 410 Myr after the Big Bang). These magnified galaxies are intrinsically faint, and thus more representative of the sources believed to be primarily responsible for reionization. Magnified galaxies are also observed brightly enough to be prime targets for detailed follow-up study with current and future observatories, including JWST. Building on the successes of CLASH and the Frontier Fields, we have begun RELICS, the Reionization Lensing Cluster Survey. By observing 41 massive clusters for the first time at infrared wavelengths, RELICS will deliver more of the best and brightest high-redshift candidates to the community in time for the November 2017 JWST GO Cycle 1 call for proposals. I will present our early results. I will also discuss prospects for JWST to follow-up known candidates and discover new galaxies at even higher redshifts (z > 11). The discovery efficiency gains from lensing will be even more pronounced at z > 11 if luminosity function faint end slopes are steeper than alpha ~ -2, as suggested by current models and observational extrapolations.
Characterizing the Young Galaxies at Cosmic Dawn
NASA Astrophysics Data System (ADS)
Zheng, Wei
2013-10-01
We propose to analyze the data of the Hubble Frontier Fields, in order to discover and study galaxies at the highest redshifts and to an unprecedented depth. The redshift range of z 10-12 marks the beginning of the IGM reionization and remains as HST's last frontier. In the framework of the CLASH and related projects, our team has succeeded in finding the most distant galaxies. We will carry out a systematic search for galaxy candidates at z 10-12 in the proposed deep observations. At this redshift range, most of the spectral features are shifted longward of the WFC3/IR bands, and additional data are therefore needed in order to secure the candidates and study their intrinsic properties. We will {1} obtain deep photometry in complementary ground-based K-band observations; {2} estimate the global star-formation rate density; {3} measure the sources' UV continuum slope and {4} carry out ALMA observations to study the dust content. Finally, we will estimate the effect of these young galaxies in ionizing the IGM. Our study will serve as an ideal bridge between HST and JWST in exploring the cosmic dawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonso, J.; Bizzocchi, L.; Grossi, M.
2011-12-20
Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610more » MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.« less
The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts
NASA Technical Reports Server (NTRS)
Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.;
2011-01-01
We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.
AGN-driven helium reionization and the incidence of extended He III regions at redshift z > 3
NASA Astrophysics Data System (ADS)
Compostella, Michele; Cantalupo, Sebastiano; Porciani, Cristiano
2014-12-01
We use hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to assess recent claims that the low He II opacity observed in z > 3 quasar spectra may be incompatible with models of He II reionization driven by the observed population of active galactic nuclei (AGNs). In particular, building upon our previous work, we consider an early population of sources and start the radiative-transfer calculation at redshifts z ≥ 5. Our model faithfully reproduces the emissivity of optically selected AGNs as inferred from measurements of their luminosity function. We find that He II reionization is very extended in redshift (Δz ≥ 2) and highly spatially inhomogeneous. In fact, mock spectra extracted from the simulations show a large variability in the evolution of the He II effective optical depth within chunks of size Δz = 0.04. Regions with low opacity (τ_ {He {II}}^eff < 3) can be found at high redshift, in agreement with the most recent observations of UV-transmitting quasars. At the highest redshift currently probed by observations (z ˜ 3.4), our updated model predicts a much lower He II effective optical depth than previous simulations in the literature relieving most of the tension with the current data, that, however, still persists at about the (Gaussian) 1σ to 2σ level. Given the very small number of observed lines of sight, our analysis indicates that current data cannot rule out a purely AGN-driven scenario with high statistical significance.
Identifications and Photometric Redshifts of the 2 Ms Chandra Deep Field-South Sources
NASA Astrophysics Data System (ADS)
Luo, B.; Brandt, W. N.; Xue, Y. Q.; Brusa, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Lehmer, B. D.; Mainieri, V.; Rafferty, D. A.; Schneider, D. P.; Silverman, J. D.; Vignali, C.
2010-04-01
We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ≈2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ≈ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ≈10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ≈ 1% and an outlier [with |Δz|/(1 + z)>0.15] fraction of ≈1.4% for sources with spectroscopic redshifts. We performed blind tests to derive a more realistic estimate of the photo-z quality for sources without spectroscopic redshifts. We expect there are ≈9% outliers for the relatively brighter sources (R <~ 26), and the outlier fraction will increase to ≈15%-25% for the fainter sources (R >~ 26). The typical photo-z accuracy is ≈6%-7%. The outlier fraction and photo-z accuracy do not appear to have a redshift dependence (for z ≈ 0-4). These photo-z's appear to be the best obtained so far for faint X-ray sources, and they have been significantly (gsim50%) improved compared to previous estimates of the photo-z's for the X-ray sources in the ≈2 Ms Chandra Deep Field-North and ≈1 Ms CDF-S.
The TexOx-1000 redshift survey of radio sources I: the TOOT00 region
NASA Astrophysics Data System (ADS)
Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.
2010-01-01
We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.
The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts
NASA Technical Reports Server (NTRS)
Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.;
2012-01-01
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.
A massive core for a cluster of galaxies at a redshift of 4.3
NASA Astrophysics Data System (ADS)
Miller, T. B.; Chapman, S. C.; Aravena, M.; Ashby, M. L. N.; Hayward, C. C.; Vieira, J. D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Chen, Chian-Chou; Cunningham, D. J. M.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Harnett, J.; Hezaveh, Y.; Lacaille, K.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, D. P.; Morningstar, W.; Murphy, E. J.; Narayanan, D.; Pass, E.; Perry, R.; Phadke, K. A.; Rennehan, D.; Rotermund, K. M.; Simpson, J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M. L.; Strom, A. L.
2018-04-01
Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs1-3. The high-redshift progenitors of these galaxy clusters—termed `protoclusters'—can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter4-6. Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts8-11 do not support the kind of rapid cluster-core formation expected from simulations12: the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.
A massive core for a cluster of galaxies at a redshift of 4.3.
Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L
2018-04-01
Massive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs 1-3 . The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter 4-6 . Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts 7 . However, recent detections of possible protoclusters hosting such starbursts 8-11 do not support the kind of rapid cluster-core formation expected from simulations 12 : the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT2349-56. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.
NASA Technical Reports Server (NTRS)
Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.;
2010-01-01
We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.
THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.
2011-01-20
We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less
Gatti, M.
2018-02-22
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatti, M.
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
NASA Technical Reports Server (NTRS)
Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.
1980-01-01
The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.
Spectroscopic redshifts and age dating of a first statistical sample of passive galaxies at z 3
NASA Astrophysics Data System (ADS)
Daddi, Emanuele
2017-08-01
Ultradeep WFC3/G141 observations from one of our past HST programs allowed us to confirm the redshift and measure the age of a quiescent galaxy at z=3. This unique object was found inside a single WFC3 pointing (4 sq. arcmin) suggesting that massive old galaxies even at z 3 are more common than previously thought. The strong correlation observed between evolved stellar populations and a bulge-dominated morphology at least up to z 2 may also imply that the Hubble sequence comes into place at very early times. Guided by the properties of this spectroscopically confirmed z=3 passive galaxy, we have identified a substantial sample of 2.5
Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?
NASA Technical Reports Server (NTRS)
Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.
2012-01-01
The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.
Steep radio spectra in high-redshift radio galaxies
NASA Technical Reports Server (NTRS)
Krolik, Julian H.; Chen, Wan
1991-01-01
The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.
High-resolution observations of radio-source hot spots at 329 MHz
NASA Technical Reports Server (NTRS)
Linfield, R.; Simon, R. S.
1984-01-01
The hot spots of several luminous double radio sources have been observed at 329 MHz with VLBI at fringe spacings ranging from 0.05 to 0.70 arcsec. Two out of two high-redshift (z = about 0.5) sources, but only one of six low-redshift (z = about 0.05) sources, were detected. For the low-redshift source (3C 234) which was detected, either the hot spot is larger at 329 MHz than at 15 GHz, or else the brightness contrast between it and the surrounding lobe is lower at the lower frequency.
Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Vincenzo, Fiorenzo; Kobayashi, Chiaki
2018-04-01
We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.
Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A.
2016-10-01
Following our first detection reported in Izotov et al., we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. These galaxies, at redshifts of z ˜ 0.3, are characterized by high emission-line flux ratios [O III] λ5007/[O II] λ3727 ≳ 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ˜6-13 per cent, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Ly α emission lines are detected in the spectra of all four galaxies, compatible with predictions for LyC leakers. We find escape fractions of Ly α, fesc(Ly α) ˜ 20-40 per cent, among the highest known for Ly α emitting galaxies. Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the centre and exponential discs in the outskirts with disc scalelengths α in the range ˜0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ˜1/8-1/5 solar, low stellar mass ˜(0.2-4) × 109 M⊙, high star formation rates, SFR ˜ 14-36 M⊙ yr-1, and high SFR densities, Σ ˜ 2-35 M⊙ yr-1 kpc-2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al., reveal that a selection for compact star-forming galaxies showing high [O III] λ5007/[O II] λ3727 ratios appears to pick up very efficiently sources with escaping LyC radiation: all five of our selected galaxies are LyC leakers.
Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Vincenzo, Fiorenzo; Kobayashi, Chiaki
2018-07-01
We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual interstellar medium (ISM) regions within single spatially resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter haloes with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients that have settled in the galaxy ISM, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy ISM gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially resolved galaxy.
NASA Astrophysics Data System (ADS)
Chapin, Edward L.; Pope, Alexandra; Scott, Douglas; Aretxaga, Itziar; Austermann, Jason E.; Chary, Ranga-Ram; Coppin, Kristen; Halpern, Mark; Hughes, David H.; Lowenthal, James D.; Morrison, Glenn E.; Perera, Thushara A.; Scott, Kimberly S.; Wilson, Grant W.; Yun, Min S.
2009-10-01
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ~1mJy. Searching deep 1.4GHz Very Large Array (VLA) and Spitzer 3-24μm catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z = 2.7, somewhat higher than z = 2.0 for 850μm selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z = 1.1460. We measure the 850μm to 1.1mm colour of our sources and do not find evidence for `850μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices β for the sample, concluding that existing estimates T ~ 30K and β ~ 1.75 are consistent with these new data.
NASA Astrophysics Data System (ADS)
Hudson, Michael J.; Gwyn, Stephen D. J.; Dahle, Håkon; Kaiser, Nick
1998-08-01
A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity. The typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/- 40 km s-1 at MB = -18.5, if q0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.
A γ-ray burst at a redshift of z~8.2
NASA Astrophysics Data System (ADS)
Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; Cavanagh, B.; de Ugarte Postigo, A.; Dopita, M. A.; Fatkhullin, T. A.; Fruchter, A. S.; Foley, R. J.; Gorosabel, J.; Kennea, J.; Kerr, T.; Klose, S.; Krimm, H. A.; Komarova, V. N.; Kulkarni, S. R.; Moskvitin, A. S.; Mundell, C. G.; Naylor, T.; Page, K.; Penprase, B. E.; Perri, M.; Podsiadlowski, P.; Roth, K.; Rutledge, R. E.; Sakamoto, T.; Schady, P.; Schmidt, B. P.; Soderberg, A. M.; Sollerman, J.; Stephens, A. W.; Stratta, G.; Ukwatta, T. N.; Watson, D.; Westra, E.; Wold, T.; Wolf, C.
2009-10-01
Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
A gamma-ray burst at a redshift of z approximately 8.2.
Tanvir, N R; Fox, D B; Levan, A J; Berger, E; Wiersema, K; Fynbo, J P U; Cucchiara, A; Krühler, T; Gehrels, N; Bloom, J S; Greiner, J; Evans, P A; Rol, E; Olivares, F; Hjorth, J; Jakobsson, P; Farihi, J; Willingale, R; Starling, R L C; Cenko, S B; Perley, D; Maund, J R; Duke, J; Wijers, R A M J; Adamson, A J; Allan, A; Bremer, M N; Burrows, D N; Castro-Tirado, A J; Cavanagh, B; de Ugarte Postigo, A; Dopita, M A; Fatkhullin, T A; Fruchter, A S; Foley, R J; Gorosabel, J; Kennea, J; Kerr, T; Klose, S; Krimm, H A; Komarova, V N; Kulkarni, S R; Moskvitin, A S; Mundell, C G; Naylor, T; Page, K; Penprase, B E; Perri, M; Podsiadlowski, P; Roth, K; Rutledge, R E; Sakamoto, T; Schady, P; Schmidt, B P; Soderberg, A M; Sollerman, J; Stephens, A W; Stratta, G; Ukwatta, T N; Watson, D; Westra, E; Wold, T; Wolf, C
2009-10-29
Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
AGES: THE AGN AND GALAXY EVOLUTION SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.
2012-05-01
The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less
Aleksi , J.; Ansoldi, S.; Antonelli, L. A.; ...
2015-05-13
PG 1553+113 is a very high energy (VHE, E > 100 GeV) γ-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4 < z < 0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ-ray flux at E < 100 GeV observedmore » by Fermi-LAT is compatible with steady emission. Here, in this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ-ray spectrum is rejected with a high significance (fit probability P = 2.6 × 10 -6). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z ~ 0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z = 0.4, based on the detection of Lyα absorption. Lastly, we find that the synchrotron self-Compton model gives a satisfactory description of the observed multiwavelength spectral energy distribution during the flare.« less
NASA Astrophysics Data System (ADS)
Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven
2017-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.
Galaxy And Mass Assembly: the G02 field, Herschel-ATLAS target selection and data release 3
NASA Astrophysics Data System (ADS)
Baldry, I. K.; Liske, J.; Brown, M. J. I.; Robotham, A. S. G.; Driver, S. P.; Dunne, L.; Alpaslan, M.; Brough, S.; Cluver, M. E.; Eardley, E.; Farrow, D. J.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Kelvin, L. S.; Loveday, J.; Moffett, A. J.; Norberg, P.; Owers, M. S.; Taylor, E. N.; Wright, A. H.; Bamford, S. P.; Bland-Hawthorn, J.; Bourne, N.; Bremer, M. N.; Colless, M.; Conselice, C. J.; Croom, S. M.; Davies, L. J. M.; Foster, C.; Grootes, M. W.; Holwerda, B. W.; Jones, D. H.; Kafle, P. R.; Kuijken, K.; Lara-Lopez, M. A.; López-Sánchez, Á. R.; Meyer, M. J.; Phillipps, S.; Sutherland, W. J.; van Kampen, E.; Wilkins, S. M.
2018-03-01
We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multiwavelength photometric survey in three equatorial regions each of 60.0 deg2 (G09, G12, and G15), and two southern regions of 55.7 deg2 (G02) and 50.6 deg2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS (Herschel - Astrophysical Terahertz Large Area Survey) sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154 809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5 per cent redshift complete to r < 19.8 mag over an area of 19.5 deg2, with 20 086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5 per cent), and spectra for about 75 per cent of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS submillimetre sources, to 0.8 mag deeper (r < 20.6 mag) than the GAMA main survey. There are 25 814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/).
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
NASA Astrophysics Data System (ADS)
Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.
2018-07-01
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak-lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni, but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the Cosmic Evolution Survey (COSMOS) field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ_{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z procedure instead using the Directional Neighbourhood Fitting algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.
Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies
NASA Astrophysics Data System (ADS)
Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.; DES Collaboration
2018-04-01
We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ _{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z proceedure instead using the Directional Neighborhood Fitting (DNF) algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.
Redshifts for Superliminal Candidates.II.
NASA Astrophysics Data System (ADS)
Vermeulen, R. C.; Taylor, G. B.; Readhead, A. C. S.; Browne, I. W. A.
1996-03-01
Spectra are presented for 24 compact extragalactic radio sources from complete samples being studied with VLBI. New emission line redshifts are given for 21 of the objects; in 7 of these we have also identified associated or intervening absorption line systems. In 1 other source there are absorption lines which provide a lower limit to the redshift. The remaining 2 objects have strong featureless spectra and are likely to be blazars.
NASA Technical Reports Server (NTRS)
Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.; Rickett, Barney J.; Dutka, Michael S.; Koay, Jun Yi; Lovell, James E. J.; Bignall, Hayley E.; Kedziora-Chudczer, Lucyna; Macquart, Jean-Pierre
2013-01-01
Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Microarcsecond Scintillation Induced Variability) survey of 443 at spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.
Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects
NASA Astrophysics Data System (ADS)
Paiano, Simona; Falomo, Renato; Franceschini, Alberto; Treves, Aldo; Scarpa, Riccardo
2017-12-01
We present optical spectroscopy secured at the 10 m Gran Telescopio Canarias of the counterparts of 20 extragalactic γ-ray sources detected by the Fermi satellite. The observations allow us to investigate the nature of these sources and to determine their redshift. We find that all optical counterparts have a spectrum that is consistent with a BL Lac object nature. We are able to determine the redshift for 11 objects and set spectroscopic redshift limits for five targets. The optical spectrum is found featureless for only four sources. In the latter cases, we can set lower limits on the redshift based on the assumption that they are hosted by a typical massive elliptical galaxy whose spectrum is diluted by the nonthermal continuum. The observations allow us to unveil the nature of these gamma-ray sources and provide a sanity check of a tool to discover the counterparts of γ-ray emitters/blazars based on their multiwavelength emission.
NASA Astrophysics Data System (ADS)
Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Baloković, M.; Del Moro, A.; Gandhi, P.; Ajello, M.; Annuar, A.; Ballantyne, D. R.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Jiang, B.; Jun, H. D.; Koss, M.; Marchesi, S.; Melo, A. D.; Mullaney, J. R.; Noirot, G.; Schulze, S.; Walton, D. J.; Zappacosta, L.; Zhang, W. W.
2017-02-01
We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ≈20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2, and 497 sources detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of < z> =0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from {log}({f}3-24{keV}/{erg} {{{s}}}-1 {{cm}}-2)≈ -14 to -11, and in rest-frame 10-40 keV luminosity, from {log}({L}10-40{keV}/{erg} {{{s}}}-1)≈ 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from ≈15% at the highest luminosities ({L}{{X}}> {10}44 erg s-1) to ≈80% at the lowest luminosities ({L}{{X}}< {10}43 erg s-1). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (I.e., the type 2 fraction) is {F}{Type2}={53}-15+14 % , for a well-defined subset of the 8-24 keV selected sample. This is higher, albeit at a low significance level, than the type 2 fraction measured for redshift- and luminosity-matched AGNs selected by <10 keV X-ray missions.
NASA Astrophysics Data System (ADS)
Nyland, Kristina
2017-01-01
Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.
NASA Astrophysics Data System (ADS)
Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.
2018-02-01
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolcic, V.; Navarrete, F.; Bertoldi, F.
2012-05-01
We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify themore » correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.« less
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2014-12-09
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Here, the source was observedmore » with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. As a result, the source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio emissions gradually decreased on few-month timescales from 2010 through 2011, indicating that at least some of the radio, optical and gamma-ray emission is produced in a single region by the same population of particles. We also determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 ± 0.04. In addition, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 ± 0.10. Finally, using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.« less
Direct Lyman continuum and Ly α escape observed at redshift 4
NASA Astrophysics Data System (ADS)
Vanzella, E.; Nonino, M.; Cupani, G.; Castellano, M.; Sani, E.; Mignoli, M.; Calura, F.; Meneghetti, M.; Gilli, R.; Comastri, A.; Mercurio, A.; Caminha, G. B.; Caputi, K.; Rosati, P.; Grillo, C.; Cristiani, S.; Balestra, I.; Fontana, A.; Giavalisco, M.
2018-05-01
We report on the serendipitous discovery of a z = 4.0, M1500 = -22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (˜60 per cent escaping), a remarkable multiple peaked Ly α emission, and significant Ly α radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionizing and Ly α radiation possibly share a common ionized channel (with NH I < 1017.2 cm-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni N Vλ1240 profile, and has blue ultraviolet continuum (β = -2.5 ± 0.25, Fλ ˜ λβ) with weak low-ionization interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6 and 4.5μm imaging show a clear photometric signature of the H α line with equivalent width of 1000 Å rest-frame emerging over a flat continuum (Ks - 4.5μm ≃ 0). From the SED fitting, we derive a stellar mass of 1.5 × 109 M⊙, SFR of 140 M⊙ yr-1 and age of ˜10 Myr, with a low dust extinction, E(B - V) ≲ 0.1, placing the source in the starburst region of the SFR-M* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z = 3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionizing sources at z > 6.5 with JWST.
NASA Astrophysics Data System (ADS)
Sabirli, Kivanc; Romer, A. K.; Davidson, M.; Stanford, S. A.; Viana, P. T.; Hilton, M.; Collins, C. A.; Kay, S. T.; Liddle, A. R.; Mann, R. G.; Miller, C. J.; Nichol, R. C.; West, M. J.; Conselice, C. J.; Spinrad, H.; Stern, D.; XCS Collaboration
2006-06-01
We report the discovery of the hottest cluster known at z > 1. It was identified as an extended X-ray source in the XMM Cluster Survey (XCS, Romer et al., 2001) and optical spectroscopy shows that 6 galaxies within a 60 arcsec diameter region lie at z = 1.45 ± 0.01. Hence its redshift is the highest currently known for a spectroscopically-confirmed cluster. Analysis of the X-ray spectra yields kT = 7.9+2.8-1.8 keV (90% confidence) and suggests that it is relatively massive for such a high redshift cluster.We acknowledge financial support from NASA grant NAG-11634 (AKR, RCN, KS, MD, PTPV), The Royal Astronomical Society's Hosie Request (MD, KS), PPARC (ARL, STK, RGM), the NASA XMM program (KS), the Institute of Astronomy at the University of Edinburgh (MD), Liverpool John Moores University (MH), Carnegie Mellon University (KS, AKR), and NSF grant AST-0205960 (MJW).
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
NASA Astrophysics Data System (ADS)
Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim
2017-04-01
Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.
Photometric redshifts in the SWIRE Survey
NASA Astrophysics Data System (ADS)
Rowan-Robinson, Michael; Babbedge, Tom; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; Ilbert, Olivier; Le Févre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Mari; Farrah, Duncan; Vaccari, Mattia
2008-05-01
We present the SWIRE Photometric Redshift Catalogue 1025119 redshifts of unprecedented reliability and of accuracy comparable with or better than previous work. Our methodology is based on fixed galaxy and quasi-stellar object templates applied to data at 0.36-4.5 μm, and on a set of four infrared emission templates fitted to infrared excess data at 3.6-170 μm. The galaxy templates are initially empirical, but are given greater physical validity by fitting star formation histories to them, which also allows us to estimate stellar masses. The code involves two passes through the data, to try to optimize recognition of active galactic nucleus (AGN) dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, AV, is allowed as a free parameter. The full reduced χ2ν (z) distribution is given for each source, so the full error distribution can be used, and aliases investigated. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyse the performance of our method as a function of the number of photometric bands used in the solution and the reduced χ2ν. For seven photometric bands (5 optical + 3.6, 4.5 μm), the rms value of (zphot - zspec)/(1 + zspec) is 3.5 per cent, and the percentage of catastrophic outliers [defined as >15 per cent error in (1 + z)], is ~1 per cent. These rms values are comparable with the best achieved in other studies, and the outlier fraction is significantly better. The inclusion of the 3.6- and 4.5-μm IRAC bands is crucial in supression of outliers. We discuss the redshift distributions at 3.6 and 24 μm. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution, so the photometric redshifts are a powerful tool for large-scale structure studies. 10 per cent of sources in the SWIRE photometric redshift catalogue have z > 2, and 4 per cent have z > 3, so this catalogue is a huge resource for high-redshift galaxies. A key parameter for understanding the evolutionary status of infrared galaxies is Lir/Lopt. For cirrus galaxies this is a measure of the mean extinction in the interstellar medium of the galaxy. There is a population of ultraluminous galaxies with cool dust and we have shown SEDs for some of the reliable examples. For starbursts, we estimate the specific star formation rate, φ*/M*. Although the very highest values of this ratio tend to be associated with Arp220 starbursts, by no means all ultraluminous galaxies are. We discuss an interesting population of galaxies with elliptical-like spectral energy distributions in the optical and luminous starbursts in the infrared. For dust tori around type 1 AGN, Ltor/Lopt is a measure of the torus covering factor and we deduce a mean covering factor of 40 per cent. Our infrared templates also allow us to estimate dust masses for all galaxies with an infrared excess.
CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal
2014-11-20
We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time inmore » this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.« less
Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2017-09-01
We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.
2013-04-10
Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding thatmore » 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.« less
NASA Astrophysics Data System (ADS)
Carrasco, D.; Trenti, M.; Mutch, S.; Oesch, P. A.
2018-06-01
The luminosity function is a fundamental observable for characterising how galaxies form and evolve throughout the cosmic history. One key ingredient to derive this measurement from the number counts in a survey is the characterisation of the completeness and redshift selection functions for the observations. In this paper, we present GLACiAR, an open python tool available on GitHub to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman-break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift, and spectral energy distribution properties, adds them to input images, and measures the recovery rate. To illustrate this new software tool, we apply it to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z 10 galaxies) in the Hubble Space Telescope Brightest of Reionizing Galaxies Survey. Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for the artificial sources can impact completeness estimates.
SCUBA-2 follow-up of Herschel-SPIRE observed Planck overdensities
NASA Astrophysics Data System (ADS)
MacKenzie, Todd P.; Scott, Douglas; Bianconi, Matteo; Clements, David L.; Dole, Herve A.; Flores-Cacho, Inés; Guery, David; Kneissl, Ruediger; Lagache, Guilaine; Marleau, Francine R.; Montier, Ludovic; Nesvadba, Nicole P. H.; Pointecouteau, Etienne; Soucail, Genevieve
2017-07-01
We present SCUBA-2 follow-up of 61 candidate high-redshift Planck sources. Of these, 10 are confirmed strong gravitational lenses and comprise some of the brightest such submm sources on the observed sky, while 51 are candidate proto-cluster fields undergoing massive starburst events. With the accompanying Herschel-Spectral and Photometric Imaging Receiver observations and assuming an empirical dust temperature prior of 34^{+13}_{-9} K, we provide photometric redshift and far-IR luminosity estimates for 172 SCUBA-2-selected sources within these Planck overdensity fields. The redshift distribution of the sources peak between a redshift of 2 and 4, with one-third of the sources having S500/S350 > 1. For the majority of the sources, we find far-IR luminosities of approximately 1013 L⊙, corresponding to star formation rates of around 1000 M⊙ yr-1. For S850 > 8 mJy sources, we show that there is up to an order of magnitude increase in star formation rate density and an increase in uncorrected number counts of 6 for S850 > 8 mJy when compared to typical cosmological survey fields. The sources detected with SCUBA-2 account for only approximately 5 per cent of the Planck flux at 353 GHz, and thus many more fainter sources are expected in these fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Stocke, John T.; Darling, Jeremy
2016-03-15
This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5more » and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by the RFI. Future searches for highly redshifted H i and molecular absorption can easily find more distant CSOs among bright, “blank field” radio sources, but will be severely hampered by an inability to determine accurate spectroscopic redshifts due to their lack of rest-frame UV continuum.« less
Cosmological constraints with clustering-based redshifts
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi
2017-07-01
We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.
A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.
Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J
2013-04-18
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Putter, Roland; Doré, Olivier; Das, Sudeep
2014-01-10
Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias andmore » scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, J. Drew; Winter, Lisa M.; Mushotzky, Richard F.
2012-06-20
The Swift Burst Alert Telescope (BAT) is discovering interesting new objects while monitoring the sky in the 14-195 keV band. Here we present the X-ray properties and spectral energy distributions (SEDs) for two unusual active galactic nucleus sources. Both NVSS 193013+341047 and IRAS 05218-1212 are absorbed, Compton-thin, but heavily obscured (N{sub H} {approx} 10{sup 23} cm{sup -2}), X-ray sources at redshifts <0.1. The SEDs reveal these galaxies to be very red, with high extinction in the optical and UV. A similar SED is seen for the extremely red objects (EROs) detected in the higher redshift universe. This suggests that thesemore » unusual BAT-detected sources are a low-redshift (z << 1) analog to EROs, which recent evidence suggests are a class of the elusive type II quasars. Studying the multi-wavelength properties of these sources may reveal the properties of their high-redshift counterparts.« less
Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.
2018-01-01
We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.
The Hubble relation for nonstandard candles and the origin of the redshift of quasars
NASA Technical Reports Server (NTRS)
Petrosian, V.
1974-01-01
It is shown that the magnitude-log (redshift) relation for brightest quasars can have a slope different from the value expected for standard candles. The value of this slope depends on the luminosity function and its evolution. Therefore the difference of this slope from the expected value cannot be used as evidence against the cosmological origin of the redshift of the quasars. It is shown that the observed variation of the luminosity of the brightest objects with redshift is consistent with the cosmological hypothesis and that it agrees with (and perhaps could be used to complement) the luminosity function obtained from V/Vm analysis. It is also shown that the nonzero slope of the magnitude-log (redshift) relation rules out the local quasar hypothesis, where it is assumed that the sources are nearby (less than 500 Mpc), that the bulk of their redshift is intrinsic, and that there is no dependence on distance of the intrinsic properties of the sources.
NASA Astrophysics Data System (ADS)
Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.
2014-07-01
Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of supermassive black holes shortly after the Big Bang.
Gamma-Ray Bursts in the Swift Era
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Cannizzo, John K.; Norris, Jay P.
2007-01-01
GRB research has undergone a revolution in the last two years. The launch of Swift, with its rapid slewing capability, has greatly increased the number and quality of GRB localizations and X-ray and optical afterglow lightcurves. Over 160 GRBs have been detected, and nearly all that have been followed up with the on-board narrow field telescopes. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations from ground based observatories, which have given host identifications and redshifts. Theoretical models for short GRB progenitors have, for the first time, been placed on a sound foundation. The hosts for the short GRBs differ in a fundamental way from the long GRB hosts: short GRBs tend to occur in non-star forming galaxies or regions, whereas long GRBs are strongly concentrated within star forming regions. Observations are consistent with a binary neutron star merger model, but other models involving old stellar populations are also viable. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at zeta approx. 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova. The prospects for future progress are excellent given the >10 year orbital lifetime of the Swift satellite.
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.
THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, Maurilio; Gabasch, Armin; Drory, Niv
2009-08-10
The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less
NASA Technical Reports Server (NTRS)
Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Balokovic, M.;
2017-01-01
We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide approx. 20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2, and 497 sources detected in total over the 324 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of [z] = 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log(f_3-24 keV/erg/s/sq cm) approx. -14 to -11, and in rest-frame 10-40 keV luminosity, from log(L10-40 keV/erg/s) approx. 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from approx. 15% at the highest luminosities (LX> 10(exp 44) erg/s) to 80 at the lowest luminosities (LX > 10(exp 43) erg/s).
Selection biases in empirical p(z) methods for weak lensing
Gruen, D.; Brimioulle, F.
2017-02-23
To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. with a reference sample of galaxies of known spectroscopic redshift, matched to the source population. In this paper, we develop a simple decision tree framework that, under the ideal conditions of a large, purely magnitude-limited reference sample, allows an unbiased recovery of the source redshift probability density function p(z), as a function of magnitude and colour. We use this framework to quantify biases in empirically estimated p(z) caused bymore » selection effects present in realistic reference and weak lensing source catalogues, namely (1) complex selection of reference objects by the targeting strategy and success rate of existing spectroscopic surveys and (2) selection of background sources by the success of object detection and shape measurement at low signal to noise. For intermediate-to-high redshift clusters, and for depths and filter combinations appropriate for ongoing lensing surveys, we find that (1) spectroscopic selection can cause biases above the 10 per cent level, which can be reduced to ≈5 per cent by optimal lensing weighting, while (2) selection effects in the shape catalogue bias mass estimates at or below the 2 per cent level. Finally, this illustrates the importance of completeness of the reference catalogues for empirical redshift estimation.« less
Landgraf, Björn; Hoffmann, Andreas; Kartashov, Daniil; Gärtner, Felix; Samsonova, Zhanna; Polynkin, Pavel; Jacoby, Joachim; Kühl, Thomas; Spielmann, Christian
2015-03-23
The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less
Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...
2017-10-14
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
Type II supernovae as a significant source of interstellar dust.
Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike
2003-07-17
Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.
New insights on the accuracy of photometric redshift measurements
NASA Astrophysics Data System (ADS)
Massarotti, M.; Iovino, A.; Buzzoni, A.; Valls-Gabaud, D.
2001-12-01
We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at zspec < 1.5 shows that model libraries provide a good description of the galaxy population. At zspec >= 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range z in [0, 6], residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; et al.
We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less
A very deep IRAS survey - Constraints on the evolution of starburst galaxies
NASA Astrophysics Data System (ADS)
Hacking, Perry; Condon, J. J.; Houck, J. R.
1987-05-01
Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts.
Search for X-ray jets from high redshift radio sources.
NASA Astrophysics Data System (ADS)
Schwartz, Daniel A.; Cheung, Teddy; Gobeille, Doug; Marshall, Herman L.; Migliori, Giulia; Siemiginowska, Aneta; Wardle, John F. C.; Worrall, Diana M.; Birkinshaw, Mark
2018-06-01
We are conducting a Chandra "snapshot" survey of 14 radio quasars at redshifts z>3. These are selected to have one sided, arc-sec scale structure, either a jet or lobe, and come from a complete, objectively-defined sample of sources with radio flux density > 70 mJy, and with a spectroscopic redshift from the SDSS. Our objectives are to find X-ray emitting jets, compare the X-ray and radio morphology, and detect X-ray emission arising from inverse Compton scattering of the cosmic microwave background even for those cases where the radio emission is no longer detectable. For this meeting, we expect 5 of the 14 sources to have been observed.
Evolution of the brightest and most massive galaxies since z~5
NASA Astrophysics Data System (ADS)
Tasca, Lidia A. M.
2015-08-01
The VIMOS Ultra Deep Survey (VUDS) is a large ESO programme which just completed the observation of ~10000 galaxies up to z~6 with the VIMOS spectrograph on the VLT. This is the largest and most uniform sample of spectroscopically confirmed high redshift galaxies ever assembled to date.By studying the spectroscopic and SED-fitting derived properties of these sources we have been able to study the evolution of the star formation rate (SFR)-stellar mass (M*) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5 (Tasca et al. 2014, arXiv1411.5687). We observe a turn-off in the SFR-M* relation at the highest mass-end, up to a redshift z~3.5, that we interpret as the signature of a strong on-going quenching mechanism and rapid mass growth.We find that the sSFR increases strongly up to z~2 and it significantly flattens in 2< z <5.In addition, by combining VUDS spectroscopy, HST/WCF3 and ACS photometry and multi-wavelength data we are able to probe the evolutionary sequence of the progenitors of massive, compact, quiescent early type galaxies observed at later epochs in a statistically robust context (Tasca et al. in preparation).Particular consideration will be given to the role of mergers in the galaxy mass assembly (Tasca et al. 2014, A&A, 565, 10).
Fast γ-Ray Variability in Blazars beyond Redshift 3
NASA Astrophysics Data System (ADS)
Li, Shang; Xia, Zi-Qing; Liang, Yun-Feng; Liao, Neng-Hui; Fan, Yi-Zhong
2018-02-01
High-redshift blazars are one of the most powerful sources in the universe and γ-ray variability carries crucial information about their relativistic jets. In this work we present results of the first systematical temporal analysis of Fermi-LAT data of all known seven γ-ray blazars beyond redshift 3. Significant long-term γ-ray variability is found from five sources in monthly γ-ray light curves, in which three of them are reported for the first time. Furthermore, intraday γ-ray variations are detected from NVSS J053954‑283956 and NVSS J080518+614423. The doubling variability timescale of the former source is limited as short as ≲1 hr (at the source frame). Together with variability amplitude over one order of magnitude, NVSS J053954‑283956 is the most distant γ-ray flaring blazar so far. Meanwhile, intraday optical variability of NVSS J163547+362930 is found based on an archival PTF/iPTF light curve. Benefiting from the multi-wavelength activity of these sources, constraints on their Doppler factors, as well as the locations of the γ-ray radiation region and indications for the SDSS high redshift jetted active galactic nuclei deficit are discussed.
Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Conselice, Christopher J.; Chapman, Scott C.; Windhorst, Rogier A.
2003-10-01
Submillimeter-detected galaxies located at redshifts z>1 host a major fraction of the bolometric luminosity at high redshifts due to thermal emission from heated dust grains, yet the nature of these objects remains a mystery. The major problem in understanding their origin is whether the dust-heating mechanism is predominantly caused by star formation or active galactic nuclei and what triggered this activity. We address this issue by examining the structures of 11 submillimeter galaxies imaged with STIS on the Hubble Space Telescope. We argue that ~61%+/-21% of these submillimeter sources are undergoing an active major merger using the CAS (concentration, asymmetry, clumpiness) quantitative morphological system. We rule out at ~5 σ confidence that these submillimeter galaxies are normal Hubble types at high redshift. This merger fraction appears to be higher than for Lyman break galaxies undergoing mergers at similar redshifts. Using reasonable constraints on the stellar masses of Lyman break galaxies and these submillimeter sources, we further argue that at redshifts z~2-3, systems with high stellar masses are more likely than lower mass galaxies to be involved in major mergers.
Optical Identifications of High-Redshift Galaxy Clusters from the Planck Sunyaev-Zeldovich Survey
NASA Astrophysics Data System (ADS)
Burenin, R. A.; Bikmaev, I. F.; Khamitov, I. M.; Zaznobin, I. A.; Khorunzhev, G. A.; Eselevich, M. V.; Afanasiev, V. L.; Dodonov, S. N.; Rubiño-Martín, J.-A.; Aghanim, N.; Sunyaev, R. A.
2018-05-01
We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev-Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7-0.9. We used the data of optical observations with the Russian-Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, z ≈ 0.8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, S. P.; Ashby, M. L. N.; Huang, J.-S.
Infrared 3.6-8 {mu}m images of the Extended Groth Strip yield plausible counterpart identifications for all but one of 510 radio sources in the AEGIS20 S(1.4 GHz) > 50 {mu}Jy sample. This is the first such deep sample that has been effectively 100% identified. Achieving the same identification rate at R band would require observations reaching R{sub AB} > 27. Spectroscopic redshifts are available for 46% of the sample and photometric redshifts for an additional 47%. Almost all of the sources with 3.6 {mu}m AB magnitudes brighter than 19 have spectroscopic redshifts z < 1.1, while fainter objects predominantly have photometricmore » redshifts with 1 {approx}< z {approx}< 3. Unlike more powerful radio sources that are hosted by galaxies having large stellar masses within a relatively narrow range, the AEGIS20 counterparts have stellar masses spanning more than a factor of 10 at z {approx} 1. The sources are roughly 10%-15% starbursts at z {approx}< 0.5 and 20%-25% active galactic nuclei mostly at z > 1 with the remainder of uncertain nature.« less
The 2-degree Field Lensing Survey: design and clustering measurements
NASA Astrophysics Data System (ADS)
Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian
2016-11-01
We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.
A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij
2018-01-01
The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.
NASA Astrophysics Data System (ADS)
Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.
2018-05-01
We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.
NASA Astrophysics Data System (ADS)
Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.
2015-09-01
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.
A Survey of Distant Clusters of Galaxies Selected by X-Rays
NASA Technical Reports Server (NTRS)
McNamara, Brian
1997-01-01
I will discuss the results of a new survey of X-ray selected, distant clusters of galaxies that has been undertaken by our group at.CfA (Vikhlinin, McNamara, Forman, Jones). We have analyzed the inner 17.5 arcminute region of roughly 650 ROSAT PSPC images of high latitude fields to compile a complete, flux-limited sample of clusters with a mean flux limit roughly 20 times more sensitive than the Einstein Medium Sensitivity Survey. The goal of our survey, which presently contains 233 extended X-ray sources, is to study cluster evolution over cosmological timescales. We have obtained optical images for nearly all of the faintest sources using the 1.2 m telescope of the Fred L. Whipple Observatory, and when including POSS images of the brighter sources, we have nearly completed the identification of all of the extended sources. Roughly 80% of the sources were identified as clusters of galaxies. We have measured redshifts for 42 clusters using the MMT, and including additional measurements from the literature, roughly 70 clusters in our catalog have spectroscopic redshifts. Using CCD photometry and spectroscopic redshifts, we have determined a magnitude-redshift relation which will allow redshifts of the remaining clusters in our sample to be determined photometrically to within a delta z over z of roughly ten percent. I will discuss the Log(N)-Log(S) relation for our sample and compare it to other determinations. In addition, I will discuss the evolution of core radii of clusters.
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-02-09
In this paper, we present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. Finally,more » the sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).« less
Photometric Redshift Calibration Strategy for WFIRST Cosmology
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY
2018-01-01
In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.
Digging for the Truth: Photon Archeology with GLAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecker, F. W.
2007-07-12
Stecker, Malkan and Scully, have shown how ongoing deep surveys of galaxy luminosity functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities for energies from 0.03 eV to the Lyman limit at 13.6 eV and for redshifts out to 6 (called here the intergalactic background light or IBL). From these calculations of the IBL at various redshifts, they predict the present and past optical depth of the universe to high energy {gamma}-rays owing to interactions with photons of the IBL and the 2.7 K CMB.more » We discuss here how this proceedure can be reversed by looking for sharp cutoffs in the spectra of extragalactic {gamma}-ray sources such as blazars at high redshifts in the multi-GeV energy range with GLAST (Gamma-Ray Large Are Space Telescope). By determining the cutoff energies of sources with known redshifts, we can refine our determination of the IBL photon densities in the past, i.e., the archeo-IBL, and therefore get a better measure of the past history of the total star formation rate. Conversely, observations of sharp high energy cutoffs in the {gamma}-ray spectra of sources at unknown redshifts can be used instead of spectral lines to give a measure of their redshifts.« less
Extragalactic Peaked-spectrum Radio Sources at Low Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.
We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less
Contemporaneous broadband observations of three high-redshift BL Lac objects
Ackerman, M.
2016-03-20
We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects, 3FGL J0022.1-1855 (z=0.689), 3FGL J0630.9-2406 (z > ~1.239), and 3FGL J0811.2-7529 (z=0.774), detected by Fermi with relatively flat GeV spectra. By observing simultaneously in the near-IR to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the GeV Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, withmore » poorer fits for high UV models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components.« less
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected withinmore » a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.« less
Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.
1980-01-01
The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.
On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada
2017-02-01
We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}⊙ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}⊙ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (˜85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ˜ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (I.e., z≳ 10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.
2012-01-10
Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Lowmore » Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more sensitive multi-slit infrared spectrographs, the prospects for improving the statistical validity of this result are promising.« less
Optical Variability and Classification of High Redshift (3.5 < z < 5.5) Quasars on SDSS Stripe 82
NASA Astrophysics Data System (ADS)
AlSayyad, Yusra; McGreer, Ian D.; Fan, Xiaohui; Connolly, Andrew J.; Ivezic, Zeljko; Becker, Andrew C.
2015-01-01
Recent studies have shown promise in combining optical colors with variability to efficiently select and estimate the redshifts of low- to mid-redshift quasars in upcoming ground-based time-domain surveys. We extend these studies to fainter and less abundant high-redshift quasars using light curves from 235 sq. deg. and 10 years of Stripe 82 imaging reprocessed with the prototype LSST data management stack. Sources are detected on the i-band co-adds (5σ: i ~ 24) but measured on the single-epoch (ugriz) images, generating complete and unbiased lightcurves for sources fainter than the single-epoch detection threshold. Using these forced photometry lightcurves, we explore optical variability characteristics of high redshift quasars and validate classification methods with particular attention to the low signal limit. In this low SNR limit, we quantify the degradation of the uncertainties and biases on variability parameters using simulated light curves. Completeness/efficiency and redshift accuracy are verified with new spectroscopic observations on the MMT and APO 3.5m. These preliminary results are part of a survey to measure the z~4 luminosity function for quasars (i < 23) on Stripe 82 and to validate purely photometric classification techniques for high redshift quasars in LSST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Peiyuan; Urry, C. Megan
We investigate a sample of 622 blazars with measured fluxes at 12 wavebands across the radio-to-gamma-ray spectrum but without spectroscopic or photometric redshifts. This sample includes hundreds of sources with newly analyzed X-ray spectra reported here. From the synchrotron peak frequencies, estimated by fitting the broadband spectral energy distributions (SEDs), we find that the fraction of high-synchrotron-peaked blazars in these 622 sources is roughly the same as in larger samples of blazars that do have redshifts. We characterize the no-redshift blazars using their infrared colors, which lie in the distinct locus called the WISE blazar strip, then estimate their redshiftsmore » using a KNN regression based on the redshifts of the closest blazars in the WISE color–color plot. Finally, using randomly drawn values from plausible redshift distributions, we simulate the SEDs of these blazars and compare them to known blazar SEDs. Based on all these considerations, we conclude that blazars without redshift estimates are unlikely to be high-luminosity, high-synchrotron-peaked objects, which had been suggested in order to explain the “blazar sequence”—an observed trend of SED shape with luminosity—as a selection effect. Instead, the observed properties of no-redshift blazars are compatible with a causal connection between jet power and electron cooling, i.e., a true blazar sequence.« less
Very deep IRAS survey - constraints on the evolution of starburst galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacking, P.; Houck, J.R.; Condon, J.J.
1987-05-01
Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background withoutmore » extreme evolution at high redshifts. 21 references.« less
Lens models and magnification maps of the six Hubble Frontier Fields clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.
2014-12-10
We present strong-lensing models as well as mass and magnification maps for the cores of the six Hubble Space Telescope (HST) Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for A2744 and AS1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification powermore » of the HST Frontier Fields clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes.« less
A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, Adi; Menanteau, Felipe; Hughes, John P.
We present the first strong-lensing (SL) analysis of the galaxy cluster ACT-CL J0102-4915 (El Gordo), in recent HST/ACS images, revealing a prominent strong lens at a redshift of z = 0.87. This finding adds to the already-established unique properties of El Gordo: it is the most massive, hot, X-ray luminous, and bright Sunyaev-Zeldovich effect cluster at z {approx}> 0.6, and the only {sup b}ullet{sup -}like merging cluster known at these redshifts. The lens consists of two merging massive clumps, where, for a source redshift of z{sub s} {approx} 2, each clump exhibits only a small, separate critical area, with amore » total area of 0.69 {+-} 0.11{open_square}' over the two clumps. For a higher source redshift, z{sub s} {approx} 4, the critical curves of the two clumps merge together into one bigger and very elongated lens (axis ratio {approx_equal} 5.5), enclosing an effective area of 1.44 {+-} 0.22{open_square}'. The critical curves continue expanding with increasing redshift so that for high-redshift sources (z{sub s} {approx}> 9) they enclose an area of {approx}1.91 {+-} 0.30{open_square}' (effective {theta}{sub e} {approx_equal} 46.''8 {+-} 3.''7) and a mass of 6.09 {+-} 1.04 Multiplication-Sign 10{sup 14} M{sub Sun }. According to our model, the area of high magnification ({mu} > 10) for such high-redshift sources is {approx_equal}1.2{open_square}', and the area with {mu} > 5 is {approx_equal}2.3{open_square}', making El Gordo a compelling target for studying the high-redshift universe. We obtain a strong lower limit on the total mass of El Gordo, {approx}> 1.7 Multiplication-Sign 10{sup 15} M{sub Sun} from the SL regime alone, suggesting a total mass of roughly M{sub 200} {approx} 2.3 Multiplication-Sign 10{sup 15} M{sub Sun }. Our results should be revisited when additional spectroscopic and HST imaging data are available.« less
Compton thick active galactic nuclei in Chandra surveys
NASA Astrophysics Data System (ADS)
Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian
2014-09-01
We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, Γ (with uncertainties), observed X-ray fluxes and intrinsic 2-10 keV luminosities for all sources analysed in this work publicly available in an online catalogue.
NASA Astrophysics Data System (ADS)
Canameras, Raoul
2016-09-01
Strongly gravitationally lensed galaxies offer an outstanding opportunity to characterize the most intensely star-forming galaxies in the high-redshift universe. In the most extreme cases, one can probe the mechanisms that underlie the intense star formation on the scales of individual star-forming regions. This requires very fortuitous gravitational lensing configurations offering magnification factors >>10, which are particularly rare toward the high-redshift dusty star-forming galaxies. The Planck's Dusty GEMS (Gravitationally Enhanced subMillimeter Sources) sample contains eleven of the brightest high-redshift galaxies discovered with the Planck submillimeter all-sky survey, with flux densities between 300 and 1000 mJy at 350 microns, factors of a few brighter than the majority of lensed sources previously discovered with other surveys. Six of them are above the 90% completeness limit of the Planck Catalog of Compact Sources (PCCS), suggesting that they are among the brightest high-redshift sources on the sky selected by their active star formation. This thesis comes within the framework of the extensive multi-wavelength follow-up programme designed to determine the overall properties of the high-redshift sources and to probe the lensing configurations. Firstly, to characterize the intervening lensing structures and calculate lensing models, I use optical and near/mid-infrared imaging and spectroscopy. I deduce that our eleven GEMS are aligned with intervening matter overdensities at intermediate redshift, either massive isolated galaxies or galaxy groups and clusters. The foreground sources exhibit evolved stellar populations of a few giga years, characteristic of early-type galaxies. Moreover, the first detailed models of the light deflection toward the GEMS suggest magnification factors systematically >10, and >20 for some lines-of-sight. Secondly, we observe the GEMS in the far-infrared and sub-millimeter domains in order to characterize the background sources. The sub-arcsec resolution IRAM and SMA interferometry shows distorded morphologies which definitively confirm that the eleven sources are strongly lensed. I obtain dust temperatures between 33 and 50 K, and outstanding far-infrared luminosities of up to 2x1014 solar luminosities before correcting for the gravitational magnification. The relationship between dust temperatures and far-infrared luminosities also confirms that the GEMS are brighter than field galaxies at a given dust temperature. I conclude that dust heating seems to be strongly dominated by the star formation activity with an AGN contamination systematically below 30%. We find secure spectroscopic redshifts between 2.2 and 3.6 for the eleven targets thanks to the detection of at least two CO emission lines per source. Finally, I focus on the three gravitationally lensed sources showing the most remarkable properties including the brightest GEMS, a maximal starburst with star formation surface densities near the Eddington limit.
NASA Astrophysics Data System (ADS)
Nishizawa, Atsushi; Namikawa, Toshiya; Taruya, Atsushi
2016-03-01
Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z 5. To extract cosmological information, previous studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time-consuming and rather challenging. Here we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that (i) this anisotropies can be measured even at very high-redshifts (z = 2), (ii) the expected constraints on the primordial non-Gaussianity with Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance. A.N. was supported by JSPS Postdoctoral Fellowships for Research Abroad No. 25-180.
NASA Astrophysics Data System (ADS)
Aguirre, Paula; Lindner, Robert R.; Baker, Andrew J.; Bond, J. Richard; Dünner, Rolando; Galaz, Gaspar; Gallardo, Patricio; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lima, Marcos; Menten, Karl M.; Sievers, Jonathan; Weiss, Axel; Wollack, Edward J.
2018-03-01
We present a multiwavelength analysis of 48 submillimeter galaxies (SMGs) detected in the Large APEX Bolometer Camera/Atacama Cosmology Telescope (ACT) Survey of Clusters at All Redshifts, LASCAR, which acquired new 870 μm and Australia Telescope Compact Array 2.1 GHz observations of 10 galaxy clusters detected through their Sunyaev–Zel’dovich effect (SZE) signal by the ACT. Far-infrared observations were also conducted with the Photodetector Array Camera and Spectrometer (100/160 μm) and SPIRE (250/350/500 μm) instruments on Herschel for sample subsets of five and six clusters. LASCAR 870 μm maps were reduced using a multiscale iterative pipeline that removes the SZE increment signal, yielding point-source sensitivities of σ ∼ 2 mJy beam‑1. We detect in total 49 sources at the 4σ level and conduct a detailed multiwavelength analysis considering our new radio and far-IR observations plus existing near-IR and optical data. One source is identified as a foreground galaxy, 28 SMGs are matched to single radio sources, four have double radio counterparts, and 16 are undetected at 2.1 GHz but tentatively associated in some cases to near-IR/optical sources. We estimate photometric redshifts for 34 sources with secure (25) and tentative (9) matches at different wavelengths, obtaining a median z={2.8}-1.7+2.1. Compared to previous results for single-dish surveys, our redshift distribution has a comparatively larger fraction of sources at z > 3, and the high-redshift tail is more extended. This is consistent with millimeter spectroscopic confirmation of a growing number of high-z SMGs and relevant for testing of cosmological models. Analytical lens modeling is applied to estimate magnification factors for 42 SMGs at clustercentric radii >1.‧2 with the demagnified flux densities and source-plane areas, we obtain integral number counts that agree with previous submillimeter surveys.
Quasar spectral variability from the XMM-Newton serendipitous source catalogue
NASA Astrophysics Data System (ADS)
Serafinelli, R.; Vagnetti, F.; Middei, R.
2017-04-01
Context. X-ray spectral variability analyses of active galactic nuclei (AGN) with moderate luminosities and redshifts typically show a "softer when brighter" behaviour. Such a trend has rarely been investigated for high-luminosity AGNs (Lbol ≳ 1044 erg/s), nor for a wider redshift range (e.g. 0 ≲ z ≲ 5). Aims: We present an analysis of spectral variability based on a large sample of 2700 quasars, measured at several different epochs, extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue. Methods: We quantified the spectral variability through the parameter β defined as the ratio between the change in the photon index Γ and the corresponding logarithmic flux variation, β = -ΔΓ/Δlog FX. Results: Our analysis confirms a softer when brighter behaviour for our sample, extending the previously found general trend to high luminosity and redshift. We estimate an ensemble value of the spectral variability parameter β = -0.69 ± 0.03. We do not find dependence of β on redshift, X-ray luminosity, black hole mass or Eddington ratio. A subsample of radio-loud sources shows a smaller spectral variability parameter. There is also some change with the X-ray flux, with smaller β (in absolute value) for brighter sources. We also find significant correlations for a small number of individual sources, indicating more negative values for some sources.
the-wizz: clustering redshift estimation for everyone
NASA Astrophysics Data System (ADS)
Morrison, C. B.; Hildebrandt, H.; Schmidt, S. J.; Baldry, I. K.; Bilicki, M.; Choi, A.; Erben, T.; Schneider, P.
2017-05-01
We present the-wizz, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of the-wizz is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an 'expert'. It allows the end user of a given survey to select any subsample of photometric galaxies with unknown redshifts, match this sample's catalogue indices into a value-added data file and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly survey and the Sloan Digital Sky Survey. The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. the-wizz can be downloaded at http://github.com/morriscb/The-wiZZ/.
On the Redshift of TeV BL Lac Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiano, Simona; Falomo, Renato; Landoni, Marco
2017-03-10
We report results of a spectroscopic campaign carried out at the 10 m Gran Telescopio Canarias for a sample of 22 BL Lac objects detected (or candidates) at TeV energies, aiming to determine or constrain their redshift. This is of fundamental importance for the interpretation of their emission models and for population studies and is also mandatory for studying the interaction of high-energy photons with the extragalactic background light using TeV sources. Optical spectra with high signal-to-noise ratios in the range 4250–10000 Å were obtained to search for faint emission or absorption lines from both the host galaxy and themore » nucleus. We determine a new redshift for PKS 1424+240 ( z = 0.604) and a tentative one for 1ES 0033+595 ( z = 0.467). We are able to set new spectroscopic redshift lower limits for three other sources on the basis of Mg ii and Ca ii intervening absorption features: BZB J1243+3627 ( z > 0.483), BZB J1540+8155 ( z > 0.672), and BZB 0J2323+4210 ( z > 0.267). We confirm previous redshift estimates for four blazars: S3 0218+357 ( z = 0.944), 1ES 1215+303 ( z = 0.129), W Comae ( z = 0.102), and MS 1221.8+2452 ( z = 0.218). For the remaining targets, in seven cases (S2 0109+22, 3C 66A, VER J0521+211, S4 0954+65, BZB J1120+4214, S3 1227+25, BZB J2323+4210), we do not validate the proposed redshift. Finally, for all sources of still-unknown redshift, we set a lower limit based on the minimum equivalent width of absorption features expected from the host galaxy.« less
X-ray Counterparts of Infrared Faint Radio Sources
NASA Astrophysics Data System (ADS)
Schartel, Norbert
2011-10-01
Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.
2018-05-01
Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.
High-redshift galaxy populations.
Hu, Esther M; Cowie, Lennox L
2006-04-27
We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.
SEDEBLEND: a new method for deblending spectral energy distributions in confused imaging
NASA Astrophysics Data System (ADS)
MacKenzie, Todd P.; Scott, Douglas; Swinbank, Mark
2016-11-01
For high-redshift submillimetre or millimetre sources detected with single-dish telescopes, interferometric follow-up has shown that many are multiple submillimetre galaxies blended together. Confusion-limited Herschel observations of such targets are also available, and these sample the peak of their spectral energy distribution (SED) in the far-infrared. Many methods for analysing these data have been adopted, but most follow the traditional approach of extracting fluxes before model SEDs are fit, which has the potential to erase important information on degeneracies among fitting parameters and glosses over the intricacies of confusion noise. Here, we adapt the forward-modelling method that we originally developed to disentangle a high-redshift strongly lensed galaxy group, in order to tackle this general problem in a more statistically rigorous way, by combining source deblending and SED fitting into the same procedure. We call this method `SEDeblend'. As an application, we derive constraints on far-infrared luminosities and dust temperatures for sources within the ALMA follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We find an average dust temperature for an 870-μm-selected sample of (33.9 ± 2.4) K for the full survey. When selection effects of the sample are considered, we find no evidence that the average dust temperature evolves with redshift for sources with redshifts greater than about 1.5, when compared to those with redshifts between 0.1 and 1.5.
Evolution of HI from Z=5 to the present
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, L. J.
2002-01-01
Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.
Definitive test of the Rh = ct universe using redshift drift
NASA Astrophysics Data System (ADS)
Melia, Fulvio
2016-11-01
The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the Rh = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Δv = -15 cm s-1 yr-1 due to the redshift drift in Planck ΛCDM, while Δv = 0 cm s-1 yr-1 in Rh = ct. With an anticipated ELT-HIRES measurement error of ±5 cm s-1 yr-1 after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between Rh = ct and Planck ΛCDM at ˜3σ, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the Rh = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5σ.
Moderate resolution spectrophotometry of high redshift quasars
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1991-01-01
A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.
Planck intermediate results: XXXIX. The Planck list of high-redshift source candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Arnaud, M.
The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. In this paper, a novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ)more » have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T xgal = 35 K and a spectral index of β xgal = 1.5. Exhibiting extremely high luminosities, larger than 10 14L ⊙, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today’s clusters. Therefore the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.« less
Planck intermediate results: XXXIX. The Planck list of high-redshift source candidates
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-12-12
The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. In this paper, a novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ)more » have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T xgal = 35 K and a spectral index of β xgal = 1.5. Exhibiting extremely high luminosities, larger than 10 14L ⊙, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today’s clusters. Therefore the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.« less
The reionization of galactic satellite populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocvirk, P.; Gillet, N.; Aubert, D.
We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find thatmore » the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.« less
Dwarf Galaxies in the Chandra COSMOS Legacy Survey
NASA Astrophysics Data System (ADS)
Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille
2018-01-01
The existence of intermediate mass black holes (100 < MBH < 106 Msun) has been invoked to explain the finding of extremely massive black holes at z>7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 <= M* <= 3x109 Msun) at z <=2.4, selected from the Chandra COSMOS-Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong
2017-09-01
Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.
Fermi Large Area Telescope Constraints On The Gamma-Ray Opacity Of The Universe
Abdo, A. A.
2010-10-19
The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for thesemore » sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.« less
Derivation of photometric redshifts for the 3XMM catalogue
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Corral, A.; Mountrichas, G.; Ruiz, A.; Masoura, V.; Fotopoulou, S.; Watson, M.
2017-10-01
We present the results from our ESA Prodex project that aims to derive photometric redshifts for the 3XMM catalogue. The 3XMM DR-6 offers the largest X-ray survey, containing 470,000 unique sources over 1000 sq. degrees. We cross-correlate the X-ray positions with optical and near-IR catalogues using Bayesian statistics. The optical catalogue used so far is the SDSS while currently we are employing the recently released PANSTARRS catalogue. In the near IR we use the Viking, VHS, UKIDS surveys and also the WISE W1 and W2 filters. The estimation of photometric redshifts is based on the TPZ software. The training sample is based on X-ray selected samples with available SDSS spectroscopy. We present here the results for the 40,000 3XMM sources with available SDSS counterparts. Our analysis provides very reliable photometric redshifts with sigma(mad)=0.05 and a fraction of outliers of 8% for the optically extended sources. We discuss the wide range of applications that are feasible using this unprecedented resource.
PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter
2013-08-20
We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less
HST Imaging of the Eye of Horus, a Double Source Plane Gravitational Lens
NASA Astrophysics Data System (ADS)
Wong, Kenneth
2017-08-01
Double source plane (DSP) gravitational lenses are extremely rare alignments of a massive lens galaxy with two background sources at distinct redshifts. The presence of two source planes provides important constraints on cosmology and galaxy structure beyond that of typical lens systems by breaking degeneracies between parameters that vary with source redshift. While these systems are extremely valuable, only a handful are known. We have discovered the first DSP lens, the Eye of Horus, in the Hyper Suprime-Cam survey and have confirmed both source redshifts with follow-up spectroscopy, making this the only known DSP lens with both source redshifts measured. Furthermore, the brightest image of the most distant source (S2) is split into a pair of images by a mass component that is undetected in our ground-based data, suggesting the presence of a satellite or line-of-sight galaxy causing this splitting. In order to better understand this system and use it for cosmology and galaxy studies, we must construct an accurate lens model, accounting for the lensing effects of both the main lens galaxy and the intermediate source. Only with deep, high-resolution imaging from HST/ACS can we accurately model this system. Our proposed multiband imaging will clearly separate out the two sources by their distinct colors, allowing us to use their extended surface brightness distributions as constraints on our lens model. These data may also reveal the satellite galaxy responsible for the splitting of the brightest image of S2. With these observations, we will be able to take full advantage of the wealth of information provided by this system.
(Sub)millimetre-Selected Galaxies and the Cosmic Star-Formation History
NASA Astrophysics Data System (ADS)
Koprowski, Maciej
2015-03-01
Understanding the time evolution of the star formation in the Universe is one of the main aims of observational astronomy. Since a significant portion of the UV starlight is being absorbed by dust and re-emitted in the IR, we need to understand both of those regimes to properly describe the cosmic star formation history. In UV, the depth and the resolution of the data permits calculations of the star formation rate densities out to very high redshifts (z˜8-9). In IR however, the large beam sizes and the relatively shallow data limits these calculations to z˜2. In this thesis, I explore the SMA and PdBI high-resolution follow-up of 30 bright sources originally selected by AzTEC and LABOCA instruments at 1.1 mm and 870 μm respectively in conjunction with the SCUBA-2 Cosmology Legacy Survey (S2CLS) deep COSMOS and wide UDS maps, where 106 and 283 sources were detected, with the signal-to-noise ratio of > 5 and > 3.5 at 850 μm respectively. I find that the (sub)mm-selected galaxies reside and the mean redshifts of z ≈ 2.5±0.05 with the exception of the brightest sources which z seem to lie at higher redshifts (z ≈ 3.5±0.2), most likely due to the apparent z correlation of the (sub)mm flux with redshift, where brighter sources tend to lie at higher redshifts. Stellar masses, M\\dot, and star formation rates, SFRs, were found (M\\dot ≥ 10^10 M⊙ and SFR ≥ 100 M⊙ yr-1 ) and used to calculate the specific SFRs. I determine that the (sub)mm-selected sources mostly lie on the high-mass end of the star formation 'main-sequence' which makes them a high-mass extension of normal star forming galaxies. I also find that the specific SFR slightly evolves at redshifts 2 - 4, suggesting that the efficiency of the star formation seems to be increasing at these redshifts. Using the S2CLS data, the bolometric IR luminosity functions (IR LFs) were found for a range of redshifts z = 1.2 - 4.2 and the contribution of the SMGs tothe total star formation rate density (SFRD) was calculated. The IR LFs were found to evolve out to redshift ∼ 2.5. The star formation activity in the Universe was found to peak at z ≈ 2 followed by a slight decline. Assuming the IR to total SFRD correction found in the literature the SFRD found in this work closely follows the best-fitting function of Madau & Dickinson (2014).
Following the Cosmic Evolution of Pristine Gas. II. The Search for Pop III–bright Galaxies
NASA Astrophysics Data System (ADS)
Sarmento, Richard; Scannapieco, Evan; Cohen, Seth
2018-02-01
Direct observational searches for Population III (Pop III) stars at high redshift are faced with the question of how to select the most promising targets for spectroscopic follow-up. To help answer this, we use a large-scale cosmological simulation, augmented with a new subgrid model that tracks the fraction of pristine gas, to follow the evolution of high-redshift galaxies and the Pop III stars they contain. We generate rest-frame ultraviolet (UV) luminosity functions for our galaxies and find that they are consistent with current z≥slant 7 observations. Throughout the redshift range 7≤slant z≤slant 15, we identify “Pop III–bright” galaxies as those with at least 75% of their flux coming from Pop III stars. While less than 1% of galaxies brighter than {m}UV,{AB}}=31.4 mag are Pop III–bright in the range 7≤slant z≤slant 8, roughly 17% of such galaxies are Pop III–bright at z = 9, immediately before reionization occurs in our simulation. Moving to z = 10, {m}UV,{AB}}=31.4 mag corresponds to larger, more luminous galaxies, and the Pop III–bright fraction falls off to 5%. Finally, at the highest redshifts, a large fraction (29% at z = 14 and 41% at z = 15) of all galaxies are Pop III–bright regardless of magnitude. While {m}UV,{AB}}=31.4 mag galaxies are extremely rare during this epoch, we find that 13% of galaxies at z = 14 are Pop III–bright with {m}UV,{AB}}≤slant 33 mag, a intrinsic magnitude within reach of the James Webb Space Telescope using lensing. Thus, we predict that the best redshift to search for luminous Pop III–bright galaxies is just before reionization, while lensing surveys for fainter galaxies should push to the highest redshifts possible.
Gamma-ray bursts, QSOs and active galaxies.
Burbidge, Geoffrey
2007-05-15
The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low-redshift active galaxies and are ejected in the same way as are the QSOs. This relates these phenomena to a supernova origin for the GRBs. The current situation based on the latest observational data will be discussed.
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
New LMT High Resolution Imaging and CO Spectroscopic Studies of the Brightest AzTEC 1.1mm Sources
NASA Astrophysics Data System (ADS)
Yun, Min S.; Aretxaga, Itziar; Hughes, David; Montana, A.; Pope, A.; Bruzual, Gustavo; Ferrusca, D.; Rosa Gonzalez, D.; Sanchez-Arguelles, D.; Narayanan, G.; Wilson, Grant; Gim, Hansung; Ibarra, H.; Mo, H.; Lowenthal, James; Zavala, J.; Carrasco, L.; Chavez, M.; Valazquez, M.; Zeballos, M.; Vega, O.; Schloerb, P.; Cybulsky, J. R.; Casey, Caitlin M.; Tang, Y.
2015-08-01
A substantial population of quiescent galaxies with stellar masses exceeding 10 billion solar masses have been found to z~4, suggesting a rapid formation and quenching of massive galaxies at z~6 or earlier. The submillimeter bright galaxies (SMGs) with SFR > 100-1000 solar masses per year represent natural candidates for the progenitor systems undergoing an epoch of rapid formation and cessation of stellar mass build up. Many of the most luminous SMGs are also extremely red and faint in the optical, suggesting a high redshift and are beyond the reach of the current optical spectroscopic redshift surveys. There is also a growing concern that these most luminous SMGs may be blends of several unrelated sources as a result of a poor angular resolution of the existing surveys (18" & 28" for the AzTEC 1.1mm surveys on JCMT and ASTE, respectively). We have obtained new 8" resolution AzTEC images of 40 brightest AzTEC sources previously found in the GOODS and COSMOS fields using the Large Millimeter Telescope (LMT) to examine the multiplicity question and for the identification of multi-wavelength counterparts. We have also conducted a CO redshift survey using the Redshift Search Receiver on the LMT. We will report the results of these analysis and several new CO redshifts.
LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0
NASA Astrophysics Data System (ADS)
Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.
2018-04-01
This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brusa, M.; Cappelluti, N.; Merloni, A.
2010-06-10
We report the final optical identifications of the medium-depth ({approx}60 ks), contiguous (2 deg{sup 2}) XMM-Newton survey of the COSMOS field. XMM-Newton has detected {approx}1800 X-ray sources down to limiting fluxes of {approx}5 x 10{sup -16}, {approx}3 x 10{sup -15}, and {approx}7 x 10{sup -15} erg cm{sup -2} s{sup -1} in the 0.5-2 keV, 2-10 keV, and 5-10 keV bands, respectively ({approx}1 x 10{sup -15}, {approx}6 x 10{sup -15}, and {approx}1 x 10{sup -14} erg cm{sup -2} s{sup -1}, in the three bands, respectively, over 50% of the area). The work is complemented by an extensive collection of multiwavelength datamore » from 24 {mu}m to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for {approx}>50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 ({approx}95%) have IRAC counterparts, and 1394 ({approx}78%) have MIPS 24 {mu}m detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of log L{sub X} > 44.5 active galactic nuclei (AGNs) is at z {approx} 2. Spectroscopically identified obscured and unobscured AGNs, as well as normal and star-forming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of {approx}150 high-redshift (z > 1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L{sub X} > 10{sup 44} erg s{sup -1}) X-ray luminosity is {approx}15%-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.« less
A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample
NASA Technical Reports Server (NTRS)
Strauss, Michael A.; Huchra, John P.; Davis, Marc; Yahil, Amos; Fisher, Karl B.; Tonry, John
1992-01-01
We present the data for a redshift survey of galaxies selected from the database of the Infrared Astronomical Satellite (IRAS). The sample is flux limited to 1.936 Jy at 60 microns and covers 11.01 sr of the sky. It consists of 5014 objects, of which 2658 are galaxies. The remaining 2356 sources are listed in a separate table with identifications. Redshift data are also given for 212 IRAS galaxies which are not part of the complete sample, but were measured in conjunction with this project.
Spectral Confusion for Cosmological Surveys of Redshifted C II Emission
NASA Technical Reports Server (NTRS)
Kogut, A.; Dwek, E.; Moseley, S. H.
2015-01-01
Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.
NASA Astrophysics Data System (ADS)
Sugita, Satoshi; Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Nakagawa, Yujin E.; Urata, Yuji; Pal'Shin, Valentin; Golenetskii, Sergei; Sakamoto, Takanori; Cummings, Jay; Krimm, Hans; Stamatikos, Michael; Parsons, Ann; Barthelmy, Scott; Gehrels, Neil
2009-06-01
We present the results of the high-redshift GRB 050904 at z = 6.295 from joint spectral analysis among Swift-BAT, Konus-Wind, and Suzaku-WAM, covering a wide energy range of 15--5000keV. The νFu spectrum peak energy, Epeak, was measured at 314+173-89 keV, corresponding to 2291+1263-634 keV in the source frame, and the isotropic equivalent radiated energy, Eiso, was estimated to be 1.04+0.25-0.17 × 1054erg. Both are among the highest values that have ever been measured. GRBs with such a high Eiso (˜1054erg) might be associated with prompt optical emission. The derived spectral and energetic parameters are consistent with the correlation between the rest-frame Ep,i and the Eiso (Amati relation), but not with the correlation between the intrinsic peak energy Ep,i and the collimation-corrected energy Eγ (Ghirlanda relation), unless the density of the circumburst environment of this burst is much larger than the nominal value, as suggested by other wavelength observations. We also discuss the possibility that this burst is an outlier in the correlation between Ep,i and the peak luminosity Lp (Yonetoku relation).
ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ˜ 7
NASA Astrophysics Data System (ADS)
Strandet, M. L.; Weiss, A.; De Breuck, C.; Marrone, D. P.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Cunningham, D. J. M.; Chen, Chian-Chou; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hayward, C. C.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Menten, K. M.; Miller, T.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Spilker, J. S.; Sreevani, J.
2017-06-01
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z=6.900+/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [{{C}} {{I}}](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and [{{C}} {{II}}] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [{{C}} {{I}}] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of {M}{gas}=3.3+/- 1.9× {10}11 {M}⊙ . Its large mass and intense star formation is very rare for a source well into the epoch of reionization.
NASA Astrophysics Data System (ADS)
Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.
2018-05-01
This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mor, Rivay; Netzer, Hagai; Trakhtenbrot, Benny
We report new Herschel observations of 25 z {approx_equal} 4.8 extremely luminous optically selected active galactic nuclei (AGNs). Five of the sources have extremely large star-forming (SF) luminosities, L{sub SF}, corresponding to SF rates (SFRs) of 2800-5600 M{sub Sun} yr{sup -1} assuming a Salpeter initial mass function. The remaining sources have only upper limits on their SFRs, but stacking their Herschel images results in a mean SFR of 700 {+-} 150 M{sub Sun} yr{sup -1}. The higher SFRs in our sample are comparable to the highest observed values so far at any redshift. Our sample does not contain obscured AGNs,more » which enables us to investigate several evolutionary scenarios connecting supermassive black holes and SF activity in the early universe. The most probable scenario is that we are witnessing the peak of SF activity in some sources and the beginning of the post-starburst decline in others. We suggest that all 25 sources, which are at their peak AGN activity, are in large mergers. AGN feedback may be responsible for diminishing the SF activity in 20 of them, but is not operating efficiently in 5 others.« less
Searching for intermediate groups of galaxies with Suzaku in Bootes field
NASA Astrophysics Data System (ADS)
Tawara, Yuzuru; Mitsuishi, Ikuyuki
2016-07-01
To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift evolution.
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2015-09-30
In this paper, we present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fieldsmore » were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. Finally, we also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.« less
An optical view of extragalactic gamma-ray emitters
NASA Astrophysics Data System (ADS)
Paiano, Simona; Falomo, Renato; Landoni, Marco; Treves, Aldo; Scarpa, Riccardo
2017-11-01
The Fermi Gamma-ray Observatory discovered about a thousand extragalactic sources emitting energy from 100 MeV to 100 GeV. The majority of these sources belong to the class of blazars characterized by a quasi-featureless optical spectrum (BL Lac Objects). This hampers the determination of their redshift and therefore hinders the characterization of this class of objects. To investigate the nature of these sources and to determine their redshift, we are carrying out an extensive campaign at the 10m Gran Telescopio Canarias to secure high signal-to-noise ratio optical spectra. These observations allow us to confirm the blazar nature of the targets, to find new redshifts or to set stringent limits on the redshift based on the minimum equivalent width of absorption features expected from their host galaxy, assuming it is a massive elliptical galaxy.These results are of importance for the multi-frequencies emission models of the blazars, to test their extreme physics, to shed light on their cosmic evolution and abundance in the far Universe.These gamma emitters are also of great importance for the characterization of the extragalactic background light through the absorption by the IR-optical background photons.
NASA Astrophysics Data System (ADS)
Smith, D. J. B.; Best, P. N.; Duncan, K. J.; Hatch, N. A.; Jarvis, M. J.; Röttgering, H. J. A.; Simpson, C. J.; Stott, J. P.; Cochrane, R. K.; Coppin, K. E.; Dannerbauer, H.; Davis, T. A.; Geach, J. E.; Hale, C. L.; Hardcastle, M. J.; Hatfield, P. W.; Houghton, R. C. W.; Maddox, N.; McGee, S. L.; Morabito, L.; Nisbet, D.; Pandey-Pommier, M.; Prandoni, I.; Saxena, A.; Shimwell, T. W.; Tarr, M.; van Bemmel, I.; Verma, A.; White, G. J.; Williams, W. L.
2016-12-01
In these proceedings we highlight the primary scientific goals and design of the WEAVE-LOFAR survey, which will use the new WEAVE spectrograph on the 4.2m William Herschel Telescope to provide the primary source of spectroscopic information for the LOFAR Surveys Key Science Project. Beginning in 2018, WEAVE-LOFAR will generate more than 10^6 R=5000 365-960nm spectra of low-frequency selected radio sources, across three tiers designed to efficiently sample the redshift-luminosity plane, and produce a data set of enormous legacy value. The radio frequency selection, combined with the high multiplex and throughput of the WEAVE spectrograph, make obtaining redshifts in this way very efficient, and we expect that the redshift success rate will approach 100 per cent at z < 1. This unprecedented spectroscopic sample - which will be complemented by an integral field component - will be transformational in key areas, including studying the star formation history of the Universe, the role of accretion and AGN-driven feedback, properties of the epoch of reionisation, cosmology, cluster haloes and relics, as well as the nature of radio galaxies and protoclusters. Each topic will be addressed in unprecedented detail, and with the most reliable source classifications and redshift information in existence.
Planck intermediate results. XXXIX. The Planck list of high-redshift source candidates
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Flores-Cacho, I.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-12-01
The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of Txgal = 35 K and a spectral index of βxgal = 1.5. Exhibiting extremely high luminosities, larger than 1014L⊙, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A100
The redshift evolution of major merger triggering of luminous AGNs: a slight enhancement at z ˜ 2
NASA Astrophysics Data System (ADS)
Hewlett, Timothy; Villforth, Carolin; Wild, Vivienne; Mendez-Abreu, Jairo; Pawlik, Milena; Rowlands, Kate
2017-09-01
Active galactic nuclei (AGNs), particularly the most luminous AGNs, are commonly assumed to be triggered through major mergers; however, observational evidence for this scenario is mixed. To investigate any influence of galaxy mergers on AGN triggering and luminosities through cosmic time, we present a sample of 106 luminous X-ray-selected type 1 AGNs from the COSMOS survey. These AGNs occupy a large redshift range (0.5 < z < 2.2) and two orders of magnitude in X-ray luminosity (˜1043-1045 erg s-1). AGN hosts are carefully mass and redshift matched to 486 control galaxies. A novel technique for identifying and quantifying merger features in galaxies is developed, subtracting galfit galaxy models and quantifying the residuals. Comparison to visual classification confirms this measure reliably picks out disturbance features in galaxies. No enhancement of merger features with increasing AGN luminosity is found with this metric, or by visual inspection. We analyse the redshift evolution of AGNs associated with galaxy mergers and find no merger enhancement in lower redshift bins. Contrarily, in the highest redshift bin (z ˜ 2) AGNs are ˜4 times more likely to be in galaxies exhibiting evidence of morphological disturbance compared to control galaxies, at 99 per cent confidence level (˜2.4σ) from visual inspection. Since only ˜15 per cent of these AGNs are found to be in morphologically disturbed galaxies, it is implied that major mergers at high redshift make a noticeable but subdominant contribution to AGN fuelling. At low redshifts, other processes dominate and mergers become a less significant triggering mechanism.
NASA Astrophysics Data System (ADS)
Klein, M.; Mohr, J. J.; Desai, S.; Israel, H.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; da Costa, L. N.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Frieman, J.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; March, M.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Collaboration, the DES
2018-03-01
We describe a multicomponent matched filter (MCMF) cluster confirmation tool designed for the study of large X-ray source catalogues produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts 0.05 < z < 0.8 in the recently published 2RXS catalogue from the ROSAT All-Sky Survey (RASS) over the 208 deg2 region overlapped by the Dark Energy Survey (DES) Science Verification (DES-SV) data set. In our pilot study, we examine all X-ray sources, regardless of their extent. Our method employs a multicolour red sequence (RS) algorithm that incorporates the X-ray count rate and peak position in determining the region of interest for follow-up and extracts the positionally and colour-weighted optical richness λMCMF as a function of redshift for each source. Peaks in the λMCMF-redshift distribution are identified and used to extract photometric redshifts, richness and uncertainties. The significances of all optical counterparts are characterized using the distribution of richnesses defined along random lines of sight. These significances are used to extract cluster catalogues and to estimate the contamination by random superpositions of unassociated optical systems. The delivered photometric redshift accuracy is δz/(1 + z) = 0.010. We find a well-defined X-ray luminosity-λMCMF relation with an intrinsic scatter of δln (λMCMF|Lx) = 0.21. Matching our catalogue with the DES-SV redMaPPer catalogue yields good agreement in redshift and richness estimates; comparing our catalogue with the South Pole Telescope (SPT) selected clusters shows no inconsistencies. SPT clusters in our data set are consistent with the high-mass extension of the RASS-based λMCMF-mass relation.
THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae
2016-08-01
We analyze both HCN J = 1–0 and HNC J = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motionmore » in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.« less
NASA Astrophysics Data System (ADS)
Mannheim, Karl
There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.
Gravitational wave source counts at high redshift and in models with extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Bellido, Juan; Nesseris, Savvas; Trashorras, Manuel, E-mail: juan.garciabellido@uam.es, E-mail: savvas.nesseris@csic.es, E-mail: manuel.trashorras@csic.es
2016-07-01
Gravitational wave (GW) source counts have been recently shown to be able to test how gravitational radiation propagates with the distance from the source. Here, we extend this formalism to cosmological scales, i.e. the high redshift regime, and we discuss the complications of applying this methodology to high redshift sources. We also allow for models with compactified extra dimensions like in the Kaluza-Klein model. Furthermore, we also consider the case of intermediate redshifts, i.e. 0 < z ∼< 1, where we show it is possible to find an analytical approximation for the source counts dN / d ( S /more » N ). This can be done in terms of cosmological parameters, such as the matter density Ω {sub m} {sub ,0} of the cosmological constant model or the cosmographic parameters for a general dark energy model. Our analysis is as general as possible, but it depends on two important factors: a source model for the black hole binary mergers and the GW source to galaxy bias. This methodology also allows us to obtain the higher order corrections of the source counts in terms of the signal-to-noise S / N . We then forecast the sensitivity of future observations in constraining GW physics but also the underlying cosmology by simulating sources distributed over a finite range of signal-to-noise with a number of sources ranging from 10 to 500 sources as expected from future detectors. We find that with 500 events it will be possible to provide constraints on the matter density parameter at present Ω {sub m} {sub ,0} on the order of a few percent and with the precision growing fast with the number of events. In the case of extra dimensions we find that depending on the degeneracies of the model, with 500 events it may be possible to provide stringent limits on the existence of the extra dimensions if the aforementioned degeneracies can be broken.« less
Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope
NASA Technical Reports Server (NTRS)
Staguhn, Johannes
2008-01-01
In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.
ΛCDM Cosmology for Astronomers
NASA Astrophysics Data System (ADS)
Condon, J. J.; Matthews, A. M.
2018-07-01
The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.
The Wide-Field Infrared Explorer
NASA Technical Reports Server (NTRS)
Schember, Helene; Hacking, Perry
1993-01-01
More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.
A blind green bank telescope millimeter-wave survey for redshifted molecular absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanekar, N.; Gupta, A.; Carilli, C. L.
2014-02-10
We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has amore » total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.« less
Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey
NASA Astrophysics Data System (ADS)
Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X
2016-06-01
The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.
Identifying a Robust and Practical Quasar Accretion-Rate Indicator Using the Chandra Archive
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2017-09-01
Understanding the rapid growth of supermassive black holes and the assembly of their host galaxies is severely limited by the lack of reliable estimates of black-hole mass and accretion rate in distant quasars. We propose to utilize the Chandra archive to identify the most reliable and practical Eddington-ratio indicator by investigating diagnostics of quasar accretion power in the hard-X-ray, C IV, and Hbeta spectral bands of a carefully-selected sample of optically-selected sources. We will perform a ``stress test'' to each of these diagnostics, relying critically on the hard-X-ray observable properties, and deliver a prescription for the most robust Eddington-ratio estimate that can be utilized economically at the highest accessible redshifts.
Unveiling high redshift structures with Planck
NASA Astrophysics Data System (ADS)
Welikala, Niraj
2012-07-01
The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupu, R. E.; Scott, K. S.; Aguirre, J. E.
2012-10-01
We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts andmore » a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.« less
Active Galactic Nuclei, Quasars, BL Lac Objects and X-Ray Background
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Elvis, Martin
2005-01-01
The XMM COSMOS survey is producing the large surface density of X-ray sources anticipated. The first batch of approx. 200 sources is being studied in relation to the large scale structure derived from deep optical/near-IR imaging from Subaru and CFHT. The photometric redshifts from the opt/IR imaging program allow a first look at structure vs. redshift, identifying high z clusters. A consortium of SAO, U. Arizona and the Carnegie Institute of Washington (Pasadena) has started a large program using the 6.5meter Magellan telescopes in Chile with the prime objective of identifying the XMM X-ray sources in the COSMOS field. The first series of observing runs using the new IMACS multi-slit spectrograph on Magellan will take place in January and February of 2005. Some 300 spectra per field will be taken, including 70%-80% of the XMM sources in each field. The four first fields cover the center of the COSMOS field. A VLT consortium is set to obtain bulk redshifts of the field galaxies. The added accuracy of the spectroscopic redshifts over the photo-z's will allow much lower density structures to be seen, voids and filaments. The association of X-ray selected AGNs, and quasars with these filaments, is a major motivation for our studies. Comparison to the deep VLA radio data now becoming available is about to begin.
Takami, Hajime; Murase, Kohta; Dermer, Charles D.
2013-06-26
We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less
Modelling the line-of-sight contribution in substructure lensing
NASA Astrophysics Data System (ADS)
Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.
2018-04-01
We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.
NASA Astrophysics Data System (ADS)
Miettinen, O.; Smolčić, V.; Novak, M.; Aravena, M.; Karim, A.; Masters, D.; Riechers, D. A.; Bussmann, R. S.; McCracken, H. J.; Ilbert, O.; Bertoldi, F.; Capak, P.; Feruglio, C.; Halliday, C.; Kartaltepe, J. S.; Navarrete, F.; Salvato, M.; Sanders, D.; Schinnerer, E.; Sheth, K.
2015-05-01
We used the Plateau de Bure Interferometer (PdBI) to map a sample of 15 submillimetre galaxies (SMGs) in the COSMOS field at the wavelength of 1.3 mm. The target SMGs were originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey at S/N1.1 mm = 4-4.5. This paper presents, for the first time, interferometric millimetre-wavelength observations of these sources. The angular resolution of our observations, 1''&dotbelow;8, allowed us to accurately determine the positions of the target SMGs. Using a detection threshold of S/N1.3 mm> 4.5 regardless of multiwavelength counterpart association, and 4
Extent of warm haloes around medium-redshift galaxies
NASA Technical Reports Server (NTRS)
Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.
1989-01-01
The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
1989-01-01
The machine readable version of the compilation, as it is currently being distributed from the Astronomical Data Center, is described. The catalog contains redshifts and velocity dispersions for all Abell clusters for which these data had been published up to 1986 July. Also included are 1950 equatorial coordinates for the centers of the listed clusters, numbers of observations used to determine the redshifts, and bibliographical references citing the data sources.
NASA Astrophysics Data System (ADS)
Altieri, Bruno; Dannerbauer, Helmut
We present Herschel and APEX LABOCA 870 μm imaging of the field of the high-redshift radio galaxy MRC1138 at z = 2.16. We detect 16 submillimeter galaxies in this ˜140 arcmin2 large bolometer map, with flux densities in the range 3-11 mJy. The pure number counts indicate an overdensity of SMGs by a factor of five compared to blank field surveys. Based on an exquisite multi-wavelength database including VLA 1.4 GHz radio and infrared observations, we verifiy whether these sources are members of the proto-cluster structure at z = 2.2 or not. Based on Herschel PACS+ SPIRE and Spitzer MIPS photometry, we derived reliable far-infrared photometric redshifts for all of our sources. VLT-ISAAC near-infrared spectroscopic observations confirmed redshifts of z ≈ 2.2 for four of these SMGs. We conclude that in total at least seven sources are part of this proto-cluster at z = 2.16. We measure a star formation rate density S FRD ˜ 1500 M⊙ yr-1 Mpc-3, four magntiudes higher compared to the global SFRD at this redshift. Striklingly, these seven sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are not distributed in the filaments as predicted by theories and traced by the Hα emitters at z ≈ 2.2. This concentration of massive, dusty starbursts is not centered on the radio galaxy which is submm bright. A significant fraction, six out of 11 SMGs with z ≈ 2.2 Hα imaging coverage are associated with Hα emitters, demonstrating the potential of tracing SMG counterparts with this source population. Our results demonstrate that indeed submm observations enable us to reveal clusters of massive, dusty starbursts and will pave the road for systematic and detailed investigations with this technique in the future.
Planck, Herschel & Spitzer unveil overdense z>2 regions
NASA Astrophysics Data System (ADS)
Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve
2014-12-01
At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST, WFIRST and Euclid.
Optical Characteristics of Astrometric Radio Sources OCARS
NASA Astrophysics Data System (ADS)
Malkin, Z.
2013-04-01
In this paper, the current status of the catalog of Optical Characteristics of Astrometric Radio Sources OCARS is presented. The catalog includes radio sources observed in various astrometric and geodetic VLBI programs in 1979-2012. For these sources the physical object type, redshift and visual or infrared magnitude is given when available. Detailed comments are provided when some problems with published data were encountered. Since the first version created in December 2007, the catalog is continuously developed and expanded in respect to inclusion of new radio sources and addition of new or correction of old astrophysical data. Several sources of information are used for OCARS. The main of them are the NASA/IPAC Extragalactic Database (NED) and SIMBAD astronomical databases. Besides several astronomical journals and arXiv depository are regularly monitored, so that new data is included in OCARS just after publication. The redshift for about 150 sources have been determined from dedicated optical spectroscopic observations. As of October 2012, OCARS catalog includes 7173 radio sources. 3898 sources have known redshift, and 4860 sources have known magnitude. In 2009, it was used as a supplement material to the ICRF2. The list of radio sources with a good observational history but lacking astrophysical information is provide for planning of optical observations of the most important astrometric sources. The OCARS catalog is updated, in average every several weeks and is available at http://www.gao.spb.ru/english/as/ac_vlbi/ocars.txt.
The many flavours of photometric redshifts
NASA Astrophysics Data System (ADS)
Salvato, Mara; Ilbert, Olivier; Hoyle, Ben
2018-06-01
Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.
Cosmology without cosmic variance
Bernstein, Gary M.; Cai, Yan -Chuan
2011-10-01
The growth of structures in the Universe is described by a function G that is predicted by the combination of the expansion history of the Universe and the laws of gravity within it. We examine the improvements in constraints on G that are available from the combination of a large-scale galaxy redshift survey with a weak gravitational lensing survey of background sources. We describe a new combination of such observations that in principle this yields a measure of the growth rate that is free of sample variance, i.e. the uncertainty in G can be reduced without bound by increasing themore » number of redshifts obtained within a finite survey volume. The addition of background weak lensing data to a redshift survey increases information on G by an amount equivalent to a 10-fold increase in the volume of a standard redshift-space distortion measurement - if the lensing signal can be measured to sub-per cent accuracy. This argues that a combined lensing and redshift survey over a common low-redshift volume of the Universe is a more powerful test of general relativity than an isolated redshift survey over larger volume at high redshift, especially as surveys begin to cover most of the available sky.« less
Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg^2 SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Khullar, Gourav; Bleem, Lindsey; Bayliss, Matthew; Gladders, Michael; South Pole Telescope (SPT) Collaboration
2018-06-01
We present spectroscopic confirmation of 5 galaxy clusters at 1.25 < z < 1.5, discovered in the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. These clusters, taken from a nearly redshift-independent mass-limited sample of clusters, have multi-wavelength follow-up imaging data from the X-ray to the near-IR, and currently form the most homogenous massive high-redshift cluster sample in existence. We briefly describe the analysis pipeline used on the low S/N spectra of these faint galaxies, and describing the multiple techniques used to extract robust redshifts from a combination of absorption-line (Ca II H&K doublet - λλ3934,3968Å) and emission-line ([OII] λλ3727,3729Å) spectral features. We present several ensemble analyses of cluster member galaxies that demonstrate the reliability of the measured redshifts. We also identify modest [OII] emission and pronounced CN and Hδ absorption in a composite stacked spectrum of 28 low S/N passive galaxy spectra with redshifts derived primarily from Ca II H&K features. This work increases the number of spectroscopically-confirmed SPT-SZ galaxy clusters at z > 1.25 from 2 to 7, further demonstrating the efficacy of SZ selection for the highest redshift massive clusters, and enabling further detailed study of these confirmed systems.
Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe
NASA Astrophysics Data System (ADS)
Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team
2017-01-01
High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.
MIPS AGN and Galaxy Evolution Survey
NASA Astrophysics Data System (ADS)
Jannuzi, Buell; Armus, Lee; Borys, Colin; Brand, Kate; Brodwin, Mark; Brown, Michael; Cool, Richard; Desai, Vandana; Dey, Arjun; Dickinson, Mark; Dole, Herve; Eisenstein, Daniel; Kochanek, Christopher; Le Floc'h, Emeric; Morrison, Jane; Papovich, Casey; Perez-Gonzalez, Pablo; Rieke, George; Rieke, Marcia; Stern, Daniel; Weiner, Ben; Zehavi, Idit
2008-03-01
We propose a far-IR survey of the 9 square degree Bootes field of the NOAO Deep Wide-Field Survey (NDWFS) to 5-sigma flux limits of 0.2, 12.8 and 120 mJy to detect approximately 60000, 3000, and 400 sources at 24, 70 and 160 microns respectively. By combining observations at different roll angles, our maps will have excellent control of detector drifts, enabling precise fluctuation analyses in all three maps. In combination with the matching X-ray, UV, optical, near-IR, and mid-IR photometry, variability data, and the 22,000 spectroscopic redshifts for the field, we have three primary goals. First, we will survey the evolution of LIRGS/ULIRGS to redshifts of 0.6/1.3 at 24 microns and 0.4/0.8 at 70 microns. Over 500 0.6
AEGIS-X: Deep Chandra Imaging of the Central Groth Strip
NASA Astrophysics Data System (ADS)
Nandra, K.; Laird, E. S.; Aird, J. A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P. G.; Barmby, P.; Chary, R.-R.; Coil, A.; Cooper, M. C.; Davis, M.; Dickinson, M.; Faber, S. M.; Fazio, G. G.; Guhathakurta, P.; Gwyn, S.; Hsu, L.-T.; Huang, J.-S.; Ivison, R. J.; Koo, D. C.; Newman, J. A.; Rangel, C.; Yamada, T.; Willmer, C.
2015-09-01
We present the results of deep Chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous Chandra observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW), these provide data to a nominal exposure depth of 800 ks in the three central ACIS-I fields, a region of approximately 0.29 deg2. This is currently the third deepest X-ray survey in existence; a factor ∼ 2-3 shallower than the Chandra Deep Fields (CDFs), but over an area ∼3 times greater than each CDF. We present a catalog of 937 point sources detected in the deep Chandra observations, along with identifications of our X-ray sources from deep ground-based, Spitzer, GALEX, and Hubble Space Telescope imaging. Using a likelihood ratio analysis, we associate multiband counterparts for 929/937 of our X-ray sources, with an estimated 95% reliability, making the identification completeness approximately 94% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are available predominantly from Keck (DEEP2/3) and MMT Hectospec, so the current spectroscopic completeness is ∼38%. For the remainder of the X-ray sources, we compute photometric redshifts based on multiband photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are active galactic nuclei and require hybrid templates. Our photometric redshifts have mean accuracy of σ =0.04 and an outlier fraction of approximately 5%, reaching σ =0.03 with less than 4% outliers in the area covered by CANDELS . The X-ray, multiwavelength photometry, and redshift catalogs are made publicly available.
NASA Astrophysics Data System (ADS)
Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.
2016-08-01
The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C II] line and the far-infrared luminosity and find that the same correlation between the [C II]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C II] deficit.”
Perturbed redshifts from N -body simulations
NASA Astrophysics Data System (ADS)
Adamek, Julian
2018-01-01
In order to keep pace with the increasing data quality of astronomical surveys the observed source redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated with a Newtonian N -body code. A careful analysis reveals the presence of a correction term that has so far been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the gravitational redshift and hence amounts to an important relativistic effect.
VizieR Online Data Catalog: XXL Survey: First results (Pierre+, 2016)
NASA Astrophysics Data System (ADS)
Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, B.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; Brusa, M.; Butler, A.; Ciliegi, P.; Chiappetti, L.; Clerc, N.; Corasaniti, P. S.; Coupon, J.; De Breuck, C.; Democles, J.; Desai, S.; Delhaize, J.; Devriendt, J.; Dubois, Y.; Eckert, D.; Elyiv, A.; Ettori, S.; Evrard, A.; Faccioli, L.; Farahi, A.; Ferrari, C.; Finet, F.; Fotopoulou, S.; Fourmanoit, N.; Gandhi, P.; Gastaldello, F.; Gastaud, R.; Georgantopoulos, I.; Giles, P.; Guennou, L.; Guglielmo, V.; Horellou, C.; Husband, K.; Huynh, M.; Iovino, A.; Kilbinger, M.; Koulouridis, E.; Lavoie, S.; Le Brun, A. M. C.; Lefevre, J. P.; Lidman, C.; Lieu, M.; Lin, C. A.; Mantz, A.; Maughan, B. J.; Maurogordato, S.; McCarthy, I. G.; McGee, S.; Melin, J. B.; Melnyk, O.; Menanteau, F.; Novak, M.; Paltani, S.; Plionis, M.; Poggianti, B. M.; Pomarede, D.; Pompei, E.; Ponman, T. J.; Ramos-Ceja, M. E.; Ranalli, P.; Rapetti, D.; Raychaudury, S.; Reiprich, T. H.; Rottgering, H.; Rozo, E.; Ryko, E.; Sadibekova, T.; Santos, J.; Sauvageot, J. L.; Schimd, C.; Sereno, M.; Smith, G. P.; Smolcic, V.; Snowden, S.; Spergel, D.; Stanford, S.; Surdej, J.; Valageas, P.; Valotti, A.; Valtchanov, I.; Vignali, C.; Willis, J.; Ziparo, F.
2016-03-01
Paper I. Scientific motivations - XMM-Newton observing plan. Follow-up observations and simulation programme. The table xxlpoint.dat is a list of all XMM survey-type observations (<=AO-10) in the XXL fields, providing the match between the internal naming and the ESA XXM log,the coordinates and useful exposure times of the XMM pointings, their quality and ancillary information. Paper II. The bright cluster sample: catalogue and luminosity function. Paper III. Luminosity-temperature relation of the bright cluster sample. Paper IV. Mass-temperature relation of the bright cluster sample. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3*10-14erg/cm2/s on the source flux within a 1' aperture. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. The bright cluster sample consists of systems with masses between M500=7*10+14 and 3*10+14Mȯ, mostly located between z=0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z~1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. We provide the XXL-100-GC catalogue (xxl100gc.dat), the master catalogue of the 100 brightest galaxy clusters from the XXL Survey. This catalogue summarizes all the information published on this sample by the XXL collaboration, which were initially distributed over several articles. It contains the sources positions, redshifts, fluxes and mass estimates published in Appendix D of paper II, combined with luminosities and temperatures from Table 1 of paper III, as well as gas masses from Table A.1 of paper XIII. Paper VI. The 1000 brightest X-ray point sources. We provide the XXL1000AGN catalogue (xxl1000a.dat), the first catalogue release of the XXL point source catalog, detected in the 2-10keV energy band. The catalogue contains the 1000 brightest sources, at the flux limit of F[2-10 keV]=4.8 10-14erg/s/cm2. We provide derived X-ray spectral parameters, and counterpart properties including four optical magnitudes, photometric and spectroscopic redshift estimates. We also provide the best photometric redshift class based on machine learning classification and the probability for a source to be a star or a photometric redshift outlier. Paper IX. Optical overdensity and radio continuum analysis of a supercluster at z=0.43. The table xxl_vla.dat contains the full source catalogue of all 155 radio sources detected with S/N>=6 in the Very Large Array 3GHz continuum survey of the XXL-North field. The observations covered the 0.7x0.7 square degrees subarea of the 25 square degree XXL-North field. The radio data has an angular resolution of 3.2x1.9 square arcsec and a mean rms of 20uJy per beam. There are 25 resolved sources, of which 8 are multicomponent objects. Paper XI. ATCA 2.1 GHz continuum observations. The table xxl_atca.dat contains the full source catalogue of all 1389 radio sources detected with S/N>=5 in the Australia Telescope Compact Array 2.1GHz continuum pilot survey of the XXL-South field. The observations covered the inner 6.5 square degrees of the 25 square degree XXL-South field. The radio data has an angular resolution of 4.7x4.2 square arcsec and a median rms of 50uJy per beam. There are 305 resolved sources, of which 77 are multicomponent objects. The table contains various observed parameters of the radio sources, such as position, peak flux density and signal-to-noise ratio. Paper XIV. AAOmega redshifts for the southern XXL field. We present a catalogue (xxlaaoz.dat) containing the redshifts of 3660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field. Paper XV. Evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters Given the availability of good quality multiband photometry together with photometric and spectroscopic redshifts to z<1, a simple set of criteria can be used to identify BCGs. For the present work, we define a BCG as: - the brightest galaxy in z-band, - within 0.5xr500 of the cluster X-ray centroid, - with a redshift that is consistent with that of the cluster as determined from all the redshifts available around the X-ray centroid. Our final sample (xxl100bc.dat) consists of 85 clusters, 45 of which are in the Northern field and 40 in the Southern field. (9 data files).
The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani
2018-01-01
Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1
The Swift AGN and Cluster Survey
NASA Astrophysics Data System (ADS)
Dai, Xinyu
A key question in astrophysics is to constrain the evolution of the largest gravitationally bound structures in the universe. The serendipitous observations of Swift-XRT form an excellent medium-deep and wide soft X-ray survey, with a sky area of 160 square degrees at the flux limit of 5e-15 erg/s/cm^2. This survey is about an order of magnitude deeper than previous surveys of similar areas, and an order of magnitude wider than previous surveys of similar depth. It is comparable to the planned eROSITA deep survey, but already with the data several years ahead. The unique combination of the survey area and depth enables it to fill in the gap between the deep, pencil beam surveys (such as the Chandra Deep Fields) and the shallow, wide area surveys measured with ROSAT. With it, we will place independent and complementary measurements on the number counts and luminosity functions of X-ray sources. It has been proved that this survey is excellent for X-ray selected galaxy cluster surveys, based on our initial analysis of 1/4 of the fields and other independent studies. The highest priority goal is to produce the largest, uniformly selected catalog of X-ray selected clusters and increase the sample of intermediate to high redshift clusters (z > 0.5) by an order of magnitude. From this catalog, we will study the evolution of cluster number counts, luminosity function, scaling relations, and eventually the mass function. For example, various smaller scale surveys concluded divergently on the evolution of a key scaling relation, between temperature and luminosity of clusters. With the statistical power from this large sample, we will resolve the debate whether clusters evolve self-similarly. This is a crucial step in mapping cluster evolution and constraining cosmological models. First, we propose to extract the complete serendipitous extended source list for all Swift-XRT data to 2015. Second, we will use optical/IR observations to further identify galaxy clusters. These optical/IR observations include data from the SDSS, WISE, and deep optical follow-up observations from the APO, MDM, Magellan, and NOAO telescopes. WISE will confirm all z0.5 clusters. We will use ground-based observations to measure redshifts for z>0.5 clusters, with a focus of measuring 1/10 of the spectroscopic redshifts of z>0.5 clusters within the budget period. Third, we will analyze our deep Suzaku Xray follow-up observations of a sample of medium redshift clusters, and the 1/10 bright Swift clusters suitable for spectral analysis. We will also perform stacking analysis using the Swift data for clusters in different redshift bins to constrain the evolution of cluster properties.
The 6dF Galaxy Survey: First Data Release
NASA Astrophysics Data System (ADS)
Jones, H.; Saunders, W.; Colless, M.; Read, M.; Parker, Q.; Watson, F.; Campbell, L.
2005-06-01
The 6dF Galaxy Survey (6dFGS) is currently measuring the redshifts of around 170 000 galaxies and the peculiar velocities of a 15 000-member sub-sample. It will be the largest redshift survey of the local universe and more than an order of magnitude larger than any peculiar velocity survey to date. When complete, it will cover essentially the entire southern sky around a mean redshift of z = 0.05. Central to the survey is the Six-Degree Field (6dF) multi-fibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7°-field of the UK Schmidt Telescope. Targets have been drawn from the 2MASS Extended Source Catalog (XSC) to include all galaxies brighter than Ktot = 12.75, supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, rF, bJ) = (13.05, 13.75, 15.6, 16.75). Here we describe the implementation of the survey and the procedures used to select sources and determine redshifts. We also describe early results utilising the First Data Release of ˜ 45 000 redshifts. There is an online database of 6dFGS data accessible from the 6dFGS web site (http://www.mso.anu.edu.au/6dFGS).
Properties of Spectrally Defined Red QSOs at z = 0.3–1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw
We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOsmore » with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.« less
On the UV compactness and morphologies of typical Lyman α emitters from z ˜ 2 to z ˜ 6
NASA Astrophysics Data System (ADS)
Paulino-Afonso, Ana; Sobral, David; Ribeiro, Bruno; Matthee, Jorryt; Santos, Sérgio; Calhau, João; Forshaw, Alex; Johnson, Andrea; Merrick, Joanna; Pérez, Sara; Sheldon, Oliver
2018-06-01
We investigate the rest-frame UV morphologies of a large sample of Lyman α emitters (LAEs) from z ˜ 2 to z ˜ 6, selected in a uniform way with 16 different narrow and medium bands over the full COSMOS field. We use 3045 LAEs with Hubble Space Telescope coverage in a stacking analysis and find that they have MUV ˜ -20, below M_UV^\\ast at these redshifts. We also focus our analysis on a subsample of 780 individual galaxies with iAB < 25 for which GALFIT converges for 429 of them. The individual median size (re ˜ 1 kpc), ellipticities [slightly elongated with (b/a) ˜ 0.45], Sérsic index (disc-like with n ≲ 2), and light concentration (comparable to that of disc or irregular galaxies, with C ˜ 2.7) of LAEs show mild evolution from z ˜ 2 to z ˜ 6. LAEs with the highest rest-frame equivalent widths (EWs) are the smallest/most compact (re ˜ 0.8 kpc, compared to re ˜ 1.5 kpc for the lower EW LAEs). When stacking our samples in bins of fixed Lyα luminosity and Lyα EW, we find evidence for redshift evolution in n and C, but not in galaxy sizes. The evolution seems to be stronger for LAEs with 25 < EW < 100 Å. When compared to other star-forming galaxies (SFGs), LAEs are found to be smaller at all redshifts. The difference between the two populations changes with redshift, from a factor of ˜1 at z ≳ 5 to SFGs being a factor of ˜2-4 larger than LAEs for z ≲ 2. This means that at the highest redshifts, where typical sizes approach those of LAEs, the fraction of galaxies showing Lyα in emission (and with a high Lyα escape fraction) should be much higher, consistent with observations.
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J.
2018-03-01
We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O32 = [O III] λ5007/[O II] λ3727 = 11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly α emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km s-1, one of the lowest known for Ly α-emitting galaxies, implying a high fesc(Ly α). Comparing the extinction-corrected Ly α/H β flux ratio with the case B value, we find fesc(Ly α) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length α = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 ± 0.01, the lowest stellar mass M⋆ = 108.20 M⊙, a similar star formation rate SFR = 18.9 M⊙ yr-1, and a high specific SFR of 1.2 × 10-7 yr-1.
Charting the Parameter Space of the 21-cm Power Spectrum
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan
2018-05-01
The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical processes that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Lyα radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Lyα coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.
NASA Astrophysics Data System (ADS)
Baronchelli, L.; Koss, M.; Schawinski, K.; Cardamone, C.; Civano, F.; Comastri, A.; Elvis, M.; Lanzuisi, G.; Marchesi, S.; Ricci, C.; Salvato, M.; Trakhtenbrot, B.; Treister, E.
2017-10-01
To fully understand cosmic black hole growth, we need to constrain the population of heavily obscured active galactic nuclei (AGNs) at the peak of cosmic black hole growth (z ˜1-3). Sources with obscuring column densities higher than 1024 atoms cm-2, called Compton-thick (CT) AGNs, can be identified by excess X-ray emission at ˜20-30 keV, called the 'Compton hump'. We apply the recently developed Spectral Curvature (SC) method to high-redshift AGNs (2 < z < 5) detected with Chandra. This method parametrizes the characteristic 'Compton hump' feature cosmologically redshifted into the X-ray band at observed energies <10 keV. We find good agreement in CT AGNs found using the SC method, and bright sources fit using their full spectrum with X-ray spectroscopy. In the Chandra Deep Field-South, we measure a CT fraction of 17^{+19}_{-11} per cent (3/17) for sources with observed luminosity >5 × 1043erg s-1. In the Cosmological Evolution Survey (COSMOS), we find an observed CT fraction of 15^{+4}_{-3} per cent (40/272) or 32 ± 11 per cent when corrected for the survey sensitivity. When comparing to low redshift AGNs with similar X-ray luminosities, our results imply that the CT AGN fraction is consistent with having no redshift evolution. Finally, we provide SC equations that can be used to find high-redshift CT AGNs (z > 1) for current (XMM-Newton) and future (eROSITA and ATHENA) X-ray missions.
Dusty Quasars at High Redshifts
NASA Astrophysics Data System (ADS)
Weedman, Daniel; Sargsyan, Lusine
2016-09-01
A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.
Galaxy growth from redshift 5 to 0 at fixed comoving number density
NASA Astrophysics Data System (ADS)
van de Voort, Freeke
2016-10-01
Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.
New High-z BL Lacs Using the Photometric Method with Swift and SARA
NASA Astrophysics Data System (ADS)
Kaur, A.; Rau, A.; Ajello, M.; Domínguez, A.; Paliya, V. S.; Greiner, J.; Hartmann, D. H.; Schady, P.
2018-06-01
BL Lacertae (BL Lac) objects are prominent members of the third Fermi Large Area Telescope catalog of γ-ray sources. Half of the members of the BL Lac population (∼300) lack redshift measurements, which is due to the absence of lines in their optical spectra, thereby making it difficult to utilize spectroscopic methods. Our photometric dropout technique can be used to establish the redshift for a fraction of these sources. This work employed six filters mounted on the Swift-UVOT and four optical filters on two telescopes, the 0.65 m SARA-CTIO in Chile and 1.0 m SARA-ORM in the Canary Islands, Spain. A sample of 15 sources was extracted from the Swift archival data for which six filter UVOT observations were conducted. By complementing the Swift observations with the SARA ones, we were able to discover two high-redshift sources: 3FGL J1155.4-3417 and 3FGL J1156.7–2250 at z={1.83}-0.13+0.10 and z={1.73}-0.19+0.11, respectively, resulting from the dropouts in the power-law template fits to these data. The discoveries add to the important (26 total) sample of high-redshift BL Lacs. While the sample of high-z BL Lacs is still rather small, these objects do not seem to fit well within known schemes of the blazar population and represent the best probes of the extragalactic background light.
High redshift QSOs and the x ray background
NASA Technical Reports Server (NTRS)
Impey, Chris
1993-01-01
ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.
Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift
NASA Technical Reports Server (NTRS)
Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.;
2010-01-01
We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.
On the large scale structure of X-ray background sources
NASA Technical Reports Server (NTRS)
Bi, H. G.; Meszaros, A.; Meszaros, P.
1991-01-01
The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.
IRAS 18113-2503: THE WATER FOUNTAIN WITH THE FASTEST JET?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Jose F.; Guerrero, MartIn A.; Ricardo Rizzo, J.
2011-09-20
We present Expanded Very Large Array water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of {approx_equal} 500 km s{sup -1}, the second largest found in a Galactic maser, only surpassed by the high-mass star-forming region W49N. Maser components are grouped into a blueshifted and a redshifted cluster, separated by 0.''12. Further mid-IR and radio data suggest that IRAS 18113-2503 is a post-asymptotic giant branch star, thus a new bona fide member of the rare class of 'water fountains' (WFs). It is the evolved object with the largest totalmore » velocity spread in its water masers and with the highest velocity dispersion within its redshifted and blueshifted lobes ({approx_equal} 170 km s{sup -1}). The large total velocity range of emission probably indicates that IRAS 18113-2503 has the fastest jet among the known WF stars. On the other hand, the remarkably high velocity dispersion within each lobe may be interpreted in terms of shocks produced by an episode of mass ejection whose velocity increased up to very high values or, alternatively, by projection effects in a jet with a large opening angle and/or precessing motions.« less
NASA Astrophysics Data System (ADS)
Yun, Min S.; Aretxaga, I.; Gurwell, M. A.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Rosa-González, D.; Sánchez-Argüelles, D.; Schloerb, F. P.; Snell, R. L.; Vega, O.; Wilson, G. W.; Zeballos, M.; Chavez, M.; Cybulski, R.; Díaz-Santos, T.; De La Luz, V.; Erickson, N.; Ferrusca, D.; Gim, H. B.; Heyer, M. H.; Iono, D.; Pope, A.; Rogstad, S. M.; Scott, K. S.; Souccar, K.; Terlevich, E.; Terlevich, R.; Wilner, D.; Zavala, J. A.
2015-12-01
Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (`COSMOS AzTEC-1'), the brightest 1.1 mm continuum source found in the AzTEC/James Clerk Maxwell Telescope survey (Scott et al.), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of z = 4.3420 ± 0.0004 is confirmed by the detection of the redshifted 158 μm [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield LFIR = (1.1 ± 0.1) × 1013 L⊙ and SFR ≈ 1300 M⊙ yr-1. Its molecular gas mass derived using the ultraluminous infrared galaxy conversion factor is 1.4 ± 0.2 × 1011M⊙ while the total interstellar medium mass derived from the 1.1 mm dust continuum is 3.7 ± 0.7 × 1011M⊙ assuming Td = 35 K. Our dynamical mass analysis suggests that the compact gas disc (r ≈ 1.1 kpc, inferred from dust continuum and spectral energy distribution analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity L_[C II]= 7.8± 1.1 × 10^9 L_{⊙} is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and ΣFIR among IR-bright galaxies reported by Díaz-Santos et al. by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the `[C II] deficiency' seen among luminous starburst galaxies.
NASA Astrophysics Data System (ADS)
Pecker, Jean-Claude; Narlikar, Jayant
2011-09-01
Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.
A Flexible Cosmic Ultraviolet Background Model
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2016-10-01
HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.
Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps
NASA Astrophysics Data System (ADS)
De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Lacy, Mark; Sajina, Anna; Pforr, Janine; Farrah, Duncan; Wilson, Gillian; Surace, Jason; Häußler, Boris; Vaccari, Mattia; Jarvis, Matt
2017-05-01
We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μm over five well-studied deep fields spanning 18 deg2. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.
Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift
NASA Astrophysics Data System (ADS)
Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.
2016-12-01
Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.
NASA Astrophysics Data System (ADS)
Egami, E.
2011-09-01
On the extragalactic side, one of the most remarkable results coming out of Herschel is the discovery of extremely bright (>100 mJy in the SPIRE bands) gravitationally lensed galaxies. The great sensitivity and mapping speed of SPIRE have enabled us to find these rare extraordinary objects. What is truly exciting about these bright lensed galaxies is that they enable a variety of detailed multi-wavelength follow-up observations, shedding new light on the physical properties of these high-redshift sources. In this regard, our OT1 program, "SPIRE Snapshot Survey of Massive Galaxy Clusters" turned out to be a great success. After imaging ~50 galaxies out of 279 in the program, we have already found two spectacularly bright lensed galaxies, one of which is at a redshift of 4.69. This type of cluster-lensed sources are not only bright but also spatially stretched over a large scale, so ALMA (or NOEMA in the north) is likely to be able to study them at the level of individual GMCs. Such studies will open up a new frontier in the study of high-redshift galaxies. Here, we propose to extend this highly efficient and effective survey of gravitationally lensed galaxies to another 353 clusters carefully chosen from the SPT and CODEX cluster samples. These samples contain newly discovered high-redshift (z>0.3) massive (>3-4e14 Msun) clusters, which can be used as powerful gravitational lenses to magnify sources at high redshift. With the OT1 and OT2 surveys together, we expect to find ~20 highly magnified SPIRE sources with exceptional brightnesses (assuming a discovery rate of ~1/30). Such a unique sample of extraordinary objects will enable a variety of follow-up sciences, and will therefore remain as a great legacy of the Herschel mission for years to come.
Active galactic nucleus X-ray variability in the XMM-COSMOS survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanzuisi, G.; Ponti, G.; Salvato, M.
2014-02-01
We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measuremore » it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.« less
The Weyl Definition of Redshifts
ERIC Educational Resources Information Center
Harvey, Alex
2012-01-01
In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…
Emission line galaxies at high redshift and analogs of the sources of cosmic reionization
NASA Astrophysics Data System (ADS)
Schaerer, D.
2017-11-01
We present recent work on emission line galaxies at high redshift and searches for analogs of the sources of cosmic reionization at low redshift. The VIMOS Ultra-Deep Survey (VUDS) carried out at the VLT has assembled more than 7000 spectra of galaxies from z 1.5 to 6 allowing us to address a wide diversity of questions with statistically meaningful samples. From VUDS we have recently identified a sample of CIII] and CIV] emitters at z 2-4 whose properties we present and discuss here (cf. Nakajima et al. 2017; Le Fevre et al. 2017). These objects provide interesting insight into the C/O ratio at high-z, the nature and hardness of their ionizing source, the ionizing photon production, and others. Targeting compact strong emission line galaxies with high [OIII]/[OII] ratios with the COS spectrograph on-board HST, we have recently been able to find several relatively strong Lyman continuum emitters at z 0.3 (Izotov et al. 2016ab). We describe the physical properties of these unique, rare low-z sources, which are found to be comparable to those of typical z>6 galaxies and thus currently the best analogs for the sources of cosmic reionization (cf. Schaerer et al. 2016). We also briefly discuss open questions and future steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeo Velona, A. D.; Gavignaud, I.; Meza, A.
2013-06-20
We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevantmore » evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. Finally, the [O/Fe] abundance ratio is presented too: we report a strong increasing evolution with redshift at given mass, especially at z {approx}> 1. The expected increasing trend with mass is recovered when only considering the more massive galaxies. We discuss these results in terms of the mechanisms driving the evolution within the high- and low-mass regimes at different epochs: mergers, feedback-driven outflows, and the intrinsic variation of the star formation efficiency.« less
NASA Astrophysics Data System (ADS)
Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.
2015-08-01
Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any redshift; and (d) scaled and dust-obscured radio-loud quasars or compact steep spectrum sources. We estimated upper limits on the infrared luminosity, the black hole accretion rate, and the star formation rate of IFRS, which all agreed with corresponding numbers of HzRGs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
GNIRS-DQS: A Gemini Near Infrared Spectrograph Distant Quasar Survey
NASA Astrophysics Data System (ADS)
Matthews, Brandon; Shemmer, Ohad; Brotherton, Michael S.; Andruchow, Ileana; Boroson, Todd A.; Brandt, W. Niel; Cellone, Sergio; Ferrero, Gabriel; Gallagher, Sarah; Green, Richard F.; Hennawi, Joseph F.; Lira, Paulina; Myers, Adam D.; Plotkin, Richard; Richards, Gordon T.; Runnoe, Jessie; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Willott, Chris J.; Wills, Beverley J.
2018-06-01
We describe an ongoing three-year Gemini survey, launched in 2017, that will obtain near-infrared spectroscopy of 416 Sloan Digital Sky Survey (SDSS) quasars between redshifts of 1.5 and 3.5 in the ~1.0-2.5 μm band. These spectra will cover critical diagnostic emission lines, such as Mg II, Hβ, and [O III], in each source. This project will more than double the existing inventory of near-infrared spectra of luminous quasars at these redshifts, including the era of fast quasar growth. Additional rest frame ultraviolet coverage of at least the C IV emission line is provided by the SDSS spectrum of each source. We will utilize the spectroscopic inventory to determine the most accurate and precise quasar black hole masses, accretion rates, and redshifts, and use the results to derive improved prescriptions for UV-based proxies for these parameters. The improved redshifts will establish velocities of quasar outflows that interact with the host galaxies, and will help constrain how imprecise distance estimates bias quasar clustering measurements. Furthermore, our measurements will facilitate a more complete understanding of how the rest-frame UV-optical spectral properties depend on redshift and luminosity, and test whether the physical properties of the quasar central engine evolve over cosmic time. We will make our data immediately available to the public, provide reduced spectra via a dedicated website, and produce a catalog of measurements and fundamental quasar properties.
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Takada, Masahiro
2018-05-01
Stacked lensing is a powerful means of measuring the average mass distribution around large-scale structure tracers. There are two stacked lensing estimators used in the literature, denoted as ΔΣ and γ+, which are related as ΔΣ = Σcrγ+, where Σcr(zl, zs) is the critical surface mass density for each lens-source pair (zl and zs are lens and source redshifts, respectively). In this paper we derive a formula for the covariance matrix of ΔΣ-estimator focusing on "weight" function to improve the signal-to-noise (S/N). We assume that the lensing fields and the distribution of lensing objects obey the Gaussian statistics. With this formula, we show that, if background galaxy shapes are weighted by an amount of Σ _cr^{-2}(z_l,z_s), the ΔΣ-estimator maximizes the S/N in the shot noise limited regime. We also show that the ΔΣ-estimator with the weight Σ _cr^{-2} gives a greater (S/N)2 than that of the γ+-estimator by about 5-25% for lensing objects at redshifts comparable with or higher than the median of source galaxy redshifts for hypothetical Subaru HSC and DES surveys. However, for low-redshift lenses such as zl ≲ 0.3, the γ+-estimator has higher (S/N)2 than ΔΣ. We also discuss that the (S/N)2 for ΔΣ at large separations in the sample variance limited regime can be boosted, by up to a factor of 1.5, if one adopts a weight of Σ _cr^{-α } with α > 2. Our formula allows one to explore how the combination of the different estimators can approach an optimal estimator in all regimes of redshifts and separation scales.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.
2011-12-01
We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1‧ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. Based on observations under program IDs 079.A-0634 and 085.A-0647 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4
NASA Astrophysics Data System (ADS)
Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max
2018-06-01
We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.
GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleem, L. E.; Stalder, B.; de Haan, T.
2015-01-29
We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates, the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts, we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M (500c)(ρ(crit))more » $$\\sim 3.5\\times 10^{14}\\,M_\\odot \\,h_{70}^{-1}$$, the median redshift is z (med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.« less
GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleem, L. E.; Stalder, B.; de Haan, T.
2015-01-29
We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of xi = 4.5 (5.0). Ground-and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the xi > 4.5 candidates and 387 (or 95%) of the xi > 5 candidates;more » the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z similar to 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M-500c(rho(crit)) similar to 3.5 x 10(14) M-circle dot h(70)(-1) 70, the median redshift is z(med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.« less
GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.
2015-02-01
We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg{sup 2} of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg{sup 2} SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5more » candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ∼ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M {sub 500c}(ρ{sub crit}) ∼3.5×10{sup 14} M{sub ⊙} h{sub 70}{sup −1}, the median redshift is z {sub med} = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.« less
A catalog of galaxy morphology and photometric redshift
NASA Astrophysics Data System (ADS)
Paul, Nicholas; Shamir, Lior
2018-01-01
Morphology carries important information about the physical characteristics of a galaxy. Here we used machine learning to produce a catalog of ~3,000,000 SDSS galaxies classified by their broad morphology into spiral and elliptical galaxies. Comparison of the catalog to Galaxy Zooshows that the catalog contains a subset of 1.7*10^6 galaxies classified with the same level of consistency as the debiased “superclean” sub-sample. In addition to the morphology, we also computed the photometric redshifts of the galaxies. Several pattern recognition algorithms and variable selection strategies were tested, and the best accuracy of mean absolute error of ~0.0062 was achieved by using random forest with a combination of manually and automatically selected variables. The catalog shows that for redshift lower than 0.085 galaxies that visually look spiral become more prevalent as the redshift gets higher. For redshift greater than 0.085 galaxies thatvisually look elliptical become more prevalent. The catalog as well as the source code used to produce it is publicly available athttps://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593 .
Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses
NASA Astrophysics Data System (ADS)
Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.
2012-03-01
Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and therefore the normalization of the surface mass density) to within 2 and 4 per cent, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, K. D.; Peterson, B. M.; Horne, Keith
We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for aboutmore » half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.« less
Optical Spectroscopy of Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Wuyts, Stijn; van Dokkum, Pieter G.; Franx, Marijn; Förster Schreiber, Natascha M.; Illingworth, Garth D.; Labbé, Ivo; Rudnick, Gregory
2009-11-01
We present optical spectroscopic follow-up of a sample of distant red galaxies (DRGs) with K tot s,Vega < 22.5, selected by (J - K)Vega>2.3, in the Hubble Deep Field South (HDFS), the MS 1054-03 field, and the Chandra Deep Field South (CDFS). Spectroscopic redshifts were obtained for 15 DRGs. Only two out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high-redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in Δz/(1 + z) of ~0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY. Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K tot s,Vega < 22.5 lie at z>2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z < 2 and z>2. In our photometric sample to K tot s,Vega < 22.5, low-redshift DRGs are brighter in Ks than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in AV . Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.
NASA Astrophysics Data System (ADS)
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; Lemon, Cameron A.; Auger, Matthew W.; Banerji, Manda; Hung, Johnathan M.; Koposov, Sergey E.; Lidman, Christopher E.; Reed, Sophie L.; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Buckley-Geer, Elizabeth; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Dietrich, Jörg P.; Evrard, August E.; Finley, David A.; Flaugher, Brenna; Fosalba, Pablo; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gruendl, Robert A.; Gutierrez, Gaston; Honscheid, Klaus; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Lima, Marcos; Lin, Huan; Maia, Marcio A. G.; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Ogando, Ricardo; Plazas Malagón, Andrés; Reil, Kevin; Romer, Kathy; Sanchez, Eusebio; Santiago, Basilio; Scarpine, Vic; Sevilla-Noarbe, Ignacio; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Tucker, Douglas L.; Walker, Alistair R.
2017-03-01
We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with IAB = 18.61 and IAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θE ˜ 1.47 arcsec, enclosed mass Menc ˜ 4 × 1011 M⊙ and a time delay of ˜52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.
The Overdense Environments of WISE-selected, ultra-luminous, high-redshift AGN in the submillimetre
NASA Astrophysics Data System (ADS)
Jones, Suzy F.
2017-11-01
The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion submillimetre-selected sources. The overdensities were of ˜ 2 - 3 and ˜ 5 - 6 , respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs). All of the companion sources have consistent mid-IR colours and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function.more » Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.« less
NASA Astrophysics Data System (ADS)
Yoshiura, Shintaro; Takahashi, Keitaro
2018-01-01
The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
The Number Density of Quiescent Compact Galaxies at Intermediate Redshift
NASA Astrophysics Data System (ADS)
Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor
2014-09-01
Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.
Recovering the systemic redshift of galaxies from their Lyman alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-07-01
The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.
A simulation-based analytic model of radio galaxies
NASA Astrophysics Data System (ADS)
Hardcastle, M. J.
2018-04-01
I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.
The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog
NASA Astrophysics Data System (ADS)
Peth, Michael; Ross, N. P.; Schneider, D. P.
2010-01-01
We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.
The AzTEC/SMA Interferometric Imaging Survey of Submillimeter-selected High-redshift Galaxies
NASA Astrophysics Data System (ADS)
Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.
2009-10-01
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology—including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared—of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation—which struggle to account for such objects even under liberal assumptions—and dust production models given the limited time since the big bang.
Tidal Disruption Events Across Cosmic Time
NASA Astrophysics Data System (ADS)
Fialkov, Anastasia; Loeb, Abraham
2017-01-01
Tidal disruption events (TDEs) of stars by single or binary super-massive black holes illuminate the environment around quiescent black holes in galactic nuclei allowing to probe dorment black holes. We predict the TDE rates expected to be detected by next-generation X-ray surveys. We include events sourced by both single and binary super-massive black holes assuming that 10% of TDEs lead to the formation of relativistic jets and are therefore observable to higher redshifts. Assigning the Eddington luminosity to each event, we show that if the occupation fraction of intermediate black holes is high, more than 90% of the brightest TDE might be associated with merging black holes which are potential sources for eLISA. Next generation telescopes with improved sensitivities should probe dim local TDE events as well as bright events at high redshifts. We show that an instrument which is 50 times more sensitive than the Swift Burst Alert Telescope (BAT) is expected to trigger ~10 times more events than BAT. Majority of these events originate at low redshifts (z<0.5) if the occupation fraction of IMBHs is high and at high-redshift (z>2) if it is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez Crespo, N.; Massaro, F.; Masetti, N.
The extragalactic γ-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei. Many of the γ-ray sources included in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs) because there are no optical spectra available in the literature to confirm their nature. In 2013, we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the unidentified γ-ray sources to confirm their blazar nature. Whenever possible we also determine their redshifts. Here, we present the results of the observations carried out inmore » the northern hemisphere in 2013 and 2014 at the Telescopio Nazionale Galileo, Kitt Peak National Observatory, and Observatorio Astronómico Nacional in San Pedro Mártir. In this paper, we describe the optical spectra of 25 sources. We confirmed that all of the 15 BCUs observed in our campaign and included in our sample are blazars and we estimated the redshifts for three of them. In addition, we present the spectra for three sources classified as BL Lacs in the literature but with no optical spectra available to date. We found that one of them is a quasar (QSO) at a redshift of z = 0.208 and the other two are BL Lacs. Moreover, we also present seven new spectra for known blazars listed in the Roma-BZCAT that have an uncertain redshift or are classified as BL Lac candidates. We found that one of them, 5BZB J0724+2621, is a “changing look” blazar. According to the spectrum available in the literature, it was classified as a BL Lac, but in our observation we clearly detected a broad emission line that led us to classify this source as a QSO at z = 1.17.« less
The nature of fifty Palermo Swift-BAT hard X-ray objects through optical spectroscopy
NASA Astrophysics Data System (ADS)
Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-álvarez, V.; Stephen, J. B.; Ubertini, P.
2017-07-01
We present the nature of 50 unidentified hard X-ray emitting objects detected with Swift-BAT and listed as of unidentified nature in the 54-month Palermo BAT catalogue. We found 45 extragalactic sources: 26 type 1 AGN, 15 type 2 AGN, one type 1 QSO, one starburst galaxy, one X-ray bright optically normal galaxy, and one LINER. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary, and one is an active star.
ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belczynski, Krzysztof; Holz, Daniel E.; Fryer, Chris L.
2010-01-01
GRB 080913 and GRB 090423 are the most distant gamma-ray bursts (GRBs) known to date, with spectroscopically determined redshifts of z = 6.7 and z = 8.1, respectively. The detection of bursts at this early epoch of the universe significantly constrains the nature of GRBs and their progenitors. We perform population synthesis studies of the formation and evolution of early stars, and calculate the resulting formation rates of short- and long-duration GRBs at high redshift. The peak of the GRB rate from Population II stars occurs at z approx 7 for a model with efficient/fast mixing of metals, while itmore » is found at z approx 3 for an inefficient/slow metallicity evolution model. We show that in the redshift range 6 approx< z approx< 10, essentially all GRBs originate from Population II stars, regardless of the metallicity evolution model. These stars (having small, but non-zero metallicity) are the most likely progenitors for both long GRBs (collapsars) and short GRBs (neutron star-neutron star or blackhole-neutron star mergers) at this epoch. Although the predicted intrinsic rates of long and short GRBs are similar at these high redshifts, observational selection effects lead to higher (a factor of approx10) observed rates for long GRBs. We conclude that the two recently observed high-z GRB events are most likely long GRBs originating from Population II collapsars.« less
Optical signatures of high-redshift galaxy clusters
NASA Technical Reports Server (NTRS)
Evrard, August E.; Charlot, Stephane
1994-01-01
We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.
On the recovery of the local group motion from galaxy redshift surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusser, Adi; Davis, Marc; Branchini, Enzo, E-mail: adi@physics.technion.ac.il, E-mail: mdavis@berkeley.edu, E-mail: branchin@fis.uniroma3.it
2014-06-20
There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s}more » = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.« less
NASA Astrophysics Data System (ADS)
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
Long High Redshift GRB and Xrt/swift Lightcurves
NASA Astrophysics Data System (ADS)
Arkhangelskaja, Irene
At February of 2010 the volume of Swift GRB subset with known redshift consisted of more than 150 bursts. Long GRB redshift distribution analysis has shown that confidence level of single peak approximation of this distribution is only ˜60%. Moreover, more than 40% of GRB are in very heavy tails outside 3σ level for this fit. More detailed analysis of long GRB redshift distribution reveals that at 97% confidence level at least two subgroups could be separated with following parameters:
The 5-10 keV AGN luminosity function at 0.01 < z < 4.0
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.
2016-03-01
The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.
Lyman Continuum Escape Fraction of Star-forming Dwarf Galaxies at z ˜ 1
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian; Henry, Alaina; Rafelski, Marc; Hayes, Matthew; Salvato, Mara; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie; Malkan, Matthew; Teplitz, Harry I.
2016-03-01
To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z˜ 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (˜600) sample of z˜ 1 low-mass ({log}(\\bar{M}) ≃ 9.3{M}⊙ ), moderately star-forming (\\bar{{{\\Psi }}} ≲ 10{M}⊙ yr-1) galaxies selected initially on Hα emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L⋆) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z\\gt 6. We do not make an unambiguous detection of escaping LyC radiation from this z˜ 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, {f}{esc} \\lt 2.1% (3σ). We measure an upper limit of {f}{esc} \\lt 9.6% from a sample of SFGs selected on high Hα equivalent width (EW \\gt 200 {{\\mathringA }}), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z\\gt 6) redshift. If we assume our z˜ 1 SFGs, for which we measure this emissivity-weighted {f}{esc}, are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint ({M}{UV}≲ -13) SFGs with a low escape fraction ({f}{esc} \\lt 3%), with constraints from independent high redshift observations. If {f}{esc} evolves with redshift, reionization by SFGs may be consistent with observations from Planck.
NASA Technical Reports Server (NTRS)
Horack, J. M.; Emslie, A. G.; Hartmann, D. H.
1995-01-01
In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.
The Cosmic Web around the Brightest Galaxies during the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Ren, Keven; Trenti, Michele; Mutch, Simon J.
2018-03-01
The most luminous galaxies at high redshift are generally considered to be hosted in massive dark-matter halos of comparable number density, hence residing at the center of over-densities/protoclusters. We assess the validity of this assumption by investigating the clustering around the brightest galaxies populating the cosmic web at redshift z ∼ 8–9 through a combination of semi-analytic modeling and Monte Carlo simulations of mock Hubble Space Telescope WFC3 observations. The innovative aspect of our approach is the inclusion of a log-normal scatter parameter Σ in the galaxy luminosity versus halo mass relation, extending the conditional luminosity function framework extensively used at low redshift to high z. Our analysis shows that the larger the value of Σ, the less likely it is that the brightest source in a given volume is hosted in the most massive halo, and hence the weaker the overdensity of neighbors. We derive a minimum value of Σ as a function of redshift by considering stochasticity in the halo assembly times, which affects galaxy ages and star formation rates in our modeling. We show that Σmin(z) ∼ 0.15–0.3, with Σmin increasing with redshift as a consequence of shorter halo assembly periods at higher redshifts. Current observations (m AB ∼ 27) of the environment of spectroscopically confirmed bright sources at z > 7.5 do not show strong evidence of clustering and are consistent with our modeling predictions for Σ ≥ Σmin. Deeper future observations reaching m AB ∼ 28.2–29 would have the opportunity to clearly quantify the clustering strength and hence to constrain Σ, investigating the physical processes that drive star formation in the early universe.
Unseen Progenitors of Luminous High-z Quasars in the R h = ct Universe
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Melia, Fulvio
2017-09-01
Quasars at high redshift provide direct information on the mass growth of supermassive black holes (SMBHs) and, in turn, yield important clues about how the universe evolved since the first (Pop III) stars started forming. Yet even basic questions regarding the seeds of these objects and their growth mechanism remain unanswered. The anticipated launch of eROSITA and ATHENA is expected to facilitate observations of high-redshift quasars needed to resolve these issues. In this paper, we compare accretion-based SMBH growth in the concordance ΛCDM model with that in the alternative Friedmann-Robertson-Walker cosmology known as the R h = ct universe. Previous work has shown that the timeline predicted by the latter can account for the origin and growth of the ≳109 M ⊙ highest redshift quasars better than that of the standard model. Here, we significantly advance this comparison by determining the soft X-ray flux that would be observed for Eddington-limited accretion growth as a function of redshift in both cosmologies. Our results indicate that a clear difference emerges between the two in terms of the number of detectable quasars at redshift z ≳ 7, raising the expectation that the next decade will provide the observational data needed to discriminate between these two models based on the number of detected high-redshift quasar progenitors. For example, while the upcoming ATHENA mission is expected to detect ˜0.16 (I.e., essentially zero) quasars at z ˜ 7 in R h = ct, it should detect ˜160 in ΛCDM—a quantitatively compelling difference.
VizieR Online Data Catalog: Planck high-z source candidates catalog (PHZ) (Planck+, 2016)
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Flores-Cacho, I.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-11-01
We present in this work the Planck List of Highredshift Source Candidates (the "PHZ"), which includes 2151 sources distributed over 26% of the sky, with redshifts likely to be greater than 2. (2 data files).
Red nuggets grow inside-out: evidence from gravitational lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.
Here, we present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4 ≲ z ≲ 0.7, lying systematically below the size–mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly evolved descendants. We exploit the magnifying effect of lensing to investigate themore » structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sérsic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. Lastly, we also find that the sources can be characterized by red-to-blue colour gradients as a function of radius which are stronger at low redshift – indicative of ongoing accretion – but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are pre-dominantly associated with clusters.« less
Red nuggets grow inside-out: evidence from gravitational lensing
Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; ...
2016-11-03
Here, we present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4 ≲ z ≲ 0.7, lying systematically below the size–mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly evolved descendants. We exploit the magnifying effect of lensing to investigate themore » structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sérsic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. Lastly, we also find that the sources can be characterized by red-to-blue colour gradients as a function of radius which are stronger at low redshift – indicative of ongoing accretion – but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are pre-dominantly associated with clusters.« less
Charting the parameter space of the global 21-cm signal
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan
2017-12-01
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
Relativistic corrections and non-Gaussianity in radio continuum surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maartens, Roy; Zhao, Gong-Bo; Bacon, David
Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near andmore » beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.« less
Resolved Star Formation in Galaxies Using Slitless Spectroscopy
NASA Astrophysics Data System (ADS)
Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team
2018-06-01
The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.
RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9‑40.7
NASA Astrophysics Data System (ADS)
Acebron, Ana; Cibirka, Nathália; Zitrin, Adi; Coe, Dan; Agulli, Irene; Sharon, Keren; Bradač, Maruša; Frye, Brenda; Livermore, Rachael C.; Mahler, Guillaume; Salmon, Brett; Umetsu, Keiichi; Bradley, Larry; Andrade-Santos, Felipe; Avila, Roberto; Carrasco, Daniela; Cerny, Catherine; Czakon, Nicole G.; Dawson, William A.; Hoag, Austin T.; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Kikuchihara, Shotaro; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Ouchi, Masami; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Ryan, Russell E.; Sendra-Server, Irene; Stark, Daniel P.; Strait, Victoria; Toft, Sune; Trenti, Michele; Vulcani, Benedetta
2018-05-01
Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift universe, magnifying distant and faint background galaxies. Reliable strong-lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9‑40.7, two massive galaxy clusters imaged with the Hubble Space Telescope, in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the light-traces-mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii (θ E > 30″ for a source redshift of z s = 2), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches (∼2 arcmin2 with μ > 5 to ∼1 arcmin2 with μ > 10, similar to a typical Hubble Frontier Fields cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J ∼ 23.2–24.6 AB), multiply imaged high-redshift candidate at z ∼ 6.4. These images are among the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes.
NASA Astrophysics Data System (ADS)
Yun, Min S.; Scott, K. S.; Guo, Yicheng; Aretxaga, I.; Giavalisco, M.; Austermann, J. E.; Capak, P.; Chen, Yuxi; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Iono, D.; Johnson, S.; Kawabe, R.; Kohno, K.; Lowenthal, J.; Miller, N.; Morrison, G.; Oshima, T.; Perera, T. A.; Salvato, M.; Silverman, J.; Tamura, Y.; Williams, C. C.; Wilson, G. W.
2012-02-01
We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1-mm wavelength imaging survey of the Great Observatories Origins Deep Survey-South (GOODS-S) field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment. One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera, and Large APEX Bolometer Camera 870 μm data. Five of the sources (10 per cent) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analysing ultraviolet(UV)-to-optical and infrared(IR)-to-radio spectral energy distributions (SEDs). The median redshift of zmed˜ 2.6 is similar to other earlier estimates, but we show that 80 per cent of the AzTEC-GOODS sources are at z≥ 2, with a significant high-redshift tail (20 per cent at z≥ 3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 mag in the i- and K-band photometry (a factor of 104 in flux density) with median values of i= 25.3 and K= 22.6 and a broad range of red colour (i-K= 0-6) with an average value of i-K≈ 3. These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z≥ 2, with inferred stellar masses M*= (1-30) × 1010 M⊙ and UV-derived SFRs of SFRUV≳ 101-3 M⊙ yr-1. The IR-derived SFR, 200-2000 M⊙ yr-1, is independent of z or M*. The resulting specific star formation rates, SSFR ≈ 1-100 Gyr-1, are 10-100 times higher than similar mass galaxies at z= 0, and they extend the previously observed rapid rise in the SSFR with redshift to z= 2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time. We find only marginal evidence for an active galactic nucleus (AGN) contribution to the near-IR and mid-IR SEDs, even among the X-ray detected sources, and the derived M* and SFR show little dependence on the presence of an X-ray bright AGN.
Investigation of redshift- and duration-dependent clustering of gamma-ray bursts
Ukwatta, T. N.; Woźniak, P. R.
2015-11-05
Gamma-ray bursts (GRBs) are detectable out to very large distances and as such are potentially powerful cosmological probes. Historically, the angular distribution of GRBs provided important information about their origin and physical properties. As a general population, GRBs are distributed isotropically across the sky. However, there are published reports that once binned by duration or redshift, GRBs display significant clustering. We have studied the redshift- and duration-dependent clustering of GRBs using proximity measures and kernel density estimation. Utilizing bursts detected by Burst and Transient Source Experiment, Fermi/gamma-ray burst monitor, and Swift/Burst Alert Telescope, we found marginal evidence for clustering inmore » very short duration GRBs lasting less than 100 ms. As a result, our analysis provides little evidence for significant redshift-dependent clustering of GRBs.« less
Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8
NASA Astrophysics Data System (ADS)
Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei
2018-01-01
The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks that have been observed in Hα-emitting galaxies two billion years later, at ‘cosmic noon’.
An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys
NASA Astrophysics Data System (ADS)
Seijak, Uros
Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.
Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8.
Smit, Renske; Bouwens, Rychard J; Carniani, Stefano; Oesch, Pascal A; Labbé, Ivo; Illingworth, Garth D; van der Werf, Paul; Bradley, Larry D; Gonzalez, Valentino; Hodge, Jacqueline A; Holwerda, Benne W; Maiolino, Roberto; Zheng, Wei
2018-01-10
The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this 'epoch of reionization' involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C ii] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C ii] luminosities than would be expected from local scaling relations, and searches for the [C ii] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C ii] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C ii] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C ii] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks that have been observed in Hα-emitting galaxies two billion years later, at 'cosmic noon'.
H-ATLAS/GAMA: magnification bias tomography. Astrophysical constraints above ∼1 arcmin
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Nuevo, J.; Bonavera, L.; Lapi, A.
An unambiguous manifestation of the magnification bias is the cross-correlation between two source samples with non-overlapping redshift distributions. In this work we measure and study the cross-correlation signal between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2< z <0.8, and a background sample of H-ATLAS galaxies with photometric redshifts ∼>1.2. It constitutes a substantial improvement over the cross-correlation measurements made by Gonzalez-Nuevo et al. (2014) with updated catalogues and wider area (with S / N ∼> 5 below 10 arcmin and reaching S / N ∼ 20 below 30 arcsec). The better statistics allow usmore » to split the sample in different redshift bins and to perform a tomographic analysis (with S / N ∼> 3 below 10 arcmin and reaching S / N ∼ 15 below 30 arcsec). Moreover, we implement a halo model to extract astrophysical information about the background galaxies and the deflectors that are producing the lensing link between the foreground (lenses) and background (sources) samples. In the case of the sources, we find typical mass values in agreement with previous studies: a minimum halo mass to host a central galaxy, M {sub min}∼ 10{sup 12.26} M {sub ⊙}, and a pivot halo mass to have at least one sub-halo satellite, M {sub 1∼} 10{sup 12.84} M {sub ⊙}. However, the lenses are massive galaxies or even galaxy groups/clusters, with minimum mass of M {sub min}{sup lens}∼ 10{sup 13.06} M {sub ⊙}. Above a mass of M {sub 1}{sup lens}∼ 10{sup 14.57} M {sub ⊙} they contain at least one additional satellite galaxy which contributes to the lensing effect. The tomographic analysis shows that, while M {sub 1}{sup lens} is almost redshift independent, there is a clear evolution of increase M {sub min}{sup lens} with redshift in agreement with theoretical estimations. Finally, the halo modeling allows us to identify a strong lensing contribution to the cross-correlation for angular scales below 30 arcsec. This interpretation is supported by the results of basic but effective simulations.« less
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; ...
2016-11-17
In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.
In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less
Comparison of z-known GRBs with the Main Groups of Bright BATSE Events
NASA Technical Reports Server (NTRS)
Mitrofanov, Igor G.; Sanin, Anton B.; Anfimov, Dmitrij S.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The small reference sample of six BATSE gamma-ray bursts with known redshifts from optical afterglows is compared with a comparison group of the 218 brightest BATSE bursts. These two groups are shown to be consistent both with respect to the distributions of the spectral peak parameter in the observer's frame and also with respect to the distributions of the frame-independent cosmological invariant parameter (CIP). Using the known values of the redshifts z for the reference sample, the rest-frame distribution of spectral parameters is built. The de-redshifted distribution of the spectral parameters of the reference sample is compared with distribution of these parameters for the comparison group after de-redshifting by the factor 1/(1+z), with z a free parameter. Requiring consistency between these two distributions produces a collective estimation of the best fitting redshifts z for the comparison group, z=1.8--3.6. These values can be considered as the average cosmological redshift of the sources of the brightest BATSE bursts. The most probable value of the peak energy of the spectrum in the rest frame is 920 keV, close to the rest mass of an electron-positron pair.
A luminous quasar at a redshift of z = 7.085.
Mortlock, Daniel J; Warren, Stephen J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzáles-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Röttgering, Huub J A
2011-06-29
The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.
Molecular jet of IRAS 04166+2706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang-Yao; Shang, Hsien; Su, Yu-Nung
2014-01-01
The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array at a 350 GHz continuum and CO J = 3-2 at an angular resolution of ∼1''. The field of view covers the central arcminute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low-velocity range (|V – V {sub 0}| < 10 km s{sup –1}), and the highly collimated knots appear in the extremely high velocity range (50 >|V – V {sub 0}| > 30 km s{sup –1}). The higher angular resolution of ∼1''more » reveals the first blue-shifted knot (B1) that was missing in previous Plateau de Bure Interferometer observation of Santiago-García et al. at an offset of ∼6'' to the northeast of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2-1 images in Santiago-García et al., the emission in CO J = 3-2 almost always peaks further away from the central source than that of CO J = 2-1 in the red-shifted lobe of the channel maps. This gives rise to a gradient in the line-ratio map of CO J = 3-2/J = 2-1 from head to tail within a knot. A large velocity gradient analysis suggests that the differences may reflect a higher gas kinetic temperature at the head. We also explore possible constraints imposed by the nondetection of SiO J = 8-7.« less
The ISO-IRAS Faint Galaxy Survey
NASA Technical Reports Server (NTRS)
Smith, Harding E.
1999-01-01
As part of the ISO-IRAS Faint Galaxy Survey ISO Satellite observations of over 600 IRAS sources have been obtained with the ISOCAM instrument. Because our survey strategy involved relatively short integrations, great care was required in developing analysis software including cosmic-ray and transient removal and calibration. These observations have now been through final pipeline processing at IPAC and ground-based follow-up is ongoing. The observations are for sources from two samples: a " Filler' sample selected to be at z greater than 0.1 and a fainter sample which selected for the highest redshift galaxies in the IRAS survey, with redshifts 0.2 less than z less than 1.0. I now have obtained ground-based follow-up spectrophotometry at Lick and Palomar observatories for 100 LFIRGs with 0.1 less than z less than 0.7. Our observations have confirmed that these systems are comparable to nearby LFIRGs such as Arp 220, with L (sub -)(fir) greater than 10(exp 11) L(sub -) sun and typically HII/Liner optical excitation. About 10% of the galaxies show true AGN (Sy2) excitation. Based on our work on a nearby complete sample of LFIRGS, we believe that the majority of these systems are luminous Starbursts, thus this project is tracing the luminous end of the galaxy star-forming luminosity function - the (infrared) star-formation history of the Universe to z approx. 1, a topic of some considerable recent interest. A by-product of these ISOCAM observations is approximately 1 square degree of deep 2 microns pointings outside the IRAS error boxes, allowing us an independent estimate of the mid-infrared log N - log S relation. Ground-based observations of this sample are continuing.
Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55
NASA Astrophysics Data System (ADS)
Núñez, Carolina; Spergel, David N.; Ho, Shirley
2017-02-01
We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.
Recovering the systemic redshift of galaxies from their Lyman-alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-04-01
The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
NASA Technical Reports Server (NTRS)
Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.;
2016-01-01
Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-Alpha emission and the Lyman break from a z = 7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble SpaceTelescope (HST), show a significant emission line detection (6 Sigma) in two observational position angles (PA), with Lyman-Alpha line flux of 1.06 +/- 0.19 x 10(exp -17) erg s(exp -1) cm(exp -2). The line flux is nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-Alpha measurements. A 4-Alpha detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), and if confirmed would make this source the highest-redshift AGN yet found.These observations from the Hubble Space Telescope thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.
NASA Astrophysics Data System (ADS)
Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.
2016-12-01
We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Johnston, Helen M.
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less
NASA Astrophysics Data System (ADS)
Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.
2018-03-01
The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 < z < 0.5, were proposed. Since these active galactic nuclei (AGNs) are hosted, typically, in early-type galaxies that are members of groups or clusters, we have analysed spectro-photometrically the environment of 3C 66A, with the goal of finding the galaxy group hosting this blazar. This study was made using optical images of a 5.5 × 5.5 arcmin2 field centred on the blazar, and spectra of 24 sources obtained with Gemini/GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.
Weak-Lensing Detection of Cl 1604+4304 at z=0.90
NASA Astrophysics Data System (ADS)
Margoniner, V. E.; Lubin, L. M.; Wittman, D. M.; Squires, G. K.
2005-01-01
We present a weak-lensing analysis of the high-redshift cluster Cl 1604+4304. At z=0.90, this is the highest redshift cluster yet detected with weak lensing. It is also one of a sample of high-redshift, optically selected clusters whose X-ray temperatures are lower than expected based on their velocity dispersions. Both the gas temperature and galaxy velocity dispersion are proxies for its mass, which can be determined more directly by a lensing analysis. Modeling the cluster as a singular isothermal sphere, we find that the mass contained within projected radius R is (3.69+/-1.47)[R/(500 kpc)]×1014 Msolar. This corresponds to an inferred velocity dispersion of 1004+/-199 km s-1, which agrees well with the velocity dispersion of 989+98-76 km s-1 recently measured by Gal & Lubin. These numbers are higher than the 575+110-85 km s-1 inferred from Cl 1604+4304's X-ray temperature; however, all three velocity dispersion estimates are consistent within ~1.9 σ.
An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.
Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A
2006-03-09
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.
Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept
NASA Technical Reports Server (NTRS)
Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.
2004-01-01
Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.
HIghZ: A search for HI absorption in high-redshift radio galaxies
NASA Astrophysics Data System (ADS)
Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.
2017-01-01
We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.
Tracing accelerated galaxy formation in a proto-cluster at z=3.8 with GMOS
NASA Astrophysics Data System (ADS)
Handel Hughes, David; Lowenthal, James; Wilson, Grant; Yun, Min S.; Fazio, Giovanni G.; Huang, Jiasheng; Aretxaga, Itziar; Porras, Alicia; Smail, Ian; Ivison, Rob J.; Stevens, Jason; Dunlop, James S.
2007-08-01
The 1.1mm AzTEC camera has recently conducted the largest and most sensitive survey at mm-wavelengths towards a powerful high-redshift radio galaxy: 4C41.17 at z 3.8. The 1.1mm map reveals a significant over-density of luminous, massive dust-enshrouded galaxies, a factor of 10 more numerous than the blank-field mm-galaxy population, which statistically is expected to lie at lower-redshifts, z 2.2. The AzTEC sources are expected to trace the bulk of the elliptical galaxy formation within a massive protocluster at z 3.8, over an unprecedentedly large area of 6 x 6 Mpc^2. We propose to acquire multi-object spectroscopic observations over 3 adjacent GMOS fields to provide redshifts for 5 SMA/AzTEC sources, which have sub-arcsec interferometric precisions, identifying unambiguously their optical/IR counterparts, which are inferred to be forming stars at rates in excess of 500 M_sun/yr ( L(FIR) > 10^13 L_sun ). Although these are dusty objects, we expect most of them to have patchy obscuration, and thus be able to detect emission-lines from the star-forming regions, as has been achieved with the mm-selected blank-field population. Additional slitlets in the 3 GMOS masks will also simultaneously measure the redshift of 30 neighbouring (< 20") optical/Spitzer selected galaxies that could be associated with the haloes of these SMA detected AzTEC sources, and 60 additional optical/Spitzer sources that, through photo-z, are likely to be at z 3.8 and be associated with other mm-galaxies that lie within the AzTEC map. These GMOS data will identify whether small groups of dynamically-interacting galaxies in the local environment (dark matter haloes) of the gas-rich, luminous starburst AzTEC sources are stimulating the accelerated levels of galaxy formation observed towards this biased region (protocluster) in the early Universe.
Lensing corrections to features in the angular two-point correlation function and power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam
2008-01-15
It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Lacy, Mark; Sajina, Anna
We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μ m over five well-studied deep fields spanning 18 deg{sup 2}. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from themore » VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 < z < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.« less
Astronomers Set a New Galaxy Distance Record
2015-05-06
This is a Hubble Space Telescope image of the farthest spectroscopically confirmed galaxy observed to date (inset). It was identified in this Hubble image of a field of galaxies in the CANDELS survey (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey). NASA’s Spitzer Space Telescope also observed the unique galaxy. The W. M. Keck Observatory was used to obtain a spectroscopic redshift (z=7.7), extending the previous redshift record. Measurements of the stretching of light, or redshift, give the most reliable distances to other galaxies. This source is thus currently the most distant confirmed galaxy known, and it appears to also be one of the brightest and most massive sources at that time. The galaxy existed over 13 billion years ago. The near-infrared light image of the galaxy (inset) has been colored blue as suggestive of its young, and hence very blue, stars. The CANDELS field is a combination of visible-light and near-infrared exposures. Credits: NASA, ESA, P. Oesch (Yale U.)
The XXL Survey. VI. The 1000 brightest X-ray point sources
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Pacaud, F.; Paltani, S.; Ranalli, P.; Ramos-Ceja, M. E.; Faccioli, L.; Plionis, M.; Adami, C.; Bongiorno, A.; Brusa, M.; Chiappetti, L.; Desai, S.; Elyiv, A.; Lidman, C.; Melnyk, O.; Pierre, M.; Piconcelli, E.; Vignali, C.; Alis, S.; Ardila, F.; Arnouts, S.; Baldry, I.; Bremer, M.; Eckert, D.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Liske, J.; Maurogordato, S.; Menanteau, F.; Mohr, J. J.; Owers, M.; Poggianti, B.; Pompei, E.; Sadibekova, T.; Stanford, A.; Tuffs, R.; Willis, J.
2016-06-01
Context. X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). Usually, a combination of deep and wide surveys is necessary to create a complete picture of the population. Deep X-ray surveys provide the faint population at high redshift, while wide surveys provide the rare bright sources. Nevertheless, very wide area surveys often lack the ancillary information available for modern deep surveys. The XXL survey spans two fields of a combined 50 deg2 observed for more than 6Ms with XMM-Newton, occupying the parameter space that lies between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. Aims: This paper marks the first release of the XXL point source catalogue including four optical photometry bands and redshift estimates. Our sample is selected in the 2 - 10 keV energy band with the goal of providing a sizable sample useful for AGN studies. The limiting flux is F2 - 10 keV = 4.8 × 10-14 erg s-1 cm-2. Methods: We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources by means of a likelihood ratio test. We improve upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift category (passive, star forming, starburst, AGN, quasi-stellar objects (QSO)). Additionally, we assign a probability to each source that indicates whether it might be a star or an outlier. We apply Bayesian analysis to model the X-ray spectra assuming a power-law model with the presence of an absorbing medium. Results: We find that the average unabsorbed photon index is ⟨Γ⟩ = 1.85 ± 0.40 while the average hydrogen column density is log ⟨NH⟩ = 21.07 ± 1.2 cm-2. We find no trend of Γ or NH with redshift and a fraction of 26% absorbed sources (log NH> 22) consistent with the literature on bright sources (log Lx> 44). The counterpart identification rate reaches 96.7% for sources in the northern field, 97.7% for the southern field, and 97.2% in total. The photometric redshift accuracy is 0.095 for the full XMM-XXL with 28% catastrophic outliers estimated on a sample of 339 sources. Conclusions: We show that the XXL-1000-AGN sample number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2 - 10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z = 3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area, is a stepping stone between current deep fields and planned wide area surveys. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories under programme ID 089.A-0666 and LP191.A-0268.A copy of the XXL-1000-AGN Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A5
THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-includingmore » the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.« less
SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yun-Ting; Bock, James; Bradford, C. Matt
2016-12-01
Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Ximena; Gim, Hansung B.; Yun, Min S.
2016-06-10
Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ∼ 0.5. Here, we report the highest redshift H i 21more » cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 10{sup 10} M {sub ⊙} and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8–9.9) × 10{sup 10} M {sub ⊙}. This is the first study of the H i and CO in emission for a single galaxy beyond z ∼ 0.2.« less
Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z=6.28
NASA Astrophysics Data System (ADS)
Stiavelli, M.; Djorgovski, S. G.; Pavlovsky, C.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G.
2005-03-01
We present tentative evidence of primordial clustering, manifested as an excess of color-selected objects in the field of the QSO SDSS J1030+0524 at redshift z=6.28. We have selected objects red in i775-z850 on the basis of Hubble Space Telescope Advanced Camera for Surveys imaging of a field centered on the QSO. Compared to data at comparable depth obtained by the Great Observatories Origins Deep Survey, we find an excess of objects with i775-z850>=1.5 in the QSO field. The significance of the detection is estimated to be ~97% on the basis of the counts alone and increases to 99.4% if one takes into account the color distribution. If confirmed, this would represent the highest redshift example of galaxy clustering and would have implications on models for the growth of structure. Bias-driven clustering of first luminous objects forming in the highest peaks of the primordial density field is expected in most models of early structure formation. The redshift of one of the candidates has been found to be z=5.970 by our spectroscopy with the Keck I Low Resolution Imaging Spectrometer, confirming the validity of our color selection. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Unseen Progenitors of Luminous High- z Quasars in the R {sub h} = ct Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatuzzo, Marco; Melia, Fulvio, E-mail: fatuzzo@xavier.edu, E-mail: fmelia@email.arizona.edu
Quasars at high redshift provide direct information on the mass growth of supermassive black holes (SMBHs) and, in turn, yield important clues about how the universe evolved since the first (Pop III) stars started forming. Yet even basic questions regarding the seeds of these objects and their growth mechanism remain unanswered. The anticipated launch of eROSITA and ATHENA is expected to facilitate observations of high-redshift quasars needed to resolve these issues. In this paper, we compare accretion-based SMBH growth in the concordance ΛCDM model with that in the alternative Friedmann–Robertson–Walker cosmology known as the R {sub h} = ct universe.more » Previous work has shown that the timeline predicted by the latter can account for the origin and growth of the ≳10{sup 9} M {sub ⊙} highest redshift quasars better than that of the standard model. Here, we significantly advance this comparison by determining the soft X-ray flux that would be observed for Eddington-limited accretion growth as a function of redshift in both cosmologies. Our results indicate that a clear difference emerges between the two in terms of the number of detectable quasars at redshift z ≳ 7, raising the expectation that the next decade will provide the observational data needed to discriminate between these two models based on the number of detected high-redshift quasar progenitors. For example, while the upcoming ATHENA mission is expected to detect ∼0.16 (i.e., essentially zero) quasars at z ∼ 7 in R {sub h} = ct , it should detect ∼160 in ΛCDM—a quantitatively compelling difference.« less
Physical Properties of 15 Quasars at z ≳ 6.5
NASA Astrophysics Data System (ADS)
Mazzucchelli, C.; Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Walter, F.; Eilers, A.-C.; Rix, H.-W.; Simcoe, R.; Stern, D.; Fan, X.; Schlafly, E.; De Rosa, G.; Hennawi, J.; Chambers, K. C.; Greiner, J.; Burgett, W.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.; Metcalfe, N.; Waters, C.; Wainscoat, R. J.
2017-11-01
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z> 6.5 (<800 Myr after the big bang). In this work, we present six additional z≳ 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z≳ 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z≳ 6.5 quasars show large blueshifts of the broad C IV λ1549 emission line compared to the systemic redshift of the quasars, with a median value ˜3× higher than a quasar sample at z˜ 1; (2) we estimate the quasars’ black hole masses ({M}{BH} ˜ (0.3-5) × 109 M ⊙) via modeling of the Mg II λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with < ({L}{bol}/{L}{Edd})> =0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z˜ 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.
NASA Technical Reports Server (NTRS)
Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe;
2010-01-01
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.
EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoville, N.; Benson, A.; Fu, Hai
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less
DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay L.
We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet,more » and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecker, Floyd William; Scully, Sean T.
2010-02-01
We derive a relation for the steepening of blazar {gamma}-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar {gamma}-rays with low-energy photons of the 'intergalactic background light' (IBL). Given this relation, with good enough data on the mean {gamma}-ray spectral energy distribution of TeV-selected BL Lac objects, the redshift evolutionmore » of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV-selected blazars.« less
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Nep-Akari Evolution with Redshift of Dust Attenuation in 8 ㎛ Selected Galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Oi, N.; Burgarella, D.; Malek, K.; Matsuhara, H.; Murata, K.; Serjeant, S.; Takeuchi, T. T.; Malkan, M.; Pearson, C.; Wada, T.
2017-03-01
We built a 8um selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul
2016-12-01
We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.
A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2012-02-10
We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing amore » full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.« less
NASA Astrophysics Data System (ADS)
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-01
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
NASA Astrophysics Data System (ADS)
O'Donoghue, Aileen A.; Haynes, Martha P.; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; Giovanelli, Riccardo; Hoffman, Lyle; Craig, David W.; Undergraduate ALFALFA Team
2017-01-01
We have completed three “Harvesting ALFALFA” Arecibo observing programs in the direction of the Pisces-Perseus Supercluster (PPS) since ALFALFA observations were finished in 2012. The first was to perform follow-up observations on high signal-to-noise (S/N > 6.5) ALFALFA detections needing confirmation and low S/N sources lacking optical counterparts. A few more high S/N objects were observed in the second program along with targets visually selected from the Sloan Digital Sky Survey (SDSS). The third program included low S/N ALFALFA sources having optical counterparts with redshifts that were unknown or differed from the ALFALFA observations. It also included more galaxies selected from SDSS by eye and by Structured Query Language (SQL) searches with parameters intended to select galaxies at the distance of the PPS (~6,000 km/s). We used pointed basic Total-Power Position-Switched Observations in the 1340 - 1430 MHz ALFALFA frequency range. For sources of known redshift, we used the Wideband Arecibo Pulsar Processors (WAPP’s) , while for sources of unknown redshift we utilized a hybrid/dual bandwidth Doppler tracking mode using the Arecibo Interim 50-MHz Correlator with 9-level sampling.Results confirmed that a few high S/N ALFALFA sources are spurious as expected from the work of Saintonge (2007), low S/N ALFALA sources lacking an optical counterpart are all likely to be spurious, but low S/N sources with optical counterparts are generally reliable. Of the optically selected sources, about 80% were detected and tended to be near the distance of the PPS.This work has been supported by NSF grant AST-1211005.
Discovery of the Most Ultra-Luminous QSO Using GAIA, SkyMapper, and WISE
NASA Astrophysics Data System (ADS)
Wolf, Christian; Bian, Fuyan; Onken, Christopher A.; Schmidt, Brian P.; Tisserand, Patrick; Alonzi, Noura; Hon, Wei Jeat; Tonry, John L.
2018-06-01
We report the discovery of the ultra-luminous quasi-stellar object SMSS J215728.21-360215.1 with magnitude z = 16.9 and W4 = 7.42 at redshift 4.75. Given absolute magnitudes of M145, AB = -29.3, M300, AB = -30.12, and logLbol/Lbol, ⊙ = 14.84, it is the quasi-stellar object with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer. In the GAIA database, it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NRAO-VLA Sky Survey or Sydney University Molonglo Southern Survey. It is classed as a weak-emission-line quasi-stellar object and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from 2015 October to 2017 December shows little sign of variability.
NASA Astrophysics Data System (ADS)
Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2017-04-01
This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Jauncey, D. L.; Johnston, H. M.
2011-11-15
We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less
NASA Astrophysics Data System (ADS)
Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.
2011-04-01
Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the online material accompanying this article, we present source catalogs at 24 μm and 70 μm for both the GOODS-North and -South fields. Appendices are only available in electronic form at http://www.aanda.orgFull Tables B1-B4 are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A35
Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution
NASA Astrophysics Data System (ADS)
Mancuso, Claudia
2016-10-01
We have exploited the continuity equation approach and the star-formation timescales derived from the observed 'main sequence' relation (Star Formation Rate vs Stellar Mass), to show that the observed high abundance of galaxies with stellar masses ≥ a few 10^10 M⊙ at redshift z ≥ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≥ 10^2 M⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≤ 3 in the Far-InfraRed (FIR) band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼10, elucidating that the number density at z ≤ 8 for SFRs ψ ≥ 30 M⊙ yr^-1 cannot be estimated relying on the UltraViolet (UV) luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ≤ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2. The same could be done with radio observations by SKA and its precursors. In particular we have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. To do that we exploited our SFR functions with relations between SFR and radio (synchrotron and free-free) emission. Our results show that the deepest SKA1- MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys. We finally provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences (MS) of star-forming galaxies and active galactic nuclei at high redshift z ≥ 1. We achieve this goal in a model-independent way by exploiting the redshift-dependent SFR functions, and the deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and active galactic nucleus (AGN) bolometric luminosity functions at different redshifts via, again, the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data strongly support a scenario of in situ coevolution for star formation and black hole accretion, envisaging these as local, time coordinated processes.
Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.
2012-01-01
Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions: We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it was stripped from galaxies and spread into the intracluster medium. Based on observations made at ESO Telescopes at the Paranal Observatory under programme ID 082.A-0374. Also based on the use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archives at the Space Telescope European Coordinating Facility and the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
A faint galaxy redshift survey behind massive clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, Brenda Louise
1999-05-01
This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. Themore » gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.« less
NASA Astrophysics Data System (ADS)
Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.
2016-05-01
Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The catalogues, together with the final processed images for all HST bands (as well as some diagnostic data and images), are publicly available and can be downloaded from the Astrodeep website at http://www.astrodeep.eu/frontier-fields/ and from a dedicated CDS webpage (http://astrodeep.u-strasbg.fr/ff/index.html). The catalogues are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A31
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data
Kyle S. Dawson
2016-02-04
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle S. Dawson
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with amore » total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.« less
Peculiar velocity measurement in a clumpy universe
NASA Astrophysics Data System (ADS)
Habibi, Farhang; Baghram, Shant; Tavasoli, Saeed
Aims: In this work, we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0.5 < z < 2), deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task, we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then, we use the SNe Ia sample of Union 2, to investigate the relativistic effects, we consider. Results: We show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here, we quantify this effect. We show that at low redshifts the lensing effect is negligible compare to the effect of peculiar velocity. From the observational point of view, we show that the uncertainties on luminosity of the present SNe Ia data prevent us from precise measuring the peculiar velocities even at low redshifts (z < 0.2).
Cosmological gravitational waves
NASA Technical Reports Server (NTRS)
Linder, Eric V.
1988-01-01
A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.
NASA Astrophysics Data System (ADS)
Kapińska, A. D.; Uttley, P.; Kaiser, C. R.
2012-08-01
Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large-scale structure. We explore the intrinsic and extrinsic properties of the population of Fanaroff-Riley type II (FR II) objects, i.e. their kinetic luminosities, lifetimes and the central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux-limited radio catalogues of the Third Cambridge Revised Revised Catalogue (3CRR) and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The new Monte Carlo method we present here allows us to (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, as has not been done before, we allow the source physical properties (kinetic luminosities, lifetimes and central densities) to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1 + z)3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FR IIs with those determined from radiative luminosities of active galactic nuclei of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FR IIs at low redshifts, or a transition to a kinetically dominated, radiatively inefficient FR II population.
Imaging the redshifted 21 cm pattern around the first sources during the cosmic dawn using the SKA
NASA Astrophysics Data System (ADS)
Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Choudhuri, Samir
2017-01-01
Understanding properties of the first sources in the Universe using the redshifted H I 21 cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21 cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the H I 21 cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we also account for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over 10-30 arcmin angular scale, the isolated sources at z ˜ 15 are detectable with the ˜4σ-9σ confidence level in 2000 h of observation with the SKA1-low. Although the 21 cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the source properties. We account for overlaps in the patterns of the individual sources by generating realistic H I 21 cm maps of the cosmic dawn that are based on N-body simulations and a one-dimensional radiative transfer code. We find that these sources should be detectable in the SKA1-low images at z = 15 with a signal-to-noise ratio (SNR) of ˜14(4) in 2000 (200) h of observations. One possible observational strategy thus could be to observe multiple fields for shorter observation times, identify fields with SNR ≳ 3 and observe these fields for much longer duration. Such observations are expected to be useful in constraining the parameters related to the first sources.
The Herschel Bright Sources (HerBS): sample definition and SCUBA-2 observations
NASA Astrophysics Data System (ADS)
Bakx, Tom J. L. C.; Eales, S. A.; Negrello, M.; Smith, M. W. L.; Valiante, E.; Holland, W. S.; Baes, M.; Bourne, N.; Clements, D. L.; Dannerbauer, H.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S.; Marchetti, L.; Michałowski, M. J.; Omont, A.; Oteo, I.; Wardlow, J. L.; van der Werf, P.; Yang, C.
2018-01-01
We present the Herschel Bright Sources (HerBS) sample, a sample of bright, high-redshift Herschel sources detected in the 616.4 deg2 Herschel Astrophysical Terahertz Large Area Survey. The HerBS sample contains 209 galaxies, selected with a 500 μm flux density greater than 80 mJy and an estimated redshift greater than 2. The sample consists of a combination of hyperluminous infrared galaxies and lensed ultraluminous infrared galaxies during the epoch of peak cosmic star formation. In this paper, we present Submillimetre Common-User Bolometer Array 2 (SCUBA-2) observations at 850 μm of 189 galaxies of the HerBS sample, 152 of these sources were detected. We fit a spectral template to the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) and 850 μm SCUBA-2 flux densities of 22 sources with spectroscopically determined redshifts, using a two-component modified blackbody spectrum as a template. We find a cold- and hot-dust temperature of 21.29_{-1.66}^{+1.35} and 45.80_{-3.48}^{+2.88} K, a cold-to-hot dust mass ratio of 26.62_{-6.74}^{+5.61} and a β of 1.83_{-0.28}^{+0.14}. The poor quality of the fit suggests that the sample of galaxies is too diverse to be explained by our simple model. Comparison of our sample to a galaxy evolution model indicates that the fraction of lenses are high. Out of the 152 SCUBA-2 detected galaxies, the model predicts 128.4 ± 2.1 of those galaxies to be lensed (84.5 per cent). The SPIRE 500 μm flux suggests that out of all 209 HerBS sources, we expect 158.1 ± 1.7 lensed sources, giving a total lensing fraction of 76 per cent.
Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12
NASA Astrophysics Data System (ADS)
Jarrett, T. H.; Cluver, M. E.; Magoulas, C.; Bilicki, M.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Croom, S.; Driver, S.; Holwerda, B. W.; Hopkins, A. M.; Loveday, J.; Norberg, P.; Peacock, J. A.; Popescu, C. C.; Sadler, E. M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.
2017-02-01
We present an analysis of the mid-infrared Wide-field Infrared Survey Explorer (WISE) sources seen within the equatorial GAMA G12 field, located in the North Galactic Cap. Our motivation is to study and characterize the behavior of WISE source populations in anticipation of the deep multiwavelength surveys that will define the next decade, with the principal science goal of mapping the 3D large-scale structures and determining the global physical attributes of the host galaxies. In combination with cosmological redshifts, we identify galaxies from their WISE W1 (3.4 μm) resolved emission, and we also perform a star-galaxy separation using apparent magnitude, colors, and statistical modeling of star counts. The resulting galaxy catalog has ≃590,000 sources in 60 deg2, reaching a W1 5σ depth of 31 μJy. At the faint end, where redshifts are not available, we employ a luminosity function analysis to show that approximately 27% of all WISE extragalactic sources to a limit of 17.5 mag (31 μJy) are at high redshift, z> 1. The spatial distribution is investigated using two-point correlation functions and a 3D source density characterization at 5 Mpc and 20 Mpc scales. For angular distributions, we find that brighter and more massive sources are strongly clustered relative to fainter sources with lower mass; likewise, based on WISE colors, spheroidal galaxies have the strongest clustering, while late-type disk galaxies have the lowest clustering amplitudes. In three dimensions, we find a number of distinct groupings, often bridged by filaments and superstructures. Using special visualization tools, we map these structures, exploring how clustering may play a role with stellar mass and galaxy type.
Dense magnetized plasma associated with a fast radio burst.
Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K
2015-12-24
Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.
CATALOG AND STATISTICAL STUDY OF X-RAY SELECTED BL LACERTAE OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanadze, Bidzina Z., E-mail: bidzina_kapandaze@iliauni.edu.ge
2013-02-01
This paper presents a catalog of 312 X-ray selected BL Lacerate objects (XBLs), optically identified through the end of 2011. It contains the names from different surveys, equatorial coordinates, redshifts, multifrequency flux values, and luminosities for each source. In addition, the different characteristics of XBLs are statistically investigated (redshift, radio/optical/X-ray luminosities, central black hole (BH) mass, synchrotron peak frequency, broadband spectral indices, optical flux variability). Their values are collected through an extensive bibliographic and database search or calculated by us. The redshifts range from 0.031 to 0.702 with a maximum of the distribution at z = 0.223. The 1.4 GHzmore » luminosities of XBLs log {nu}L{sub {nu}} {approx} 39-42 erg s{sup -1} while optical V and X-ray 0.1-2.4 keV bands show log {nu}L{sub {nu}} {approx} 43-46 erg s{sup -1}. The XBL hosts are elliptical galaxies with effective radii r{sub eff} = 3.2625.40 kpc and ellipticities, in = 0.040.52. Their R-band absolute magnitudes M{sub R} range from -21.11 mag to -24.86 mag with a mean value of -22.83 mag. The V - R indices of the hosts span from 0.61 to 1.52 and reveal a fourth-degree polynomial relationship with z that enables us to evaluate the redshifts of five sources whose V - R indices were determined from the observations but whose irredshifts values are either not found or not confirmed. The XBL nuclei show a wider range of 7.31 mag for M{sub R} with the highest luminosity corresponding to M{sub R} = -27.24 mag. The masses of central BHs are found in the interval log M{sub BH} = 7.39-9.30 solar masses (with distribution maximum at log M{sub BH}/M{sub Sun} = 8.30). The synchrotron peak frequencies are spread over the range log {nu}{sub peak} = 14.56-19.18 Hz with a peak of the distribution at log {nu}{sub peak} = 16.60 Hz. The broadband radio-to-optical ({alpha}{sub ro}), optical-to-X-ray ({alpha}{sub ox}), and radio-to-X-ray ({alpha}{sub rx}) spectral indices are distributed in the intervals (0.17,0.59), (0.56,1.48), and (0.41,0.75), respectively. In the optical energy range, the overall flux variability increases, on average, towards shorter wavelengths: ({Delta}m) = 1.22, 1.50, and 1.82 mag through the R, V, B bands of Johnson-Cousins system, respectively. XBLs seem be optically less variable at the intranight timescales compared to the radio-selected BL Lacs (RBLs).« less
Automated reliability assessment for spectroscopic redshift measurements
NASA Astrophysics Data System (ADS)
Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.
2018-03-01
Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for spectroscopic redshift measurements. This newly-defined method is very promising for next-generation large spectroscopic surveys from the ground and in space, such as Euclid and WFIRST. A table of the reclassified VVDS redshifts and reliability is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A53
The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field
NASA Astrophysics Data System (ADS)
Hale, C. L.; Jarvis, M. J.; Delvecchio, I.; Hatfield, P. W.; Novak, M.; Smolčić, V.; Zamorani, G.
2018-03-01
Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over ˜2 deg2 of the Cosmological Evolution Survey (COSMOS) field. We split the radio source population into star-forming galaxies (SFGs) and active galactic nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to z < 1, we find SFGs have a bias, b = 1.5 ^{+0.1}_{-0.2}, at a median redshift of z = 0.62. On the other hand, AGN are significantly more strongly clustered with b = 2.1 ± 0.2 at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low accretion rate AGN are more clustered (b = 2.9 ± 0.3) than high accretion rate AGN (b = 1.8^{+0.4}_{-0.5}) at the same redshift (z ˜ 0.7), suggesting that low accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low accretion rate AGN appear to reside in halo masses of Mh ˜ 3-4 × 1013 h-1 M⊙ at all redshifts. On the other hand, the efficient accreters reside in haloes of Mh ˜ 1-2 × 1013 h-1 M⊙ at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at z ≥ 1 compared to z < 1.
NASA Astrophysics Data System (ADS)
Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel
2018-05-01
The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.
The third data release of the Kilo-Degree Survey and associated data products
NASA Astrophysics Data System (ADS)
de Jong, Jelte T. A.; Verdois Kleijn, Gijs A.; Erben, Thomas; Hildebrandt, Hendrik; Kuijken, Konrad; Sikkema, Gert; Brescia, Massimo; Bilicki, Maciej; Napolitano, Nicola R.; Amaro, Valeria; Begeman, Kor G.; Boxhoorn, Danny R.; Buddelmeijer, Hugo; Cavuoti, Stefano; Getman, Fedor; Grado, Aniello; Helmich, Ewout; Huang, Zhuoyi; Irisarri, Nancy; La Barbera, Francesco; Longo, Giuseppe; McFarland, John P.; Nakajima, Reiko; Paolillo, Maurizio; Puddu, Emanuella; Radovich, Mario; Rifatto, Agatino; Tortora, Crescenzo; Valentijn, Edwin A.; Vellucci, Civita; Vriend, Willem-Jan; Amon, Alexandra; Blake, Chris; Choi, Ami; Conti, Ian Fenech; Gwyn, Stephen D. J.; Herbonnet, Ricardo; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Merten, Julian; Miller, Lance; Schneider, Peter; Viola, Massimo
2017-08-01
Context. The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Aims: Here we present the third public data release and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. Methods: A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. Results: In this third data release an additional 292 new survey tiles (≈300 deg2) stacked ugri images are made available, accompanied by weight maps, masks, and source lists. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (44 deg2). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5σ in a 2'' aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7''. The photometric homogenization scheme ensures accurate colours and an absolute calibration stable to ≈2% for gri and ≈3% in u. Separately released for the combined area of all KiDS releases to date are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.
NASA Astrophysics Data System (ADS)
Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng
2018-01-01
We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).
Imaging the Sunyaev-Zeldovich Effect in the High Redshift Galaxy Cluster MS1137+66
NASA Technical Reports Server (NTRS)
Joy, M. K.; Patel, S. K.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Reese, E. D.
2000-01-01
We present interferometric measurements of the Sunyaev-Zelldovich Effect (SZE) in MS1137+66, a distant galaxy cluster at a redshift of 0.78. The data were obtained in 1997 and 1998 at the Berkeley-Illinois-Maryland millimeter array using sensitive 28.5 GHz receivers optimized for imaging of the SZE, with a total on-source integration time of 87.8 hours. We discuss constraints derived from spherical "beta" model fits to the SZE data, place an upper limit on the strength of any possible radio point sources in the field, and compare the results with the x-ray data published by Donahue et al. in 1999.
Photometric redshifts for the CFHTLS T0004 deep and wide fields
NASA Astrophysics Data System (ADS)
Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.
2009-06-01
Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.
NASA Astrophysics Data System (ADS)
Šuhada, R.; Fassbender, R.; Nastasi, A.; Böhringer, H.; de Hoon, A.; Pierini, D.; Santos, J. S.; Rosati, P.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; Kohnert, J.; Pratt, G. W.
2011-06-01
Context. Multi-wavelength surveys for clusters of galaxies are opening a window on the elusive high-redshift (z > 1) cluster population. Well controlled statistical samples of distant clusters will enable us to answer questions about their cosmological context, early assembly phases and the thermodynamical evolution of the intracluster medium. Aims: We report on the detection of two z > 1 systems, XMMU J0302.2-0001 and XMMU J1532.2-0836, as part of the XMM-Newton Distant Cluster Project (XDCP) sample. We investigate the nature of the sources, measure their spectroscopic redshift and determine their basic physical parameters. Methods: The results of the present paper are based on the analysis of XMM-Newton archival data, optical/near-infrared imaging and deep optical follow-up spectroscopy of the clusters. Results: We confirm the X-ray source XMMU J0302.2-0001 as a gravitationally bound, bona fide cluster of galaxies at spectroscopic redshift z = 1.185. We estimate its M500 mass to (1.6 ± 0.3) × 1014 M⊙ from its measured X-ray luminosity. This ranks the cluster among intermediate mass system. In the case of XMMU J1532.2-0836 we find the X-ray detection to be coincident with a dynamically bound system of galaxies at z = 1.358. Optical spectroscopy reveals the presence of a central active galactic nucleus, which can be a dominant source of the detected X-ray emission from this system. We provide upper limits of X-ray parameters for the system and discuss cluster identification challenges in the high-redshift low-mass cluster regime. A third, intermediate redshift (z = 0.647) cluster, XMMU J0302.1-0000, is serendipitously detected in the same field as XMMU J0302.2-0001. We provide its analysis as well. Based on observations obtained with ESO Telescopes at the Paranal Observatory under program ID 080.A-0659 and 081.A-0312, observations collected at the Centro Astrnómico Hispano Alemán (CAHA) at Calar Alto, Spain operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). X-ray observations were obtained by XMM-Newton.
NASA Astrophysics Data System (ADS)
Larson, Rebecca L.; Finkelstein, Steven L.; Pirzkal, Norbert; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton M.; Hathi, Nimish; O’Connell, Robert; Östlin, Göran; Pasquali, Anna; Pharo, John; Rothberg, Barry; Windhorst, Rogier A.; The FIGS Team
2018-05-01
We present the results of an unbiased search for Lyα emission from continuum-selected 5.6 < z < 8.7 galaxies. Our data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope(HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Lyα emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Lyα emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Lyα emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4σ) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 < z < 8.7, we find two emission lines, one previously published by Tilvi et al., (2016) and a new line at 1.028 μm, which we identify as Lyα at z = 7.452 ± 0.003. This newly spectroscopically confirmed galaxy has the highest Lyα rest-frame equivalent width (EWLyα ) yet published at z > 7 (140.3 ± 19.0 Å).
High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306
D'Ammando, F.; Orienti, M.
2015-11-19
We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36)×10 -8 ph cm -2 s -1 in the 0.1–100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5±0.2)×1050 erg s -1, comparable to the highest values observed by a blazar so far. During the flare the increase of fluxmore » was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time- scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ 1 ~1) below the break energy, at Ebreak = 2.5–3.0 keV, and Γ 2 ~ 1.4–1.5 above the break energy. The steepening of the spectrum below ~3 keV may indicate that the soft X- ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2×1048 erg s -1.« less
High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Orienti, M.
2016-01-01
We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.
New redshift determinations for three 3C radio sources.
NASA Astrophysics Data System (ADS)
Reynaldi, V.
2017-01-01
I report the new redshift determinations of three radio sources 3C 196.1, 3C 268.2 and 3C 303.1 by using GMOS/Gemini North long-slit optical spectroscopy. The details of the observations are summarized in the following table (the B600 grating was used for the three observations): Object | RA(J2000) | DEC(J2000) | Date of obs. | width-slit(arcsec) | PA(deg) | Exp.Time(sec) 3C 196.1 | 8:15:27.8 | -03:08:27 | Mar 2012 | 0.5 | 50 | 2560 3C 268.2| |12:00:59.1 | 31:33:28 | Feb 2011 | 0.5 | 165 | 2576 3C 303.1 | 14:43:14.5 | 77:07:28 | Feb 2012 | 1 | 145 | 2560 The three of the sources have extended regions of ionized gas that do not obey a spherical distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.
2014-11-01
Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens ofmore » kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.« less
An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1
NASA Astrophysics Data System (ADS)
Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard
2018-01-01
The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.
2011-03-15
We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamicalmore » masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.« less
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
Galaxy Redshifts from Discrete Optimization of Correlation Functions
NASA Astrophysics Data System (ADS)
Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi
2016-12-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-30
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ω m,w,σ 8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. Here we find that redshift tomography with the power spectrum reduces the area of the 1σ confidence interval in (Ω m,w) space by a factor ofmore » 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ω m,w) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. In conclusion, we find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.« less
NASA Astrophysics Data System (ADS)
Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.
2017-11-01
We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.
Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data
NASA Astrophysics Data System (ADS)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo
2011-11-01
We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
The Grism Lens-Amplified Survey from Space (GLASS). I. Survey Overview and First Data Release
NASA Astrophysics Data System (ADS)
Treu, T.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Wang, X.; Bradač, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Huang, K.-H.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.
2015-10-01
We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of 10 massive clusters of galaxies at redshift z = 0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 (WFC3) yields near-infrared spectra of the cluster cores covering the wavelength range 0.81-1.69 μm through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACS J0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than {H}{{AB}}=23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all of the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than {H}{{AB}}=23. We provide a catalog of 139 emission-line-based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself, we also release software tools that are helpful to navigate the data.
Cluster candidates around low-power radio galaxies at z ∼ 1-2 in cosmos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castignani, G.; Celotti, A.; De Zotti, G.
2014-09-10
We search for high-redshift (z ∼1-2) galaxy clusters using low power radio galaxies (FR I) as beacons and our newly developed Poisson probability method based on photometric redshift information and galaxy number counts. We use a sample of 32 FR Is within the Cosmic Evolution Survey (COSMOS) field from the Chiaberge et al. catalog. We derive a reliable subsample of 21 bona fide low luminosity radio galaxies (LLRGs) and a subsample of 11 high luminosity radio galaxies (HLRGs), on the basis of photometric redshift information and NRAO VLA Sky Survey radio fluxes. The LLRGs are selected to have 1.4 GHzmore » rest frame luminosities lower than the fiducial FR I/FR II divide. This also allows us to estimate the comoving space density of sources with L {sub 1.4} ≅ 10{sup 32.3} erg s{sup –1} Hz{sup –1} at z ≅ 1.1, which strengthens the case for a strong cosmological evolution of these sources. In the fields of the LLRGs and HLRGs we find evidence that 14 and 8 of them reside in rich groups or galaxy clusters, respectively. Thus, overdensities are found around ∼70% of the FR Is, independently of the considered subsample. This rate is in agreement with the fraction found for low redshift FR Is and it is significantly higher than that for FR IIs at all redshifts. Although our method is primarily introduced for the COSMOS survey, it may be applied to both present and future wide field surveys such as Sloan Digital Sky Survey Stripe 82, LSST, and Euclid. Furthermore, cluster candidates found with our method are excellent targets for next generation space telescopes such as James Webb Space Telescope.« less
THE CHANDRA COSMOS-LEGACY SURVEY: THE z > 3 SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesi, S.; Civano, F.; Urry, C. M.
2016-08-20
We present the largest high-redshift (3 < z < 6.85) sample of X-ray-selected active galactic nuclei (AGNs) on a contiguous field, using sources detected in the Chandra COSMOS-Legacy survey. The sample contains 174 sources, 87 with spectroscopic redshift and the other 87 with photometric redshift (z {sub phot}). In this work, we treat z {sub phot} as a probability-weighted sum of contributions, adding to our sample the contribution of sources with z {sub phot} < 3 but z {sub phot} probability distribution >0 at z > 3. We compute the number counts in the observed 0.5–2 keV band, finding amore » decline in the number of sources at z > 3 and constraining phenomenological models of the X-ray background. We compute the AGN space density at z > 3 in two different luminosity bins. At higher luminosities (log L (2–10 keV) > 44.1 erg s{sup −1}), the space density declines exponentially, dropping by a factor of ∼20 from z ∼ 3 to z ∼ 6. The observed decline is ∼80% steeper at lower luminosities (43.55 erg s{sup −1} < logL(2–10 keV) < 44.1 erg s{sup −1}) from z ∼ 3 to z ∼ 4.5. We study the space density evolution dividing our sample into optically classified Type 1 and Type 2 AGNs. At log L (2–10 keV) > 44.1 erg s{sup −1}, unobscured and obscured objects may have different evolution with redshift, with the obscured component being three times higher at z ∼ 5. Finally, we compare our space density with predictions of quasar activation merger models, whose calibration is based on optically luminous AGNs. These models significantly overpredict the number of expected AGNs at log L (2–10 keV) > 44.1 erg s{sup −1} with respect to our data.« less
The HEMP QSO Monitoring Project
NASA Astrophysics Data System (ADS)
Welsh, William F.; Robinson, E. L.
2000-02-01
Many AGN are highly variable sources. Some of these show a pronounced time delay between variations seen in their optical continuum and in their emission lines. ``Echo mapping'' is a technique that uses these time delays to measure the geometry and kinematics of the gas inside the AGN, near the supermassive black hole. The technique is immensely powerful, but the results so far have been modest due to relatively low quality data. We have initiated a long--term project to echo map QSOs. We will examine nearby (but intrinsically faint) QSOs as well as QSOs at high redshift. The high--z QSOs present a problem: it is not known ahead of time which of these are variable sources. Thus we have started a campaign to monitor about 60 high-redshift QSOs for the purpose of determining their variability characteristics. We request SSTO time on the 0.9m telescope for long--term monitoring of high--redshift QSOs to: (i) test their suitability as viable echo mapping candidates; and (ii) measure (for the first time) their variability properties, which is of intrinsic value itself.
On the perturbation of the luminosity distance by peculiar motions
NASA Astrophysics Data System (ADS)
Kaiser, Nick; Hudson, Michael J.
2015-06-01
We consider some aspects of the perturbation to the luminosity distance d(z) that are of relevance for SN1a cosmology and for future peculiar velocity surveys at non-negligible redshifts. (1) Previous work has shown that the correction to the lowest order perturbation δd/d = -δv/cz has the peculiar characteristic that it appears to depend on the absolute state of motion of sources, rather than on their motion relative to that of the observer. The resolution of this apparent violation of the equivalence principle is that it is necessary to allow for evolution of the velocities with time, and also, when considering perturbations on the scale of the observer-source separation, to include the gravitational redshift effect. We provide an expression for δd/d that provides a physically consistent way to measure peculiar velocities and determine their impact for SN1a cosmology. (2) We then calculate the perturbation to the redshift as a function of source flux density, which has been proposed as an alternative probe of large-scale motions. We show how the inclusion of surface brightness modulation modifies the relation between δz(m) and the peculiar velocity, and that, while the noise properties of this method might appear promising, the velocity signal is swamped by the effect of galaxy clustering for most scales of interest. (3) We show how, in linear theory, peculiar velocity measurements are biased downwards by the effect of smaller scale motions or by measurement errors (such as in photometric redshifts). Our results nicely explain the effects seen in simulations by Koda et al. We critically examine the prospects for extending peculiar velocity studies to larger scales with near-term future surveys.
Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo
2018-06-01
2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie
2012-04-20
Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms,more » allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.« less
X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Salvato, M.; Liu, Z.; Buchner, J.; Brandt, W. N.; Ananna, T. Tasnim; Schulze, A.; Shen, Yue; LaMassa, S.; Nandra, K.; Merloni, A.; McGreer, I. D.
2017-08-01
The wide-area XMM-XXL X-ray survey is used to explore the fraction of obscured active galactic nuclei (AGNs) at high accretion luminosities, LX(2-10 keV) ≳ 1044 erg s - 1, and out to redshift z ≈ 1.5. The sample covers an area of about 14 deg2 and provides constraints on the space density of powerful AGNs over a wide range of neutral hydrogen column densities extending beyond the Compton-thick limit, NH ≈ 1024 cm - 2. The fraction of obscured Compton-thin (NH = 1022-1024 cm - 2) AGNs is estimated to be ≈0.35 for luminosities LX(2-10 keV) > 1044 erg s - 1, independent of redshift. For less luminous sources, the fraction of obscured Compton-thin AGNs increases from 0.45 ± 0.10 at z = 0.25 to 0.75 ± 0.05 at z = 1.25. Studies that select AGNs in the infrared via template fits to the observed spectral energy distribution of extragalactic sources estimate space densities at high accretion luminosities consistent with the XMM-XXL constraints. There is no evidence for a large population of AGNs (e.g. heavily obscured) identified in the infrared and missed at X-ray wavelengths. We further explore the mid-infrared colours of XMM-XXL AGNs as a function of accretion luminosity, column density and redshift. The fraction of XMM-XXL sources that lie within the mid-infrared colour wedges defined in the literature to select AGNs is primarily a function of redshift. This fraction increases from about 20-30 per cent at z = 0.25 to about 50-70 per cent at z = 1.5.
MARZ: Manual and automatic redshifting software
NASA Astrophysics Data System (ADS)
Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.
2016-04-01
The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.
Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Elvis, Martin
2005-01-01
A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.
The XMM-SERVS survey: new XMM-Newton point-source catalog for the XMM-LSS field
NASA Astrophysics Data System (ADS)
Chen, C.-T. J.; Brandt, W. N.; Luo, B.; Ranalli, P.; Yang, G.; Alexander, D. M.; Bauer, F. E.; Kelson, D. D.; Lacy, M.; Nyland, K.; Tozzi, P.; Vito, F.; Cirasuolo, M.; Gilli, R.; Jarvis, M. J.; Lehmer, B. D.; Paolillo, M.; Schneider, D. P.; Shemmer, O.; Smail, I.; Sun, M.; Tanaka, M.; Vaccari, M.; Vignali, C.; Xue, Y. Q.; Banerji, M.; Chow, K. E.; Häußler, B.; Norris, R. P.; Silverman, J. D.; Trump, J. R.
2018-04-01
We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with 1.3 Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg2 contiguous field with uniform X-ray coverage totaling 2.7 Ms of flare-filtered exposure, with a 46 ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of 1.7 × 10-15, 1.3 × 10-14, and 6.5 × 10-15 erg cm-2 s-1 over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be ≈97% reliable based on deep Chandra coverage over ≈5% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg2 of our field where forced-aperture multi-band photometry is available; >70% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.
Investigating the unification of LOFAR-detected powerful AGN in the Boötes field
NASA Astrophysics Data System (ADS)
Morabito, Leah K.; Williams, W. L.; Duncan, Kenneth J.; Röttgering, H. J. A.; Miley, George; Saxena, Aayush; Barthel, Peter; Best, P. N.; Bruggen, M.; Brunetti, G.; Chyży, K. T.; Engels, D.; Hardcastle, M. J.; Harwood, J. J.; Jarvis, Matt J.; Mahony, E. K.; Prandoni, I.; Shimwell, T. W.; Shulevski, A.; Tasse, C.
2017-08-01
Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Boötes field at 150 MHz made with the Low-Frequency Array (LOFAR) to select a sample of radio sources. We identify 60 radio sources with powers P > 1025.5 W Hz-1 at 150 MHz using cross-matched multiwavelength information from the AGN and Galaxy Evolution Survey, which provides spectroscopic redshifts and photometric identification of 16 quasars and 44 radio galaxies. When considering the radio spectral slope only, we find that radio sources with steep spectra have projected linear sizes that are on average 4.4 ± 1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1 ± 1.0 larger than those of quasars (2.0 ± 0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data are consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.
Gamma-ray lines from neutron stars as probes of fundamental physics
NASA Technical Reports Server (NTRS)
Brecher, K.
1978-01-01
The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.
NASA Astrophysics Data System (ADS)
Nagao, Shigeto
2017-08-01
According to the formerly reported 4-D spherical model of the universe, factors on Hubble diagrams are discussed. The observed redshift is not the prolongation of wavelength from that of the source at the emission but from the wavelength of spectrum of the present atom of the same element. It is equal to the redshift based on the shift of frequency from the time of emission. We demonstrate that the K-correction corresponds to conversion of the light propagated distance (luminosity distance) to the proper distance at present (present distance). Comparison of the graph of the present distance times 1 + z versus the frequency-based redshift with the reported Hubble diagrams from the Supernova Cosmology Project, which were time-dilated by 1 + z and K-corrected, showed an excellent fit for the Present Time (the radius of 4-D sphere) being c.a. 0.7 of its maximum.
Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST
NASA Technical Reports Server (NTRS)
Chen, Andrew; Ritz, Steven
1999-01-01
Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.
The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV
NASA Astrophysics Data System (ADS)
Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.
2017-09-01
We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.
THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesi, S.; Civano, F.; Urry, C. M.
2016-01-20
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS,more » using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.« less
On Using a Space Telescope to Detect Weak-lensing Shear
NASA Astrophysics Data System (ADS)
Tung, Nathan; Wright, Edward
2017-11-01
Ignoring redshift dependence, the statistical performance of a weak-lensing survey is set by two numbers: the effective shape noise of the sources, which includes the intrinsic ellipticity dispersion and the measurement noise, and the density of sources that are useful for weak-lensing measurements. In this paper, we provide some general guidance for weak-lensing shear measurements from a “generic” space telescope by looking for the optimum wavelength bands to maximize the galaxy flux signal-to-noise ratio (S/N) and minimize ellipticity measurement error. We also calculate an effective galaxy number per square degree across different wavelength bands, taking into account the density of sources that are useful for weak-lensing measurements and the effective shape noise of sources. Galaxy data collected from the ultra-deep UltraVISTA Ks-selected and R-selected photometric catalogs (Muzzin et al. 2013) are fitted to radially symmetric Sérsic galaxy light profiles. The Sérsic galaxy profiles are then stretched to impose an artificial weak-lensing shear, and then convolved with a pure Airy Disk PSF to simulate imaging of weak gravitationally lensed galaxies from a hypothetical diffraction-limited space telescope. For our model calculations and sets of galaxies, our results show that the peak in the average galaxy flux S/N, the minimum average ellipticity measurement error, and the highest effective galaxy number counts all lie around the K-band near 2.2 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOVY, J.; Sheldon, E.; Hennawi, J.F.
2011-03-10
We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 {approx}< z {approx}< 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient,more » and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 {le} z {le} 3.5), and high-redshift (z > 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg{sup 2} of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.« less
NASA Astrophysics Data System (ADS)
D'Isanto, A.; Polsterer, K. L.
2018-01-01
Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.
NASA Astrophysics Data System (ADS)
Deane, R. P.; Obreschkow, D.; Heywood, I.
2015-09-01
Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa
2018-07-01
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.
The distant red galaxy neighbour population of 1
NASA Astrophysics Data System (ADS)
Bornancini, C.; García Lambas, D.
We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Kyle S.; Bautista, Julian E.; Kneib, Jean-Paul
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
NASA Astrophysics Data System (ADS)
Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.
2012-03-01
In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.
NIR photometry of the Gamma-Ray source Fermi J1654-1055 and 3FGLJ1037.5-2821
NASA Astrophysics Data System (ADS)
Carrasco, L.; Recillas, E.; Porras, A.; Chavushyan, V.; Leon-Tavares, J.
2016-03-01
Following the reports of flaring in Gamma-rays (Atel #8721 and Atel #8740) of the sources 3FGLJ10378.5-2821 identified with the high redshift (z=1.066) quasar PKSB1035-28 and FermiJ1654-1055 tentatively identified with the radio source PMNJ1632-1052.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift
NASA Technical Reports Server (NTRS)
DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.;
2012-01-01
The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.
2011-10-15
The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in interstellar scintillation (ISS) for sources at redshifts z {approx}> 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the intergalactic medium (IGM) in excess of the expected (1 + z){sup 1/2} angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a samplemore » of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H{alpha} intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15-3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at {alpha} < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at four-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of three decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.« less
DCMDN: Deep Convolutional Mixture Density Network
NASA Astrophysics Data System (ADS)
D'Isanto, Antonio; Polsterer, Kai Lars
2017-09-01
Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.
Discovery of a GeV blazar shining through the galactic plane
Vandenbroucke, J.; Buehler, R.; Ajello, M.; ...
2010-07-14
The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = –1more » $$ο\\atop{.}$$2) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. Here, we report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck Low-Resolution Imaging Spectrometer observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray absorption, and multi-band variability indicate that this new GeV source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width >5 Å, this blazar belongs in the flat-spectrum radio quasar category.« less
Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.
2006-01-01
We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 < z < 3.0, for both CLASXS and CDFN fields for a standard cosmology with Omega(sub Lambda) = 0.73,Omega(sub M) = 0.27, and h = 0.71 (H(sub 0) = 100h km/s Mpc(exp -1). The correlation function for the CLASXS field over scales of 3 Mpc< s < 200 Mpc can be modeled as a power-law of the form xi(s) = (S/SO)(exp - gamma), with gamma = 1.6(sup +0.4 sub -0.3) and S(sub o) = 8.0(sup +.14 sub -1.5) Mpc. The redshift-space correlation function for CDFN on scales of 1 Mpc< s < 100 Mpc is found to have a similar correlation length so = 8.55(sup +0.74 sub -0.74) Mpc, but a shallower slope (gamma = 1.3 +/- 0.1). The real-space correlation functions derived from the projected correlation functions, are found to be tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpc< z <3.0 Mpc. We find a very mild evolution in the clustering amplitude, which show the same evolution trend found in optically selected quasars in the 2dF survey. We estimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject headings: cosmology: observations - large-scale structure of the universe - x-rays: diffuse background - galaxies: nuclei
Confronting Alternative Cosmological Models with the Highest-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Shafer, Daniel; Scolnic, Daniel; Riess, Adam
2018-01-01
High-redshift Type Ia supernovae (SNe Ia) from the HST CANDELS and CLASH programs significantly extend the Hubble diagram with 7 SNe at z > 1.5 suitable for cosmology, including one at z = 2.3. This unique leverage helps us distinguish "alternative" cosmological models from the standard Lambda-CDM model. Analyzing the Pantheon SN compilation, which includes these high-z SNe, we employ model comparison statistics to quantify the extent to which several proposed alternative expansion histories (e.g., empty universe, power law expansion, timescape cosmology) are disfavored even with SN Ia data alone. Using mock data, we demonstrate that some likelihood analyses used in the literature to support these models are sensitive to unrealistic assumptions and are therefore unsuitable for analysis of realistic SN Ia data.
NASA Astrophysics Data System (ADS)
Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel
2012-02-01
We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs). However, for a model with a faster rate of evolution, this prediction goes down to four or five. In any event, the survey will give important constraints on the evolution of QSO at z > 8 and therefore the formation of the first supermassive black holes. The z > 8.06 detections would be very luminous objects (with MB=-26 to -28) and many would also be detectable by the proposed Wide Field X-ray Telescope.
The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field.
Walter, Fabian; Decarli, Roberto; Carilli, Chris; Bertoldi, Frank; Cox, Pierre; Da Cunha, Elisabete; Daddi, Emanuele; Dickinson, Mark; Downes, Dennis; Elbaz, David; Ellis, Richard; Hodge, Jacqueline; Neri, Roberto; Riechers, Dominik A; Weiss, Axel; Bell, Eric; Dannerbauer, Helmut; Krips, Melanie; Krumholz, Mark; Lentati, Lindley; Maiolino, Roberto; Menten, Karl; Rix, Hans-Walter; Robertson, Brant; Spinrad, Hyron; Stark, Dan P; Stern, Daniel
2012-06-13
The Hubble Deep Field provides one of the deepest multiwavelength views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time. An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass. Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z ≈ 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 × 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive.
A magnified young galaxy from about 500 million years after the Big Bang.
Zheng, Wei; Postman, Marc; Zitrin, Adi; Moustakas, John; Shu, Xinwen; Jouvel, Stephanie; Høst, Ole; Molino, Alberto; Bradley, Larry; Coe, Dan; Moustakas, Leonidas A; Carrasco, Mauricio; Ford, Holland; Benítez, Narciso; Lauer, Tod R; Seitz, Stella; Bouwens, Rychard; Koekemoer, Anton; Medezinski, Elinor; Bartelmann, Matthias; Broadhurst, Tom; Donahue, Megan; Grillo, Claudio; Infante, Leopoldo; Jha, Saurabh W; Kelson, Daniel D; Lahav, Ofer; Lemze, Doron; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Nonino, Mario; Ogaz, Sara; Rosati, Piero; Umetsu, Keiichi; van der Wel, Arjen
2012-09-20
Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.
The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5
NASA Astrophysics Data System (ADS)
Shull, J. Michael; Danforth, Charles W.
2018-01-01
We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.
Design Optimization for Interferometric Space-Based 21-cm Power Spectrum Measurements
NASA Astrophysics Data System (ADS)
Pober, Jonathan
2018-06-01
Observations of the highly-redshifted 21 cm hyperfine line of neutral hydrogen (HI) are one of the most promising probes for the future of cosmology. At redshifts z > 30, the HI signal is likely the only measurable emission, as luminous objects have yet to form. At these very low radio frequencies, however, the earth’s ionosphere becomes opaque — necessitating observations from space. The major challenge to neutral hydrogen cosmology (at all redshifts) lies in the presence of bright foreground emission, which can dominate the HI signal by as much as eight orders of magnitude at the highest redshifts. The only method for extracting the cosmological signal relies on the spectral smoothness of the foregrounds; since each frequency of the HI signal probes a different redshift, the cosmological emission is essentially uncorrelated from frequency to frequency. The key challenge for designing an experiment lies in maintaining the spectral smoothness of the foregrounds. If the frequency response of the instrument introduces spectral structure (or at least, a residual that cannot be calibrated out at the necessary precision), it quickly becomes impossible to distinguish the cosmological signal from the foregrounds. This principle has guided the design of ground-based experiments like the Precision Array for Probing the Epoch of Reionization (PAPER) and the Hydrogen Epoch of Reionization Array (HERA). However, there still exists no unifying framework for turning this design "philosophy" into a robust, quantitative set of performance metrics and specifications. In this talk, I will present updates on the efforts of my research group to translate lessons learned from ground-based experiments into a fully traceable set of mission requirements for Cosmic Dawn Mapper or other space-based 21 cm interferometer.
Identifying Protoclusters in the High Redshift Universe and Mapping Their Evolution
NASA Astrophysics Data System (ADS)
Franck, Jay Robert
2018-01-01
To investigate the growth and evolution of the earliest structures in the Universe, we identify more than 200 galaxy overdensities in the Candidate Cluster and Protocluster Catalog (CCPC). This compilation is produced by mining open astronomy data sets for over-densities of high redshift galaxies that are spectroscopically confirmed. At these redshifts, the Universe is only a few billion years old. This data mining approach yields a nearly 10 fold increase in the number of known protoclusters in the literature. The CCPC also includes the highest redshift, spectroscopically confirmed protocluster at z=6.56. For nearly 1500 galaxies contained in the CCPC between redshifts of 2.0
Search for C II Emission on Cosmological Scales at Redshift Z ˜ 2.6
NASA Astrophysics Data System (ADS)
Pullen, Anthony R.; Serra, Paolo; Chang, Tzu-Ching; Doré, Olivier; Ho, Shirley
2018-05-01
We present a search for Cii emission over cosmological scales at high-redshifts. The Cii line is a prime candidate to be a tracer of star formation over large-scale structure since it is one of the brightest emission lines from galaxies. Redshifted Cii emission appears in the submillimeter regime, meaning it could potentially be present in the higher frequency intensity data from the Planck satellite used to measure the cosmic infrared background (CIB). We search for Cii emission over redshifts z = 2 - 3.2 in the Planck 545 GHz intensity map by cross-correlating the 3 highest frequency Planck maps with spectroscopic quasars and CMASS galaxies from the Sloan Digital Sky Survey III (SDSS-III), which we then use to jointly fit for Cii intensity, CIB parameters, and thermal Sunyaev-Zeldovich (SZ) emission. We report a measurement of an anomalous emission I_ν =6.6^{+5.0}_{-4.8}× 10^4Jy/sr at 95% confidence, which could be explained by Cii emission, favoring collisional excitation models of Cii emission that tend to be more optimistic than models based on Cii luminosity scaling relations from local measurements; however, a comparison of Bayesian information criteria reveal that this model and the CIB & SZ only model are equally plausible. Thus, more sensitive measurements will be needed to confirm the existence of large-scale Cii emission at high redshifts. Finally, we forecast that intensity maps from Planck cross-correlated with quasars from the Dark Energy Spectroscopic Instrument (DESI) would increase our sensitivity to Cii emission by a factor of 5, while the proposed Primordial Inflation Explorer (PIXIE) could increase the sensitivity further.
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.
2018-07-01
Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.
The recent NIR Flare of the Blazar CTA102
NASA Astrophysics Data System (ADS)
Carrasco, L.; Escobedo, G.; Porras, A.; Recillas, E.; Chavushyan, V.; Mayya, D. Y.
2018-01-01
Following the report of increased Gamma-Ray activity detected by AGILE of the high redshift QSO (z=1.037) CTA102 cross identified with the radio source 4C+11.69 and the Gamma-ray source 2FGLJ2232.4+1143 by Lucarelli et al.(ATEL #11045).
NASA Astrophysics Data System (ADS)
Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.
2017-05-01
We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.
CO EMISSION IN OPTICALLY OBSCURED (TYPE-2) QUASARS AT REDSHIFTS z Almost-Equal-To 0.1-0.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krips, M.; Neri, R.; Cox, P., E-mail: krips@iram.fr, E-mail: neri@iram.fr, E-mail: cox@iram.fr
We present a search for CO emission in a sample of 10 type-2 quasar host galaxies with redshifts of z Almost-Equal-To 0.1-0.4. We detect CO(J = 1-0) line emission with {>=}5{sigma} in the velocity integrated intensity maps of five sources. A sixth source shows a tentative detection at the {approx}4.5{sigma} level of its CO(J = 1-0) line emission. The CO emission of all six sources is spatially coincident with the position at optical, infrared, or radio wavelengths. The spectroscopic redshifts derived from the CO(J = 1-0) line are very close to the photometric ones for all five detections except formore » the tentative detection for which we find a much larger discrepancy. We derive gas masses of {approx}(2-16) Multiplication-Sign 10{sup 9} M{sub Sun} for the CO emission in the six detected sources, while we constrain the gas masses to upper limits of M{sub gas} {<=} 8 Multiplication-Sign 10{sup 9} M{sub Sun} for the four non-detections. These values are of the order or slightly lower than those derived for type-1 quasars. The line profiles of the CO(J = 1-0) emission are rather narrow ({approx}<300 km s{sup -1}) and single peaked, unveiling no typical signatures for current or recent merger activity, and are comparable to that of type-1 quasars. However, at least one of the observed sources shows a tidal-tail-like emission in the optical that is indicative of an ongoing or past merging event. We also address the problem of detecting spurious {approx}5{sigma} emission peaks within the field of view.« less
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-06-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
NASA Astrophysics Data System (ADS)
Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto
2018-04-01
Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.
NASA Astrophysics Data System (ADS)
Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John
2017-11-01
Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).
X-ray Obscured AGN in the GOODS-N
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.
2010-07-01
We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.
NASA Astrophysics Data System (ADS)
Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.
2015-09-01
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.
Tomographic Imaging of the Fermi-LAT γ-Ray Sky through Cross-correlations: A Wider and Deeper Look
NASA Astrophysics Data System (ADS)
Cuoco, Alessandro; Bilicki, Maciej; Xia, Jun-Qing; Branchini, Enzo
2017-09-01
We investigate the nature of the extragalactic unresolved γ-ray background (UGRB) by cross-correlating several galaxy catalogs with sky maps of the UGRB built from 78 months of Pass 8 Fermi-Large Area Telescope data. This study updates and improves similar previous analyses in several aspects. First, the use of a larger γ-ray data set allows us to investigate the energy dependence of the cross-correlation in more detail, using up to eight energy bins over a wide energy range of [0.25,500] GeV. Second, we consider larger and deeper catalogs (2MASS Photometric Redshift catalog, 2MPZ; WISE × SuperCOSMOS, WI×SC and SDSS DR12 photometric redshift data set) in addition to the ones employed in the previous studies (NVSS and SDSS QSOs). Third, we exploit the redshift information available for the above catalogs to divide them into redshift bins and perform the cross-correlation separately in each of them. Our results confirm, with higher statistical significance, the detection of cross-correlation signals between the UGRB maps and all the catalogs considered, on angular scales smaller than 1°. Significances range from 16.3σ for NVSS, 7σ for SDSS DR12 and WI×SC, to 5σ for 2MPZ and 4σ for SDSS QSOs. Furthermore, including redshift tomography, the significance of the SDSS DR12 signal strikingly rises up to ˜ 12σ and that of WI×SC to ˜ 10.6σ . We offer a simple interpretation of the signal in the framework of the halo model. The precise redshift and energy information allows us to clearly detect a change over redshift in the spectral and clustering behavior of the γ-ray sources contributing to the UGRB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predictmore » the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Schmidt, K. B.; Jones, T. A.
2015-09-20
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less
Foreground Characterization for the Murchison Widefield Array Using the Jansky Very Large Array
NASA Astrophysics Data System (ADS)
Busch, Michael P.; Bowman, Judd D.; Kittiwisit, Piyanat; Jacobs, Danny
2016-01-01
One of the most compelling questions in astrophysics today is how the process of galaxy formation unfolded during the Epoch of Reionization (EoR). A new generation of radio telescopes, including the Murchison Widefield Array (MWA) and others, are attempting to capture the redshifted 21cm signal from neutral hydrogen during the EoR. Mapping the reionization of the intergalactic medium (IGM) is one of the core objectives of 21 cm observatories. A pressing concern of these observations is the bright foreground sources in the telescope's sidelobes outside the primary beam of the MWA. These sources, including AGN, radio galaxies and local Galactic sources, are numerous and difficult to deal with. These foreground contaminants are five orders of magnitude brighter than the redshifted 21 cm emission expected from the IGM during the EoR. The Jansky Very Large Array (JVLA) in New Mexico can provide sensitive characterization of these sources in the MWA's northern sidelobe. We observed 100 bright radio sources using the JVLA in P-band and characterized these sources by extracting the spectral fits and fluxes for each source. By creating a foreground model for these data, the MWA will be able to better subtract these sources from future EoR measurements. We report the current status of the creation of the foreground model.
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
A search for faint high-redshift radio galaxy candidates at 150 MHz
NASA Astrophysics Data System (ADS)
Saxena, A.; Jagannathan, P.; Röttgering, H. J. A.; Best, P. N.; Intema, H. T.; Zhang, M.; Duncan, K. J.; Carilli, C. L.; Miley, G. K.
2018-04-01
Ultrasteep spectrum (USS) radio sources are good tracers of powerful radio galaxies at z > 2. Identification of even a single bright radio galaxy at z > 6 can be used to detect redshifted 21 cm absorption due to neutral hydrogen in the intervening intergalactic medium. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TIFR GMRT Sky Survey First Alternative Data Release survey at 150 MHz. We employ USS selection (α ≤ -1.3) in ˜10 000 deg2, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density (50 mJy < S150 < 200 mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of 1.3 arcsec revealed ˜ 48 per cent of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for 10 sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multiwavelength photometry and ancillary radio data are available and for one of these we find a best-fitting photo-z of 4.8 ± 2.0. The other source has zphot = 1.4 ± 0.1 and a small angular size (3.7 arcsec), which could be associated with an obscured star-forming galaxy or with a `dead' elliptical. One USS radio source not part of the HzRG sample but observed with the VLA none the less is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of 1.8 ± 0.5, indicating a size of 875 kpc.
Zitrin, Adi; Seitz, Stella; Monna, Anna; ...
2017-04-10
Since galaxy clusters sit at the high end of the mass function, the number of galaxy clusters both massive and concentrated enough to yield particularly large Einstein radii poses useful constraints on cosmological and structure formation models. To date, less than a handful of clusters are known to have Einstein radii exceedingmore » $$\\sim 40^{\\prime\\prime} $$ (for a source at $${z}_{s}\\simeq 2$$, nominally). Here, we report an addition to that list of the Sunyaev–Zel'dovich (SZ) selected cluster, PLCK G287.0+32.9 (z = 0.38), the second-highest SZ-mass (M 500) cluster from the Planck catalog. We present the first strong-lensing analysis of the cluster, identifying 20 sets of multiply imaged galaxies and candidates in new Hubble Space Telescope ( HST) data, including a long, $$l\\sim 22^{\\prime\\prime} $$ giant arc, as well as a quadruply imaged, apparently bright (magnified to $${J}_{{\\rm{F}}110{\\rm{W}}}=25.3$$ AB), likely high-redshift dropout galaxy at $${z}_{\\mathrm{phot}}=6.90$$ [6.13–8.43] (95% C.I.). Our analysis reveals a very large critical area (1.55 arcmin2, $${z}_{s}\\simeq 2$$), corresponding to an effective Einstein radius of $${\\theta }_{{\\rm{E}}}\\sim 42^{\\prime\\prime} $$. Furthermore, the model suggests the critical area will expand to 2.58 arcmin2 ($${\\theta }_{{\\rm{E}}}\\sim 54^{\\prime\\prime} $$) for sources at $${z}_{s}\\sim 10$$. Our work adds to recent efforts to model very massive clusters toward the launch of the James Webb Space Telescope, in order to identify the most useful cosmic lenses for studying the early universe. Spectroscopic redshifts for the multiply imaged galaxies and additional HST data will be necessary for refining the lens model and verifying the nature of the $$z\\sim 7$$ dropout.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, Adi; Seitz, Stella; Monna, Anna
Since galaxy clusters sit at the high end of the mass function, the number of galaxy clusters both massive and concentrated enough to yield particularly large Einstein radii poses useful constraints on cosmological and structure formation models. To date, less than a handful of clusters are known to have Einstein radii exceedingmore » $$\\sim 40^{\\prime\\prime} $$ (for a source at $${z}_{s}\\simeq 2$$, nominally). Here, we report an addition to that list of the Sunyaev–Zel'dovich (SZ) selected cluster, PLCK G287.0+32.9 (z = 0.38), the second-highest SZ-mass (M 500) cluster from the Planck catalog. We present the first strong-lensing analysis of the cluster, identifying 20 sets of multiply imaged galaxies and candidates in new Hubble Space Telescope ( HST) data, including a long, $$l\\sim 22^{\\prime\\prime} $$ giant arc, as well as a quadruply imaged, apparently bright (magnified to $${J}_{{\\rm{F}}110{\\rm{W}}}=25.3$$ AB), likely high-redshift dropout galaxy at $${z}_{\\mathrm{phot}}=6.90$$ [6.13–8.43] (95% C.I.). Our analysis reveals a very large critical area (1.55 arcmin2, $${z}_{s}\\simeq 2$$), corresponding to an effective Einstein radius of $${\\theta }_{{\\rm{E}}}\\sim 42^{\\prime\\prime} $$. Furthermore, the model suggests the critical area will expand to 2.58 arcmin2 ($${\\theta }_{{\\rm{E}}}\\sim 54^{\\prime\\prime} $$) for sources at $${z}_{s}\\sim 10$$. Our work adds to recent efforts to model very massive clusters toward the launch of the James Webb Space Telescope, in order to identify the most useful cosmic lenses for studying the early universe. Spectroscopic redshifts for the multiply imaged galaxies and additional HST data will be necessary for refining the lens model and verifying the nature of the $$z\\sim 7$$ dropout.« less
Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, A.; Ajello, M.; Omodei, N.
The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less
A new reduction of the blanco cosmology survey: An optically selected galaxy cluster catalog and a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleem, L. E.; Stalder, B.; Brodwin, M.
2015-01-01
The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ≈80 deg2 of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23h, -55°) and (5h30m, -53°) with imaging sufficient for the detection of Lmore » $$\\star$$ galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates, redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4L$$\\star$$) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleem, L. E.; Stalder, B.; Brodwin, M.
2015-01-01
The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ∼80 deg{sup 2} of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23{sup h}, –55°) and (5{sup h}30{sup m}, –53°) with imaging sufficient for the detection of L {sub *} galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates,more » redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4 L {sub *}) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.« less
Scalar potential model (SPM) of redshift and discrete redshift
NASA Astrophysics Data System (ADS)
Hodge, John
2005-11-01
On the galactic scale the universe is inhomogeneous and redshift z is occasionally less than zero. Several differences among galaxy types suggest that spiral galaxies are Sources and that early type galaxies are Sinks of a scalar potential field (SPF). The morphology-radius and intragalactic medium cluster observations support a cell structure of galaxies. The SPF causes the mass expected by Newtonian mechanics to measure less in Source galaxies and more in Sink galaxies. The cell structure allows the universe to be bounded and flat without collapsing. An equation is derived relating z of particle photons and the distance D to galaxies. The calculated z has a correlation coefficient of 0.88 with the measured z for a sample of 32 spiral galaxies with a Cepheid based D. The equation is consistent with z <0 observations of close galaxies. At low cosmological distances, the equation reduces to z ~ KD, where K is a constant, positive value. The model qualitatively suggests the discrete variations in z, which was reported by W. G. Tifft, 1997, ApJ 485, 465 and others, are consistent with the SPM. Full text: http://web.infoave.net/ scjh.
Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT
Desai, A.; Ajello, M.; Omodei, N.; ...
2017-11-17
The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less
HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao Heng; Elvis, Martin; Civano, Francesca
2010-11-20
We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energymore » distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.« less
Deep CFHT Y-band Imaging of VVDS-F22 Field. I. Data Products and Photometric Redshifts
NASA Astrophysics Data System (ADS)
Liu, Dezi; Yang, Jinyi; Yuan, Shuo; Wu, Xue-Bing; Fan, Zuhui; Shan, Huanyuan; Yan, Haojing; Zheng, Xianzhong
2017-02-01
We present our deep Y-band imaging data of a 2 square degree field within the F22 region of the VIMOS VLT Deep Survey. The observations were conducted using the WIRCam instrument mounted at the Canada-France-Hawaii Telescope (CFHT). The total on-sky time was 9 hr, distributed uniformly over 18 tiles. The scientific goals of the project are to select faint quasar candidates at redshift z> 2.2 and constrain the photometric redshifts for quasars and galaxies. In this paper, we present the observation and the image reduction, as well as the photometric redshifts that we derived by combining our Y-band data with the CFHTLenS {u}* g\\prime r\\prime I\\prime z\\prime optical data and UKIDSS DXS JHK near-infrared data. With the J-band image as a reference, a total of ˜80,000 galaxies are detected in the final mosaic down to a Y-band 5σ point-source limiting depth of 22.86 mag. Compared with the ˜3500 spectroscopic redshifts, our photometric redshifts for galaxies with z< 1.5 and I\\prime ≲ 24.0 mag have a small systematic offset of | {{Δ }}z| ≲ 0.2, 1σ scatter 0.03< {σ }{{Δ }z}< 0.06, and less than 4.0% of catastrophic failures. We also compare with the CFHTLenS photometric redshifts and find that ours are more reliable at z≳ 0.6 because of the inclusion of the near-infrared bands. In particular, including the Y-band data can improve the accuracy at z˜ 1.0{--}2.0 because the location of the 4000 Å break is better constrained. The Y-band images, the multiband photometry catalog, and the photometric redshifts are released at http://astro.pku.edu.cn/astro/data/DYI.html.
VizieR Online Data Catalog: Luminous persistent sources in nearby galaxies search (Ofek, 2017)
NASA Astrophysics Data System (ADS)
Ofek, E. O.
2018-04-01
I compiled a catalog of nearby galaxies within 108Mpc. The catalog is based on combining the HyperLEDA galaxies (Paturel+ 2003, VII/238 ; Makarov+ 2014A&A...570A..13M) with the NASA Extragalactic Database (NED) redshifts, and the Sloan Digital Sky Survey (SDSS; York+ 2000AJ....120.1579Y ; see V/147) galaxies with known redshifts. Both catalogs are restricted to the FIRST radio survey footprint (Becker+ 1995ApJ...450..559B ; see VIII/92). (1 data file).
NASA Astrophysics Data System (ADS)
Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.
2005-01-01
We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03
A gravitationally lensed quasar discovered in OGLE
NASA Astrophysics Data System (ADS)
Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.
2018-05-01
We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ≈ -102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ≈ 20.0 mag and I ≈ 19.6 mag, respectively, and a lensing galaxy that becomes detectable as I ≈ 21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z = 2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).
A High Space Density of Luminous Lyman Alpha Emitters at z ∼ 6.5
NASA Astrophysics Data System (ADS)
Bagley, Micaela B.; Scarlata, Claudia; Henry, Alaina; Rafelski, Marc; Malkan, Matthew; Teplitz, Harry; Dai, Y. Sophia; Baronchelli, Ivano; Colbert, James; Rutkowski, Michael; Mehta, Vihang; Dressler, Alan; McCarthy, Patrick; Bunker, Andrew; Atek, Hakim; Garel, Thibault; Martin, Crystal L.; Hathi, Nimish; Siana, Brian
2017-03-01
We present the results of a systematic search for Lyα emitters (LAEs) at 6≲ z≲ 7.6 using the HST WFC3 Infrared Spectroscopic Parallel (WISP) Survey. Our total volume over this redshift range is ∼ 8× {10}5 Mpc3, comparable to many of the narrowband surveys despite their larger area coverage. We find two LAEs at z = 6.38 and 6.44 with line luminosities of {L}Lyα }∼ 4.7× {10}43 erg s‑1, putting them among the brightest LAEs discovered at these redshifts. Taking advantage of the broad spectral coverage of WISP, we are able to rule out almost all lower-redshift contaminants. The WISP LAEs have a high number density of 7.7× {10}-6 Mpc‑3. We argue that the LAEs reside in megaparsec-scale ionized bubbles that allow the Lyα photons to redshift out of resonance before encountering the neutral intergalactic medium. We discuss possible ionizing sources and conclude that the observed LAEs alone are not sufficient to ionize the bubbles.
Reconstructing the metric of the local Universe from number counts observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallejo, Sergio Andres; Romano, Antonio Enea, E-mail: antonio.enea.romano@cern.ch
Number counts observations available with new surveys such as the Euclid mission will be an important source of information about the metric of the Universe. We compute the low red-shift expansion for the energy density and the density contrast using an exact spherically symmetric solution in presence of a cosmological constant. At low red-shift the expansion is more precise than linear perturbation theory prediction. We then use the local expansion to reconstruct the metric from the monopole of the density contrast. We test the inversion method using numerical calculations and find a good agreement within the regime of validity ofmore » the red-shift expansion. The method could be applied to observational data to reconstruct the metric of the local Universe with a level of precision higher than the one achievable using perturbation theory.« less
The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.
NASA Astrophysics Data System (ADS)
Aretxaga, Itziar
2015-08-01
The combination of short and long-wavelength deep (sub-)mm surveys can effectively be used to identify high-redshift sub-millimeter galaxies (z>4). Having star formation rates in excess of 500 Msun/yr, these bright (sub-)mm sources have been identified with the progenitors of massive elliptical galaxies undergoing rapid growth. With this purpose in mind, we are surveying a 20 sq. arcmin field within the Extended Groth Strip with the 1.1mm AzTEC camera mounted at the Large Millimeter Telescope that overlaps with the deep 450/850um SCUBA-2 Cosmology Legacy Survey and the CANDELS deep NIR imaging. The improved beamsize of the LMT (8”) over previous surveys aids the identification of the most prominent optical/IR counterparts. We discuss the high-redshift candidates found.
HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca
2017-01-20
In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less
Superconducting cosmic string loops as sources for fast radio bursts
NASA Astrophysics Data System (ADS)
Cao, Xiao-Feng; Yu, Yun-Wei
2018-01-01
The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.
NASA Astrophysics Data System (ADS)
Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.
2017-11-01
We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9
Using ALMA to Resolve the Nature of the Early Star-Forming Large-Scale Structure G073
NASA Astrophysics Data System (ADS)
Hill, R.; Kneissl, R.; Polletta, M.; Clarenc, B.; Dole, H. A.; Nesvadba, N. P. H.; Scott, D.; Béthermin, M.; Lagache, G.; Montier, L.
2017-07-01
Galaxy clusters at large redshift are key targets for understanding the nature of the early Universe, yet locating them has proven to be very challenging. Recently, a large sample of over 2000 high-z candidate structures have been found using Planck's all-sky submillimetre maps, and a subset of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large far-infrared overdensities. However, the individual galaxies giving rise to the emission seen by Planck and Herschel have not yet been resolved nor characterized, so we do not yet know whether these sources are the progenitors of present-day, massive galaxy clusters. In an attempt to address this, we targeted the eight brightest Herschel-SPIRE peaks in the centre of the Planck peak G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC at 3.6 and 4.5 μm and from CFHT-WIRCam at 1.2 and 2.2 μm. We also utilize data on G073.4-57.5 at 850 μm from JCMT's SCUBA-2 instrument. We detect a total of 18 millimetre galaxies brighter than 0.3mJy in 2.4arcmin2. In every case we are able to match these to their NIR counterparts, and while the most significant SCUBA-2 sources are not included in the ALMA pointings, we find an 8σ detection when stacking the ALMA source positions in the 850 μm data. We derive photometric redshifts, IR luminosities, star-formation rates, stellar masses, dust temperatures, and dust masses; the photometric redshifts are concentrated around z ≃ 1 and z ≃ 2 and the NIR colours show a "red" sequence, while the star-formation rates indicate that three of the galaxies are "starbursts". Serendipitous CO line detections of two of the galaxies appear to match their photometric redshifts with z = 2.05. We find that the ALMA source density is 8-30 times higher than average background estimates, and thus also larger than seen in typical "proto-cluster" fields. The evidence seems to be indicating the existence of two distant galaxy clusters aligned along the line of sight; however, a more complete mapping of the Planck and Herschel field at high resolution, coupled with spectroscopic redshifts, will be necessary to confirm this.
Isotropy Constraints on Powerful Sources of Ultrahigh-energy Cosmic Rays at 1019 eV
NASA Astrophysics Data System (ADS)
Takami, Hajime; Murase, Kohta; Dermer, Charles D.
2016-01-01
Anisotropy in the arrival direction distribution of ultrahigh-energy cosmic rays (UHECRs) produced by powerful sources is numerically evaluated. We show that nondetection of significant anisotropy at ≈ {10}19 eV at present and in future experiments imposes general upper limits on UHECR proton luminosity of steady sources as a function of source redshifts. The upper limits constrain the existence of typical steady {10}19 eV UHECR sources in the local universe and limit their local density to ≳ {10}-3 Mpc {}-3, assuming average intergalactic magnetic fields less than {10}-9 G. This isotropy, being stronger than that measured at the highest energies, may indicate the transient generation of UHECRs. Our calculations are applied for extreme high-frequency-peaked BL Lacertae objects 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121, to test the UHECR-induced cascade model, in which beamed UHECR protons generate TeV radiation in transit from sources. While the magnetic-field structure surrounding the sources affects the required absolute cosmic-ray luminosity of the blazars, the magnetic-field structure surrounding the Milky Way directly affects the observed anisotropy. If these magnetic fields are weak enough, significant UHECR anisotropy from these blazars is detectable by the Pierre Auger Observatory unless the maximum energy of UHECR protons is below 1019 eV. Furthermore, if these are the sources of UHECRs above 1019 eV, a local magnetic structure surrounding the Milky Way is needed to explain the observed isotropy at ˜ {10}19 eV, which may be incompatible with large magnetic structures around all galaxies for the UHECR-induced cascade model to work with reasonable jet powers.
NASA Astrophysics Data System (ADS)
Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.
2018-03-01
Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42
NASA Astrophysics Data System (ADS)
Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.
2016-06-01
Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the AGN found have luminosities below 7 × 1042 erg s-1. Conclusions: The difference in the AGN frequency between the three superclusters cannot be explained by the present study because of small number statistics. Further analysis of a larger number of superclusters within the 50 deg2 of the XXL is needed before any conclusions on the effect of the supercluster environment on AGN can be reached. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations obtained with the William Herschel telescope during semester 13B.The Master Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2
Discovery of a large-scale clumpy structure around the Lynx supercluster at z~ 1.27
NASA Astrophysics Data System (ADS)
Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Ueda, Yoshihiro; Yagi, Masafumi; Yasuda, Naoki
2005-03-01
We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z= 1.26 and 1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multicolour imaging, 26.4 × 24.1 arcmin2 in VRi'z' bands with the Suprime-Cam on the 8.2-m Subaru telescope. This unique, deep and wide-field imaging data set allows us for the first time to map out the galaxy distribution in the highest-redshift supercluster known. We apply a photometric redshift technique to extract plausible cluster members at z~ 1.27 down to i'= 26.15 (5σ) corresponding to ~M*+ 2.5 at this redshift. From the two-dimensional distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters. These candidates show clear red colour-magnitude sequences consistent with a passive evolution model, which suggests the existence of additional high-density regions around the Lynx superclusters.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; JWST ERS Team
2018-06-01
In the recent years HST observations of blank fields enabled us to detect galaxies as far as z~11. However, very little is known about those galaxies, and they are mostly the most luminous representatives. Clusters of galaxies, when used as cosmic telescopes, can greatly simplify the task of studying and finding normal galaxies at high redshifts. Through the Looking GLASS JWST ERS program is designed to study intrinsically faint magnified galaxies from the epoch of reionization until redshift 1 using an extraordinary lensing cluster Abell 2744. By complimenting deep slitless spectroscopy from NIRISS and high-resolution spectra from the NIRSpec MOS the program will address the origin of the re-ionizing photons and the baryonic cycle of galaxies. NIRCAM imaging will be taken in parallel to the spectroscopy to further aid the exploration of the highest redshift galaxies. In addition, GLASS-ERS data will allow a wealth of other investigations and be of interest to a large section of the astronomical community. I will present the design of the survey as well as the products we plan to provide to the broader community to access this diverse set of JWST data before cycle 2.
NASA Technical Reports Server (NTRS)
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
Internal dark matter structure of the most massive galaxy clusters
NASA Astrophysics Data System (ADS)
Le Brun, A. M. C.; Arnaud, M.; Pratt, G. W.; Teyssier, R.
2018-01-01
We investigate the evolution of the dark matter density profiles of the most massive galaxy clusters in the Universe. Using a `zoom-in' procedure on a large suite of cosmological simulations of total comoving volume of 3 (h - 1 Gpc)3, we study the 25 most massive clusters in four redshift slices from z ˜ 1 to the present. The minimum mass is M500 > 5.5 × 1014 M⊙ at z = 1. Each system has more than two million particles within r500. Once scaled to the critical density at each redshift, the dark matter profiles within r500 are strikingly similar from z ˜ 1 to the present day, exhibiting a low dispersion of 0.15 dex, and showing little evolution with redshift in the radial logarithmic slope and scatter. They have the running power-law shape typical of the Navarro-Frenk-White type profiles, and their inner structure, resolved to 3.8 h-1 comoving kpc at z = 1, shows no signs of converging to an asymptotic slope. Our results suggest that this type of profile is already in place at z > 1 in the highest-mass haloes in the Universe, and that it remains exceptionally robust to merging activity.
NASA Astrophysics Data System (ADS)
Khorunzhev, G. A.; Burenin, R. A.; Meshcheryakov, A. V.; Sazonov, S. Yu.
2016-05-01
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the "serendipitous" XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10-15 erg s-1 cm-2 in the 0.5-2 keV energy band) and located at high Galactic latitudes | b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δ mz' < 0.2 and a color i' - z' < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2( z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < z phot < 5.5. The selection completeness of known quasars at z spec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δ z = | z spec - z phot|) is σ Δ z /(1+ z spec) = 0.07, while the outlier fraction is η = 9% when Δ z/(1 + z cпek.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.
A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Kai; Hao, Lei
2018-04-01
We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 < z < 1 in the DEEP2 Galaxy Redshift Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.
Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.
2015-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.
PHOTOMETRIC REDSHIFTS IN THE HAWAII-HUBBLE DEEP FIELD-NORTH (H-HDF-N)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.; Xue, Y. Q.; Kong, X.
2015-01-01
We derive photometric redshifts (z {sub phot}) for sources in the entire (∼0.4 deg{sup 2}) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 μm). Our catalog consists of a total of 131,678 sources. We evaluate the z {sub phot} quality by comparing z {sub phot} with spectroscopic redshifts (z {sub spec}) when available, and find a value of normalized median absolute deviation σ{sub NMAD} = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |z{sub phot} – z{sub spec} |/(1more » + z{sub spec} ) > 0.15) for non-X-ray sources. More specifically, we obtain σ{sub NMAD} = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, σ{sub NMAD} = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, σ{sub NMAD} = 0.026 with 3.9% outliers for sources having z < 1, and σ{sub NMAD} = 0.034 with 9.0% outliers for sources having z > 1. Our z {sub phot} quality shows an overall improvement over an earlier z {sub phot} work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z {sub spec}), we improve their z {sub phot} quality by adding three additional active galactic nucleus templates, achieving σ{sub NMAD} = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z {sub phot}, and provide guidance on how to make use of our catalog.« less
Probabilistic selection of high-redshift quasars
NASA Astrophysics Data System (ADS)
Mortlock, Daniel J.; Patel, Mitesh; Warren, Stephen J.; Hewett, Paul C.; Venemans, Bram P.; McMahon, Richard G.; Simpson, Chris
2012-01-01
High-redshift quasars (HZQs) with redshifts of z ≳ 6 are so rare that any photometrically selected sample of sources with HZQ-like colours is likely to be dominated by Galactic stars and brown dwarfs scattered from the stellar locus. It is impractical to re-observe all such candidates, so an alternative approach was developed in which Bayesian model comparison techniques are used to calculate the probability that a candidate is a HZQ, Pq, by combining models of the quasar and star populations with the photometric measurements of the object. This method was motivated specifically by the large number of HZQ candidates identified by cross-matching the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) to the Sloan Digital Sky Survey (SDSS): in the ? covered by the LAS in the UKIDSS Eighth Data Release (DR8) there are ˜9 × 103 real astronomical point sources with the measured colours of the target quasars, of which only ˜10 are expected to be HZQs. Applying Bayesian model comparison to the sample reveals that most sources with HZQ-like colours have Pq≲ 0.1 and can be confidently rejected without the need for any further observations. In the case of the UKIDSS DR8 LAS, there were just 107 candidates with Pq≥ 0.1; these objects were prioritized for re-observation by ranking according to Pq (and their likely redshift, which was also inferred from the photometric data). Most candidates were rejected after one or two (moderate-depth) photometric measurements by recalculating Pq using the new data. That left 12 confirmed HZQs, six of which were previously identified in the SDSS and six of which were new UKIDSS discoveries. The high efficiency of this Bayesian selection method suggests that it could usefully be extended to other HZQ surveys (e.g. searches by the Panoramic Survey Telescope And Rapid Response System, Pan-STARRS, or the Visible and Infrared Survey Telescope for Astronomy, VISTA) as well as to other searches for rare objects.
A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin
The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physicalmore » size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.« less
NASA Astrophysics Data System (ADS)
Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan
2017-09-01
Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Astrophysics Data System (ADS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonsdale, C.J.; Hacking, P.B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-01-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging
NASA Astrophysics Data System (ADS)
Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Lai, Kamson; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Iono, Daisuke; Kohno, Kotaro; Kawabe, Ryohei; Hughes, David H.; Aretxaga, Itziar; Webb, Tracy; Martínez-Sansigre, Alejo; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.; Schinnerer, Eva; Smolčić, Vernesa
2007-12-01
We have used the Submillimeter Array to image a flux-limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890 μm with ~2" resolution. All of the sources-two radio-bright and five radio-dim-are detected as single point sources at high significance (>6 σ), with positions accurate to ~0.2" that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0 μm fluxes, and (3) are not detected at 24 μm. These properties, combined with size constraints at 890 μm (θ<~1.2''), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, with an average redshift higher than radio-bright sources.
VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)
NASA Astrophysics Data System (ADS)
McLure, R.; Pentericci, L.; Vandels Team
2017-11-01
This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0
Neon and [CII] 158 μm Emission Line Profiles in Dusty Starbursts and Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.
2017-07-01
Identifying and understanding the initial formation of massive galaxies and quasars in the early universe is a fundamental goal of observational cosmology. A rapidly developing capability for tracing luminosity sources to high redshifts is the observation of the [CII] 158 μm emission line at redshifts z > 4 using ground based submillimeter interferometers, with detections now having been made to z = 7. This has long been known as the strongest far-infrared line in most sources, often carrying about 1% of the total source luminosity, and is thought to be associated with star formation because it should arise within the photodissociation region (PDR) surrounding starbursts. The sample of 382 extragalactic sources has been analysed that have mid-infrared,high resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII] 158 μm line with the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII] 12.81μm , [NeIII] 15.55 μm , and [CII] 158 μm are studied, and intrinsic line widths are determined. All line profiles together with overlays comparing positions of PACS and IRS observations are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from AGN to starburst based on equivalent widths of the 6.2 μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classification for [CII], with median widths of 207 km s-1 for AGN, 248 km s-1 for composites, and 233 km s-1 for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A small number of objects with unusually broad lines or unusual redshift differences in any feature are identified.
Measuring Sizes & Shapes of Galaxies
NASA Astrophysics Data System (ADS)
Kusmic, Samir; Willemn Holwerda, Benne
2018-01-01
Software is how galaxy morphometrics are calculated, cutting down on time needed to categorize galaxies. However, new surveys coming in the next decade is expected to count upwards of a thousand times more galaxies than with current surveys. This issue would create longer time consumption just processing data. In this research, we looked into how we can reduce the time it takes to get morphometric parameters in order to classify galaxies, but also how precise we can get with other findings. The software of choice is Source Extractor, known for taking a short amount of time, as well as being recently updated to get compute morphometric parameters. This test is being done by running CANDELS data, five fields in the J and H filters, through Source Extractor and then cross-correlating the new catalog with one created with GALFIT, obtained from van der Wel et al. 2014, and then with spectroscopic redshift data. With Source Extractor, we look at how many galaxies counted, how precise the computation, how to classify morphometry, and how the results stand with other findings. The run-time was approximately 10 hours when cross-correlated with GALFIT and approximately 8 hours with the spectroscopic redshift; these were expected times as Source Extractor and already faster than GALFIT's run-time by a large factor. As well, Source Extractor's recovery was large: 79.24\\% of GALFIT's count. However, the precision is highly variable. We have created two thresholds to see which would be better in order to combat this;we ended up picking an unbiased isophotal area threshold as the better choice. Still, with such a threshold, spread was relatively wide. However, comparing the parameters with redshift showed agreeable findings, however, not necessarily to the numerical value. From the results, we see Source Extractor as a good first-look, to be followed up by other software.
NASA Astrophysics Data System (ADS)
Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.
2017-06-01
In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends all the way from the highest possible formation redshifts that we can probe at z 15 down to redshifts z 2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z 2 than at earlier epochs. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791.
Impact of large-scale tides on cosmological distortions via redshift-space power spectrum
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro
2018-03-01
Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.
A Ks-band-selected catalogue of objects in the ALHAMBRA survey
NASA Astrophysics Data System (ADS)
Nieves-Seoane, L.; Fernandez-Soto, A.; Arnalte-Mur, P.; Molino, A.; Stefanon, M.; Ferreras, I.; Ascaso, B.; Ballesteros, F. J.; Cristóbal-Hornillos, D.; López-Sanjuán, C.; Hurtado-Gil, Ll.; Márquez, I.; Masegosa, J.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Moles, M.; Olmo, A. del; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.; Troncoso-Iribarren, P.; Viironen, K.
2017-02-01
The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (
Searching for Spectroscopic Signs of Termination Shocks in Solar Flares
NASA Astrophysics Data System (ADS)
Galan, G.; Polito, V.; Reeves, K.
2017-12-01
The standard flare model predicts the presence of a termination shock located above the flare loop tops, however terminations shocks have not yet been well observed. We analyze flare observations by the Interface Region Imaging Spectrograph (IRIS), which provides cotemporal UV imaging and spectral data. Specifically, we study plasma emissions in the Fe XXI line, formed at the very hot plasma temperatures in flares (> 10 MK). Imaging observations that point to shocks include fast hot reconnection downflows above the loop tops and localized dense, bright plasma at the loop tops; spectral signatures that suggest shocks in the locality of the loop tops include redshifts and nonthermal broadening of the Fe XXI line. We identify possibly significant redshifts in some on-disk flare events observed by IRIS. Redshifts are observed in the vicinity of the bright loop top source that is thought to coincide with the site of the shock. In these events, the Fe XXI emissions at the time of the redshifted structures are dominated by at the at-rest components. The much more less intense redshifted components are broader, with velocities of 200 km/s. The spatial location of these shifts might indicate plasma motions and speeds indicative of termination shocks. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic reconnection, Termination shocks
[CII] At 1 < z < 2: Observing Star Formation in the Early Universe with Zeus (1 and 2)
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Hailey-Dunsheath, S.; Nikola, T.; Oberst, T.; Parshley, S.; Stacey, G.; Benford, D.; staguhn, J.
2010-01-01
We report the detection of the [CII] 158 micron fine structure line from six submillimeter galaxies with redshifts between 1.12 and 1.73. This more than doubles the total number of [CII] 158 micron detections reported from high redshift sources. These observations were made with the Redshift(z) and Early Universe Spectrometer(ZEUS) at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii between December 2006 and March 2009. ZEUS is a background limited submm echelle grating spectrometer (Hailey-Dunsheath 2009). Currently we are constructing ZEUS-2. This new instrument will utilize the same grating but will feature a two dimensional transition-edge sensed bolometer array with SQUID multiplexing readout system enabling simultaneous background limited observations in the 200, 340,450 and 650 micron telluric windows. ZEUS-2 will allow for long slit imaging spectroscopy in nearby galaxies and a [CII] survey from z 0.25 to 2.5.
NASA Technical Reports Server (NTRS)
Brunner, H.; Worrall, D. M.; Wilkes, Belinda J.; Elvis, Martin
1989-01-01
The dependence of the soft X-ray spectral slope on radio, optical and X-ray properties, and on redshift are reported for a large sample of Active Galactic Nuclei (AGN). The sample includes 317 optically and radio-selected AGN from a preliminary version of the Einstein Imaging Proportional Counter (IPC) quasar and AGN data base. The main results are: the difference in X-ray slope between radio-loud and radio-quiet AGN were confirmed for an independent and much larger sample of sources; a difference in X-ray slope between flat and steep radio spectrum AGN is observed only in high luminosity sub-sample; in flat radio spectrum AGNs there is an indication for a dependence of the X-ray spectral index on X-ray luminosity redshift and alpha sub 0x.
Probabilistic Selection of High-redshfit Quasars with Subaru / Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Onoue, Masafusa
2015-08-01
High-redshift quasrs are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. We are now starting a new ground-breaking survey of high-redsfhit quasars (z>6) using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. With the extremely wide-area coverage and high sensitivity thorugh five optical bands (1,400 deg2 to the depth of r~26 in Wide layer), it is one of the most powerful contemporary surveys that makes it possible for the HSC-AGN collaboration to increase the number of z>6 quasars by almost an order of magnitude, i.e., 300 at z~6 and 50 at z~7 based on the current estimate of the QLF at z>6 (Willott et al. 2010).One of the biggest challenges in the candidate selection is the significant contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to z>6 quasars. To overcome this issue, we have developed template SED fitting method optimized to high-redshift quasars selection for constructing the largest z>6 quasar sample with the HSC survey. Since 500 deg2 of the footprints of the HSC survey overlaps with the VISTA/VIKING survey, it is expected that z>6 quasars, with characteristic large Lyman break and flat red-continuum in its SED, can be separated out from contaminating sources by applying SED fitting with multi-wavelength photometric data. In practice, its application with 27 photometric bands to the COSMOS quasars at 3
The formation and evolution of high-redshift dusty galaxies
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration
2017-01-01
Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral carbon and molecules. I have also pushed forward this study by using HST IR grism to link the absorber and the host galaxy.
PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift
NASA Technical Reports Server (NTRS)
D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.;
2013-01-01
The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.
The VLA-COSMOS Survey - V. 324 MHz continuum observations
NASA Astrophysics Data System (ADS)
Smolčić, Vernesa; Ciliegi, Paolo; Jelić, Vibor; Bondi, Marco; Schinnerer, Eva; Carilli, Chris L.; Riechers, Dominik A.; Salvato, Mara; Brković, Alen; Capak, Peter; Ilbert, Olivier; Karim, Alexander; McCracken, Henry; Scoville, Nick Z.
2014-09-01
We present 90 cm Very Large Array imaging of the COSMOS field, comprising a circular area of 3.14 square degrees at 8.0arcsec × 6.0arcsec angular resolution with an average rms of 0.5 mJy beam-1. The extracted catalogue contains 182 sources (down to 5.5σ), 30 of which are multicomponent sources. Using Monte Carlo artificial source simulations, we derive the completeness of the catalogue, and we show that our 90 cm source counts agree very well with those from previous studies. Using X-ray, NUV-NIR and radio COSMOS data to investigate the population mix of our 90 cm radio sample, we find that our sample is dominated by active galactic nuclei. The average 90-20 cm spectral index (Sν ∝ να, where Sν is the flux density at frequency ν and α the spectral index) of our 90 cm selected sources is -0.70, with an interquartile range from -0.90 to -0.53. Only a few ultra-steep-spectrum sources are present in our sample, consistent with results in the literature for similar fields. Our data do not show clear steepening of the spectral index with redshift. Nevertheless, our sample suggests that sources with spectral indices steeper than -1 all lie at z ≳ 1, in agreement with the idea that ultra-steep-spectrum radio sources may trace intermediate-redshift galaxies (z ≳ 1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny
We report Herschel/SPIRE, Spitzer and Wide-field Infrared Survey Explorer observations of 44 z ≅ 4.8 optically selected active galactic nuclei (AGNs). This flux-limited sample contains the highest mass black holes (BHs) at this redshift. Ten of the objects were detected by Herschel and five show emission that is not clearly associated with the AGNs. The star formation (SF) luminosity (L{sub SF}) obtained by fitting the spectral energy distribution (SED) with standard SF templates, taking into account AGN contribution, is in the range 10{sup 46.62}-10{sup 47.21} erg s{sup –1} corresponding to SF rates of 1090-4240 M{sub ☉} yr{sup –1}. Fitting withmore » very luminous submillimeter galaxy SEDs gives SF rates that are smaller by 0.05 dex when using all bands and 0.1 dex when ignoring the 250 μm band. A 40 K graybody fits to only the 500 μm fluxes reduce L{sub SF} by about a factor of two. A stacking analysis of 29 undetected sources gives significant signals in all three bands. A SF template fit indicates L{sub SF} = 10{sup 46.19-46.23} erg s{sup –1} depending on the assumed AGN contribution. A 40 K fit to the stacked 500 μm flux gives L{sub SF} = 10{sup 45.95} erg s{sup –1}. The mean BH mass (M{sub BH}) and AGN luminosity (L{sub AGN}) of the detected sources are significantly higher than those of the undetected ones. The spectral differences are seen all the way from UV to far infrared wavelengths. The mean optical-UV spectra are similar to those predicted for thin accretion disks around BHs with similar masses and accretion rates. We suggest two alternative explanations to the correlation of L{sub SF}, L{sub AGN} and M{sub BH}, one involving no AGN feedback and the second involving moderate feedback that affects, but does not totally quench, SF in three-quarters of the sources. We compare our L{sub SF} and L{sub AGN} to lower redshift samples and show a new correlation between L{sub SF} and M{sub BH}. We also examine several rather speculative ideas about the host galaxy properties including the possibility that the detected sources are above the SF mass sequence (MS) at z ≅ 4.8, perhaps in mergers, and most of the undetected sources are on the MS.« less
The 3XMM spectral fit database
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Corral, A.; Watson, M.; Carrera, F.; Webb, N.; Rosen, S.
2016-06-01
I will present the XMMFITCAT database which is a spectral fit inventory of the sources in the 3XMM catalogue. Spectra are available by the XMM/SSC for all 3XMM sources which have more than 50 background subtracted counts per module. This work is funded in the framework of the ESA Prodex project. The 3XMM catalog currently covers 877 sq. degrees and contains about 400,000 unique sources. Spectra are available for over 120,000 sources. Spectral fist have been performed with various spectral models. The results are available in the web page http://xraygroup.astro.noa.gr/ and also at the University of Leicester LEDAS database webpage ledas-www.star.le.ac.uk/. The database description as well as some science results in the joint area with SDSS are presented in two recent papers: Corral et al. 2015, A&A, 576, 61 and Corral et al. 2014, A&A, 569, 71. At least for extragalactic sources, the spectral fits will acquire added value when photometric redshifts become available. In the framework of a new Prodex project we have been funded to derive photometric redshifts for the 3XMM sources using machine learning techniques. I will present the techniques as well as the optical near-IR databases that will be used.
The GISMO two-millimeter deep field in GOODS-N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staguhn, Johannes G.; Kovács, Attila; Arendt, Richard G.
2014-07-20
We present deep continuum observations using the GISMO camera at a wavelength of 2 mm centered on the Hubble Deep Field in the GOODS-N field. These are the first deep field observations ever obtained at this wavelength. The 1σ sensitivity in the innermost ∼4' of the 7' diameter map is ∼135 μJy beam{sup –1}, a factor of three higher in flux/beam sensitivity than the deepest available SCUBA 850 μm observations, and almost a factor of four higher in flux/beam sensitivity than the combined MAMBO/AzTEC 1.2 mm observations of this region. Our source extraction algorithm identifies 12 sources directly, and anothermore » 3 through correlation with known sources at 1.2 mm and 850 μm. Five of the directly detected GISMO sources have counterparts in the MAMBO/AzTEC catalog, and four of those also have SCUBA counterparts. HDF850.1, one of the first blank-field detected submillimeter galaxies, is now detected at 2 mm. The median redshift of all sources with counterparts of known redshifts is z-tilde =2.91±0.94. Statistically, the detections are most likely real for five of the seven 2 mm sources without shorter wavelength counterparts, while the probability for none of them being real is negligible.« less
ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe
NASA Astrophysics Data System (ADS)
Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.
2016-10-01
We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number { M }={2.4}-0.6+1.3, which in turn suggests a high value of the magnetic field (of the order of 4-10 μ {{G}}) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.
Investigating the peculiar emission from the new VHE gamma-ray source H1722+119
Ahnen, M. L.
2016-03-28
The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes ob- served the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskap- sakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100GeV) γ-ray band with a statistical significance of 5.9 σ. The integral flux above 150GeV is estimated to be (2.0±0.5) per cent of the Crab Nebula flux. We used contemporaneous high energymore » (HE, 100MeV < E < 100GeV) γ-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34±0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the ~ 3×10 14-10 18 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.« less
The radio properties of infrared-faint radio sources
NASA Astrophysics Data System (ADS)
Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.
2011-02-01
Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
A spectroscopic survey of WISE-selected obscured quasars with the southern african large telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainline, Kevin N.; Hickox, Ryan C.; Carroll, Christopher M.
2014-11-10
We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and find thatmore » sources that are bright in the WISE W4 (22 μm) band are typically at moderate redshift ((z) = 0.35) while sources fainter in W4 are at higher redshifts ((z) = 0.73). The majority of the sources have narrow emission lines with optical colors and emission line ratios of our WISE-selected sources that are consistent with the locus of AGN on the rest-frame g – z color versus [Ne III] λ3869/[O II] λλ3726+3729 line ratio diagnostic diagram. We also use empirical AGN and galaxy templates to model the spectral energy distributions (SEDs) for the objects in our sample, and find that while there is significant variation in the observed SEDs for these objects, the majority require a strong AGN component. Finally, we use the results from our analysis of the optical spectra and the SEDs to compare our selection criteria to alternate criteria presented in the literature. These results verify the efficacy of selecting luminous obscured AGNs based on their WISE colors.« less
Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.
2012-01-01
Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.
The Tidbinbilla-U.K. Schmidt radio quasar identification program
NASA Technical Reports Server (NTRS)
Jauncey, D. L.; Batty, M. J.; Savage, A.; Gulkis, S.
1983-01-01
A program is under way at Tidbinbilla to measure accurate (up to 2 arcsec r.m.s) radio positions for compact sources in the Parkes 2.7 GHz survey south of declination -30 deg. Optical identifications are being made on the basis of radio-optical position coincidence alone, without regard to colour or morphology, using the U.K. Schmidt IIIa-J sky survey to a limiting magnitude of 22.5. This program is aimed at producing an evaluation of the radio quasar redshift distribution with particular emphasis on those objects with redshifts greater than 3.0.
MDM Redshift of the Host of ASASSN-17gs
NASA Astrophysics Data System (ADS)
Chornock, R.; Margutti, R.
2017-06-01
The optical transient ASASSN-17gs = AT2017egv (http://www.astronomy.ohio-state.edu/ assassin/transients.html, https://wis-tns.weizmann.ac.il/object/2017egv) was associated with the new Fermi LAT source J1544-0649 and a new, bright X-ray source Swift 154419.7-064915 by Ciprini et al. (ATel #10482).
Emission Features and Source Counts of Galaxies in Mid-Infrared
NASA Technical Reports Server (NTRS)
Xu, C.; Hacking, P. B.; Fang, F.; Shupe, D. L.; Lonsdale, C. J.; Lu, N. Y.; Helou, G.; Stacey, G. J.; Ashby, M. L. N.
1998-01-01
In this work we incorporate the newest ISO results on the mid-infrared spectral-energy-distributions (MIR SEDs) of galaxies into models for the number counts and redshift distributions of MIR surveys.
Investigating Supermassive Black Hole Spin at Different Redshift
NASA Astrophysics Data System (ADS)
Sinanan-Singh, Jasmine
2018-01-01
Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Implications of a wavelength-dependent PSF for weak lensing measurements
NASA Astrophysics Data System (ADS)
Eriksen, Martin; Hoekstra, Henk
2018-07-01
The convolution of galaxy images by the point spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimized for this purpose. Using a machine learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model, and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.
Implications of a wavelength dependent PSF for weak lensing measurements.
NASA Astrophysics Data System (ADS)
Eriksen, Martin; Hoekstra, Henk
2018-05-01
The convolution of galaxy images by the point-spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimised for this purpose. Using a machine-learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation
NASA Astrophysics Data System (ADS)
Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team
2018-06-01
TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.
Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU
NASA Astrophysics Data System (ADS)
Christenson, Holly; Jorgenson, Regina
2017-01-01
The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less
Recalculating the quasar luminosity function of the extended Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Caditz, David M.
2017-12-01
Aims: The extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey provides a uniform sample of over 13 000 variability selected quasi-stellar objects (QSOs) in the redshift range 0.68
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
Galaxy power-spectrum responses and redshift-space super-sample effect
NASA Astrophysics Data System (ADS)
Li, Yin; Schmittfull, Marcel; Seljak, Uroš
2018-02-01
As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.
Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.
Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G
2016-01-14
One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
NASA Astrophysics Data System (ADS)
Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9
NASA Astrophysics Data System (ADS)
Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter; Gawiser, Eric; Franx, Marijn; Lira, Paulina; Rudnick, Gregory; Urry, C. Megan; Maza, José; Kriek, Mariska; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Christlein, Daniel; Coppi, Paolo S.; Hall, Patrick B.; Herrera, David; Infante, Leopoldo; Taylor, Edward N.; Treister, Ezequiel; Willis, Jon P.
2007-09-01
We present deep near-infrared JHK imaging of four 10' × 10' fields. The observations were carried out as part of the Multiwavelength Survey by Yale-Chile (MUSYC) with ISPI on the CTIO 4 m telescope. The typical point-source limiting depths are J ~ 22.5, H ~ 21.5, and K ~ 21 (5 σ Vega). The effective seeing in the final images is ~1.0″. We combine these data with MUSYC UBVRIz imaging to create K-selected catalogs that are unique for their uniform size, depth, filter coverage, and image quality. We investigate the rest-frame optical colors and photometric redshifts of galaxies that are selected using common color selection techniques, including distant red galaxies (DRGs), star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman break galaxies (LBGs). These techniques are effective at isolating large samples of high-redshift galaxies, but none provide complete or uniform samples across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify populations of red and blue galaxies, respectively, as they were designed to do. The star-forming BzKs have a very wide redshift distribution, extending down to z ~ 1, a wide range of colors, and may include galaxies with very low specific star formation rates. In comparison, the passive BzKs are fewer in number, have a different distribution of K magnitudes, and have a somewhat different redshift distribution. By combining either the DRG and BM/BX/LBG criteria, or the star-forming and passive BzK criteria, it appears possible to define a reasonably complete sample of galaxies to our flux limit over specific redshift ranges. However, the redshift dependence of both the completeness and sampled range of rest-frame colors poses an ultimate limit to the usefulness of these techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan
2010-08-15
We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzYmore » code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.« less
Redshift measurement of Fermi blazars for the Cherenkov telescope array
NASA Astrophysics Data System (ADS)
Pita, S.; Goldoni, P.; Boisson, C.; Cotter, G.; Lefaucheur, J.; Lenain, J.-P.; Lindfors, E.; Williams, D. A.
2017-01-01
Blazars are active galactic nuclei, and the most numerous High Energy (HE) and Very High Energy (VHE) γ-ray emitters. Their optical emission is often dominated by non-thermal, and, in the case of BL Lacs, featureless continuum radiation. This makes the determination of their redshift extremely difficult. Indeed, as of today only about 50% of γ-ray blazars have a measured spectroscopic redshift. The knowledge of redshift is fundamental because it allows the precise modeling of the VHE emission and also of its interaction with the extragalactic background light (EBL). The beginning of the Cherenkov Telescope Array (CTA) operations in the near future will allow the detection of several hundreds of new blazars. Using the Fermi catalogue of sources above 50 GeV (2FHL), we performed simulations which indicate that a significant fraction of the 2FHL blazars detectable by CTA will not have a measured redshift. As a matter of fact, the organization of observing campaigns to measure the redshift of these blazars has been recognized as a necessary support for the AGN Key Science Project of CTA. We are planning such an observing campaign. In order to optimize our chances of success, we will perform preliminary deep imaging observations aimed at detecting or setting upper limits to the host galaxy. We will then take spectra of the candidates with the brightest host galaxies. Taking advantage of the recent success of an X-shooter GTO observing campaign, these observations will be different with respect to previous ones due to the use of higher resolution spectrographs and of 8 meter class telescopes. We are starting to submit proposals for these observations. In this paper we briefly describe how candidates are selected and the corresponding observation program.
NASA Astrophysics Data System (ADS)
Almosallam, Ibrahim A.; Jarvis, Matt J.; Roberts, Stephen J.
2016-10-01
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz.
NASA Astrophysics Data System (ADS)
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei
2017-11-01
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less