Sample records for highest surface area

  1. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice.

    PubMed

    Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya

    2016-04-01

    To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.

  2. Decoupling the Effects of High Crystallinity and Surface Area on the Photocatalytic Overall Water Splitting over β-Ga2 O3 Nanoparticles by Chemical Vapor Synthesis.

    PubMed

    Lukic, Sasa; Menze, Jasper; Weide, Philipp; Busser, G Wilma; Winterer, Markus; Muhler, Martin

    2017-09-11

    Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained β-Ga 2 O 3 nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrO x co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing β-Ga 2 O 3 samples in the temperature range from 1000 °C to 1500 °C. With increasing temperature, the specific surface area and the microstrain were found to decrease, whereas the degree of crystallinity and the crystallite size increased. Whereas the photocatalyst with the highest specific surface area showed the highest aqueous methanol reforming activity, the highest OWS activity was that for the sample with an optimum ratio between high degree of crystallinity and specific surface area. Thus, it was possible to show that the facile aqueous methanol reforming and the demanding OWS have different requirements for high photocatalytic activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of industrial wastewater disposal on surface water bodies in Mostord area, north greater Cairo.

    PubMed

    Abdel-Sabour, M F; Rabie, F H; Mostafa, T; Hassan, S A

    2001-10-01

    The studied area (Shoubra El-Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area. Shebin El-Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies. Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al-Ahleya Plastic Company discharges the highest amounts of total-Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.

  4. A Quantitative Approach to Determining the Ideal Female Lip Aesthetic and Its Effect on Facial Attractiveness.

    PubMed

    Popenko, Natalie A; Tripathi, Prem B; Devcic, Zlatko; Karimi, Koohyar; Osann, Kathryn; Wong, Brian J F

    2017-07-01

    Aesthetic proportions of the lips and their effect on facial attractiveness are poorly defined. Established guidelines would aid practitioners in achieving optimal aesthetic outcomes during cosmetic augmentation. To assess the most attractive lip dimensions of white women based on attractiveness ranking of surface area, ratio of upper to lower lip, and dimensions of the lip surface area relative to the lower third of the face. In phase 1 of this study, synthetic morph frontal digital images of the faces of 20 white women ages 18 to 25 years old were used to generate 5 varied lip surface areas for each face. These 100 faces were cardinally ranked by attractiveness through our developed conventional and internet-based focus groups by 150 participants. A summed ranking score of each face was plotted to quantify the most attractive surface area. In phase 2 of the study, 4 variants for each face were created with 15 of the most attractive images manipulating upper to lower lip ratios while maintaining the most attractive surface area from phase 1. A total of 60 faces were created, and each ratio was ranked by attractiveness by 428 participants (internet-based focus groups). In phase 3, the surface area from the most attractive faces was used to determine the total lip surface area relative to the lower facial third. Data were collected from March 1 to November 31, 2010, and analyzed from June 1 to October 31, 2016. Most attractive lip surface area, ratio of upper to lower lip, and dimension of the lips relative to the lower facial third. In phase 1, all 100 faces were cardinally ranked by 150 individuals (internet-based focus groups [n = 130] and raters from conventional focus groups [conventional raters] [n = 20]). In phase 2, all 60 faces were cardinally ranked by 428 participants (internet-based focus groups [n = 408] and conventional raters [n = 20]). The surface area that corresponded to the range of 2.0 to 2.5 × 104 pixels represented the highest summed rank, generating a pool of 14 images. This surface area was determined to be the most attractive and corresponded to a 53.5% increase in surface area from the original image. With the highest mean and highest proportions of most attractive rankings, the 1:2 ratio was deemed most attractive. Conversely, the ratio of 2:1 was deemed least attractive, having the lowest mean at 1.61 and the highest proportion of ranks within 1 with 310 votes (72.3%). Using a robust sample size, this study found that the most attractive lip surface area represents a 53.5% increase from baseline, an upper to lower lip ratio of 1:2, and a surface area equal to 9.6% of the lower third of the face. Lip dimensions and ratios derived in this study may provide guidelines in improving overall facial aesthetics and have clinical relevance to the field of facial plastic surgery. NA.

  5. Temporal and spatial trends of total petroleum hydrocarbons and heavy metals in the surface sediment of Caofeidian Sea Area, China from 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    2018-05-01

    The temporal and spatial distribution of total petroleum hydrocarbons (TPH) and four heavy metals in the surface sediments of Caofeidian Sea Area during 2011–2016 was investigated. The sediment concentration of TPH, Cu, Zn, Pb and Cd were 10.07-186.4 mg/L, 16.5-84.9 mg/L, 11.1-135 mg/L, 6.8-24.6 mg/L, and 0.07-0.199 mg/L, respectively. The pollution level in Caofeidian sea area is lower than those in other area in China. These results reached the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. In addition, TPH at all stations decreased during 2011-2016. The highest values obtained were at stations near the port areas and estuary region.

  6. Hydrology of area 2, Eastern Coal Province, Pennsylvania and New York

    USGS Publications Warehouse

    Herb, W.J.; Brown, D.E.; Shaw, L.C.; Stoner, J.E.; Felbinger, J.K.

    1983-01-01

    Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resourcesrelated topics. The summation of the topical discussions provides a description of the hydrology of the area. The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area. Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mi;;sissippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining. Streamflow data are available for 18 continuousrecord stations; 1 crest-stage, partial-record station; 1 low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations. Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area. Statistics on low flow, mean flow, peak flow, and flow duration for gaging stations can be computed from recorded mean daily flows. Similar statistics can be estimated for ungaged streams by regression and graphical techniques. Five ground-water observation wells are being operated in Area 2. Ground-water levels fluctuate seasonally. Depth to water increases with well depth in upland areas and decreases with well depth in valleys. Well yields in the area range from less than 1 to more than 2,000 gallons per minute. Wells in unconsolidated materials usually have higher yields. Ground-water quality is adequate for most domestic purposes, except locally. Additional water-data information are available through: (1) The National Water Data Exchange, (2) The National Water Data Storage and Retrieva

  7. Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters

    NASA Astrophysics Data System (ADS)

    Meyers, Philip A.; Owen, Robert M.

    1980-11-01

    Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.

  8. Occurrence, Distribution, and Accumulation of Pesticides in Exterior Residential Areas.

    PubMed

    Jiang, Weiying; Conkle, Jeremy L; Luo, Yuzhou; Li, Juying; Xu, Karen; Gan, Jay

    2016-12-06

    Pesticides are commonly applied around residential homes, but their occurrence on exterior surfaces (e.g., pavement) has not been thoroughly evaluated. We collected 360 dust samples from curbside gutters, sidewalks, and street surfaces at 40 houses in southern California to evaluate pesticide occurrence on urban paved surfaces as well as their spatial and temporal distributions. Pesticides and select degradates were ubiquitously detected in dust, with the median concentration of total target analytes at 85 μg kg -1 . A total of 75% of samples contained at least five pesticides. As a result of recurring pesticide applications, concentrations increased throughout the summer. The pyrethroids bifenthrin and permethrin accounted for 55% of total pesticides detected in the dust. The highest concentrations in dust were found on the sidewalk and in the gutter. Relative to indoor environments, human exposure risk to pesticides on paved surfaces was estimated to be lower, with the highest potential oral and dermal exposure predicted to be 38 ng day -1 for permethrin. The ubiquitous detection of pesticides on residential outdoor surfaces and the fact that the exterior concentrations did not correlate to the indoor areas highlight the necessity to measure pesticides in both indoor and outdoor areas for complete residential pesticide risk assessment.

  9. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.

    PubMed

    Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A

    2011-09-01

    In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Systematic studies of tannin–formaldehyde aerogels: preparation and properties

    PubMed Central

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-01-01

    Gelation of tannin–formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer–Emmett–Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g−1, is remarkably high for organic aerogels derived from a natural resource. PMID:27877559

  11. Systematic studies of tannin-formaldehyde aerogels: preparation and properties

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-02-01

    Gelation of tannin-formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer-Emmett-Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g-1, is remarkably high for organic aerogels derived from a natural resource.

  12. Surface microstructure of dental implants before and after insertion: an in vitro study by means of scanning probe microscopy.

    PubMed

    Salerno, Marco; Itri, Angelo; Frezzato, Marco; Rebaudi, Alberto

    2015-06-01

    The surface microstructure of dental implants affects osseointegration, which makes their accurate topographic characterization important. We defined a procedure for evaluation of implant topography before (pre-) and after (post-) in vitro implantation test in bovine bone. The apical morphology of ten implants was analyzed in pre- and post-conditions using atomic force microscopy or 3D profilometry. We extracted four topographical parameters (two amplitude, 1 spatial, and 1 hybrid) and assessed the differences by analysis of variance. The implant with coating (Spline Twist MP-1 HA) was damaged. The two implants with highest pre-amplitude parameters (Pitt Easy VTPS, TLR3815) maintained their character on testing. Pitt Easy PURETEX and OT-F1 were the only nondamaged implants whose amplitude parameters increased. The surface area underwent minor changes even when the texture changed (Tri-Vent, Pitt Easy PURETEX, Exp #1). The implants that ranked the lowest in all parameters before implantation were DT4013TI, Tri-Vent, OT-F1, and Exp #2. On testing, DT4013TI showed the highest decrease in values, whereas Tri-Vent showed the highest increase in surface area. All the experimental implants showed similar topographic properties both pre- and post-test. For most implants, no major changes occurred in surface topography on implantation. The procedure applied seems promising to evaluate the degradation of implant surface on insertion.

  13. Europa: Sea Salts or Battery Acid

    NASA Image and Video Library

    2000-04-19

    This composite image of the Jupiter-facing hemisphere of Europa was obtained on Nov. 25, 1999 by NASA Galileo spacecraft. Blue areas show cleanest, brightest icy surfaces, while the red areas have the highest concentrations of darker, non-ice materials.

  14. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases

    DTIC Science & Technology

    2011-11-01

    surface area measurements were used to compare the pristine and detonated mineral surfaces and to determine if the extreme heat and/or pressures of...gas (N2) in a liquid nitrogen atmosphere (−194.8°C). Results from six relative pressure points were reduced to surface area values applying BET theory...include the minerals quartz, calcite, and dolomite . However, in some detonated Ottawa sand samples the highest intensity peak for calcite at 29° 2Θ

  16. Potentiometric surface of the Magothy Aquifer in southern Maryland during September 1988

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1990-01-01

    A map showing the potentiometric surface of the Magothy aquifer in southern Maryland during the fall of 1988 was prepared from water-level measurements in 83 observation wells. The potentiometric surface was highest near the northwest boundary and outcrop area of the aquifer in topographically high locations of Anne Arundel and Prince Georges Counties. The hydraulic gradient in the study area was generally southeastward or toward the centers of three cones of depression that have developed in response to pumping stresses. These cones formed around well fields in the Annapolis, Waldorf, and Chalk Point areas. The potentiometric surface of the Magothy aquifer was more than 40 ft below sea level in parts of the Waldorf and Chalk Point areas. (USGS)

  17. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.

    PubMed

    Jana, Partha S; Behera, Manaswini; Ghangrekar, M M

    2012-01-01

    The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.

  18. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    PubMed

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide

    NASA Astrophysics Data System (ADS)

    Maulida, Iffana Dani; Sriatun, Taslimah

    2015-09-01

    Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.

  20. The role of refinery flaring events and bay breezes on a high surface ozone episode during the Houston, Texas DISCOVER-AQ field campaign

    NASA Astrophysics Data System (ADS)

    Loughner, C.; Follette-Cook, M. B.; Fried, A.; Pickering, K. E.

    2015-12-01

    The highest observed surface ozone concentrations in the Houston metropolitan area in 2013 occurred on September 25, which coincided with the Texas DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. Surface ozone was elevated throughout the Houston metropolitan area with maximum 8-hour average ozone peaking along the western shore of Galveston Bay, reaching 124 ppbv, almost 50 ppbv above the current EPA standard of 75 ppbv. The NASA P-3B aircraft observed plumes from refinery flares west and northwest of Galveston Bay that were transported over the water. Continental air pollution from the north was transported into the Houston metropolitan area where it mixed with locally generated emissions. A bay breeze circulation formed causing pollutants that were transported out over the water in the morning to recirculate back inland where they mixed with freshly emitted pollution near the bay breeze convergence zone. The highest surface ozone concentrations were reported near the bay breeze front. This ozone episode will be presented using measurements made during the DISCOVER-AQ field campaign and a CMAQ model simulation with integrated source apportionment, which tracks the contribution of emissions source groups and regions on ozone concentrations.

  1. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2017-08-01

    The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.

  2. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  3. Potentiometric surface of the Magothy Aquifer in southern Maryland during the fall of 1987

    USGS Publications Warehouse

    Mack, Frederick K.; Andreasen, David C.; Curtin, Stephen E.; Wheeler, Judith C.

    1989-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Cretaceous Magothy Formation in southern Maryland during the fall of 1987 was prepared by using water level measurements in 85 observation wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high locations of Anne Arundel and Prince Georges Counties. The hydraulic gradient in the study area was generally southeastward or toward the centers of three cones of depression which have developed in response to pumping stresses. These cones formed around well fields in the Annapolis, Waldorf, and Chalk Point areas. The potentiometric surface of the Magothy aquifer was more than 40 ft below sea level in parts of the Waldorf and Chalk Point areas. (USGS)

  4. Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Lee, Woo Seok; Lee, Jae Kyung; Hyun, Soong Keun; Lee, Chongmu; Choi, Seungbok

    2018-03-01

    The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol-gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

  5. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    PubMed

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  7. Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1991

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, D.C.; Mack, Frederick K.

    1993-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1991 was prepared from water levels measured in 89 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of 3 cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Groundwater levels were more than 50 feet below sea level in the Waldorf area, nearly 50 feet below sea level at Chalk Point, and greater than 10 feet below sea level near Annapolis.

  8. Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1994

    USGS Publications Warehouse

    Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.

    1995-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 85 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 60 feet below sea level in the Waldorf area, more than 45 feet below sea level at Chalk Point, and almost 15 feet below sea level near Annapolis.

  9. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 1995

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 92 wells. The potentiometric surface was highest near the northwestern boundaryand outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward towards the southeast and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centeredaround well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 63 feet below sea level in the Waldorf area, more than 50 feet below sea level at Chalk Point, and almost 20 feet below sea level near Annapolis.

  10. Where on Mars Does Carbon Dioxide Frost Form Often?

    NASA Image and Video Library

    2016-07-08

    This map shows the frequency of carbon dioxide frost's presence at sunrise on Mars, as a percentage of days year-round. Carbon dioxide ice more often covers the ground at night in some mid-latitude regions than in polar regions, where it is generally absent for much of summer and fall. Color coding is based on data from the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. A color-key bar below the map shows how colors correspond to frequencies. Yellow indicates high frequencies, identifying areas where carbon dioxide ice is present on the ground at night during most of the year. Blue identifies areas where it is rarely present; red is intermediate. Areas without color coding are regions where carbon dioxide frost is not detected at any time of year. The areas with highest frequency of overnight carbon dioxide frost correspond to regions with surfaces of loose dust, which do not retain heat well, compared to rockier areas. Those areas also have some of the highest mid-afternoon temperatures on the planet. The dust surface heats up and cools off rapidly. http://photojournal.jpl.nasa.gov/catalog/PIA20758

  11. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 69 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured ground-water levels were as low as 90 feet below sea level in the Waldorf area.

  12. Microbial Contamination on Touch Surfaces in Sick- and Well-Child Waiting Rooms in Pediatric Outpatient Facilities.

    PubMed

    Gudakova, Irina; Kim, JinYoung; Meredith, Jennifer F; Webb, Ginny

    2017-12-01

    Healthcare-associated infections are a significant public health burden resulting in approximately 1.7 million infections each year. Much work is done to study the contributing factors in inpatient settings; however, little has been done to study outpatient facilities and their roles in healthcare-associated infections. While many pediatric outpatient offices utilize separated waiting areas for sick and well children to decrease the spread of disease, research has not been done to determine whether this practice is of benefit. In this study, we aimed to determine whether there is a difference in microbial burden between sick- and well-child waiting areas and to identify surfaces with the highest levels of contamination. Touch surfaces in waiting rooms were swabbed and surveyed for total microbial growth, staphylococcal growth and Gram-negative enteric bacterial growth. Selected bacteria were identified to screen for pathogenic organisms. Surfaces sampled included seats, tables, children's tables, children's seats, magazines and books. We found seats, children's seats and children's books to have the highest microbial burden. No conclusions can be made on the differences in microbial contamination in sick- and well-child waiting areas because of high variation. Streptococcus pyogenes was isolated as were several opportunistic pathogens. This study suggests the need for better cleaning practices by pediatric outpatient facilities, to include the disinfection of additional surfaces as well as more frequent and thorough cleaning.

  13. Evaluation of Skin Surface as an Alternative Source of Reference DNA Samples: A Pilot Study.

    PubMed

    Albujja, Mohammed H; Bin Dukhyil, Abdul Aziz; Chaudhary, Abdul Rauf; Kassab, Ahmed Ch; Refaat, Ahmed M; Babu, Saranya Ramesh; Okla, Mohammad K; Kumar, Sachil

    2018-01-01

    An acceptable area for collecting DNA reference sample is a part of the forensic DNA analysis development. The aim of this study was to evaluate skin surface cells (SSC) as an alternate source of reference DNA sample. From each volunteer (n = 10), six samples from skin surface areas (forearm and fingertips) and two traditional samples (blood and buccal cells) were collected. Genomic DNA was extracted and quantified then genotyped using standard techniques. The highest DNA concentration of SSC samples was collected using the tape/forearm method of collection (2.1 ng/μL). Cotton swabs moistened with ethanol yielded higher quantities of DNA than swabs moistened with salicylic acid, and it gave the highest percentage of full STR profiles (97%). This study supports the use of SSC as a noninvasive sampling technique and as a extremely useful source of DNA reference samples among certain cultures where the use of buccal swabs can be considered socially unacceptable. © 2017 American Academy of Forensic Sciences.

  14. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development are the most acidic of the soils studied. Most values of acidity, full specific surface areas and sorption capacity are specific to the surface layer of 100-year-old shelterbelt with the highest total organic carbon content. This work was supported by a grant No. 2295/B/P01/2008/35 founded by Polish Ministry of Education.

  15. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  16. Surface area-volume ratios in insects.

    PubMed

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc

  18. Fluorene-Based Conjugated Microporous Polymers: Preparation and Chemical Sensing Application.

    PubMed

    Zhang, Qiujing; Yu, Sen; Wang, Qian; Xiao, Qin; Yue, Yong; Ren, Shijie

    2017-12-01

    Conjugated microporous polymers (CMPs) with strong fluorescence are great candidates for optoelectronic applications such as photocatalysis and chemical sensing. A series of novel fluorene-based conjugated microporous polymers (FCMPs) with different electronic structures are prepared by Yamamoto coupling reactions using rationally designed monomers. The FCMPs show a high degree of microporosity, decent specific surface areas, and variable fluorescence. FCMP3, which possesses a triazine knot in the network, exhibits the highest specific surface area of 489 m 2 g -1 , the largest pore volume of 0.30 cm 3 g -1 , and the highest solid-state photoluminescence quantum yield of 11.46%. Chemical sensing performance of FCMPs is studied using a range of nitroaromatic compounds as the analytes. Among the FCMPs, FCMP3 exhibits the highest Stern-Volmer constants of 2541, 4708, and 5241 m -1 for the detection of nitrobenzene, 4-nitrotoluene, 2,4-dinitrotoluene, respectively, which are comparable to the detecting efficiency of the state-of-the-art CMP-based sensing agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  20. Adsorption and release of biocides with mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Popat, Amirali; Liu, Jian; Hu, Qiuhong; Kennedy, Michael; Peters, Brenton; Lu, Gao Qing (Max); Qiao, Shi Zhang

    2012-01-01

    In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11691j

  1. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.

    PubMed

    Wang, Chunhui; Zhou, Shenglu; Wu, Shaohua; Song, Jing; Shi, Yaxing; Li, Baojie; Chen, Hao

    2017-10-01

    The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑ 16 PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaP eq ) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.

  2. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  3. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  4. Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico)

    PubMed Central

    Naumann, Malik S.; Jantzen, Carin; Haas, Andreas F.; Iglesias-Prieto, Roberto; Wild, Christian

    2013-01-01

    High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems. PMID:24367570

  5. Assessment of geometrical characteristics of dental endodontic micro-instruments utilizing X-ray micro computed tomography

    PubMed Central

    Al JABBARI, Youssef S.; TSAKIRIDIS, Peter; ELIADES, George; AL-HADLAQ, Solaiman M.; ZINELIS, Spiros

    2012-01-01

    Objective The aim of this study was to quantify the surface area, volume and specific surface area of endodontic files employing quantitative X-ray micro computed tomography (mXCT). Material and Methods Three sets (six files each) of the Flex-Master Ni-Ti system (Nº 20, 25 and 30, taper .04) were utilized in this study. The files were scanned by mXCT. The surface area and volume of all files were determined from the cutting tip up to 16 mm. The data from the surface area, volume and specific area were statistically evaluated using the one-way ANOVA and SNK multiple comparison tests at α=0.05, employing the file size as a discriminating variable. The correlation between the surface area and volume with nominal ISO sizes were tested employing linear regression analysis. Results The surface area and volume of Nº 30 files showed the highest value followed by Nº 25 and Nº 20 and the differences were statistically significant. The Nº 20 files showed a significantly higher specific surface area compared to Nº 25 and Nº 30. The increase in surface and volume towards higher file sizes follows a linear relationship with the nominal ISO sizes (r2=0.930 for surface area and r2=0.974 for volume respectively). Results indicated that the surface area and volume demonstrated an almost linear increase while the specific surface area exhibited an abrupt decrease towards higher sizes. Conclusions This study demonstrates that mXCT can be effectively applied to discriminate very small differences in the geometrical features of endodontic micro-instruments, while providing quantitative information for their geometrical properties. PMID:23329248

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viklander, M.

    Sediments that had accumulated during the winter season, and which were left at the surface when the snow had melted, were studied with regard to physical and chemical characteristics. The investigation was carried out in the city of Luleaa, which is located in northern Sweden. Sediment samples were collected in the city center and in a housing area at streets with different traffic loads. The results showed that the amount of the sediments at a street surface was evidently affected by the presence of a sidewalk. The street with a sidewalk accumulated much more sediment than the street without amore » sidewalk. Both of these streets had approximately the same traffic load. The sidewalk also affected the particle size distribution. The content of heavy metals in the sediments varied with the traffic load and the area type. The highest concentration of cadmium, lead, and zinc was found in the street with the highest traffic load.« less

  7. Pilot monitoring study of ibuprofen in surface waters of north of Portugal.

    PubMed

    Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina

    2013-04-01

    Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.

  8. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  9. Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model.

    PubMed

    Lee, U-Young; Kim, In-Beom; Kwak, Dai-Soon

    2015-08-01

    This study used 110 CT images taken from donated Korean cadavers to create 3-D models of the following upper and lower limb bones: the clavicle, scapula, humerus, radius, ulna, hip bone (os coxa), femur, patella (knee cap), tibia, talus, and calcaneus. In addition, the bone volume and surface area were calculated to determine sex differences using discriminant analysis. Significant sex differences were found in all bones with respect to volume and surface area (p<0.01). The order of volume was the same in females and males (femur>hip bone>tibia>humerus>scapula), although the order of surface area was different. The largest surface area in men was the femur and in women was the hip bone (p<0.01). An interesting finding of this study was that the ulna is the bone with the highest accuracy for sex determination (94%). When using the surface area of multiple bones, the maximum accuracy (99.4%) was achieved. The equation was as follows: (discriminant equation of surface area; female<0

  10. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication

    PubMed Central

    Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao

    2016-01-01

    A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762

  11. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 66 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local hydraulic gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured groundwater levels were as low as 71 feet below sea level in the Waldorf area. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  12. The Thermal Collector With Varied Glass Covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less

  13. Spatial and seasonal variation of pollution sources in proximity of the Jaranman-Saryangdo area in Korea.

    PubMed

    Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo

    2017-02-15

    We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gencoglu, Maria F.; Spurri, Amanda; Franko, Mitchell

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with themore » highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m 2 and 2–4 mg/m 2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.« less

  15. Identifying environmental features for land management decisions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely correspond to the General Soil Map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils. Areas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also correspond well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model shows both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  16. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 50 wells. The highest measured water level was 120 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward four cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point-Prince Frederick area, Swan Point subdivision in southern Charles County, and the Lexington Park-St. Inigoes area. The lowest measured ground-water level was 44 feet below sea level at Arnold, 106 feet below sea level south of Waldorf, 54 feet below sea level at Swan Point, 59 feet below sea level at Chalk Point, and 58 feet below sea level at Lexington Park.

  17. Pulmonary function test in healthy school children of 8 to 14 years age in south Gujarat region, India

    PubMed Central

    Doctor, Tahera H.; Trivedi, Sangeeta S.; Chudasama, Rajesh K.

    2010-01-01

    Objective: To obtain reference values for FEV1, FVC, FEV1% and PEFR among children aged 8-14 years in south Gujarat region of India. Materials and Methods: This cross-sectional study was conducted among 655 normal healthy school children (408 boys and 247 girls) of Surat city aged 8 to 14 years studying in V to VII standard during November 2007 to April 2008. Height, weight, body surface area were measured. All included children were tested in a sitting position with the head straight after taking written consent from parents. Spirometry was done using the spirometer “Spirolab II” MIR 010. Spirometer used in the study facilitates the total valuation of lung function including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory volume ratio in one second (FEV1%) and peak expiratory flow rate (PEFR). Results: FVC, FEV1 and PEFR were found to be statistically significant in the study groups. For FVC and FEV1, highest correlation was found with age in girls and height in boys. For FEV1%, significant negative correlation was found with age and height in both sexes, but positive correlation was found with surface area. Similarly, PEFR showed highest correlation with surface area in boys and girls. Conclusion: Variables such as FVC, FEV1 and PEFR show good positive correlation with height, age and body surface area in both sexes. There is a need to have regional values for the prediction of normal spirometric parameters in a country like India with considerable diversity. PMID:20931033

  18. Towards a body hair atlas of women of caucasian ethnicity.

    PubMed

    Schweiger, D; Hoff, A; Scheede, S; Fischer, F; Tilsner, J; Lüttke, J; Neumann, Y; Hagens, R

    2016-08-01

    A preliminary study was conducted in 17 female volunteers (mean age 29.8 years) to gain deeper insights into the characteristics of terminal Caucasian female body hair of different body parts. The focus on Caucasian women was driven by the high number of different scalp hair phenotypes in this ethnicity and intended to identify relevant differences between body areas to improve body hair removal approaches. Multiple growth parameters and structural parameters were assessed for hair on the upper arm, forearm, upper leg, lower leg, axilla and intimate area and compared to scalp data. In particular, macroscopic and much less microscopic or hair surface properties differ strikingly in the investigated body areas. Hair density on the body is much lower than on scalp with the highest hair density in the axilla and intimate area. Multihair follicular units are described for scalp but were also found to a smaller proportion in the axilla and the intimate area. Substantial percentages of hair triplets are only found on the scalp and intimate area. Hair diameter is highest in the intimate area, followed by axillary and lower leg hair and correlates with a faster hair growth rate. The angle of emerging hair is smallest in the intimate area, axilla and on the lower leg. Hair shafts on the lower leg and in the axilla have most overlapping cuticle layers, but independent of body region, no significant differences in the mean thickness of cuticle layers were detectable. In addition, no differences were found in the mean distance between cuticle layer edges along the hair shaft and the hair surface roughness. Hair on the scalp, forearm, upper arm and upper leg had an almost round shape, whereas hair of the lower leg, intimate area and axilla had more elliptical shape. Hairs on the arm showed the highest luminance values and no visible medulla. The darkest hairs were in the axilla and intimate area containing the highest level of visible medulla in hair shafts. To our knowledge, this is the first systematic study comparing terminal hair properties in all cosmetically relevant body regions in Caucasian women. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Quantifying object and material surface areas in residences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented formore » measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.« less

  20. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1982

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1982-01-01

    A map was prepared that shows the potentiometric surface of the Magothy aquifer in southern Maryland in September 1982. The map is based on measurements from a network of 83 observation wells. The highest levels of the potentiometric surface, 57 and 58 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast to about sea level along much of the western shore of the Chesapeake Bay. Three distinct and extensive cones of depression have developed in the potentiometric surface around the well fields of the Annapolis area, Waldorf area, and Chalk Point. Several square miles of each cone are below sea level, and in some areas at Chalk Point and Waldorf, the cone is more than 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy Administration. (USGS)

  1. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    PubMed

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  2. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry

    DOE PAGES

    Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...

    2017-05-26

    Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less

  3. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Bartolucci, Alfred A; Lungu, Claudiu T

    2014-01-01

    Granular activated carbon (GAC) is currently the standard adsorbent in respirators against several gases and vapors because of its efficiency, low cost, and available technology. However, a drawback of GAC due to its granular form is its need for containment, adding weight and bulkiness to respirators. This makes respirators uncomfortable to wear, resulting in poor compliance in their use. Activated carbon fibers (ACF) are considered viable alternative adsorbent materials for developing thinner, light-weight, and efficient respirators because of their larger surface area, lighter weight, and fabric form. This study aims to determine the critical bed depth and adsorption capacity of different types of commercially available ACFs for toluene to understand how thin a respirator can be and the service life of the adsorbents, respectively. ACF in cloth (ACFC) and felt (ACFF) forms with three different surface areas per form were tested. Each ACF type was challenged with six concentrations of toluene (50, 100, 200, 300, 400, 500 ppm) at constant air temperature (23°C), relative humidity (50%), and airflow (16 LPM) at different adsorbent weights and bed depths. Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. The ACFs' surface areas were measured by an automatic physisorption analyzer. The results showed that ACFC has a lower critical bed depth and higher adsorption capacity compared to ACFF with similar surface area for each toluene concentration. Among the ACF types, ACFC2000 (cloth with the highest measured surface area of 1614 ± 5 m(2)/g) has one of the lowest critical bed depths (ranging from 0.11-0.22 cm) and has the highest adsorption capacity (ranging from 595-878 mg/g). Based on these studied adsorption characteristics, it is concluded that ACF has great potential for application in respiratory protection against toluene, particularly the ACFC2000, which is the best candidate for developing thinner and efficient respirators.

  4. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr

  5. Potentiometric surface of the Upper Patapsco aquifer in southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 65 wells. The highest measured water level was 118 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward three additional cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point, and the Leonardtown-Lexington Park area. The lowest measured groundwater levels were 26 feet below sea level at Annapolis, 108 feet below sea level south of Waldorf, 60 feet below sea level at Chalk Point, and 83 feet below sea level at Leonardtown. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  6. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk, E-mail: somnuk.jar@kmutt.ac.th

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders frommore » the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.« less

  7. Origin of low-frequency noise in pentacene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Minari, Takeo; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard

    2011-07-01

    Measurements of power spectral density (PSD) of low-frequency noise (LFN) in pentacene field-effect transistors reveal the preponderance of a 1/ f-type PSD behavior with the amplitude varying as the squared transistor gain and increasing as the inverse of the gate surface area. Such features impose an interpretation of LFN by carrier number fluctuations model involving capture/release of charges on traps uniformly distributed over the gate surface. The surface slow trap density extracted by the noise analysis is close to the surface states density deduced independently from static I(V) data, which confirms the validity of the proposed LFN interpretation. Further, we found that the trap densities in bottom-contact (BC) devices were higher than in their top-contact (TC) counterparts, in agreement with observations of a poorer crystal structure of BC devices, in the contact regions in particular. At the highest bias the noise originating from the contact resistance is also shown to be a dominant component in the PSD, and it is well explained by the noise originating from a gate-voltage dependent contact resistance. A gate area scaling was also performed, and the good scaling and the dispersion at the highest bias confirm the validity of the applied carrier number fluctuations model and the predominant contact noise at high current intensities.

  8. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    NASA Astrophysics Data System (ADS)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  9. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  10. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  11. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells

    PubMed Central

    Jung, You-Shick; Yoon, Wang-Lai; Seo, Yong-Seog; Rhee, Young-Woo

    2012-01-01

    Ni-Al2O3 catalysts are prepared via the co-precipitation method using various precipitants: urea, Na2CO3, NaOH, K2CO3, KOH and NH4OH. The effects of the precipitants on the physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts are investigated. The Ni50-urea catalyst displays the largest specific surface area and the highest pore volume. This catalyst also exhibits the highest Ni dispersion and the largest Ni surface area. Ni50-urea catalyst prepared with urea as precipitant and Ni50-K2CO3 catalyst prepared with K2CO3 as precipitant exhibit high pore volumes and good catalytic activities for methane steam reforming. The Ni50-urea catalyst exhibits the best physicochemical properties and shows good catalytic activity and a strong resistance to electrolyte contamination. PMID:22962548

  12. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.

    PubMed

    Liang, Shide; Zhang, Jian; Zhang, Shicui; Guo, Huarong

    2004-11-15

    We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue. (c) 2004 Wiley-Liss, Inc.

  13. Climate change and heat waves in Paris and London metropolitan areas

    NASA Astrophysics Data System (ADS)

    Dousset, B.

    2010-12-01

    Summer warming trends in Western and Central Europe and in Mediterranean regions are increasing the incidence, intensity, and duration of heat waves. Those extreme events are especially deadly in large cities, owing to high population densities, surface characteristics, heat island effects, anthropogenic heat and pollutants. In August 2003, a persistent anticyclone over Western Europe generated a heat wave of exceptional strength and duration with an estimated death toll of 70,000, including 4678 in the Paris region. A series of NOAA-AVHRR satellite thermal images over the Paris and London metropolitan areas, were used to analyze Land Surface Temperature (LST) and its related mortality. In the Paris region, LSTs were merged with land use and cover data to identify risk areas, and thermal indicators were produced at the addresses of ~ 500 elderly people to assess diurnal heat exposure. Results indicate: (i) contrasting night time and daytime heat island patterns related to land use and surface characteristics; (ii) the relation between night-time heat islands and heat waves intensity; (iii) the impact of elevated minimal temperatures on excess mortality, with a 0.5 °C increase doubling the risk of death, (in the temperature range of the heatwave); iv) the correlation between the spatial distribution of highest night-time LSTs and that of highest mortality ratios; and v) the significant impact of urban parks in the partitioning between latent and sensible surface heat fluxes, despite a prior warm and dry spring. Near-real time satellite monitoring of heat waves in urban areas improve our understanding of the LST processes and spatial variability, and of the related heat stress and mortality. These observations provide criteria for warning systems, contingency policies and planning, and climate adaptation and mitigation strategies.

  14. Determination of atrazine in rainfall and surface water by enzyme immunoassay

    USGS Publications Warehouse

    Dankwardt, Andrea; Wüst, Susanne; Elling, Wolfram; Thurman, E. Michael; Hock, Bertold

    1994-01-01

    Rainwater and surface water from four sites in Germany (Bavaria and Lower Saxony) were analyzed for atrazine by enzyme immunoassay from June 1990 until October 1992. The limit of quantification of the immunoassay was 0.02 μg/L with a middle of the test at 0.2 μg/L. About 60 % of the samples contained measurable amounts of atrazine. Seasonal trends were observed, with the highest concentration in the summer months of up to 4 μg/L for rainwater and up to 15 μg/L for surface waters. The highest concentrations were found in agricultural areas, while in the investigated national parks up to 0.56 μg/L could be detected in rain water. This points to long-range atmospheric transport from agricultural areas to pristine national parks. Samples from forest stands usually showed higher atrazine concentrations than samples from open fields. Deposition rates of 10 – 50 μg/m2 · yr were observed in the national parks and 10–180 μg/m2 · yr at the agricultural sites. Comparison of results obtained by enzyme immunoassay and GC/MS showed a good correlation of r = 0.95.

  15. Wind-tunnel Tests of the Fowler Variable-area Wing

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1932-01-01

    The lift, drag, and center of pressure characteristics of a model of the Fowler variable-area wing were measured in the NACA 7 by 10 foot wind tunnel. The Fowler wing consists of a combination of a main wing and an extension surface, also of airfoil section. The extension surface can be entirely retracted within the lower rear portion of the main wing or it can be moved to the rear and downward. The tests were made with the nose of the extension airfoil in various positions near the trailing edge of the main wing and with the surface at various angular deflections. The highest lift coefficient obtained was C(sub L) = 3.17 as compared with 1.27 for the main wing alone.

  16. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  17. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  18. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  19. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  20. Albedo and its Relationship to Land Cover and the Urban Heat Island in the Boston Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.

    2016-12-01

    The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.

  1. Structure and shale gas production patterns from eastern Kentucky field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, R.C.

    Computer-derived subsurface structure, isopach, and gas-flow maps, based on 4000 drillers logs, have been generated for eastern Kentucky under a project sponsored by the Gas Research Institute. Structure maps show low-relief flextures related to basement structure. Some structures have been mapped at the surface, others have not. Highest final open-flow (fof) of shale gas from wells in Martin County follow a structural low between (basement) anticlines. From there, elevated gas flows (fof) extend westward along the Warfield monocline to Floyd County where the high flow (fof) trend extends southward along the Floyd County channel. In Knott County, the number ofmore » wells with high gas flow (fof) decreases abruptly. The center of highest gas flow (fof) in Floyd County spreads eastward to Pike County, forming a triangular shaped area of high production (fof). The center of highest gas flow (fof) is in an area where possible (basement) structure trends intersect and where low-relief surface folds (probably detached structure) were mapped and shown on the 1922 version of the Floyd County structure map. Modern regional maps, based on geophysical logs from widely spaced wells, do not define the low-relief structures that have been useful in predicting gas flow trends. Detailed maps based on drillers logs can be misleading unless carefully edited. Comparative analysis of high gas flows (fof) and 10-year cumulative production figures in a small area confirms that there is a relationship between gas flow (fof) values and long-term cumulative production.« less

  2. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  3. A biomarker perspective on dust, productivity, and sea surface temperature in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jaeschke, Andrea; Wengler, Marc; Hefter, Jens; Ronge, Thomas A.; Geibert, Walter; Mollenhauer, Gesine; Gersonde, Rainer; Lamy, Frank

    2017-05-01

    In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochthonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents (232Th), indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the U37K‧ based on alkenones, and the TEX86 based on isoprenoid GDGTs. Both, U37K‧ and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20 °C, likely implying different seasonal and regional imprints on the temperature signal. Alkenone-based temperature estimates best reflect modern summer SST in the study area when using the polar calibration of Sikes et al. (1997). In contrast, TEX86-derived temperatures may reflect a subsurface signal rather than surface. 230Th-normalized burial of alkenones is highest close to the Subtropical Front and is positively related to the deposition of lithogenic material throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.

  4. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons.

    PubMed

    Karthikeyan, Kaliyappan; Amaresh, Samuthirapandiyan; Lee, Sol Nip; Sun, Xueliang; Aravindan, Vanchiappan; Lee, Young-Gi; Lee, Yun Sung

    2014-05-01

    Very high surface area activated carbons (AC) are synthesized from pine cone petals by a chemical activation process and subsequently evaluated as an electrode material for supercapacitor applications in a nonaqueous medium. The maximum specific surface area of ∼3950 m(2)  g(-1) is noted for the material treated with a 1:5 ratio of KOH to pine cone petals (PCC5), which is much higher than that reported for carbonaceous materials derived from various other biomass precursors. A symmetric supercapacitor is fabricated with PCC5 electrodes, and the results showed enhanced supercapacitive behavior with the highest energy density of ∼61 Wh kg(-1). Furthermore, outstanding cycling ability is evidenced for such a configuration, and ∼90 % of the initial specific capacitance after 20,000 cycles under harsh conditions was observed. This result revealed that the pine-cone-derived high-surface-area AC can be used effectively as a promising electrode material to construct high-energy-density supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of interleukin-6 removal properties among hemofilters consisting of varying membrane materials and surface areas: an in vitro study.

    PubMed

    Hirayama, Yo; Oda, Shigeto; Wakabayashi, Kiyohito; Sadahiro, Tomohito; Nakamura, Masataka; Watanabe, Eizo; Tateishi, Yoshihisa

    2011-01-01

    We sought to identify the most relevant hemofilter for cytokine removal based on the mechanisms of filtration and adsorption. Ascites were filtered using four types of hemofilters composed of different membrane materials (polymethyl methacrylate, PMMA, cellulose triacetate, CTA, or polysulfone, PS) and different surface areas (1.0 or 2.1 m(2)) to investigate the rate of interleukin-6 (IL-6) filtration. Next, ascites were perfused through each hemofilter without obtaining a filtrate to study each filter's adsorptive capability. The PMMA hemofilters resulted in a marginal observed IL-6 filtration rates, whereas the CTA and PS hemofilters resulted in highly effective IL-6 filtration. Regarding the IL-6 adsorptive capabilities of the filters, the PMMA hemofilter with a large surface area showed the highest level of IL-6 clearance. The present findings suggest that when cytokine removal based on filtration is desired, CTA or PS hemofilters should be selected. When IL-6 removal based on adsorption is desired, a PMMA hemofilter with a large surface area should be selected. Copyright © 2010 S. Karger AG, Basel.

  6. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1981

    USGS Publications Warehouse

    Mack, F.K.; Wheeler, J.C.; Curtin, S.E.

    1982-01-01

    The map is based on measurements from a network of 83 observation wells cased to the Magothy aquifer. Highest levels of the potentiometric surface, 59 to 60 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to above sea level along much of the western shore of Chesapeake Bay. Three separate, distinct, and extensive cones of depression have developed in the potentiometric surface around the well fields of the city of Annapolis-Broadneck Peninsula area, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level, and, in some areas at Chalk Point and Waldorf, the cone is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)

  7. Potentiometric surface map of the Magothy aquifer in southern Maryland, September, 2003

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.

  8. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2002

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2003-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.

  9. Addition of alkali to the hydrothermal-mechanochemical treatment of Eucalyptus enhances its enzymatic saccharification.

    PubMed

    Ishiguro, Maki; Endo, Takashi

    2014-02-01

    The effects of alkali on hydrothermal-mechanochemical treatment (hydrothermal treatment combined with wet-milling) were examined with the aim of improving pretreatment of lignocellulosic biomass before enzymatic saccharification. After enzymatic saccharification, the highest glucose yield was obtained by autoclaving at 170°C in the presence of 20% NaOH per substrate weight. The wood fiber was unraveled into finer nanofibers by hydrothermal-mechanochemical treatment, thus increasing the specific surface area of the substrate from 11 to 132m(2)/g. Adding 20% NaOH to the treatment further increased the specific surface area of the already fibrillated substrate by 76% (232m(2)/g) due to lignin removal and ester bond cleavage between lignin and hemicellulose. This increase in specific surface area was closely related to the increase in enzymatic digestibility; therefore, NaOH addition may have enhanced the effect of hydrothermal-mechanochemical treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2001

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2002-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2001. The map is based on water-level measurements in 76 wells. The potentiometric surface was highest at 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level in the remainder of the study area. The hydraulic gradient was directed southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A cone of depression formed in northern Calvert County due to pumpage at Chesapeake Beach and North Beach. The water level has declined to 44 feet below sea level in this area. The lowest measurement was 160 feet below sea level at the center of a cone of depression at Lexington Park.

  11. [Impacts of meteorological factors on atmospheric methane mole fractions in the background area of Yangtze River delta].

    PubMed

    Pu, Jing-Jiao; Xu, Hong-Hui; Gu, Jun-Qiang; Ma, Qian-Li; Fang, Shuang-Xi; Zhou, Ling-Xi

    2013-03-01

    Impacts of surface wind direction, surface wind speed, surface air temperature and sunshine hours on the CH4 concentration at Lin'an regional atmospheric background station were studied based on the results from Jan. 2009 to Dec. 2011. The results revealed that the diurnal variation of atmospheric CH4 concentration presented a single-peak curve at Lin'an regional background station. The diurnal amplitude varied from 19.0 x 10(-9) to 74.7 x 10(-9), with the lowest value observed in the afternoon and the highest at dawn. The monthly mean CH4 concentrations varied from 1955.7 x 10(-9) to 2036.2 x 10(-9), with the highest concentration observed in autumn and the lowest in spring. The wind directions NE-SSE could induce higher CH4 concentrations while SW-NNW wind directions had negative effects on the observed results. The CH4 concentration turned out to be lower with higher surface wind speed. With the increase of surface air temperature or sunshine hours, the CH4 concentration went up first till reaching a peak, and then decreased.

  12. Human immunodeficiency virus (HIV) seropositivity and hepatitis B surface antigenemia (HBSAG) among blood donors in Benin city, Edo state, Nigeria.

    PubMed

    Umolu, Patience Idia; Okoror, Lawrence Ehis; Orhue, Philip

    2005-03-01

    Human Immunodeficiency Virus and Hepatitis B virus are blood borne pathogens that can be transmitted through blood transfusion and could pose a huge problem in areas where mechanisms of ensuring blood safety are suspect. This study became necessary in a population where most of the blood for transfusion is from commercial blood donors. A total of 130 donors comprising 120 commercial donors and 10 voluntary donors were tested for antibodies to human immunodeficiency virus and hepatitis B surface antigen in Benin city using Immunocomb HIV - 1 and 2 Biospot kit and Quimica Clinica Aplicada direct latex agglutination method respectively. Thirteen (10%) samples were HIV seropositive and 7(5.8%) were HBsAg positive. The age bracket 18 - 25years had the highest numbers of donors and also had the highest number of HBsAg positive cases (7.8%) while the age group 29 - 38years had highest number of HIV seropositive cases. High prevalence of HIV antibodies and Hepatitis B surface antigen was found among commercial blood donors. Appropriate and compulsory screening of blood donors using sensitive methods, must be ensured to prevent post transfusion hepatitis and HIV.

  13. La and Al co-doped CaMnO 3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    DOE PAGES

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; ...

    2017-09-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca 0.9La 0.1Al 0.1Mn 0.9O 3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surfacemore » composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm -2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm -2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.« less

  14. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.

  15. [Evolution pattern of impervious surface in the Yuqiao Reservoir Watershed, Tianjin, China during the process of urbanization.

    PubMed

    Xie, Hui Jun; Li, Chong Wei; Zhang, Ya Juan; Song, Ai Yun

    2016-04-22

    Imperviousness in watershed is a key index to measure urbanization status which exerts an important impact on both eco-hydrological process and spatio-temporal pattern. Taking Yuqiao Reservoir Watershed as a case study area, based on the ENVI 5.1 software, the basic impervious surface information was extracted from remote sensing images taken in 1984, 1994, 2004 and 2013. The linear spectral mixture analysis (LSMA) model was applied to extract the impervious surface area (ISA) in nine coverage classes of watershed in order to analyze its spatio-temporal varying trend in terms of the landscape pattern metrics. Results showed that the RMSE and IS pixel accuracy of all samples were 0.005 and 85.4% respectively, which indicated that the method of extracting impervious surface on a basin scale was feasible. The average of ISA showed a linear growth, from 0.16 to 0.23, the impervious surface area increased by 4.9% in the whole watershed, and the total impervious surface area increased by 1 time. In the sub-basin road network, the impervious surface area increased gradually with the density of the road network, and its expansion pattern was of infilling growth. The patch shape of the middle coverage degree was irregular, and its fragmentation degree was the highest. The fragmentation degree and diversity of the landscape in the whole river basin increased year by year due to increasing human disturbance.

  16. Recent studies on activated carbons and fly ashes from Turkish resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayhan Demirbas; Gulsin Arslan; Erol Pehlivan

    2006-05-15

    This article deals with adsorptive properties of activated carbons (ACs) and fly ashes from Turkish coal and biomass resources. ACs because of their high surface area, microporous character and the chemical nature of their surface have been considered potential adsorbents for the removal of heavy metals from industrial wastewater. Pyrolysis is an established process method for preparation of activated carbon from biomass. The bio-char is can be used as AC. The adsorption properties of ACs were strictly defined by the physicochemical nature of their surface and their texture, i.e., pore volume, pore size distribution, surface area. It is well knownmore » that the pH of the solution-adsorbant mixture is an important variable in the adsorption process. Fly ash has the highest adsorption capacity (198.2 mg/g for Cd(II)). Almond shell AC has the lowest adsorption capacity (2.7 mg/g).« less

  17. [Surface disinfection in the context of infection prevention in intensive care units].

    PubMed

    Kossow, A; Schaber, S; Kipp, F

    2013-03-01

    The highest proportion of nosocomial infections occurs on intensive care units (ICU) and infections with multiresistant pathogens are an ever increasing problem. Preventative measures should consist of a bundle of different measures including measures that address a specific problem and standard hygiene measures that are relevant in all areas. Specific measures in ICUs primarily aim at the prevention of ventilator associated pneumonia, blood vessel catheter associated infections and nosocomial urinary tract infections. Surface disinfection belongs to the standard hygiene measures and plays an inferior role compared to hand hygiene; however, surfaces come into focus in outbreak situations. The Commission on Hospital Hygiene (KRINKO) at the Robert Koch Institute (the German health protection agency) published recommendations regarding the cleaning and disinfection of surfaces. The frequency with which cleaning and/or disinfection is required varies according to defined areas of risk. The frequency and the disinfection agents used are documented in the disinfection plan.

  18. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less

  19. Beryllium surface levels in a military ammunition plant.

    PubMed

    Sanderson, Wayne T; Leonard, Stephanie; Ott, Darrin; Fuortes, Laurence; Field, William

    2008-07-01

    This study evaluated the presence of beryllium surface contamination in a U.S. conventional munitions plant as an indicator of possible past beryllium airborne and skin exposure and used these measurements to classify job categories by potential level of exposure. Surface samples were collected from production and nonproduction areas of the plant and at regional industrial reference sites with no known history of beryllium use. Surface samples of premoistened wiping material were analyzed for beryllium mass content using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and results expressed as micrograms of beryllium per 100 square centimeters (micro g/100 cm(2)). Beryllium was detected in 87% of samples collected at the munitions plant and in 72% of the samples collected at regional reference sites. Two munitions plant samples from areas near sanders and grinders were above 3.0 micro g/100 cm(2) (U.S. Department of Energy surface contamination limit). The highest surface level found at the reference sites was 0.44 micro g/100 cm(2). Workers in areas where beryllium-containing alloy tools were sanded or ground, but not other work areas, may have been exposed to airborne beryllium concentrations above levels encountered in other industries where metal work is conducted. Surface sampling provided information useful for categorizing munitions plant jobs by level of past beryllium airborne and skin exposure and, subsequently, for identifying employees within exposure strata to be screened for beryllium sensitization.

  20. 23 CFR 470.107 - Federal-aid highway systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... permitted under the provisions of 23 U.S.C. 103(c)(4) and section 1105(e)(5)(A) of the Intermodal Surface... highest importance to the Nation, built to the uniform geometric and construction standards of 23 U.S.C. 109(h), which connect, as directly as practicable, the principal metropolitan areas, cities, and...

  1. Assessment of organic pollutants in the offshore sediments of Dubai, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Darwish, H. A. Al; El-Gawad, E. A. Abd; Mohammed, F. H.; Lotfy, M. M.

    2005-08-01

    Fifteen stations (st) were selected along Dubai coastal region to delineate the distribution and the source of total petroleum hydrocarbon (TPH), total organic carbon (TOC), total Kjeldhal nitrogen (TKN), polycyclic aromatic hydrocarbon (PAHs) and polychlorinated biphenyls. The concentrations of TPH fluctuated between 2 μg g -1 and 48018 μg g -1 and the values of TOC were in the range of 0.16-5.9 wt%, while TPAHs ranged from 0.09 μg g -1 to 161.72 μg g -1. On the other hand, TPCBs showed values between 0.8 μg kg-1 and 93.3 μg kg-1 and TKN values varied from 218 μg g-1 to 2457 μg g -1. Distribution of oil and organic compounds in Dubai sediments are safe compared with previous studies except for limited areas at the northeastern offshore. These readings are probably due to: (1) presence of commercial or industrial ports, dry docks and fishing harbours and (2) population centers mainly concentrated at the northern part of the study area. Results indicate that TOC can be used as indicator of oil pollution only in heavily oiled sediments. The highest values of TOC, TPH, TPAHs and TPCBs corresponded to the stations covered with fine sand, due to adsorption properties and larger surface area. The evaporation of low boiling point compounds from surface layers led to enrichment of sediments with the thick residual. Al-Hamriya St 3 exhibited the highest values of TPH, TOC, TPAHs and TPCBs and the second highest value of TKN.

  2. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hierarchical TiO{sub 2} submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Guo, Zhiguang, E-mail: zguo@licp.cas.cn

    Hierarchical TiO{sub 2} submicron-sized sphere scattering layer, with relatively large surface area and effective light scattering, shows enhanced power conversion efficiency in dye-sensitized solar cells. - Highlights: • Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized. • The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. • DSC exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS (2.00%) photoanodes. - Abstract: Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized by amore » facile one-step solvothermal method in ethanol solvent. The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. When applied as the scattering overlayer in dye-sensitized solar cells (DSCs), such TiO{sub 2} HSSs effectively improved light harvesting and led to the increase of photocurrent in DSCs. Furthermore, bilayer-structured photoanode also provided fast electron transportation and long electron lifetime as confirmed by electrochemical impedance spectra. As a result, DSC based on P25 nanoparticle underlayer and HSS-2 overlayer exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS-2 (2.00%) photoanodes.« less

  4. The effects of fuel type in synthesis of NiFe2O4 nanoparticles by microwave assisted combustion method

    NASA Astrophysics Data System (ADS)

    Karcıoğlu Karakaş, Zeynep; Boncukçuoğlu, Recep; Karakaş, İbrahim H.

    2016-04-01

    In this study, it was investigated the effects of the used fuels on structural, morphological and magnetic properties of nanoparticles in nanoparticle synthesis with microwave assisted combustion method with an important method in quick, simple and low cost at synthesis of the nanoparticles. In this aim, glycine, urea and citric acid were used as fuel, respectively. The synthesised nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller surface area (BET), and vibrating sample magnetometry (VSM) techniques. We observed that fuel type is quite effective on magnetic properties and surface properties of the nanoparticles. X-ray difractograms of the obtained nanoparticles were compared with standard powder diffraction cards of NiFe2O4 (JCPDS Card Number 54-0964). The results demonstrated that difractograms are fully compatible with standard reflection peaks. According to the results of the XRD analysis, the highest crystallinity was observed at nanoparticles synthesized with glycine. The results demonstrated that the nanoparticles prepared with urea has the highest surface area. The micrographs of SEM showed that all of the nanoparticles have nano-crystalline behaviour and particles indication cubic shape. VSM analysis demonstrated that the type of fuel used for synthesis is highly effective a parameter on magnetic properties of nanoparticles.

  5. Characterization of Malaysian coals for carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  6. The reliability of three psoriasis assessment tools: Psoriasis area and severity index, body surface area and physician global assessment.

    PubMed

    Bożek, Agnieszka; Reich, Adam

    2017-08-01

    A wide variety of psoriasis assessment tools have been proposed to evaluate the severity of psoriasis in clinical trials and daily practice. The most frequently used clinical instrument is the psoriasis area and severity index (PASI); however, none of the currently published severity scores used for psoriasis meets all the validation criteria required for an ideal score. The aim of this study was to compare and assess the reliability of 3 commonly used assessment instruments for psoriasis severity: the psoriasis area and severity index (PASI), body surface area (BSA) and physician global assessment (PGA). On the scoring day, 10 trained dermatologists evaluated 9 adult patients with plaque-type psoriasis using the PASI, BSA and PGA. All the subjects were assessed twice by each physician. Correlations between the assessments were analyzed using the Pearson correlation coefficient. Intra-class correlation coefficient (ICC) was calculated to analyze intra-rater reliability, and the coefficient of variation (CV) was used to assess inter-rater variability. Significant correlations were observed among the 3 scales in both assessments. In all 3 scales the ICCs were > 0.75, indicating high intra-rater reliability. The highest ICC was for the BSA (0.96) and the lowest one for the PGA (0.87). The CV for the PGA and PASI were 29.3 and 36.9, respectively, indicating moderate inter-rater variability. The CV for the BSA was 57.1, indicating high inter-rater variability. Comparing the PASI, PGA and BSA, it was shown that the PGA had the highest inter-rater reliability, whereas the BSA had the highest intra-rater reliability. The PASI showed intermediate values in terms of interand intra-rater reliability. None of the 3 assessment instruments showed a significant advantage over the other. A reliable assessment of psoriasis severity requires the use of several independent evaluations simultaneously.

  7. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2007. The map is based on water-level measurements in 85 wells. The highest measured water level was 50 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A water level measured west of the Cheasapeake Beach area has declined to 57 feet below sea level due to increased withdrawals. The lowest water level measured was 162 feet below sea level at the center of a cone of depression at Lexington Park.

  8. Modeling The Urban Impact On Semiarid Surface Climate: A Case Study In Marrakesh, Morocco

    NASA Technical Reports Server (NTRS)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Messouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  9. Modeling the Urban Impact on Semiarid Surface Climate: A Case Study in Marrakech, Morocco

    NASA Technical Reports Server (NTRS)

    Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Moussouli, Mohamed

    2016-01-01

    We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.

  10. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  11. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  12. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin.

    PubMed

    Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A

    2014-01-01

    Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet-visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA's AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs' total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA's glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia.

  13. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    PubMed Central

    Liu, Weixi; Cohenford, Menashi A; Frost, Leslie; Seneviratne, Champika; Dain, Joel A

    2014-01-01

    Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. PMID:25473284

  14. Diversity of tree vegetation on different slopes in Sangkulirang – Mangkalihat exokarst area

    NASA Astrophysics Data System (ADS)

    Suwasono, R. A.; Matius, P.; Sutedjo

    2018-04-01

    The Karst ecosystem in East Kalimantan is predominantly located in the Sangkulirang-Mangkalihat covering an area of 1,867,676 hectares. The exokarst are all features that may be found on a surface karst landscape. The objective of this study was to determine the diversity of tree vegetation (diameters >10 cm) on different slopes. Six study locations were selected as replications where each location consisted of the different of slopes. The sample plot was set up 15 plots in each location on quadrants of 10 m x 10 m. 538 individuals had been found in the study sites consisting of 163 species, 100 genera and 43 family. The Dipterocarpaceae was dominant on slopes and the upper ridges, while Shorea sp. has dominated on the upper ridges. The highest diversity index (H’) of 4.04were found on the slopes and valley while the Species Richness Index (R) and Evenness Index (e) were high in all three slopes. The highest Similarity Index (ISs) of41.06was in the slopes and valley, while the highest Decimilarity Index (ID) of 67.30were in the slopes and upper ridges. Meanwhile, the overall diversity of species in the Sangkulirang-Mangkalihat exokarst area is high.

  15. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1979

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.

    1980-01-01

    This map is based on measurements made on a network of 77 observation wells in southern Maryland. Highest levels of the potentiometric surface, 63 to 67 feet above sea level, were measured near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to about 5 feet above sea level along much of the western shore of the Chesapeake Bay. Four separate, distinct, and extensive cones of depression have developed in the surface around the well fields of the city of Annapolis, Broadneck, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level and in localized areas at Chalk Point and Waldorf, the surface is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)

  17. Vehicle Traffic as a Source of Particulate Polycyclic Aromatic Hydrocarbon Exposure in the Mexico City Metropolitan Area

    PubMed Central

    MARR, LINSEY C.; GROGAN, LISA A.; WÖHRNSCHIMMEL, HENRY; MOLINA, LUISAT.; MOLINA, MARIO J.; SMITH, THOMAS J.; GARSHICK, ERIC

    2005-01-01

    Surface properties of aerosols in the Mexico City metropolitan area have been measured in a variety of exposure scenarios related to vehicle emissions in 2002, using continuous, real-time instruments. The objective of these experiments is to describe ambient and occupational particulate polycyclic aromatic hydrocarbon (PAH) concentrations associated with vehicular traffic and facilities using diesel vehicles. Median total particulate PAH concentrations along Mexico City’s roadways range from 60 to 910 ng m−3, averaged over a minimum of 1 h. These levels are approximately 5 times higher than concentrations measured in the United States and among the highest measured ambient values reported in the literature. The ratio of particulate PAH concentration to aerosol active surface area is much higher along roadways and in other areas of fresh vehicle emissions, compared to ratios measured at sites influenced more by aged emissions or noncombustion sources. For particles freshly emitted by vehicles, PAH and elemental carbon (EC) concentrations are correlated because they both originate during the combustion process. Comparison of PAH versus EC and active surface area concentrations at different locations suggests that surface PAH concentrations may diminish with particle aging. These results indicate that exposure to vehicle-related PAH emissions on Mexico City’s roadways may present an important public health risk. PMID:15180054

  18. Relation between Oceanographic parameters and Optical properties in 5 coastal areas of Southern Italy

    NASA Astrophysics Data System (ADS)

    Campanelli, Alessandra; Braga, Federica; Betti, Mattia; Cavalli, Rosa Maria; Grilli, Federica; Pascucci, Simone; Marini, Mauro

    2014-05-01

    In the framework of the CLAM-PHYM (Coasts-and-Lake-Assessment-and-Monitoring-by-Prisma-Hyperspectral-Mission) project it was carried out an oceanographic cruise (27/08-13/09/2010) along the coasts of southern Italy in order to analyze the physical, biochemical and optical properties of some coastal areas. The sampling areas are: the Gulf of Taranto, the Policoro area, the Cetraro Bay, the Gulf of Augusta and the Gulf of Gela. CTD profiles and reflectance measurements of the sea surface and along the water column with portable field spectroradiometers were collected. Water samples were also collected for the analysis of nutrients, chlorophyll-a and CDOM. These optically active substances interact with solar radiation along the water column through absorption and scattering phenomena. The collected data were analyzed to identify the relationship between the bio-optical concentrations of optically-active-substances and the surface reflectance spectra measured in situ; this relation, if reversed, can be used to map the concentrations of optically-active-substances from hyperspectral-satellite-data. Results stress high biological activity in the Gulf of Taranto and in the Gulf of Gela showing the highest values of chlorophyll-a and aCDOM440. These areas are characterized by the presence of important industrial and port sites. The Gela's gulf, where we found the highest concentrations of chlorophyll a and CDOM, is also characterized by the runoff of the Salso river increasing the biological activity. The correlations found in the Gulf of Taranto between Kd, chlorophyll a and aCDOM440 indicate that the high concentrations of CDOM are primarily due to phytoplankton rather than from terrestrial source. The Gulf of Taranto shows the best site among those investigated where to identify bio-optical relationships between the concentrations of optically active substances and the surface reflectance spectra measured in situ. The preliminary results encourage the combined use of physical, biochemical and optical properties to retrieve water quality parameters in order to improve the coastal areas monitoring.

  19. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan.

    PubMed

    Barron, Mace G; Ashurova, Zebunisso J; Kukaniev, Mukhamadcho A; Avloev, Hakbarqul K; Khaidarov, Karim K; Jamshedov, Jamshed N; Rahmatullova, Oygul S; Atolikshoeva, Sunbula S; Mamadshova, Sakina S; Manzenyuk, Oksana

    2017-05-01

    The central Asian Republic of Tajikistan has been an area of extensive historical agricultural pesticide use as well as large scale burials of banned chlorinated insecticides. The current investigation was a four year study of legacy organochlorine pesticides in surface soil and raw foods in four rural areas of Tajikistan. Study areas included the pesticide burial sites of Konibodom and Vakhsh, and family farms of Garm and Chimbuloq villages. These areas were selected to represent a diversity of pesticide disposal histories and to allow assessment of local pesticide contamination in Tajikistan. Each site was visited multiple times and over 500 samples of surface soil and raw foods were collected and analyzed for twenty legacy organochlorine pesticides. Various local food products were sampled to represent the range of raw foods potentially containing residues of banned pesticides, including dairy products, meat, edible plant and cotton seed products. The pesticide analytes included DDTs (DDT, DDD, DDE), lindane isomers (α, β, γ, δ BHC), endosulfan isomers (endosulfan I, II, sulfate), other cyclodienes (aldrin, α and γ chlordanes, dieldrin, endrin, endrin aldehyde and ketone, heptachlor, heptachlor epoxide), and methoxychlor. Pesticide analytes were selected based on availability of commercial standards and known or suspected historical pesticide use and burial. Pesticide contamination was highest in soil and generally low in meat, dairy, and plant products. DDT was consistently the highest measured individual pesticide at each of the four sampling areas, along with BHC isomers and endosulfan II. Soil concentrations of pesticides were extremely heterogeneous at the Vakhsh and Konibodam disposal sites with many soil samples greater than 10 ppm. In contrast, samples from farms in Chimbuloq and Garm had low concentrations of pesticides. Pesticide contamination in raw foods was generally low, indicating minimal transfer from the pesticide sites into local food chains. Published by Elsevier Ltd.

  20. Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 41 wells. The highest measured water level was 165 feet above sea level near the northwestern boundary and in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured ground-water levels were 81 feet below sea level at Glen Burnie, 47 feet below sea level southwest of Bryans Road, 27 feet below sea level at the Morgantown power plant, and 24 feet below sea level at the Chalk Point power plant.

  1. Osseointegrated dental implants produced via microwave processing

    NASA Astrophysics Data System (ADS)

    Kutty, Muralithran G.

    This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.

  2. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  3. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes.

    PubMed

    Cai, Nan; Larese-Casanova, Philip

    2014-07-15

    Graphene nanosheet materials represent a potentially new high surface area sorbent for the treatment of endocrine disrupting compounds (EDCs) in water. However, sorption behavior has been reported only for laboratory graphene prepared by a laborious and hazardous graphite exfoliation process. A careful examination of commercially available, clean, high-volume produced graphene materials should reveal whether they are appropriate for sorbent technologies and which physicochemical properties most influence sorption performance. In this study, three commercially available graphene oxide powders of various particle sizes, specific surface areas, and surface chemistries were evaluated for their sorption performance using carbamazepine and nine other EDCs and were compared to that of conventional granular activated carbon (GAC) and multi-walled carbon nanotubes (MWCNTs). Sorption kinetics of carbamazepine on graphene oxide powders was rapid and reversible with alcohol washing, consistent with π-π interactions. The various sorption extents as described by Freundlich isotherms were best explained by available surface area, and only the highest surface area graphene oxide (771 m(2)/g) out-performed GAC and MWCNTs. Increasing pH caused more negative surface charge, a twofold decrease in sorption of anionic ibuprofen, a onefold increase in sorption of cationic atenolol, and no change for neutral carbamazepine, highlighting the role of electrostatic interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered via Ice Templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Prabhakaran, Venkateshkumar; Garcia, Adam L.

    Developing hierarchical porous carbon (HPC) materials with competing textural characteristics such as surface area and pore volume in one material is difficult to accomplish—particulalry for an atomically ordered (graphitic) carbon. Herein we describe a synthesis strategy to engineer tunable hierarchically porous carbon (HPC) materials across micro- meso- and macroporous length scales, allowing the fabrication of a graphitic HPC with both very high surface area (> 2500 m2/g) and pore volume (>10 cm3/g), the combination of which has not been seen previously. The mesopore volume alone for these materials is up to 7.91 cm3/g, the highest ever reported. The unique materialmore » was explored for use as a supercapaictor electrode and for oil adsorption; two applications that require textural properties that are typicaly exclusive to one another. This design scheme for HPCs can be utilized in broad applications, including electrochemical systems such as batteries and supercapacitors, sorbents, and catalyst supports.« less

  5. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  6. Synthesis of platinum nanowire networks using a soft template.

    PubMed

    Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A

    2007-12-01

    Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.

  7. A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    2006-11-01

    By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current (˜108 A/cm2), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of "plasma spots" at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 107 Watt/cm2. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm2 or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

  8. Stability comparison between commercially available mini-implants and a novel design: part 1.

    PubMed

    Hong, Christine; Lee, Haofu; Webster, Richard; Kwak, Jinny; Wu, Benjamin M; Moon, Won

    2011-07-01

    To compare mechanical stability among five mini-implant designs--a newly invented design and four commercially available designs that vary by shape and threading; to calculate external surface area of each design using high-resolution micro-computed tomography; and to evaluate the relationship between surface area and stability results. The four commercially available mini-implants--single-threaded and cylindrical (SC), single-threaded and tapered (ST), double-threaded and cylindrical (DC), double-threaded and tapered (DT)--and a new implant that is designed to engage mostly in cortical bone with shorter and wider dimensions (N1) were inserted in simulated bone with cortical and trabecular bone layers. The mechanical study consisted of torque measurements and lateral displacement tests. External surface area was computed using a 25-µm micro-CT. Maximum insertion torque, maximum removal torque, and force levels for displacements were the highest in N1, followed by DT, ST, DC, and SC (α  =  .05). The surface area was largest in DT, followed by N1, ST, DC, and SC. Surface area engaged in cortical bone, however, was the greatest in N1. The surface area of mini-implants had positive correlation with stability. Among commercial designs, both added tapering and double threading improved stability. N1 was the most stable design within this research design. The new design has the potential to be clinically superior; it has enhanced stability and there is diminished risk of endangering nearby anatomic structures during placement and orthodontic treatment, but the design requires refinements to reduce insertion torque to avoid clinical difficulty and patient discomfort.

  9. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  10. CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Martínez, D., E-mail: dansanm@gmail.com; Gomez-Solis, C.; Torres-Martinez, Leticia M.

    2015-01-15

    Highlights: • WO{sub 3} 2D nanostructures were synthesized by ultrasound method assisted with CTAB. • WO{sub 3} morphology was mainly of rectangular nanoplates with a thickness of ∼50 nm. • The highest surface area value of WO{sub 3} was obtained to lowest concentration of CTAB. • WO{sub 3} activity was attributed to morphology, surface area and the addition of CTAB. • WO{sub 3} nanoplates were able to causing almost complete mineralization of rhB and IC. - Abstract: WO{sub 3} 2D nanostructures have been prepared by ultrasound synthesis method assisted with CTAB using different molar ratios. The formation of monoclinic crystalmore » structure of WO{sub 3} was confirmed by X-ray powder diffraction (XRD). The characterization of the WO{sub 3} samples was complemented by analysis of scanning electron microscopy (SEM), which revealed morphology mainly of rectangular nanoplates with a thickness of around 50 nm and length of 100–500 nm. Infrared spectroscopy (FT-IR) was used to confirm the elimination of the CTAB in the synthesized samples. The specific surface area was determinate by the BET method and by means of diffuse reflectance spectroscopy (DRS) it was determinate the band-gap energy (E{sub g}) of the WO{sub 3} samples. The photocatalytic activity of the WO{sub 3} oxide was evaluated in the degradation reactions of rhodamine B (rhB) and indigo carmine (IC) under Xenon lamp irradiation. The highest photocatalytic activity was observed in the samples containing low concentration of CTAB with morphology of rectangular nanoplates and with higher surface area value than commercial WO{sub 3}. Photodegradation of rhB and IC were followed by means of UV–vis absorption spectra. The mineralization degree of organic dyes by WO{sub 3} photocatalyst was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 92% for rhB and 50% for IC after 96 h of lamp irradiation.« less

  11. Occupational exposure to acrylamide in closed system production plants: air levels and biomonitoring.

    PubMed

    Moorman, William J; Reutman, Susan S; Shaw, Peter B; Blade, Leo Michael; Marlow, David; Vesper, Hubert; Clark, John C; Schrader, Steven M

    2012-01-01

    The aim of this study was to evaluate biomarkers of acrylamide exposure, including hemoglobin adducts and urinary metabolites in acrylamide production workers. Biomarkers are integrated measures of the internal dose, and it is total acrylamide dose from all routes and sources that may present health risks. Workers from three companies were studied. Workers potentially exposed to acrylamide monomer wore personal breathing-zone air samplers. Air samples and surface-wipe samples were collected and analyzed for acrylamide. General-area air samples were collected in chemical processing units and control rooms. Hemoglobin adducts were isolated from ethylenediamine teraacetic acid (EDTA)-whole blood, and adducts of acrylamide and glycidamide, at the N-terminal valines of hemoglobin, were cleaved from the protein chain by use of a modified Edman reaction. Full work-shift, personal breathing zone, and general-area air samples were collected and analyzed for particulate and acrylamide monomer vapor. The highest general-area concentration of acrylamide vapor was 350 μg/cm(3) in monomer production. Personal breathing zone and general-area concentrations of acrylamide vapor were found to be highest in monomer production operations, and lower levels were in the polymer production operations. Adduct levels varied widely among workers, with the highest in workers in the monomer and polymer production areas. The acrylamide adduct range was 15-1884 pmol/g; glycidamide adducts ranged from 17.8 to 1376 p/mol/g. The highest acrylamide and glycidamide adduct levels were found among monomer production process operators. The primary urinary metabolite N-acetyl-S-(2-carbamoylethyl) cysteine (NACEC) ranged from the limit of detection to 15.4 μg/ml. Correlation of workplace exposure and sentinel health effects is needed to determine and control safe levels of exposure for regulatory standards.

  12. Topography and flooding of coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska: Implications for sea level rise

    USGS Publications Warehouse

    Jorgenson, Torre; Ely, Craig R.

    2001-01-01

    We measured surface elevations, stage of annual peak flooding, and sedimentation along 10 toposequences across coastal ecosystems on the Yukon-Kuskokwim (Y-K) Delta in western Alaska during 1994-1998 to assess some of the physical processes affecting ecosystem distribution. An ecotype was assigned to each of 566 points, and differences in elevations among 24 ecotypes were analyzed within individual toposequences and across the 40 x 40-km study area. Elevations of vegetated ecotypes along the longest toposequence rose only ~1 m over a distance of 7.5 km, and mean elevations of most ecotype across the study area were within 0.5 m of mean higher-high water (1.47 m). During 1994 to 1998, monitoring of annual peak stage using crest gauges revealed flooding from the highest fall storm surge reached 2.58 m (1.11 m above mean higher-high tide). In each year, only the highest surface was unaffected by flooding. Mean annual sedimentation rates for the various ecotypes were 8.0 ram/y on tidal flats, 1.4 to 3.8 mm/y on the active floodplain, 0.1-0.2 mm/y on the inactive floodplain, and 0 mm/ on the abandoned floodplain. If sea levels in the Bering Sea rise ~0.5 m by 2100, as predicted by some on a global basis, large portions of the coastal margin of the delta could be regularly inundated by water during high tides, and even the highest ecotypes could be affected by storm surges. Predicting the extent of future inundation is difficult, however, because of the changes in the ground-surface elevation through sedimentation, organic matter accumulation, and permafrost development.

  13. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  14. Hydrogeology and Migration of Septic-Tank Effluent in the Surficial Aquifer System in the Northern Midlands Area, Palm Beach County, Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1992-01-01

    The northern Midlands area in Palm Beach County is an area of expected residential growth, but its flat topography, poor drainage, and near-surface marl layers retard rainfall infiltration and cause frequent flooding. Public water supplies and sewer services are not planned for the area, thus, residents must rely on domestic wells and septic tanks. The water table in the northern Midlands area is seldom more than 5 feet below land surface, and regional ground-water flows are east, southwest, and south from the north-central part of the area where ground-water levels are highest. Ground-water quality in the western part of the area and in the Loxahatchee Slough is greatly influenced by residual seawater emplaced during the Pleistocene Epoch. Chloride and dissolved-solids concentrations of ground water in the surficial aquifer system in these areas often exceed secondary drinking-water standards. Residual seawater has been more effectively flushed from the more permeable sediments elsewhere in the eastern and southwestern parts of the study area. Test at three septic-tank sites showed traces of effluent in ground water (38-92 feet from the septic tank outlets) and that near-surface marl layers greatly impede the downward migration of the effluent in the surficial aquifer system throughout the northern midlands.

  15. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation hadmore » developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.« less

  16. The Use of Multi-Source Satellite and Geospatial Data to Study the Effect of Urbanization of Primary Productivity in the United States

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L.; Tucker, C. J.; Lawrence, W. T.; Stutzer, D.; Rusin, Robert

    2000-01-01

    Data from two different satellites, a digital land cover map, and digital census data were analyzed and combined in a geographic information system to study the effect of urbanization on photosynthetic vegetation productivity in the United States. Results show that urbanization can have a measurable but variable impact on the primary productivity of the land surface. Annual productivity can be reduced by as much as 20 days in some areas, but in resource limited regions, photosynthetic production can be enhanced by human activity. Overall, urban development reduces the productivity of the land surface and those areas with the highest productivity are directly in the path of urban sprawl.

  17. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia.

    PubMed

    Tomiyasu, Takashi; Kono, Yuriko; Kodamatani, Hitoshi; Hidayati, Nuril; Rahajoe, Joeni Setijo

    2013-08-01

    The distribution of mercury in the soil, sediment and river water around the artisanal small-scale gold mining (ASGM) area along the Cikaniki River, West Java, Indonesia, was investigated. The total mercury concentration (T-Hg) in the forest soil ranged from 0.11 to 7.0mgkg(-1), and the highest value was observed at the ASGM village. In the vertical T-Hg profile around the villages, the highest value was observed at the soil surface, and the concentration decreased with depth. This result suggested that the mercury released by mining activity was dispersed through the atmosphere and deposited on the surface. The total organic carbon content (TOC) showed a similar vertical profile as the T-Hg, and a linear relationship was found between T-Hg and TOC. Mercury deposited on the surface can be absorbed by organic matter. The slope of the line was larger near the ASGM village, implying a higher rate of deposition of mercury. The T-Hg in the sediment ranged from 10 to 70mgkg(-1), decreasing gradually toward the lower reaches of the river. Mining waste can be transported with the river flow and deposited along the river. The distribution of the mining waste can be determined using the mineralogical composition measured by X-ray fluorescence spectrometry. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 42 wells. The highest measured water level was 169 feet above sea level in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured groundwater levels were 78 feet below sea level at Glen Burnie, 56 feet below sea level at Bryans Road, 29 feet below sea level at the Morgantown power plant, and 28 feet below sea level at the Chalk Point power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  19. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    USGS Publications Warehouse

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  20. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, August 1980

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1981-01-01

    This map is based on measurements made in a network of 77 observation wells. Highest levels of the potentiometric surface, 61 to 64 feet above sea level, were near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and northern Prince Georges Counties. The potentiometric surface slopes toward centers of pumpage near Annapolis, in northern Charles County, and southern Prince Georges County. Two separate , distinct, and extensive cones of depression have developed in the surface around the well fields of Waldorf, in northern Charles County, and the Chalk Point power plant, in southern Prince Georges County. The cone of depression in the Annapolis area has coalesced with a more shallow cone that includes the Broadneck Peninsula. The network of wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  1. Determination of platinum surface contamination in veterinary and human oncology centres using inductively coupled plasma mass spectrometry.

    PubMed

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-09-01

    The objective of this study was to determine the surface contamination with platinum-containing antineoplastic drugs in veterinary and human oncology centres. Inductively coupled plasma mass spectrometry was used to measure platinum levels in surface samples. In veterinary and human oncology centres, 46.3 and 68.9% of the sampled surfaces demonstrated platinum contamination, respectively. Highest platinum levels were found in the preparation rooms (44.6 pg cm(-2)) in veterinary centres, while maximal levels in human centres were found in oncology patient-only toilets (725 pg cm(-2)). Transference of platinum by workers outside areas where antineoplastic drugs were handled was observed in veterinary and human oncology centres. In conclusion, only low levels of platinum contamination attributable to carboplatin were found in the sampled veterinary oncology centres. However, dispersion of platinum outside areas where antineoplastic drugs were handled was detected in veterinary and human oncology centres. Consequently, not only personnel, but also others may be exposed to platinum. © 2013 Blackwell Publishing Ltd.

  2. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    PubMed

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  3. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.

    PubMed

    Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S

    2012-04-11

    We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society

  4. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    PubMed Central

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  5. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    NASA Astrophysics Data System (ADS)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  6. Anaerobic treatment of winery wastewater in fixed bed reactors.

    PubMed

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  7. A Global Characterization of Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Chakraborty, T.; Lee, X.

    2017-12-01

    The urban heat island (UHI) effect refers to the higher temperatures in urban areas, and it is one of the most well-known consequences of urbanization on local climate. In the present study, we define a new simplified urban-boundary (SUB) algorithm to quantify the daytime and nighttime surface UHIs on a global scale based on 16 years of MODIS Land Surface Temperature (LST) data. The results from the algorithm are validated against previous studies and used to determine the diurnal, monthly, and long-term variation in the surface UHI for over 9000 urban clusters situated in the different Koppen-Geiger climate zones,namely equatorial, arid, warm temperate, snow, and polar. Thus, the variability of the surface UHI for each climate class is determined using a consistent methodology for the first time. The 16-year mean global daytime surface UHI is 0.71 ± 0.93 °C at 1030 LT and 1.00 ± 1.17 °C at 1330 LT, while the nighttime surface UHI is 0.51 ± 0.50 °C at 2230 LT and 0.42 ± 0.52 °C at 0130 LT. This is in good agreement with the results from previous studies, which have looked at the UHI for multiple cities. Summer surface UHI is larger than winter surface UHI across all climate zones. The annual daytime surface UHI is highest in the polar urban clusters (1.77 ± 1.61 °C), followed by snow (1.39 ± 1.17 °C), equatorial (1.21 ± 1.32 °C), warm temperate (1.02 ± 0.98 °C), and arid (0.18 ± 1.27 °C). Urban clusters in the arid climate are found to show different diurnal and seasonal patterns, with higher nighttime surface UHI (0.65 ± 0.58 °C) and two seasonal peaks during the year. The diurnal variation in surface UHI is highest in the polar zone (1.16 °C) and lowest in the arid zone (0.57 °C). The inter-seasonality is also highest in the polar Zone (2.20 °C) and lowest in the arid zone (0.80 °C). Finally, we investigate the change in the surface UHI in more than a decade (2001 to 2013 for MODIS TERRA and 2003 to 2013 for MODIS AQUA) and find a gradual increase in the UHI magnitude in the equatorial (0.05 °C/decade) and snow (0.12 °C/decade) climate zones. Our results imply that city planners and policy makers should take the background climate zone of a city into account when trying to mitigate the impact of thermal stress in urban areas.

  8. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Gloss and surface roughness produced by polishing kits on resin composites.

    PubMed

    Sadidzadeh, Ramtin; Cakir, Deniz; Ramp, Lance C; Burgess, John O

    2010-08-01

    To compare in vitro the surface roughness (Ra) and gloss (G) produced by three conventional and one experimental polishing kits on four resin composites. 24 discs were prepared (d = 12 mm, t = 4 mm) for each resin composite: Filtek Supreme Plus Body/A2 (FSB), Yellow Translucent (FST), Heliomolar/A2 (HM), and EsthetX/A2 (EX) following the manufacturers' instructions. They were finished with 320 grit silicon carbide paper for 80 seconds each. Polishing systems: Sof-Lex, Enhance-Pogo, Astropol and Experimental Discs/EXL-695, were applied following manufacturers' instructions. Each specimen was ultrasonically cleaned with distilled water and dried. Gloss and Ra were measured with a small area glossmeter (Novo-curve) and non-contact profilometer (Proscan 2000) following ISO 4288, respectively. The results were evaluated by two-way ANOVA followed by separate one-way ANOVA and Tukey/Kramer test (P = 0.05). There was a significant interaction of surface roughness and gloss between the composites and polishing systems (P < 0.05). The lowest surface roughness was recorded for FST polished with the Experimental kit. The highest gloss was obtained for FSB composite polished with the Experimental kit. The experimental polishing system produced smoothest surfaces (P < 0.05). The Enhance-Pogo and the experimental polishing kit produced highest gloss (P < 0.05).

  10. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. 

  11. Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks.

    PubMed

    Li, Xiaohui; Yin, Pinghe; Zhao, Ling

    2016-10-01

    The Pearl River Estuary (PRE) is vulnerable due to the increasingly serious environmental pollution, such as phthalate esters (PAEs) contaminants, from the Pearl River Delta (PRD). The concentrations of six US Environmental Protection Agency (USEPA) priority PAEs in water and surface sediments collected from the PRD's six main estuaries in spring, summer, and winter 2013 were measured by GC-MS. Total PAEs (∑6PAEs) concentrations were from 0.5 to 28.1 μg/L and from 0.88 to 13.6 μg/g (dry weight (DW)) in water and surface sediments, respectively. The highest concentration was detected in summer. Higher concentrations of PAEs were found in Yamen (YM) and Humen (HM) areas than the other areas. Bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) were the dominant PAEs in the investigated areas, contributing between 61 and 95 % of the PAEs in water and from 85 to 98 % in surface sediments. Based on risk quotients (RQs), DEHP posed greater ecological risks to the studied aquatic environments than other measured compounds. Little human health risk from the target PAEs was identified.

  12. Zn₂SnO₄-Reduced Graphene Oxide Nanohybrids for Visible-Light-Driven Photocatalysis.

    PubMed

    Li, Hui; Wu, Xiang-Feng; Sun, Yang; Zhao, Ze-Hua; Zhang, Chen-Xu; Jia, Fan-Fan; Zhang, Han; Yu, Mai-Tuo; Yang, Xin-Yue

    2018-02-01

    Zn2SnO4-reduced graphene oxide photocatalysts were synthesized by using SnCl4 5H2O, Zn(NO3)2 · 6H2O and graphene oxide via hydrothermal process. The structure, morphology, specific surface area and photo response of the as-prepared nanocomposites were characterized by X-ray diffraction, Transmission electron microscopy, UV-vis diffuse reflectance spectra, Brunauer-emmett-teller surface area measurement and Photoluminescence emission spectra. Experimental results showed that the Zn2SnO4 nanoparticles, with 20-30 nm a size range, were uniformly dispersed on the surfaces of reduced graphene oxide. Moreover, the as-prepared Zn2SnO4-reduced graphene oxide photocatalysts exhibited enhanced photocatalytic activities for degradation of Rhodamine B compared to those of pure Zn2SnO4. When the amount of reduced graphene oxide was 4 wt%, it showed the highest photocatalytic efficiency of 99.7% for 240 min, and the photocatalytic efficiency was still 98.5% after it was recycled 4 times. It also possessed the band gap of 2.48 eV and specific surface area of 58.1 m2 g-1.

  13. Decoding spoken words using local field potentials recorded from the cortical surface

    NASA Astrophysics Data System (ADS)

    Kellis, Spencer; Miller, Kai; Thomson, Kyle; Brown, Richard; House, Paul; Greger, Bradley

    2010-10-01

    Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave patients severely paralyzed but fully aware, in a condition known as 'locked-in syndrome'. Communication in this state is often reduced to selecting individual letters or words by arduous residual movements. More intuitive and rapid communication may be restored by directly interfacing with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke's area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing neural signals from independent neural processing assemblies. These results further support using cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas can be used to classify speech-related cortical rhythms and potentially restore communication to locked-in patients.

  14. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    PubMed

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  15. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2002

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.

    2003-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2002. The map is based on water-level measurements in 94 wells. The highest measured water level was 38 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near Chesapeake Beach and North Beach. The water level measured in this area has declined to 55 feet below sea level. The lowest water level measured was 169 feet below sea level at the center of a cone of depression at Lexington Park.

  16. Potentiometric surface of the Aquia Aquifer in southern Maryland, September 2003

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreason, David C.; Wheeler, Judith C.

    2005-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2003. The map is based on water-level measurements in 91 wells. The highest measured water level was 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near North Beach and Chesapeake Beach. The water level measured in this area has declined to 48 feet below sea level. The lowest water level measured was 156 feet below sea level at the center of a cone of depression at Lexington Park.

  17. The surface climatology of the Ross Ice Shelf Antarctica.

    PubMed

    Costanza, Carol A; Lazzara, Matthew A; Keller, Linda M; Cassano, John J

    2016-12-01

    The University of Wisconsin-Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions - central, coastal, and the area along the Transantarctic Mountains - in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea-level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea-level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long-term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research.

  18. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    PubMed

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  20. Recent increase in snow-melt area in the Greenland Ice sheet as an indicator of the effect of reduced surface albedo by snow impurities

    NASA Astrophysics Data System (ADS)

    Rikiishi, K.

    2008-12-01

    Recent rapid decline of cryosphere including mountain glaciers, sea ice, and seasonal snow cover tends to be associated with global warming. However, positive feedback is likely to operate between the cryosphere and air temperature, and then it may not be so simple to decide the cause-and-effect relation between them. The theory of heat budget for snow surface tells us that sensible heat transfer from the air to the snow by atmospheric warming by 1°C is about 10 W/m2, which is comparable with heat supply introduced by reduction of the snow surface albedo by only 0.02. Since snow impurities such as black carbon and soil- origin dusts have been accumulated every year on the snow surface in snow-melting season, it is very important to examine whether the snow-melting on the ice sheets, mountain glaciers, and sea ice is caused by global warming or by accumulated snow impurities originated from atmospheric pollutants. In this paper we analyze the dataset of snow-melt area in the Greenland ice sheet for the years 1979 - 2007 (available from the National Snow and Ice Data Center), which is reduced empirically from the satellite micro-wave observations by SMMR and SMM/I. It has been found that, seasonally, the snow-melt area extends most significantly from the second half of June to the first half of July when the sun is highest and sunshine duration is longest, while it doesn't extend any more from the second half of July to the first half of August when the air temperature is highest. This fact may imply that sensible heat required for snow-melting comes from the solar radiation rather than from the atmosphere. As for the interannual variation of snow-melt area, on the other hand, we have found that the growth rate of snow-melt area gradually increases from July, to August, and to the first half of September as the impurities come out to and accumulated at the snow surface. However, the growth rate is almost zero in June and the second half of September when fresh snow of high albedo covers the surface. This fact may imply that the combined operation of solar radiation and snow impurities is responsible for the recent global decline of cryosphere. Discussion about other research works will be given in the presentation in order to support the above idea.

  1. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower at piezometer locations closer to the creek channel. Total volatile organic compound concentrations increased more than 25 percent in some areas in the middle depths of the aquifer; however, it could not be determined if a defined plume was moving farther downgradient along ground-water flow paths toward the creek channel, or vertically downward because of density differences within the aquifer.

  2. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    PubMed

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye.

    PubMed

    Gül, S; Eren, O; Kır, S; Onal, Y

    2012-01-01

    The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption. The highest BET surface area carbon (1,275 m(2)/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.

  4. Effects of calcining temperature on photocatalysis of g-C{sub 3}N{sub 4}/TiO{sub 2} composites for hydrogen evolution from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong

    Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity wasmore » achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.« less

  5. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to lower δ44Ca values and a faster approach to isotopic equilibrium. The dependence of δ44Ca resetting on calcite surface areas has broad ramifications for tracing carbonate weathering in the Critical Zone.

  6. Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale

    NASA Astrophysics Data System (ADS)

    Barrett, Bradford S.; Raga, Graciela B.

    2016-12-01

    Surface ozone concentrations in Mexico City frequently exceed the Mexican standard and have proven difficult to forecast due to changes in meteorological conditions at its tropical location. The Madden-Julian Oscillation (MJO) is largely responsible for intraseasonal variability in the tropics. Circulation patterns in the lower and upper troposphere and precipitation are associated with the oscillation as it progresses eastward around the planet. It is typically described by phases (labeled 1 through 8), which correspond to the broad longitudinal location of the active component of the oscillation with enhanced precipitation. In this study we evaluate the intraseasonal variability of winter and summer surface ozone concentrations in Mexico City, which was investigated over the period 1986-2014 to determine if there is a modulation by the MJO that would aid in the forecast of high-pollution episodes. Over 1 000 000 hourly observations of surface ozone from five stations around the metropolitan area were standardized and then binned by active phase of the MJO, with phase determined using the real-time multivariate MJO index. Highest winter ozone concentrations were found in Mexico City on days when the MJO was active and in phase 2 (over the Indian Ocean), and highest summer ozone concentrations were found on days when the MJO was active and in phase 6 (over the western Pacific Ocean). Lowest winter ozone concentrations were found during active MJO phase 8 (over the eastern Pacific Ocean), and lowest summer ozone concentrations were found during active MJO phase 1 (over the Atlantic Ocean). Anomalies of reanalysis-based cloud cover and UV-B radiation supported the observed variability in surface ozone in both summer and winter: MJO phases with highest ozone concentration had largest positive UV-B radiation anomalies and lowest cloud-cover fraction, while phases with lowest ozone concentration had largest negative UV-B radiation anomalies and highest cloud-cover fraction. Furthermore, geopotential height anomalies at 250 hPa favoring reduced cloudiness, and thus elevated surface ozone, were found in both seasons during MJO phases with above-normal ozone concentrations. Similar height anomalies at 250 hPa favoring enhanced cloudiness, and thus reduced surface ozone, were found in both seasons during MJO phases with below-normal ozone concentrations. These anomalies confirm a physical pathway for MJO modulation of surface ozone via modulation of the upper troposphere.

  7. Assessment of soil-gas, soil, and water contamination at the former hospital landfill, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.

  8. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  9. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  10. Chronic cardiovascular disease mortality in mountaintop mining areas of central Appalachian states.

    PubMed

    Esch, Laura; Hendryx, Michael

    2011-01-01

    To determine if chronic cardiovascular disease (CVD) mortality rates are higher among residents of mountaintop mining (MTM) areas compared to mining and nonmining areas, and to examine the association between greater levels of MTM surface mining and CVD mortality. Age-adjusted chronic CVD mortality rates from 1999 to 2006 for counties in 4 Appalachian states where MTM occurs (N = 404) were linked with county coal mining data. Three groups of counties were compared: MTM, coal mining but not MTM, and nonmining. Covariates included smoking rate, rural-urban status, percent male population, primary care physician supply, obesity rate, diabetes rate, poverty rate, race/ethnicity rates, high school and college education rates, and Appalachian county. Linear regression analyses examined the association of mortality rates with mining in MTM areas and non-MTM areas and the association of mortality with quantity of surface coal mined in MTM areas. Prior to covariate adjustment, chronic CVD mortality rates were significantly higher in both mining areas compared to nonmining areas and significantly highest in MTM areas. After adjustment, mortality rates in MTM areas remained significantly higher and increased as a function of greater levels of surface mining. Higher obesity and poverty rates and lower college education rates also significantly predicted CVD mortality overall and in rural counties. MTM activity is significantly associated with elevated chronic CVD mortality rates. Future research is necessary to examine the socioeconomic and environmental impacts of MTM on health to reduce health disparities in rural coal mining areas. © 2011 National Rural Health Association.

  11. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra itmore » was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.« less

  12. Evaluation Of The Shear Bond Strength Between Dentin And Dental Luting Cement Following Dentin Surface Treatment By 980 Nm Diode Laser And Desensitizing Agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, T.; Gheith, M.

    2011-09-01

    Dentin hypersensitivity is described clinically as an exaggerated response to non-noxious sensory stimuli. Current treatment is concentrating on two approaches; to occlude the dentinal tubules or to block neural transmission. This is achieved through using dentin desensitizers and low power lasers. Forty eight freshly extracted human molar teeth were used in this study and divided equally into three groups. Group 1) control group, group 2) laser treated dentin surface group, and group 3) desensitizing agent dentin surface group. Scanning electron microscopic analysis of laser treated group showed melted globules, no carbonization, recrystalization and crystal growth of the apatite in some areas. In diode laser dentin surface treated group showed the highest shear bond strength mean value.

  13. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod; Meador, Mary Ann; McCorkle, Linda

    2014-01-01

    We report our ongoing research on polyamide aerogels made by step growth polymerization using a combination of terephthaloyl chloride, isophthaloyl chloride and m-phenylenediamine. Crosslinking of the amine capped polymer chains with 1,3,5-benzenetricarbonyl trichloride causes gelation in as little as two to five minutes. Removing the reaction solvent is accomplished through solvent exchange, followed by drying using supercritical CO2 extraction to give colorless aerogels with densities ranging from 0.07 to 0.33 grams per cubic centimeter and surface areas as high as 440 square meters per gram. Statistical experimental design methodology has been utilized to investigate dependence of properties of these aerogels, such as density, compressive modulus, and surface area, on changes in fabrication parameters including formulated number of amide oligomer repeat units (n-value), acid chloride (meta, para or combination), and solids concentration of solution used for gelation. For example, the density of these materials was found to be dependent on the acid chloride type and the solids concentration, but n was not a significant variable. However, surface area was significantly influenced by all three parameters. The polyamide aerogels represent a potential cost savings over previously reported polyimide aerogels, since monomers are all inexpensive and commercially available. Surface area and density were both highest when 100 terephthaloyl chloride was used but a combination of 5 solid concentration, 100 terephthaloyl chloride and n of 20 gave the best combination of properties.

  14. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Investigation of Carbon, Nutrients, and Groundwater Inputs in Coastal Florida Using Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Coble, P. G.; Conmy, R. N.; Marine Spectrochemistry Group

    2010-12-01

    Very few studies of the exchange of water between aquifers and the ocean have been conducted along the Florida coast. Progression of residential and agricultural development in coastal areas is leading to increased nutrients from fertilizers and wastewaters to groundwater. A portion of these nutrients ultimately is released to coastal surface waters. Groundwater mining has increased salt water intrusions in coastal aquifers which may further enhance nutrient fluxes to coastal surface waters. Nutrient concentration in coastal groundwater is sometimes higher than those in river water, counterbalancing for the lower mass flux of groundwater relative to surface waters. Nutrient and carbon inputs through groundwater in certain areas may play an important role in cycling and primary productivity in the coastal ocean. King’s Bay is a spring-fed watershed and manatee sanctuary located on the West Florida Shelf. Over the past 25 years, springs supplying groundwater to King’s Bay have shown a three-fold increase in nitrate concentration and increased invasion of nuisance algae. It has been challenging to track sources of both nutrients and other water quality parameters because there are multiple water supplies to King’s Bay. The goal of this project is to improve the estimate of water, nutrients, and carbon from groundwater discharge into the coastal zone. This paper will present preliminary results of high resolution fluorescence spectroscopy analyses of the various source water types in the King's Bay watershed, including deep and shallow aquifers, wells, springs, and surface water sources. Samples were obtained from various sites--5 springs, 27 wells, 12 surface, and 9 lakes and rivers-- within the King’s Bay area during one dry season. Lakes and rivers had the highest fluorescence intensities and showed similar composition, with the most red-shifted emission maxima. Second highest concentration was seen in some of the wells which had wide range in both composition and intensities. King’s Bay surface sites appear to be a mixture of surface water and spring water based on both composition and concentration. Springs samples were all similar in composition, with concentrations in middle range found in well samples. These results will be discussed in reference to determination of source of water, carbon, and nutrients to the springs.

  16. Coast and river mouths, Columbia, South America

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Numerous rivers in Ecuador and Columbia stand out in this South American Pacific coastal scene (1.5N, 79.0W). This region has one of the highest rainfalls in the world with the consequent heavy cloud cover and it is rare to be able to photograph the surface. The Pacific mountain drainage area is small but produces a large volume of runoff and sediment flow into the ocean.

  17. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    PubMed

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  19. Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015.

    PubMed

    Mora, Marco; Braun, Rachel A; Shingler, Taylor; Sorooshian, Armin

    2017-08-27

    This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM 2.5 , PM 10 , and PM coarse (PM 10 -PM 2.5 ) were best correlated with NH 4 + , SO 4 2- , and Ca 2+ , suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014-2015 owing to reduced regional biomass burning as compared to 2003-2013.

  20. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia.

    PubMed

    El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla

    2015-12-30

    In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Moisture sorption by cellulose powders of varying crystallinity.

    PubMed

    Mihranyan, Albert; Llagostera, Assumpcio Piñas; Karmhag, Richard; Strømme, Maria; Ek, Ragnar

    2004-01-28

    Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative humidities. The structure of the cellulose powders was characterized by X-ray diffraction, BET surface area analysis, and scanning electron microscopy. Moisture uptake was directly related to the cellulose crystallinity and pore volume: Cellulose powders with higher crystallinity showed lower moisture uptake at relative humidities below 75%, while at higher humidities the moisture uptake could be associated with filling of the large pore volume of the cellulose powder of highest crystallinity. In conclusion, the structure of cellulose should be thoroughly considered when manufacturing low moisture grades of MCC.

  2. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    USGS Publications Warehouse

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  3. The surface climatology of the Ross Ice Shelf Antarctica

    PubMed Central

    Lazzara, Matthew A.; Keller, Linda M.; Cassano, John J.

    2016-01-01

    ABSTRACT The University of Wisconsin‐Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions – central, coastal, and the area along the Transantarctic Mountains – in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea‐level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea‐level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long‐term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research. PMID:28008213

  4. The effect of adhesive failure and defects on the stress distribution in all-ceramic crowns.

    PubMed

    Liu, Yonggang; Xu, Yuanzhi; Su, Bo; Arola, Dwayne; Zhang, Dongsheng

    2018-05-29

    To explore the effect of adhesive failure and defects between the crown and cement on the stress distribution within all-ceramic crowns and the corresponding risk of failure. An IPS e.max crown of lithium disilicate produced by CAD/CAM for a first mandibular molar was modeled using finite element analysis based on X-ray micro-CT scanned images. Predefined debonding states and interfacial defects between the crown and cement were simulated using the model. The first principal stress distribution of the crown and cement was analyzed under a vertical occlusal load of 600 N. A concept of failure risk was proposed to evaluate the crown. Stress concentrations in the crown were identified on the occlusal surface surrounding the region of loading, beneath the area of loading and at the margin of the interior surface. Stress concentrations in the cement were also evident at the boundary of the debonded areas. The lower surface of the crown is safe to sustain the 600 N vertical load, but the top surface of the cement would undergo cohesive failure. According to the evaluation of failure risk of the crown, the conditions of highest risk corresponded to the conditions with highest percentage of cement damage. The risk of failure is not only associated with debonding between the crown and cement, but also associated with its distribution. Debonding related defects and cementing defects are more deleterious to the interfacial stress than debonding itself. The axial wall plays a critical role in maintaining the principal tensile stress of the crown at an acceptable level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. MOF-templated synthesis of porous Co(3)O(4) concave nanocubes with high specific surface area and their gas sensing properties.

    PubMed

    Lü, Yinyun; Zhan, Wenwen; He, Yue; Wang, Yiting; Kong, Xiangjian; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2014-03-26

    Porous metal oxides nanomaterials with controlled morphology have received great attention because of their promising applications in catalysis, energy storage and conversion, gas sensing, etc. In this paper, porous Co3O4 concave nanocubes with extremely high specific surface area (120.9 m(2)·g(-1)) were synthesized simply by calcining Co-based metal-organic framework (Co-MOF, ZIF-67) templates at the optimized temperature (300 °C), and the formation mechanism of such highly porous structures as well as the influence of the calcination temperature are well explained by taking into account thermal behavior and intrinsic structural features of the Co-MOF precursors. The gas-sensing properties of the as-synthesized porous Co3O4 concave nanocubes were systematically tested towards volatile organic compounds including ethanol, acetone, toluene, and benzene. Experimental results reveal that the porous Co3O4 concave nanocubes present the highest sensitivity to ethanol with fast response/recovery time (< 10 s) and a low detection limit (at least 10 ppm). Such outstanding gas sensing performance of the porous Co3O4 concave nanocubes benefits from their high porosity, large specific surface area, and remarkable capabilities of surface-adsorbed oxygen.

  6. Effect of support size on the catalytic activity of metal-oxide-doped silica particles in the glycolysis of polyethylene terephthalate.

    PubMed

    Wi, Rinbok; Imran, Muhammad; Lee, Kyoung G; Yoon, Sun Hong; Cho, Bong Gyoo; Kim, Do Hyun

    2011-07-01

    Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.

  7. Creation of Woven Structures Impacting Self-cleaning Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Lim, Jihye

    For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.

  8. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.

    PubMed

    Strycharz, S; Newman, L

    2009-02-01

    Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm -2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.

  9. Porous carbon materials synthesized using IRMOF-3 and furfuryl alcohol as precursor

    NASA Astrophysics Data System (ADS)

    Deka, Pemta Tia; Ediati, Ratna

    2016-03-01

    IRMOF-3 crystals have been synthesized using solvothermal method by adding zinc nitrate hexahydrate with 2-amino-1,4-benzenedicarboxylic acid in N'N-dimethylformamide (DMF) at 100°C for 24 (note as IR-24) and 72 h (note as IR-72). The obtained crystals were characterized using X-ray Diffraction (XRD), SEM (Scanning Electron Microscopy) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), FTIR and Isothermal adsorption-desorption N2. The diffractogram solids synthesized show characteristic peak at 2θ 6.8, 9.6 and 13.7°. SEM micrograph show cubic shape of IRMOF-3 crystal. Based on FTIR characterization, IRMOF-3 appear at wavelength (1691,46; 1425,3; 1238,21; 1319,22 dan 3504,42)cm-1. The Isotherm of crystal IRMOF-3 at heating time 24 h and 72 h are type IV. The surface area of IR-24 and IR-72 are respectively 24,758 m2/g and 29,139 m2/g with its dominant mesopores. Carbonaceous materials has been successfully synthesized using IR-24, IR-72 and furfuryl alcohol (FA) as second carbon precursor with variation of carbonation temperature 550, 700 and 850°C. The XRD result from both carbonaceous materials show formation of amorphous carbon and caharacteristic peak of ZnO oxide. Micrograph SEM show that carbonaceous materials have cubic shape as IRMOF-3 and SEM-EDX result indicate Zn and nitrogen content of these materials has decrease until temperature 850°C. Porous carbon using IR-24 and FA (notes as C-24) has increased surface area with higher carbonation temperature. The highest surface area is 1495,023 m2/g. Total pore volume and pore size of C-24 from low to high temperature respectively as (0,338; 0,539 and 1,598) cc/g; (0,107; 0,152 and 0,610) cc/g. Porous carbon using IR-72 and FA (notes as C-72) has smaller surface area than C-24 but its also increased during higher carbonation heating. The highest surface area is 1029,668 m2/g.The total pore volume and pore size of these carbon materials from low to high temperature respectively as (0,390; 0,727 and 1,345) cc/g and (0,065; 0,157 and 0,381) cc/g. Carbonaceous materials with high porosity and nitrogen content will be expected increase mechanical properties and hydrogen storage from these materials.

  10. Mapping 22q11.2 Gene Dosage Effects on Brain Morphometry.

    PubMed

    Lin, Amy; Ching, Christopher R K; Vajdi, Ariana; Sun, Daqiang; Jonas, Rachel K; Jalbrzikowski, Maria; Kushan-Wells, Leila; Pacheco Hansen, Laura; Krikorian, Emma; Gutman, Boris; Dokoru, Deepika; Helleman, Gerhard; Thompson, Paul M; Bearden, Carrie E

    2017-06-28

    Reciprocal chromosomal rearrangements at the 22q11.2 locus are associated with elevated risk of neurodevelopmental disorders. The 22q11.2 deletion confers the highest known genetic risk for schizophrenia, but a duplication in the same region is strongly associated with autism and is less common in schizophrenia cases than in the general population. Here we conducted the first study of 22q11.2 gene dosage effects on brain structure in a sample of 143 human subjects: 66 with 22q11.2 deletions (22q-del; 32 males), 21 with 22q11.2 duplications (22q-dup; 14 males), and 56 age- and sex-matched controls (31 males). 22q11.2 gene dosage varied positively with intracranial volume, gray and white matter volume, and cortical surface area (deletion < control < duplication). In contrast, gene dosage varied negatively with mean cortical thickness (deletion > control > duplication). Widespread differences were observed for cortical surface area with more localized effects on cortical thickness. These diametric patterns extended into subcortical regions: 22q-dup carriers had a significantly larger right hippocampus, on average, but lower right caudate and corpus callosum volume, relative to 22q-del carriers. Novel subcortical shape analysis revealed greater radial distance (thickness) of the right amygdala and left thalamus, and localized increases and decreases in subregions of the caudate, putamen, and hippocampus in 22q-dup relative to 22q-del carriers. This study provides the first evidence that 22q11.2 is a genomic region associated with gene-dose-dependent brain phenotypes. Pervasive effects on cortical surface area imply that this copy number variant affects brain structure early in the course of development. SIGNIFICANCE STATEMENT Probing naturally occurring reciprocal copy number variation in the genome may help us understand mechanisms underlying deviations from typical brain and cognitive development. The 22q11.2 genomic region is particularly susceptible to chromosomal rearrangements and contains many genes crucial for neuronal development and migration. Not surprisingly, reciprocal genomic imbalances at this locus confer some of the highest known genetic risks for developmental neuropsychiatric disorders. Here we provide the first evidence that brain morphology differs meaningfully as a function of reciprocal genomic variation at the 22q11.2 locus. Cortical thickness and surface area were affected in opposite directions with more widespread effects of gene dosage on cortical surface area. Copyright © 2017 the authors 0270-6474/17/376184-17$15.00/0.

  11. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  13. Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2009. The map is based on water-level measurements in 82 wells. The highest measured water level was 48 feet above sea level near the northern boundary and in the outcrop area of the aquifer in the central part of Anne Arundel County. Water levels also were above sea level in Kent County and northern Queen Anne's County. Water levels were below sea level south and east of these areas and in the remainder of the study area. The hydraulic gradient increased southeastward toward a cone of depression around well fields at Lexington Park and Solomons Island. The lowest measured water level was 145 feet below sea level at the center of a cone of depression at Lexington Park. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  14. Residues of organochlorine pesticides in surface soil and raw ...

    EPA Pesticide Factsheets

    The central Asian Republic of Tajikistan has been an area of extensive historical agricultural pesticide use as well as large scale burials of obsolete banned chlorinated insecticides. The current investigation was a four year study of legacy organochlorine pesticides in surface soil and raw foods in four rural areas of Tajikistan. The four study areas included the pesticide burial sites of Konibodom and Vakhsh, and family farms of Garm and Chimbuloq villages. These areas were selected to represent a diversity of pesticide disposal histories and to allow assessment of local pesticide contamination in Tajikistan. Each site was visited multiple times and over 500 samples of surface soil and raw foods were collected and analyzed for twenty legacy organochlorine pesticides. Various local food products were sampled to represent the range of raw foods potentially containing residues of banned pesticides, including dairy products, meat, edible plant and cotton seed products. The pesticide analytes included DDTs (DDT, DDD, DDE), lindane isomers (α, β, γ, δ BHC), endosulfan isomers (endosulfan I, II, sulfate), other cyclodienes (aldrin, α and γ chlordanes, dieldrin, endrin, endrin aldehyde and ketone, heptachlor, heptachlor epoxide), and methoxychlor. Pesticide analytes were selected based on availability of commercial standards and known or suspected historical pesticide use and burial. Pesticide contamination was highest in soil at each of the four sites, and ge

  15. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  16. The Pine-Popple River basin--Hydrology of a wild river area, northeastern Wisconsin

    USGS Publications Warehouse

    Oakes, Edward L.; Field, Stephen J.; Seeger, Lawrence P.

    1973-01-01

    The Pine and Popple Rivers, virtually unaltered by man, flow through a semiprimitive area of forests, lakes, and glacial hills. White-water streams, natural lakes, fish and animal life, and abundant vegetation contribute to the unique recreational and aesthetic characteristics of the area. Resource planning or development should recognize the interrelationships within the hydrologic system and the possible effects of water and land-use changes upon the wild nature of the area. The basin covers about 563 square miles in northeastern Wisconsin. Swamps and wetlands cover nearly 110 square miles, and the 70 lakes cover about 11 square miles. The undulating topography is formed by glacial deposits overlying an irregular, resistant surface of bedrock. An annual average of 30 inches of precipitation, highest from late spring to early autumn, falls on the basin. Of this amount, evapotranspiration, highest in mid summer and late summer, averages 19 inches; the remaining 11 inches is runoff, which is highest in spring and early summer. Ground water from the glacial drift is the source of water for the minor withdrawal use in the basin. Ground-water movement is to streams and lakes and regionally follows the slope of topography and the bedrock surface, which is generally west to east. Ground water is of good quality, although locally high in iron. The major uses of water are for recreation and power generation. Domestic use is slight. No water is withdrawn from lakes or streams, and no sewage or industrial wastes are added to lakes or streams. Most of the flow of the Pine River is used for power generation. The main stems of the Pine and Popple Rivers contain 114 canoeable miles, of which 95 percent is without such major obstructions as falls or large rapids. In general streams support cold-water fish, and lakes support warm-water fish. Trout is the principal stream and game fish in the basin. The basin has no significant water problems. Future development between the Pine River power plant and the mouth of the Pine River should have little effect on the western two-thirds of the basin, already largely protected by public ownership or development planning agreements.

  17. Seasonal activity of Leptoiulus trilineatus (C.L. Koch, 1847) and Megaphyllum trassylvanicum (Verhoeff, 1897) (Diplopoda: Julida: Julidae)

    NASA Astrophysics Data System (ADS)

    Bachvarova, Darina; Doichinov, Aleksandar; Abdulova, Rayme

    2018-03-01

    The article presents the results of a study of the soil surface seasonal activity of two species of julidae, widely spread in the Balkan Peninsula: Leptoiulus trilineatus (C.L. Koch, 1847) and Megaphyllum trassylvanicum (Verhoeff, 1897). The material was collected by means of pitfall traps between May 2007 and May 2009 in natural and urban habitats exposed to varying degrees of anthropogenic pressure. In the study period 1474 specimens of L. trilineatus and 618 specimens of M. transsylvanicum were collected. The impact of the soil and air temperature and humidity on the seasonal activity of both species was measured through statistical analysis. The statistical data processing was conducted using SPSS 9.0 and StatPlus 3.5.3 software packages. L. trilineatus and M. trassylvanicum are polytopic, mesophilic and mesotermic species with year-round activity in the studied area. There is no statistically significant correlation between the degree of anthropogenic impact and the activity of the two species. Leptoiulus trilineatus shows equal preference for both urban and natural habitats in the studied area. The species demonstrates the typical of all millipedes bimodal activity, which is the highest in spring and the beginning of winter - in the periods from March to May and from November to December. The coefficients of correlation dependence of L. trilineatus activity on the tested abiotic environmental factors are not statistically significant. The Pearson-Brave coefficient which measures the effect of soil humidity on species activity is 0.417, which shows a positive correlation. M. trassylvanicum has the highest frequency in urban biotops such as parks in the urban and suburban areas of Shumen and in the coniferous habitats on the Shumen Plateau. In this area the species demonstrates its highest activity in spring and summer (from February to July). The abiotic factors with statistically significant effect on the soil surface activity of M. trassylvanicum are the soil and air temperature - the values of the Pearson-Brave correlation coefficients are 0.708 and 0.586 respectively.

  18. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century.

    PubMed

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009). This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.

  19. UV 380 nm Reflectivity of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2000-01-01

    The 380 nm radiance measurements of TOMS (Total Ozone Mapping Spectrometer) have been converted into a global data set of daily (1979 to 1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice). Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicates the presence of clouds, haze, or aerosols in the satellite field of view. Statistical analysis of 14 years of daily data show that most snow/ice-free regions of the Earth have their largest fraction of days each year when the reflectivity is low (R less than 10%). The 380 nm reflectivity data shows that the true surface reflectivity is 2 to 3% lower than the most frequently occurring reflectivity value for each TOMS scene. The most likely cause of this could be a combination of frequently occurring boundary-layer water or aerosol haze. For most regions, the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain-forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R greater than 15%) more than half of each year. In the low to middle latitudes, the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

  20. UV 380 nm reflectivity of the Earth's surface, clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Celarier, E.; Larko, D.

    2001-03-01

    The 380 nm radiance measurements of the Total Ozone Mapping Spectrometer (TOMS) have been converted into a global data set of daily (1979-1992) Lambert equivalent reflectivities R of the Earth's surface and boundary layer (clouds, aerosols, surface haze, and snow/ice) and then corrected to RPC for the presence of partly clouded scenes. Since UV surface reflectivity is between 2 and 8% for both land and water during all seasons of the year (except for ice and snow cover), reflectivities larger than the surface value indicate the presence of clouds, haze, or aerosols in the satellite field of view. A statistical analysis of 14 years of daily reflectivity data shows that most snow-/ice-free scenes observed by TOMS have a reflectivity less than 10% for the majority of days during a year. The 380 nm reflectivity data show that the true surface reflectivity is 2-3% lower than the most frequently occurring reflectivity value for each TOMS scene as seen from space. Most likely the cause is a combination of frequently occurring boundary layer water and/or aerosol haze. For most regions the observation of extremely clear conditions needed to estimate the surface reflectivity from space is a comparatively rare occurrence. Certain areas (e.g., Australia, southern Africa, portions of northern Africa) are cloud-free more than 80% of the year, which exposes these regions to larger amounts of UV radiation than at comparable latitudes in the Northern Hemisphere. Regions over rain forests, jungle areas, Europe and Russia, the bands surrounding the Arctic and Antarctic regions, and many ocean areas have significant cloud cover (R>15%) more than half of each year. In the low to middle latitudes the areas with the heaviest cloud cover (highest reflectivity for most of the year) are the forest areas of northern South America, southern Central America, the jungle areas of equatorial Africa, and high mountain regions such as the Himalayas or the Andes. The TOMS reflectivity data show both the presence of large nearly clear ocean areas and the effects of the major ocean currents on cloud production.

  1. Thermal maps of young women and men

    NASA Astrophysics Data System (ADS)

    Chudecka, Monika; Lubkowska, Anna

    2015-03-01

    The objective was to use thermal imaging (ThermaCAM SC500) as an effective tool in establishing a thermal map of young participants, with a high diagnostic value for medicine, physiotherapy and sport. A further aim was to establish temperature distributions and ranges on the body surface of the young women and men as standard temperatures for the examined age group, taking into account BMI, body surface area and selected parameters of body fat distribution. The participants included young, healthy and physically active women (n = 100) and men (n = 100). In the women and men, the highest Tmean temperatures were found on the trunk. The warmest were the chest and upper back, then the lower back and abdomen. The lowest Tmean were found in the distal parts of the body, especially on the lower limbs. The results showed that only in the area of the chest was Tmean significantly higher in women than in men. In the areas of the hands (front and back) Tmean were similar for women and men. In the other analyzed body surface areas, Tmean were significantly lower in women. Research showed significant differences in body surface temperature between the women and men. Among the analyzed characteristics, Tmean in the chest, upper back, abdomen, lower back (both in women and men) were mainly correlated with BMI and PBF; the correlations were negative. Difficulties in interpreting changes in temperature in selected body areas in people with various conditions can be associated with the lack of studies on large and representative populations of healthy individuals with normal weight/height parameters. Therefore, it seems that this presented research is a significant practical and cognitive contribution to knowledge on thermoregulation, and may therefore be used as a reference for other studies using thermal imaging in the evaluation of changes in body surface temperatures.

  2. Trace-metal and organic constituent concentrations in bed sediment at Big Base and Little Base Lakes, Little Rock Air Force Base, Arkansas—Comparisons to sediment-quality guidelines and indications for timing of exposure

    USGS Publications Warehouse

    Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.

    2015-09-16

    Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.

  3. Uptake and bioconcentration of hexachlorobiphenyl by periphyton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallenave, R.M.; Day, K.E.

    1995-12-31

    Laboratory experiments were conducted to examine the bioconcentration of 2,2{prime},4,4{prime},5,5{prime} hexachlorobiphenyl (HCBP) in lotic periphyton. The instantaneous rate of uptake and bioconcentration factor (BCF) were determined by following the bioaccumulation of {sup 14}C-HCBP in periphytic communities established on glass slides. The rate of accumulation was highest in the first 3 hours, and equilibrium was reached within eight days. The bioconcentration factor averaged 16,000. The results of a deputation experiment indicated that HCBP desorbed from periphyton, but at a much slower rate than its adsorption. After 28 days of deputation, no significant losses of HCBP in the periphyton had occurred. Nomore » significant relationship existed between concentrations of HCBP and dry weight of periphyton, suggesting the sorption was primarily determined by surface area available, and that increases in periphytic biomass would not necessarily result in corresponding increases in surface area available for partitioning of HCBP. The results of this study suggest that lotic periphyton provide a large surface area for adsorption and uptake of persistent lipophilic compounds such as HCBP, and depending on the extent of grazing pressure, could greatly influence the fate and transport of these compounds in lotic systems.« less

  4. Photocatalytic Applications of Electrospun TiO2 Nanofibres Embedded with Bimodal Sized and Prismatic Gold Nanoparticles.

    PubMed

    Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V

    2015-09-01

    In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

  5. View of rim of South Ray crater on traverse up Stone Mountain during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the rim of South Ray crater photographed with a 500mm lens from Station no.4 -- the highest point on the traverse up Stone Mountain -- during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. South Ray crater was a 'fresh' source of angular ejecta in the Lunar Module-Apollo Lunar Surface Experiments Package area and for samples at Station No.8.

  6. Spatially explicit prioritization of human antibiotics and antineoplastics in Europe.

    PubMed

    Oldenkamp, Rik; Huijbregts, Mark A J; Hollander, Anne; Versporten, Ann; Goossens, Herman; Ragas, Ad M J

    2013-01-01

    This paper presents a screening tool for the location-specific prioritization of human pharmaceutical emissions in Europe, based on risk quotients for the aquatic environment and human health. The tool provides direction towards either monitoring activities or additional research. Its application is illustrated for a set of 11 human antibiotics and 7 antineoplastics. Risk quotients for the aquatic environment were highest for levofloxacin, doxycycline and ciprofloxacin, located in Northern Italy (Milan region; particularly levofloxacin) and other densely populated areas in Europe (e.g. London, Krakow and the Ruhr area). Risk quotients for human health not only depend on pharmaceutical and location, but also on behavioral characteristics, such as consumption patterns. Infants in eastern Spain that consume locally produced food and conventionally treated drinking water were predicted to run the highest risks. A limited comparison with measured concentrations in surface water showed that predicted and measured concentrations are approximately within one order of magnitude. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Modeling the human body shape in bioimpedance vector measurements.

    PubMed

    Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun

    2010-01-01

    Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.

  8. Assessment of pollutant mean concentrations in the Yangtze estuary based on MSN theory.

    PubMed

    Ren, Jing; Gao, Bing-Bo; Fan, Hai-Mei; Zhang, Zhi-Hong; Zhang, Yao; Wang, Jin-Feng

    2016-12-15

    Reliable assessment of water quality is a critical issue for estuaries. Nutrient concentrations show significant spatial distinctions between areas under the influence of fresh-sea water interaction and anthropogenic effects. For this situation, given the limitations of general mean estimation approaches, a new method for surfaces with non-homogeneity (MSN) was applied to obtain optimized linear unbiased estimations of the mean nutrient concentrations in the study area in the Yangtze estuary from 2011 to 2013. Other mean estimation methods, including block Kriging (BK), simple random sampling (SS) and stratified sampling (ST) inference, were applied simultaneously for comparison. Their performance was evaluated by estimation error. The results show that MSN had the highest accuracy, while SS had the highest estimation error. ST and BK were intermediate in terms of their performance. Thus, MSN is an appropriate method that can be adopted to reduce the uncertainty of mean pollutant estimation in estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Distribution of butyltins in the waters and sediments along the coast of India.

    PubMed

    Garg, Anita; Meena, Ram M; Jadhav, Sangeeta; Bhosle, Narayan B

    2011-02-01

    Water and surface sediment samples were analyzed for butyltins (TBT, DBT, MBT) from various ports along the east and west coast of India. The total butyltin (TB) in water samples varied between ~1.7 and 342 ng S nl⁻¹, whereas for sediments it varied between below detection limit to 14861 ng S ng⁻¹ dry weight of sediment. On an average Chennai port recorded the highest level of butyltins in the sediments while Paradip recorded the highest level of butylins in the waters. A fairly good relationship between the TB in the sediment and overlying water samples, as well as between organic carbon and TB, implicates the importance of adsorption/desorption process in controlling the levels of TBT in these port areas. In India the data on organotin pollution is very sparse; most of the port areas have been surveyed for butyltins for the first time during this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    NASA Astrophysics Data System (ADS)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  11. Soil Biogeochemistry Case Study: Cold Springs, Nevada

    NASA Astrophysics Data System (ADS)

    Morgan, T. A.; Verburg, P.

    2016-12-01

    The University of Nevada, Reno (UNR) Soil Biogeochemistry class, mentored by Dr. Robert Blank, United States Department of Agriculture/ Agricultural Research Service/ Great Basin Rangelands Research Unit (USDA/ARS/GBRRU) soil scientist, examined lithospheric biogeochemical cycles in a sagebrush ecosystem in Cold Springs, Nevada. The Cold Springs, Nevada area was selected to examine soil nutrient cycling under four landscape conditions: playa (no vegetation), invasive species mix of annual grasses and forbs, rabbitbrush (Ericameria nauseosa) encroached area, and sagebrush (Artemisia tridentata) dominant area. Five soil pits were excavated to describe pedons under each of the four landscape conditions. Soil samples were collected every 20 cm throughout a one meter profile, and were brought to the USDA/ARS/GBRRU laboratory for chemical analysis and characterization of physical and nutrient properties. In playa soils, solution-phase Na+ and SO4-2 had the highest concentrations on the top 20 cm. The invasive species soils showed a reduced molar NH4+ in mineral N throughout the profile. These soils also demonstrated a strong correlation between Fe and organic C. In the Rabbitbrush soils, extracted diethylenetriaminepentaacetic acid (DTPA) Fe appears to be cycled by depth across four of the five sites. However, the remaining rabbitbrush site which had the highest concentration of DTPA Fe, did not decline with depth. This indicated a nutrient specific lack of biogeochemical cycling. The rabbitbrush site also had almost double the organic C of the other four sites. Solution-phase K and Bicarb P expressed the highest concentrations in the 40-60 cm depth range. In three of the five sagebrush soils, the DTPA Mn concentration was highest at the surface and declined with depth. The remaining two sagebrush sites displayed the opposite trend. This case study revealed considerable variation in nutrient concentrations and biogeochemical cycling between soils and vegetation type.

  12. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    NASA Astrophysics Data System (ADS)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  13. Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa

    USGS Publications Warehouse

    Izuka, Scot K.; Perreault, Jeff A.; Presley, Todd K.

    2007-01-01

    To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple lines of evidence indicate that in the eastern Tafuna-Leone Plain, surface water recharges the highly permeable underlying aquifer. Steady-state model simulations representing current ground-water production conditions in the Tafuna-Leone Plain indicate that most ACRWs extend less than a mile from the production wells; thus, travel distance between any point within an ACRW and its well is short. A simulation representing a condition in which all wells are operating at maximum capacity resulted in larger ACRWs, which demonstrates that increasing ground-water withdrawal from existing wells, or building and developing new wells, increases the surface area that could potentially contribute contaminants. In some places, such as in Malaeimi Valley, water can travel quickly via surface-water routes to an area where the water can infiltrate within the ACRWs of a well field.

  14. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    PubMed

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  15. Surface Lagrangian transport in the Adriatic Sea (Mediterranean Sea) from drifters, HF radar and models: implications for fishery and Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Griffa, Annalisa; Carlson, Daniel; Berta, Maristella; Sciascia, Roberta; Corgnati, Lorenzo; Mantovani, Carlo; Fredji, Erick; Magaldi, Marcello; Zambianchi, Enrico; Poulain, Pierre Marie; Russo, Aniello; Carniel, Sandro

    2017-04-01

    Surface transport in the Adriatic Sea is investigated using data from historic drifter data, HF radar and virtual particles computed from a numerical model. Alongshore coastal currents and cyclonic gyres are the primary circulation features that connect regions in the Adriatic Sea. Their strength is highly dependent on the wind, with Southeasterly Sirocco winds driving eastward cross-Adriatic transport from the Italian coasts and Northwesterly Mistral winds enhancing east-to-west transport. Results from the analysis show that Cross-Adriatic connection percentages were higher for east-to-west transport, with westward (eastward) transport observed mostly in the northern (southern) arms of the central and southern gyres. These pathways of patterns influence the connection between Marine Protected Areas (MPAs) and between spawning and nursery areas for small pelagic fish. Percentage connections between MPAs are computed, showing that while the highest percentages occur through boundary currents, significant percentages also occur through cross-gyre transport, suggesting the concept of cell-based ecosystems. The nursery area of the Manfredonia Gulf has limited retention properties, and eggs and larvae are likely to reach the Gulf mostly from remote spawning areas through current transport

  16. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I

    2017-03-23

    Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50  < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50  < 0.7) and high recalcitrant nature of silica composited biochars (R 50  > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

  17. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.

    PubMed

    Logan, Bruce; Cheng, Shaoan; Watson, Valerie; Estadt, Garett

    2007-05-01

    To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Q. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.

  18. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland.

    PubMed

    Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin

    2018-04-01

    A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this correlation was significant between total dissolved nitrogen (TDN), TN, total dissolved phosphorus (TDP), and TP. The six heavy metals (Cu, Ni, Pb, Zn, Mn, and Cr) in surface runoff of different ecological restoration areas were strongly related to each other, and were significantly related to the TSS.

  19. The influence of anthropometric, kinematic and energetic variables and gender on swimming performance in youth athletes.

    PubMed

    Morais, Jorge E; Garrido, Nuno D; Marques, Mário C; Silva, António J; Marinho, Daniel A; Barbosa, Tiago M

    2013-12-18

    (i) gender; (ii) performance and; (iii) gender versus performance interactions in young swimmers' anthropometric, kinematic and energetic variables. One hundred and thirty six young swimmers (62 boys: 12.76 ± 0.72 years old at Tanner stages 1-2 by self-evaluation; and 64 girls: 11.89 ± 0.93 years old at Tanner stages 1-2 by self-evaluation) were evaluated. Performance, anthropometrics, kinematics and energetic variables were selected. There was a non-significant gender effect on performance, body mass, height, arm span, trunk transverse surface area, stroke length, speed fluctuation, swimming velocity, propulsive efficiency, stroke index and critical velocity. A significant gender effect was found for foot surface area, hand surface area and stroke frequency. A significant sports level effect was verified for all variables, except for stroke frequency, speed fluctuation and propulsive efficiency. Overall, swimmers in quartile 1 (the ones with highest sports level) had higher anthropometric dimensions, better stroke mechanics and energetics. These traits decrease consistently throughout following quartiles up to the fourth one (i.e. swimmers with the lowest sports level). There was a non-significant interaction between gender and sports level for all variables. Our main conclusions were as follows: (i) there are non-significant differences in performance, anthropometrics, kinematics and energetics between boys and girls; (ii) swimmers with best performance are taller, have higher surface areas and better stroke mechanics; (iii) there are non-significant interactions between sports level and gender for anthropometrics, kinematics and energetics.

  20. Mass, surface area and number metrics in diesel occupational exposure assessment.

    PubMed

    Ramachandran, Gurumurthy; Paulsen, Dwane; Watts, Winthrop; Kittelson, David

    2005-07-01

    While diesel aerosol exposure assessment has traditionally been based on the mass concentration metric, recent studies have suggested that particle number and surface area concentrations may be more health-relevant. In this study, we evaluated the exposures of three occupational groups-bus drivers, parking garage attendants, and bus mechanics-using the mass concentration of elemental carbon (EC) as well as surface area and number concentrations. These occupational groups are exposed to mixtures of diesel and gasoline exhaust on a regular basis in various ratios. The three groups had significantly different exposures to workshift TWA EC with the highest levels observed in the bus garage mechanics and the lowest levels in the parking ramp booth attendants. In terms of surface area, parking ramp attendants had significantly greater exposures than bus garage mechanics, who in turn had significantly greater exposures than bus drivers. In terms of number concentrations, the exposures of garage mechanics exceeded those of ramp booth attendants by a factor of 5-6. Depending on the exposure metric chosen, the three occupational groups had quite different exposure rankings. This illustrates the importance of the choice of exposure metric in epidemiological studies. If these three occupational groups were part of an epidemiological study, depending on the metric used, they may or may not be part of the same similarly exposed group (SEG). The exposure rankings (e.g., low, medium, or high) of the three groups also changes with the metric used. If the incorrect metric is used, significant misclassification errors may occur.

  1. Mapping of the Lunokhod-1 Landing Site: A Case Study for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Oberst, J.; Konopikhin, A.; Shingareva, K.; Gusakova, E.; Kokhanov, A.; Baskakova, M.; Peters, O.; Scholten, F.; Wählisch, M.; Robinson, M.

    2012-04-01

    Introduction. Luna-17 landed on November 17, 1970 and deployed Lunokhod-1, the first remotely operated roving vehicle ever to explore a planetary surface. Within 332 days, the vehicle conquered a traverse of approx. 10 km. The rover was equipped with a navigation camera system as well as a scanner camera with which panoramic images were obtained. From separated stations, stereoscopic views were obtained. The history of the Lunokhods came back into focus recently, when the Lunar Reconnaissance Orbiter [1] obtained images from orbit at highest resolutions of 0.5-0.25 m/pixel. The Luna-17 landing platform as well as the roving vehicles at their final resting positions can clearly be identified. In addition, the rover tracks are clearly visible in most areas. From LRO stereo images, digital elevation model (DEM) of the Lunokhod-1 landing site areas have been derived [2]. These are useful to study the topographic profile and slopes of the traverse. The data are also useful to study the 3-D morphology of craters in the surroundings. Methodology. Lunokhod-1 area mapping have been done using GIS techniques. With CraterTools [3] we digitized craters in the Lunokhod-1 traverse area and created a geodatabase, which consists at this moment of about 45,000 craters including their diameters and depths, obtained from the DEM [4]. The LRO DEM also was used to measure traverse. We used automatic GIS functions for calculating various surface parameters of the Lunokhod-1 area surface including slopes, roughness, crater cumulative and spatial densities, and prepared respective thematic maps. We also measured relative depth (ratio D/H) and inner slopes of craters and classified craters by their morphological type using automatic and visual methods. Vertical profiles through several craters using the high resolution DEM have been done, and the results show good agreement with the topographic models with contours in 10cm that have been obtained from the Lunokhod-1 stereo images [5]. The preliminary results of crater morphology show that highest H/D for studied craters of the Lunokhod 1 area is ~0.14, that is noticeably smaller than that for very fresh well studied small craters, for example, in the Apollo 14 [6]. At present more detailed geomorphology analyses using orthoimages with different illumination is in progress and will be shown at the conference. Conclusions and future works. While new missions to the Lunar surface are being planned, it is of utmost importance to identify and make available for access all Lunar surface data. We show that these data can be used for large-scale mapping and surface studies of landing sites for future lunar missions, for example LUNA-GLOB and LUNA-RESOURCE. Acknowledgments: This research was partly funded by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021).

  2. Effect of biochar on bio-electrochemical dye degradation and energy production.

    PubMed

    Sophia Ayyappan, Carmalin; Bhalambaal, V M; Kumar, Sunil

    2018-03-01

    The effect of coconut shell biochar on dye degradation in a microbial fuel cell (MFC) was investigated in the present study. Two different doses of biochar (0.5 g and 1 g) and one control without bio-char were studied. The highest COD removal efficiency was about 77.7% (0.5 g biochar), maximum current (1.07 mA) and voltage (722 mV) were obtained with 1 g biochar. Biofilm optical microscopy characterization revealed the micro colonies intricate plate-like structures. High adsorbent dosage might provide a high surface area for biofilm to generate electricity. BET results of coconut shell biochar showed the maximum surface area of 0.9669 m 2 /g and macroporosity (0.0032 cm 3 /g). The overall results highlighted the possibility of using biochar as an additive in MFC for efficient dye degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jianrong; Gao Lian

    2004-12-02

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb{sub 2}O{sub 3}. The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size showsmore » that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m{sup 2}/g when the citric acid to tin ratio was about 6.« less

  4. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  5. Methane emissions to the troposphere from the Amazon floodplain

    NASA Technical Reports Server (NTRS)

    Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.

    1988-01-01

    The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.

  6. Analyses of non-fatal accidents in an opencast mine by logistic regression model - a case study.

    PubMed

    Onder, Seyhan; Mutlu, Mert

    2017-09-01

    Accidents cause major damage for both workers and enterprises in the mining industry. To reduce the number of occupational accidents, these incidents should be properly registered and carefully analysed. This study efficiently examines the Aegean Lignite Enterprise (ELI) of Turkish Coal Enterprises (TKI) in Soma between 2006 and 2011, and opencast coal mine occupational accident records were used for statistical analyses. A total of 231 occupational accidents were analysed for this study. The accident records were categorized into seven groups: area, reason, occupation, part of body, age, shift hour and lost days. The SPSS package program was used in this study for logistic regression analyses, which predicted the probability of accidents resulting in greater or less than 3 lost workdays for non-fatal injuries. Social facilities-area of surface installations, workshops and opencast mining areas are the areas with the highest probability for accidents with greater than 3 lost workdays for non-fatal injuries, while the reasons with the highest probability for these types of accidents are transporting and manual handling. Additionally, the model was tested for such reported accidents that occurred in 2012 for the ELI in Soma and estimated the probability of exposure to accidents with lost workdays correctly by 70%.

  7. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk.

    PubMed

    Peng, Ying; Fang, Wendi; Krauss, Martin; Brack, Werner; Wang, Zhihao; Li, Feilong; Zhang, Xiaowei

    2018-06-04

    Increased synthetic chemical production and diversification in developing countries caused serious aquatic pollution worldwide with emerging organic pollutants (EOPs) detected in surface water rising health concerns to human and aquatic ecosystem even at low ng/L concentration with long-term exposure. The Yangtze River Delta (YRD) area serves agriculture and industry for people in eastern China. However, the current knowledge on the occurrence and ecological risk of diverse EOPs which are present in the aquatic environment is limited. This study was to investigate the complexity and diversity of EOPs in surface water from 28 sampling sites, which were selected to represent urban, industrial or agriculture areas in the YRD area. In total 484 chemicals were analyze by a target screening approach using liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). 181 out of 484 EOPs were detected at least one site in the YRD area, and 44 analytes, mostly industrial chemicals and pesticides, were ubiquitous at all sampling sites. Most EOPs were industrial chemicals with 1H-benzotriazole and organophosphate flame retardants (PFRs) as the chemicals with highest concentrations. For 21 pesticides, mostly herbicides, maximum concentrations of atrazine and isoproturon were above the annual average environmental quality standards of Europe. Amantadine and DEET were the dominant pharmceuticals and personal care products (PPCPs) in the YRD area. Compared to urban areas (mostly in Qinhuai River), chemical profiles from industrial areas were more complex. Industrial activities likely have a strong impact on the composition of chemical mixtures in surface water from the YRD area. ISO E Super, 4-methylbenzylidene camphor and clotrimazole detected in this study are potentially persistent and bioaccumulative chemicals. Furthermore, results of risk assessment showed that hazard quotients of dimethyldioctadecylammonium, didecyldimethylammonium and octocrylene were higher than one and occur frequently, which indicates possibly adverse effects on fish species in the YRD area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The influence of Y-TZP surface treatment on topography and ceramic/resin cement interfacial fracture toughness.

    PubMed

    Paes, P N G; Bastian, F L; Jardim, P M

    2017-09-01

    Consider the efficacy of glass infiltration etching (SIE) treatment as a procedure to modify the zirconia surface resulting in higher interfacial fracture toughness. Y-TZP was subjected to 5 different surface treatments conditions consisting of no treatment (G1), SIE followed by hydrofluoric acid treatment (G2), heat treated at 750°C (G3), hydrofluoric acid treated (G4) and airborne-particle abrasion with alumina particles (G5). The effect of surface treatment on roughness was evaluated by Atomic Force Microscopy providing three different parameters: R a , R sk and surface area variation. The ceramic/resin cement interface was analyzed by Fracture Mechanics K I test with failure mode determined by fractographic analysis. Weibull's analysis was also performed to evaluate the structural integrity of the adhesion zone. G2 and G4 specimens showed very similar, and high R a values but different surface area variation (33% for G2 and 13% for G4) and they presented the highest fracture toughness (K IC ). Weibull's analysis showed G2 (SIE) tendency to exhibit higher K IC values than the other groups but with more data scatter and a higher early failure probability than G4 specimens. Selective glass infiltration etching surface treatment was effective in modifying the zirconia surface roughness, increasing the bonding area and hence the mechanical imbrications at the zirconia/resin cement interface resulting in higher fracture toughness (K IC ) values with higher K IC values obtained when failure probability above 20% was expected (Weibull's distribution) among all the experimental groups. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  10. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    PubMed

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optical surface properties and their RF limitations of European XFEL cavities

    NASA Astrophysics Data System (ADS)

    Wenskat, Marc

    2017-10-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. The industrial fabrication of cavities for the European X-ray Free Electron Laser and the International Linear Collider HiGrade Research Project allowed for an investigation of this interplay. For the serial inspection of the inner surface, the optical inspection robot ’optical bench for automated cavity inspection with high resolution on short timescales’ OBACHT was constructed and to analyze the large amount of data, represented in the images of the inner surface, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. This quantitative analysis identified vendor-specific surface properties which allow the performance of quality control and assurance during production. In addition, a strong negative correlation of ρ =-0.93 with a significance of 6 σ of the integrated grain boundary area \\sum {A} versus the maximal achievable accelerating field {{E}}{acc,\\max } has been found.

  12. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    PubMed

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.

    PubMed

    Wei, Lan; Huang, Yufen; Li, Yanliang; Huang, Lianxi; Mar, Nyo Nyo; Huang, Qing; Liu, Zhongzhen

    2017-02-01

    Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m 2  g -1 ). RHBC produced at the highest temperature (750 °C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 °C) to 339.94-765.24 (pyrolysis at 750 °C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 °C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 °C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.

  14. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  15. Characteristic of entire corneal topography and tomography for the detection of sub-clinical keratoconus with Zernike polynomials using Pentacam.

    PubMed

    Xu, Zhe; Li, Weibo; Jiang, Jun; Zhuang, Xiran; Chen, Wei; Peng, Mei; Wang, Jianhua; Lu, Fan; Shen, Meixiao; Wang, Yuanyuan

    2017-11-28

    The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.

  16. Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015

    PubMed Central

    Mora, Marco; Braun, Rachel A.; Shingler, Taylor; Sorooshian, Armin

    2017-01-01

    This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM2.5, PM10, and PMcoarse (PM10−PM2.5) were best correlated with NH4+, SO42−, and Ca2+, suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014–2015 owing to reduced regional biomass burning as compared to 2003–2013. PMID:28955600

  17. The effect of short ground vegetation on terrestrial laser scans at a local scale

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  18. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    NASA Astrophysics Data System (ADS)

    Haron, S. H.; Ismail B., S.

    2015-09-01

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from May to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively.

  19. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  20. The Effect of Two Soft Drinks on Bracket Bond Strength and on Intact and Sealed Enamel: An In Vitro Study.

    PubMed

    Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati

    2015-01-01

    This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink.

  1. Potentiometric surface of the middle Potomac Aquifer in Virginia 1993

    USGS Publications Warehouse

    Hammond, E.C.; McFarland, E.R.; Focazio, M.J.

    1994-01-01

    Ground-water level measurements from 50 wells in the middle Potomac aquifer in the Coastal Plain Physiographic Province of Virginia in 1993 were used to prepare a map of the potentiometric surface of the aquifer. The map shows the potentiometric surface of the middle Potomac aquifer sharply declining eastward from nearly 100 feet above sear level near the western boundary of the aquifer to 20 feet below sea level, and continues declining gradually toward the Chesapeake Bay and Atlantic Ocean. A cone of depression is apparent around well fields in Franklin, Virginia. The potentiometric surface also appears to be affected by pumping in the area of Henrico County and Hanover County, Virginia. The highest ground-water-level measurement was 89 feet above sea level in Chesterfield County near Richmond, and the lowest ground-water-level measurement was 179 feet below sea level in southeastern Isle of Wight County, Virginia.

  2. Design of high strength polymer metal interfaces by laser microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Steinert, P.; Dittes, A.; Schimmelpfennig, R.; Scharf, I.; Lampke, T.; Schubert, A.

    2018-06-01

    In the areas of automotive, aeronautics and civil structures, lightweight construction is a current and a future need. Thus, multi material design has rapidly grown in importance, especially hybrid materials based on fiber reinforced plastics and aluminum offer great potential. Therefore, mechanical interlocking is a convenient way of designing the interface. Laser structuring is already used to generate a variety of surface topographies leading to high bond strengths. This paper investigates different laser structures aiming on highest joint strengths for aluminum and glass fiber reinforced polyamide 6 interfaces. Self-organizing pin structures comprised by additional micro/nano features as well as drilled hole structures, both ranging on the micrometer range, are compared to corundum blasting as a standard method for surface conditioning. For the presented surface structures, thermal joining and ultrasonic assisted joining are regarded towards their potential for an optimum joint design.

  3. Changes in surface morphology of enamel after Er:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  4. Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjunath, Kusuma; Gujjarahalli Thimmanna, Chandrappa

    2018-03-01

    Discrete nanoscale calcium tungstate (CaWO4) nanoparticles with exquisite photocatalytic activities were synthesized through ultra-rapid solution combustion route. Here, we aim to study the effect of different fuels on the synthesis of CaWO4 nanoparticles which lead to improve the characteristic properties and morphological evolution of the powders. From BET surface area measurement, it is observed that CaWO4 nanoparticles synthesized by using citric acid as fuel exhibits relatively large surface area (31.78 m2 g‑1) as compared to other fuels. The powder x-ray diffraction (PXRD) studies reveal that CaWO4 nanoparticles belong to scheelite type tetragonal system. The morphology of CaWO4 nanoparticles investigated using scanning electron microscopy (SEM) reveals that the powders are highly porous and agglomerated. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the CaWO4 nanoparticles show that a well-dispersed nearly oval-shaped nanoparticles with variable dimensions and lattice spacing that depends on the type of fuels used in the synthesis. The selected area electron diffraction (SAED) patterns of CaWO4 nanoparticles exhibit several concentric rings with bright spots indicating the polycrystalline nature of the powders. Investigation on photocatalytic activity of CaWO4 nanoparticles synthesized using citric acid shows highest (∼93%) degradation of methylene blue (MB).

  5. Underwater noise pollution in a coastal tropical environment.

    PubMed

    Bittencourt, L; Carvalho, R R; Lailson-Brito, J; Azevedo, A F

    2014-06-15

    Underwater noise pollution has become a major concern in marine habitats. Guanabara Bay, southeastern Brazil, is an impacted area of economic importance with constant vessel traffic. One hundred acoustic recording sessions took place over ten locations. Sound sources operating within 1 km radius of each location were quantified during recordings. The highest mean sound pressure level near the surface was 111.56±9.0 dB re 1 μPa at the frequency band of 187 Hz. Above 15 kHz, the highest mean sound pressure level was 76.21±8.3 dB re 1 μPa at the frequency 15.89 kHz. Noise levels correlated with number of operating vessels and vessel traffic composition influenced noise profiles. Shipping locations had the highest noise levels, while small vessels locations had the lowest noise levels. Guanabara Bay showed noise pollution similar to that of other impacted coastal regions, which is related to shipping and vessel traffic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Ko, M. K. W.; Sze, N. D.; Heisey, C. W.; Yue, G. K.; Mccormick, M. P.

    1994-01-01

    Increases in aerosol loading after the Pinatubo eruption are expected to cause additional ozone depletion. Even though aerosol loadings were highest in the winter of 1991-1992, recent analyses of satellite and ground-based ozone measurements indicate that ozone levels in the winter of 1992-1993 are the lowest recorded in recent years, raising the question of the mechanisms responsible for such behavior. We have incorporated aerosol surface areas derived from the Stratospheric Aerosol and Gas Experiment II (SAGE-II) measurements into our two-dimensional model. Inclusion of heterogeneous chemsitry on these enhanced aerosol surfaces yields maximum ozone reductions during the winter of 1992-1993 in the Northern Hemisphere, consistent with those derived from observations. This delayed behavior is due to the combination of the non-linear nature of the impact of heterogeneous reactions as a function of aerosol surface area, and the long time constants for ozone in the lower stratosphere. If heterogeneous mechanisms are primarily responsible for the low 1992-1993 ozone levels, we expect ozone concentrations to start recovering in 1994.

  7. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties.

    PubMed

    Mandal, Sanchita; Sarkar, Binoy; Igalavithana, Avanthi Deshani; Ok, Yong Sik; Yang, Xiao; Lombi, Enzo; Bolan, Nanthi

    2017-12-01

    Objective of this study was to investigate the mechanisms of 2,4-Dichlorophynoxy acetic acid (2,4-D) sorption on biochar in aqueous solutions. Sorption isotherm, kinetics, and desorption experiments were performed to identify the role of biochars' feedstock and production conditions on 2,4-D sorption. Biochars were prepared from various green wastes (tea, burcucumber, and hardwood) at two pyrolytic temperatures (400 and 700°C). The tea waste biochar produced at 700°C was further activated with steam under a controlled flow. The sorption of 2,4-D was strongly dependent on the biochar properties such as specific surface area, surface functional groups, and microporosity. The steam activated biochar produced from tea waste showed the highest (58.8mgg -1 ) 2,4-D sorption capacity, which was attributed to the high specific surface area (576m 2 g -1 ). The mechanism of 2,4-D removal from aqueous solution by biochar is mainly attributed to the formation of heterogeneous sorption sites due to the steam activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Interaction of hydrogen chloride and water with oxide surfaces. III - Titanium dioxide

    NASA Technical Reports Server (NTRS)

    Siriwardane, R. V.; Wightman, J. P.

    1983-01-01

    The adsorption of hydrogen chloride and water vapors on five TiO2 powders in both the anatase and rutile crystalline forms was studied as a function of temperature, pressure, and outgas conditions. The adsorbents were characterized utilizing X-ray powder diffraction, scanning electron microscopy, surface area analysis, indicator method, microelectrophoresis, XPS, and infrared spectroscopy. It was found that both outgas temperature and adsorption temperature influenced the adsorption of water vapor on TiO2, while water vapor adsorption on TiO2 was completely reversible. It is argued that the number of hydroxyl groups present on the surface determines the adsorption capacity of water on the different titanium dioxides. It was found that heats of immersion in water were affected significantly by outgas temperature. Hydrogen chloride adsorption isotherms at 30 C measured on TiO2 after outgassing at 100-400 C showed that a part of the total HCl adsorbed was irreversibly adsorbed. The highest HCl adsorption capacity per unit area was exhibited by anatase, while pure rutile exhibited the lowest adsorption capacity.

  9. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  10. Synthesis and characterization of TiO2/graphitic carbon nanocomposites with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wanag, Agnieszka; Kusiak-Nejman, Ewelina; Kowalczyk, Łukasz; Kapica-Kozar, Joanna; Ohtani, Bunsho; Morawski, Antoni W.

    2018-04-01

    In this paper titanium dioxide carbon modification with benzene as a carbon source is presented. A TiO2/graphitic carbon nanocomposites were synthesized by thermal modification in the presence of benzene vapours at different temperature (300-700 °C). The new materials were characterized by a various techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV-vis/DR), surface-enhanced Raman spectroscopy. BET specific surface area was also measured. The photocatalytic activity of obtained nanocomposites was measured by the decomposition of acetic acid and methylene blue under UV-vis irradiation. The results show that photocatalytic activity increasing with increase in carbon concentration and temperature of modification. It can be noted that adsorption degree has a very high impact on methylene blue decomposition. The highest photocatalytic activity was found for the photocatalyst modified at 600 °C contains 1.13 wt% of carbon. It should be noted that, the influence of crystallite size, crystal structure changes and specific surface area for photocatalytic activity are presented.

  11. Up Close and Personal

    NASA Image and Video Library

    2014-05-08

    This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370

  12. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century

    PubMed Central

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    Background The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. Methodology/Principal Findings The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000–2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003–2009). Conclusions/Significance This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000–2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned. PMID:26039088

  13. Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.

    PubMed

    Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N

    2018-03-05

    In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimization of Neutral Atom Imagers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.

    2008-01-01

    The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.

  15. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    PubMed

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-12-01

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga 2 O 3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga 2 O 3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO 2 within the 50-90% range, by contrast to conventional TiO 2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO 2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga 2 O 3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO 2 strongly overcoming those obtained on commercial β-Ga 2 O 3 . They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga 3+ units. In the degradation of hydrogen sulfide, PEG-derived β-Ga 2 O 3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga 2 O 3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga 2 O 3 in environmental photocatalysis for gas-phase depollution applications.

  16. Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.

    PubMed

    Nunes Filho, Antonio; Aires, Michelle de Medeiros; Braz, Danilo Cavalcante; Hinrichs, Ruth; Macedo, Alexandre José; Alves, Clodomiro

    2018-02-01

    Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    PubMed

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. [Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Yalu River estuary wetland mudflat.

    PubMed

    Zhang, Chun Peng; Li, Fu Xiang

    2016-09-01

    Kriging interpolation analysis was conducted with ArcGIS to find out the distribution characteristics of heavy metals concentrations in the surface sediments of the coastal wetland mudflat on the Yalu River estuary, environmental risk index and Hakanson potential ecological risk index were used to assess their extents of pollution in this area.The concentrations of heavy metals in the surface sediments of the study area were at a relatively high level compared with the typical estuarine wetland. The concentration of heavy metals in the east was higher than that in the west, and in the human activity area, the concentration was higher. Cu was found to contribute the most to the pollution status based on environmental risk index method, while Hg and Cd produced the greatest potential ecological harm according to Hankanson Potential ecological risk index method. The average potential ecological risk index (RI) of the Yalu River estuary wetland was 189.30 (ranged from 93.65-507.20), suggesting a moderate ecological risk. However, the potential ecological risk was highest in the east and should be treated as the major heavy metal pollution prevention area in the future.

  19. Depth distribution of benthic dinoflagellates in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Boisnoir, Aurélie; Pascal, Pierre-Yves; Cordonnier, Sébastien; Lemée, Rodolophe

    2018-05-01

    Monitoring of benthic dinoflagellates is usually conducted between sub-surface and 5 m depth, where these organisms are supposed to be in highest abundances. However, only few studies have focused on the small-scale depth distribution of benthic dinoflagellates. In the present study, abundances of dinoflagellates were evaluated on an invasive macrophyte Halophila stipulacea in two coastal sites in Guadeloupe (Caribbean Sea) along a depth gradient from sub-surface to 3 m at Gosier and until 20 m at Rivière Sens during the tropical wet and dry seasons. Species of genus Ostreopsis and Prorocentrum were the most abundant. Depth did not influence total dinoflagellate abundance but several genera showed particular depth-distribution preferences. The highest abundances of Ostreopsis and Gambierdiscus species were estimated preferentially in surface waters, whereas Coolia spp. were found in the same proportions but in deeper waters. Halophila stipulacea biomass was positively correlated with Ostreopsis spp. abundance. Our study suggests that sampling of benthic dinoflagellates should be conducted at different water depths taking into account the presence of the macroalgal substrate as well. In the Caribbean area, special attention should be addressed to the presence of H. stipulacea which tends to homogenize the marine landscape and represents a substrate for hosting dinoflagellate growth.

  20. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  1. Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA.

    PubMed

    Glinski, Donna A; Purucker, S Thomas; Van Meter, Robin J; Black, Marsha C; Henderson, W Matthew

    2018-06-18

    To study spray drift contributions to non-targeted habitats, pesticide concentrations in stemflow (water flowing down the trunk of a tree during a rain event), throughfall (water from tree canopy only), and surface water in an agriculturally impacted wetland area near Tifton, Georgia, USA were measured (2015-2016). Agricultural fields and sampling locations were on the University of Georgia's Gibbs Research Farm, Tifton, GA. Samples were screened for more than 160 pesticides, and cumulatively, 32 different pesticides were detected across matrices. Data indicate that herbicides and fungicides were present in all types of environmental samples analyzed while insecticides were only detected in surface water samples. The highest pesticide concentration observed was 10.50 μg/L of metolachlor in an August 2015 surface water sample. Metolachlor, tebuconazole, and fipronil were the most frequently detected herbicide, fungicide, and insecticide, respectively, regardless of sample origin. The most frequently detected pesticide in surface water and stemflow samples was metolachlor (0.09-10.5 μg/L), however, the most commonly detected pesticide in throughfall samples was biphenyl (0.02-0.07 μg/L). These data help determine the importance of indirect chemical exposures to non-targeted habitats by assessing inputs from stemflow and throughfall into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Sati, Ankur Prabhat; Mohan, Manju

    2017-10-01

    An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.

  3. Water resources of Kosrae, Caroline Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1984-01-01

    Kosrae is a high volcanic island about 42 square miles in area and the easternmost of the Caroline Islands. Mount Finkol (Mt. Crozer), at 2,065 feet, is the highest point on the island. Mountainous ridges descend sharply to narrow coastal strips which support a population of 5,500 people. Many streams, some quite large relative to the size of the island, drain radially from the interior. The average annual discharge of surface water amounts to almost 7 million gallons per square mile per day. Annual rainfall for coastal areas on Kosrae averages about 200 inches, and is similar to the rainfall for coastal areas on the island of Ponape, about 340 statute miles to the northwest. Rainfall in the interior was estimated at 225 inches per year of which about two thirds runs off as streamflow. Surface-water quality is very good as shown by 42 chemical analyses of water from 12 streams. This report summarizes in one volume the hydrologic data collected and provides interpretations that can be used by planning and public works officials as a basis for making decisions on the development and management of their water resources. (USGS)

  4. 24 CFR 599.405 - Selection of Renewal Communities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... will then select the highest ranking Category 1 urban area nominations, but will not exceed a total of... will then select, in rank order, the highest ranking Category 1 area nominations, whether urban or... Category 1 is less than six, HUD will select the highest ranking rural area applications in Category 2...

  5. Environmental Assessment: For the Testing and Evaluation of Directed Energy System Using Laser Technology, Edwards Air Force Base

    DTIC Science & Technology

    2006-08-01

    restricted for use 14 by DoD, National Aeronautics and Space Administration ( NASA ), and other government agencies. This 15 airspace is over an area...counties in California and 21 extends into Nevada’s Esmeralda County ( NASA 1997a). 22 There are no warning, prohibited, or alert special use airspace...mountains or ridge 13 formations, spot the ground surface ( NASA 1997b). 14 The highest general elevation of the Mojave Desert approaches 4,000

  6. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    PubMed

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  7. Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...

    2016-01-12

    In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less

  8. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    PubMed

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Two-phase damping and interface surface area in tubes with vertical internal flow

    NASA Astrophysics Data System (ADS)

    Béguin, C.; Anscutter, F.; Ross, A.; Pettigrew, M. J.; Mureithi, N. W.

    2009-01-01

    Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air-water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.

  10. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel S; Al-Wabel, Mohammad I

    2017-09-18

    Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe 0 ) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m 2  g -1 ), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2  = 0.93-0.98) and Freundlich (R 2  = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g -1 ) followed by EP-BC composite (72.77 mg g -1 ). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe 0 . The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO 3 ) 3 ·9H 2 O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L -1 ) of coexisting chloride ion.

  11. Methane fluxes from tropical coastal lagoons surrounded bymangroves, Yucatán, Mexico

    USGS Publications Warehouse

    Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A; Paytan, Adina

    2017-01-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m−2 d−1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  12. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico

    NASA Astrophysics Data System (ADS)

    Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2017-05-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  13. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    USGS Publications Warehouse

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Different responses of chlorophyll-a concentration and Sea Surface Temperature (SST) on southeasterly wind blowing in the Sunda Strait

    NASA Astrophysics Data System (ADS)

    Wirasatriya, A.; Kunarso; Maslukah, L.; Satriadi, A.; Armanto, R. D.

    2018-03-01

    During southeast monsoon, along the western coast of Sumatra Island and southern coast of Java Island are known as the coastal upwelling areas denoted by the occurrence of Sea Surface Temperature (SST) cooling and chlorophyll-a blooming. Located between Sumatra and Java Islands, Sunda Strait waters may give different response to the southeasterly wind blowing above. Using SST and chlorophyll-a data obtained from daily MODIS level 3 during 2006–2016, this study demonstrated the evidence on how bathymetry and topography modified the effect of southeasterly wind on the spatial variability of SST and chlorophyll-a. All datasets were composed into monthly and monthly climatology. The area in the center of Sunda Strait had the lowest chlorophyll-a concentration and the warmest SST during the peak of upwelling season. The deep bottom topography and the absence of barrier land prevented the generation of wind driven coastal upwelling. However, the chlorophyll-a concentration in this area had the highest correlation with the wind speed which means that the variation of chlorophyll-a concentration in this area was highly depended on the variability of wind. On the other hand, the areas with shallow bathymetry and in front of Panaitan and Java Islands had higher chlorophyll-a concentration and cooler SSTs.

  15. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  16. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.].

  17. MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Mastro, Michael A.; Rojo, José M.; Mojena, Alberto Boscá; Calle, Fernando; Kub, Francis J.; Eddy, Charles R.

    2014-04-01

    Manganese dioxide films were grown on large area flexible carbon aerogel substrates. Characterization by x-ray diffraction confirmed α-MnO2 growth. Three types of films were compared as a function of hexamethylenetetramine (HMTA) concentration during growth. The highest concentration of HM TA produced MnO2 flower-like films, as observed by scanning electron microscopy, whose thickness and surface coverage lead to both a higher specific capacitance and higher series resistance. Specific capacitance was measured to be 64 F/g using a galvanostatic setup, compared to the 47 F/g-specific capacitance of the carbon aerogel substrate. Such supercapacitor devices can be fabricated on large area sheets of carbon aerogel to achieve high total capacitance.

  18. Distribution and abundance of Syacium ovale larvae (Pleuronectiformes: Paralichthyidae) in the Gulf of California.

    PubMed

    Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo J; González, Enrique A

    2003-06-01

    The spawning season of the tonguefish Syacium ovale (Günter 1864) was determined by an analysis of the distribution of preflexion stage larvae in the Gulf of California. The larvae were collected during eight oceanographic surveys between 1984 and 1987. The spawning of this species starts in early summer and ends at the beginning of fall, with the highest reproductive activity in mid summer. The central and southern regions of the Gulf are the most important reproductive area. Spawning is associated with high sea surface temperatures and low plankton biomass, both of which are characteristics of the tropical current that invades the study area during summer.

  19. Single-step uncalcined N-TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations

    NASA Astrophysics Data System (ADS)

    Suwannaruang, Totsaporn; Wantala, Kitirote

    2016-09-01

    The aims of this research were to synthesize nitrogen doped TiO2 (N-TiO2) photocatalysts produced by hydrothermal technique and to test the degradation performance of alachlor by photocatalytic process under UV irradiations in the effect of aging temperature and time in the preparation process. The characterizations of synthesized TiO2 such as specific surface area, particle size, phase structure and elements were analyzed by using the Brunauer-Emmett-Teller (BET) technique, Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD) and Energy Dispersive X-ray spectrometer (EDX), respectively. The Central Composite Design (CCD) was used to design the experiment to determine the optimal condition, main effects and their interactions by using specific surface area, percent alachlor removal and observed first-order rate constant as responses. The kinetic reactions of alachlor degradation were explained by using Langmuir-Hinshelwood expression to confirm the reaction took place on the surface of photocatalyst. The results showed that the effect of aging temperatures was significant on surface area, whereas aging time was insignificant. Additionally, the square term of aging temperature and interaction term were shown significant on the specific surface area as well. The highest specific surface area from response surface at aging temperature between 150-175 °C and aging time between 6-13 h was found in a range of 100-106 m2/g. The average particle size of TiO2 was similar to crystallite size. Therefore, it can be concluded that one particle has only one crystal. The element analysis has shown 10% of nitrogen in TiO2 structure that the energy band-gap about 2.95 eV was found. Although, the effects of aging temperature and time on percent alachlor removal and observed first-order rate constants were insignificant, both terms were significant in term of the square for alachlor photocatalytic degradation. The optimal condition of both responses was achieved at an aging temperature of 145 °C and aging time of 12 h.

  20. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    PubMed

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  1. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  2. 40 CFR 51.907 - For an area that fails to attain the 8-hour NAAQS by its attainment date, how does EPA interpret...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to 1-year extensions of the attainment date if: (a) For the first 1-year extension, the area's 4th... extension, the area's 4th highest daily 8-hour value, averaged over both the original attainment year and... section, the area's 4th highest daily 8-hour average shall be from the monitor with the highest 4th...

  3. 40 CFR 51.907 - For an area that fails to attain the 8-hour NAAQS by its attainment date, how does EPA interpret...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to 1-year extensions of the attainment date if: (a) For the first 1-year extension, the area's 4th... extension, the area's 4th highest daily 8-hour value, averaged over both the original attainment year and... section, the area's 4th highest daily 8-hour average shall be from the monitor with the highest 4th...

  4. 40 CFR 51.907 - For an area that fails to attain the 8-hour NAAQS by its attainment date, how does EPA interpret...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to 1-year extensions of the attainment date if: (a) For the first 1-year extension, the area's 4th... extension, the area's 4th highest daily 8-hour value, averaged over both the original attainment year and... section, the area's 4th highest daily 8-hour average shall be from the monitor with the highest 4th...

  5. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling

    NASA Astrophysics Data System (ADS)

    Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio

    2017-06-01

    Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.

  6. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    NASA Technical Reports Server (NTRS)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  7. Global estimation of CO emissions using three sets of satellite data for burned area

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.

    Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.

  8. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff.

    PubMed

    Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.

  9. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    PubMed Central

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  10. Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976-2006 Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Townsend, Philip A.; Helmers, David P.; Kingdon, Clayton C.; McNeil, Brenden E.; de Beurs, Kirsten M.; Eshleman, Keith N.

    2009-01-01

    Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.

  11. Microplastics in Taihu Lake, China.

    PubMed

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Europa Stunning Surface

    NASA Image and Video Library

    2014-11-21

    The puzzling, fascinating surface of Jupiter icy moon Europa looms large in this newly-reprocessed [sic] color view, made from images taken by NASA Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. The view was previously released as a mosaic with lower resolution and strongly enhanced color (see PIA02590). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye. The scene shows the stunning diversity of Europa's surface geology. Long, linear cracks and ridges crisscross the surface, interrupted by regions of disrupted terrain where the surface ice crust has been broken up and re-frozen into new patterns. Color variations across the surface are associated with differences in geologic feature type and location. For example, areas that appear blue or white contain relatively pure water ice, while reddish and brownish areas include non-ice components in higher concentrations. The polar regions, visible at the left and right of this view, are noticeably bluer than the more equatorial latitudes, which look more white. This color variation is thought to be due to differences in ice grain size in the two locations. Images taken through near-infrared, green and violet filters have been combined to produce this view. The images have been corrected for light scattered outside of the image, to provide a color correction that is calibrated by wavelength. Gaps in the images have been filled with simulated color based on the color of nearby surface areas with similar terrain types. This global color view consists of images acquired by the Galileo Solid-State Imaging (SSI) experiment on the spacecraft's first and fourteenth orbits through the Jupiter system, in 1995 and 1998, respectively. Image scale is 1 mile (1.6 kilometers) per pixel. North on Europa is at right. http://photojournal.jpl.nasa.gov/catalog/PIA19048

  13. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    USGS Publications Warehouse

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the northeastern part of the basin where agricultural activity is prominent. All of the total nitrogen (N) and a majority of the total phosphorus (P) concentrations in the main stem exceeded regional nutrient criteria levels of 0.31 and 0.01 milligrams per liter (mg/L), respectively. The highest total N and total P concentrations in the main stem were 1.42 and 0.06 mg/L, respectively. Tributary sites with the highest nutrient concentrations are in subbasins where treated wastewater is discharged, such as Kooser Run and Lost Creek. The highest total N and total P concentrations in subbasins were 3.45 and 0.11 mg/L, respectively. Dissolved chloride and sodium concentrations were highest in the upper part of the basin downstream from Interstate 76 because of road deicing salts. The mean base-flow concentrations of dissolved chloride and sodium were 117 and 77 mg/L, respectively, in samples from the main stem just below Interstate 76, and the mean concentrations in Clear Run were 210 and 118 mg/L, compared to concentrations less than 15 mg/L in tributaries that were not affected by highway runoff. Water quality in forested tributary subbasins underlain by the Allegheny and Pottsville Formations was influenced by acidic precipitation and, to a lesser extent, the underlying geology as indicated by pH values less than 5.0 and corresponding specific conductance ranging from 26 to 288 microsiemens per centimeter at 25 degrees Celsius for some samples; in contrast, pH values for main stem sites ranged from 6.6 to 8.5. Manganese (Mn) was the only dissolved constituent in the surface-water samples that exceeded the secondary maximum contaminant level (SMCL). More than one-half the samples from the main stem had Mn concentrations exceeding the SMCL level of 50 micrograms per liter (μg/L), whereas only 19 percent of samples from tributaries exceeded the SMCL for Mn.Stream temperatures along the main stem of Laurel Hill Creek became higher moving downstream. During the summer months of June through August, the daily mean temperatures at the five sites exceeded the limit of 18.9 degrees Celsius (°C) for a cold-water fishery. The maximum instantaneous values for each site ranged from 27.2 to 32.8 °C.Water-quality samples collected at groundwater sites (wells and springs) indicate that wells developed within the Mauch Chunk Formation had the best water quality, whereas wells developed within the Allegheny and Pottsville Formations yielded the poorest water quality. Waters from the Mauch Chunk Formation had the highest median pH (7.6) and alkalinity (80 mg/L calcium carbonate) values. The lowest pH and alkalinity median values were in waters from the Allegheny and Pottsville Formations. Groundwater samples collected from wells in the Allegheny and Pottsville Formations also had the highest concentrations of dissolved iron (Fe) and dissolved Mn. Seventy-eight percent of the groundwater samples collected from the Allegheny Formation exceeded the SMCL of 300 μg/L for Fe and 50 μg/L for Mn. Forty-three and 62 percent of the groundwater samples collected from the Pottsville Formation exceeded the SMCL for iron and Mn, respectively. The highest Fe and Mn concentrations for surface waters were measured for tributaries draining the Pottsville Formation. The highest median Fe concentration for tributaries was in samples from streams draining the Allegheny Formation.During base-flow conditions, the streamflow per unit area along the main stem of Laurel Hill Creek was lowest in the upper parts of the basin [farthest upstream site 0.07 cubic foot per second per square mile (ft3/s/mi2)] and highest (two sites averaging about 0.20 (ft3/s/mi2) immediately downstream from Laurel Hill Lake in the center of the basin. Tributaries with the highest streamflow per unit area were those subbasins that drain the western ridge of the Laurel Hill Creek Basin. The mean streamflow per unit area for tributaries draining areas that extend into the western ridge and draining eastern or central sections was 0.24 and 0.05 ft3/s/mi2, respectively. In general, as the drainage area increased for tributary basins, the streamflow per unit area increased.Criteria established by the Pennsylvania Department of Environmental Protection indicate that the safe yield of water withdrawals from the Laurel Hill Creek Basin is 1.43 million gallons per day (Mgal/d). Water-use data for 2009 indicate that net (water withdrawals subtracted by water discharges) water withdrawals from groundwater and surface-water sources in the basin were approximately 1.93 Mgal/d. Water withdrawals were concentrated in the upper part of the basin with approximately 80 percent of the withdrawals occurring in the upper 36 mi2 of the basin. Three subbasins—Allen Creek, Kooser Run, and Shafer Run— in the upper part were affected the most by water withdrawals such that safe yields were exceeded by more than 1,000 percent in the first two and more than 500 percent in the other. In the subbasin of Shafer Run, intermittent streamflow characterizes sections that historically have been perennial.The GSFLOW model of the Laurel Hill Creek Basin is a simple one-layer representation of the groundwater flow system. The GSFLOW model was primarily calibrated to reduce the error term associated with base-flow periods. The total amount of observed streamflow at the Laurel Hill Creek at Ursina, Pa. streamflow-gaging station and the simulated streamflow were within 0.1 percent over the entire modeled period; however, annual differences between simulated and observed streamflow showed a range of -27 to 24 percent from 1992 to 2007 with nine of the years having less than a 10-percent difference. The primary source of simulated streamflow in the GSFLOW model was the subsurface (interflow; 62 percent), followed by groundwater (25 percent) and surface runoff (13 percent). Most of the simulated subsurface flow that reached the stream was in the form of slow flow as opposed to preferential (fast) interflow.

  14. Correlation of corneal thickness, endothelial cell density and anterior chamber depth with ocular surface temperature in normal subjects.

    PubMed

    Pattmöller, Johanna; Wang, Jiong; Zemova, Elena; Seitz, Berthold; Eppig, Timo; Langenbucher, Achim; Szentmáry, Nóra

    2015-09-01

    To analyze corneal surface temperature profile in a young and healthy study population and to determine the impact of corneal thickness (CT), anterior chamber depth (ACD), and endothelial cell density (ECD) on surface temperature. In this prospective, single-center study 61 healthy right eyes of 61 subjects without tear film pathologies (mean age 24.9 ± 6.7 years) were recruited. Ocular surface temperature (OST) was measured with the Ocular Surface Thermographer TG-1000. From Pentacam HR CT and ACD, and from specular microscopy ECD and central corneal thickness (CCT) were acquired. From the raw measurement data (OST, CT and ACD) we extracted a) local OST the corneal center and 3mm away from the center at the 3, 6, and 9 o'clock positions, and b) Zernike parameters Z1, Z2 and Z3 to evaluate the general temperature profile within a 6mm circular area around the center. Overall, there was no correlation between OST and CT, ACD or ECD. Local OST did not correlate with CT at any measurement position. On average local OST was highest at measurement positions where CT was lowest, but without reaching statistical significance. Baseline OST was highest at thin corneal regions and temperature decay over time was smallest in those regions. Z1, Z2 and Z3 correlated well with CT. In healthy subjects corneal thickness, endothelial cell density and anterior chamber depth have no effect on corneal surface temperature. The general temperature profile seems to be influenced by the corneal thickness profile effecting a higher temperature and lower decay at thinner corneal regions. Copyright © 2014. Published by Elsevier GmbH.

  15. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  16. [Research on stormwater runoff quality of mountain city by source area monitoring].

    PubMed

    Li, Li-Qing; Shan, Bao-Qing; Zhao, Jian-Wei; Guo, Shu-Gang; Gao, Yong

    2012-10-01

    Stormwater runoff samples were collected from 10 source areas in Mountain City, Chongqing, during five rain events in an attempt to investigate the characteristics of runoff quality and influencing factors. The outcomes are expected to offer practical guidance of sources control of urban runoff pollution. The results indicated that the stormwater runoff of Mountain City presented a strong first flush for almost all events and constituents. The runoff quality indices were also influenced by the rainfall intensity. The concentration of TSS, COD, TN and TP decreased as the rainfall intensity increased. The concentrations of COD and TP in stormwater runoff were highly correlated with TSS concentrations. Suspended solid matter were not only the main pollutant of stormwater runoff but also served as the vehicle for transport of organic matter and phosphorus. Organic matter and phosphorus in stormwatrer runoff were mainly bound to particles, whereas nitrogen was predominantly dissolved, with ammonia and nitrate. A significant difference of stormwater runoff quality was observed among the ten monitored source areas. The highest magnitude of urban stormwater runoff pollution was expected in the commercial area and the first trunk road, followed by the minor road, residential area, parking lot and roof. Urban surface function, traffic volume, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. Commercial area, the first trunk road and residential area with high population density are the critical sources areas of urban stormwater runoff pollution.

  17. Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland.

    PubMed

    Szopka, Katarzyna; Karczewska, Anna; Kabała, Cezary

    2011-06-01

    The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg(-1), with mean values 0.38, 0.28, and 0.14 mg kg(-1) for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg(-1)) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m(-2), with a mean value of 16.5 mg m(-2), and they correlated strongly with the pools of stored organic matter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.

    PubMed

    Korani, Walid Ahmed; Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-07-12

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  19. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation.

    PubMed

    Guha, Arijit; Biswas, Nikhil; Bhattacharjee, Kaustav; Sahoo, Nityananda; Kuotsu, Ketousetuo

    2016-11-01

    The objective of the present study was to develop novel PMV [poly (methacrylic acid-co-vinyl triethoxylsilane)]-coated mesoporous silica nanoparticles (MSN) with improved hypoglycemic effect for oral insulin (INS) delivery. MSN was synthesized under acidic condition using Pluronic® P 123 and Tetra ethoxy orthosilane. Surfactant was removed by calcination. Calcined MSN was coated with pH sensitive polymer PMV. Cytotoxicity of this coated MSN was evaluated by MTT assay using CHO-K1 cell line. Different MSN samples were characterized with BET surface area analyzer, FESEM, TEM, FT-IR, XRD, TG-DTA. In vivo study was performed using male rats. Pharmacokinetic study was conducted using HPLC. Highest surface area (304.3921 m 2 /g) was observed in case of calcined sample. Adsorption pore width of final coated sample was highest (64.7844 nm) compared with others. No noticeable cytotoxicity was observed for this coated support. The entrapment efficiency of insulin was found to be 39.39%. In vitro studies were done at different pH using Franz-diffusion cell. Results showed significant release at pH 7.4. Cumulative drug release over a period of 6 h was more than 48% at this systemic pH. Effect of this MSN-PMV-INS on blood glucose level was retained for 16 h. This novel formulation has shown 73.10% relative bioavailability of insulin. A novel-coated mesoporous silica support was successfully developed for delivery of insulin through oral route.

  20. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds

    PubMed Central

    Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-01-01

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)—expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production. PMID:28704974

  1. Spatial and temporal variation in artisanal catches of dolphinfish Coryphaena hippurus off north-eastern Brazil.

    PubMed

    Nóbrega, M F; Kinas, P G; Lessa, R; Ferrandis, E

    2015-02-01

    The sampling of fish from the artisanal fleet operating with surface lines off north-eastern Brazil was carried out between 1998 and 2000. Generalized linear models (GLMs) were used to standardize mean abundance indices using catch and fishing effort data on dolphinfish Coryphaena hippurus and to identify abundance trends in time and space, using 1215 surface line deployments. A standard relative abundance index (catch per unit effort, CPUE) was estimated for the most frequent vessels used in the sets, employing factors and coefficients generated in the GLMs. According to the models, C. hippurus catches are affected by the operating characteristics and power of different fishing vessels. These differences highlight the need for standardization of catch and effort data for artisanal fisheries. The highest mean abundance values for C. hippurus were off the state of Rio Grande do Norte, with an increasing tendency in areas with greater depths and more distant from the coast, reaching maximal values in areas whose depths range from 200 to 500 m. The highest mean abundance values occurred between April and June. The higher estimated abundance of C. hippurus in this period off the state of Rio Grande do Norte and within the 200-500 m depth range may be related to a migration pattern of food sources, as its main prey, the flying fish Hirundichthys affinis, uses floating algae as refuge and to deposit its pelagic eggs. © 2015 The Fisheries Society of the British Isles.

  2. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  3. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides - A comparison study

    NASA Astrophysics Data System (ADS)

    Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min

    2018-05-01

    Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.

  4. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haron, S. H., E-mail: ismail@ukm.edu.my; Ismail, B. S., E-mail: sthumaira@yahoo.com

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from Maymore » to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively.« less

  5. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  6. Spatiotemporal distribution and risk assessment of organotins in the surface water of the Three Gorges Reservoir Region, China.

    PubMed

    Gao, Jun-Min; Wu, Lei; Chen, You-Peng; Zhou, Bin; Guo, Jin-Song; Zhang, Ke; Ouyang, Wen-Juan

    2017-03-01

    The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  8. Ocean acidification state in western Antarctic surface waters: drivers and interannual variability

    NASA Astrophysics Data System (ADS)

    Mattsdotter Björk, M.; Fransson, A.; Chierici, M.

    2013-05-01

    Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner than predicted by models.

  9. 75 FR 68733 - Approval and Promulgation of One-Year Extension for Attaining the 1997 8-Hour Ozone Standard for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Philadelphia Area's 4th highest daily 8-hour monitored ozone value during the 2009 ozone season at each monitor...-year extensions of the attainment date if: (a) For the first 1-year extension, the area's 4th highest... second 1-year extension, the area's 4th highest daily 8-hour value, averaged over both the original...

  10. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    NASA Astrophysics Data System (ADS)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  11. Surface fault slip associated with the 2004 Parkfield, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.

    2006-01-01

    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  12. The World's Students in Bay Area Universities.

    ERIC Educational Resources Information Center

    Duggan, Susan J.; Wollitzer, Peter A.

    Results of a survey of international student exchange programs in the Bay Area of California are presented. Information is provided on the following: the top 10 countries of origin for Bay Area foreign students; 10 Bay Area institutions with the highest number of foreign students; 10 area institutions with the highest percent of full-time…

  13. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.

  14. Apollo 12 stereo view of lunar surface upon which astronaut had stepped

    NASA Image and Video Library

    1969-11-20

    AS12-57-8448 (19-20 Nov. 1969) --- An Apollo 12 stereo view showing a three-inch square of the lunar surface upon which an astronaut had stepped. Taken during extravehicular activity of astronauts Charles Conrad Jr. and Alan L. Bean, the exposure of the boot imprint was made with an Apollo 35mm stereo close-up camera. The camera was developed to get the highest possible resolution of a small area. The three-inch square is photographed with a flash illumination and at a fixed distance. The camera is mounted on a walking stick, and the astronauts use it by holding it up against the object to be photographed and pulling the trigger. While astronauts Conrad and Bean descended in their Apollo 12 Lunar Module to explore the lunar surface, astronaut Richard F. Gordon Jr. remained with the Command and Service Modules in lunar orbit.

  15. Ceres and the terrestrial planets impact cratering record

    NASA Astrophysics Data System (ADS)

    Strom, R. G.; Marchi, S.; Malhotra, R.

    2018-03-01

    Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.

  16. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    NASA Astrophysics Data System (ADS)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  17. Vesta surface thermal properties map

    USGS Publications Warehouse

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  18. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  19. Classification and analysis of the Rudaki's Area

    NASA Astrophysics Data System (ADS)

    Zambon, F.; De sanctis, M.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammannito, E.; Frigeri, A.

    2011-12-01

    During the first two MESSENGER flybys the Mercury Dual Imaging System (MDIS) has mapped 90% of the Mercury's surface. An effective way to study the different terrain on planetary surfaces is to apply classification methods. These are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class. We applied an unsupervised classifier, ISODATA, to the WAC filter images of the Rudaki's area where several kind of terrain have been identified showing differences in albedo, topography and crater density. ISODATA classifier divides this region in four classes: 1) shadow regions, 2) rough regions, 3) smooth plane, 4) highest reflectance area. ISODATA can not distinguish the high albedo regions from highly reflective illuminated edge of the craters, however the algorithm identify four classes that can be considered different units mainly on the basis of their reflectances at the various wavelengths. Is not possible, instead, to extrapolate compositional information because of the absence of clear spectral features. An additional analysis was made using ISODATA to choose the "training area" for further supervised classifications. These approach would allow, for example, to separate more accurately the edge of the craters from the high reflectance areas and the low reflectance regions from the shadow areas.

  20. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  1. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture.

    PubMed

    Alabadi, Akram; Abbood, Hayder A; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-12-13

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO 2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600-800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m 2  g -1 ), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm 3  g -1 ). NAC-800 also exhibits a significant capacity of CO 2 capture i.e., over 6. 25 and 4.87 mmol g -1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO 2 over N 2 .

  2. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasin, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 64 wells. The highest measured water level was 110 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale, Broad Creek, and Arnold. The measured groundwater levels were 99 feet below sea level at Severndale, 50 feet below sea level at Broad Creek, and 36 feet below sea level at Arnold. There was also a cone of depression in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The groundwater levels measured were as low as 215 feet below sea level at Waldorf, 149 feet below sea level at La Plata, 121 feet below sea level at Indian Head, and 96 feet below sea level at the Morgantown power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  3. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture

    PubMed Central

    Alabadi, Akram; Abbood, Hayder A.; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-01-01

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600–800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m2 g−1), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm3 g−1). NAC-800 also exhibits a significant capacity of CO2 capture i.e., over 6. 25 and 4.87 mmol g−1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO2 over N2. PMID:27958305

  4. Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite-1 films.

    PubMed

    Jirka, Ivan; Vandrovcová, Marta; Plšek, Jan; Bouša, Milan; Brabec, Libor; Dragounová, Helena; Bačáková, Lucie

    2017-07-01

    This paper investigates the interaction of human osteoblast-like Saos-2 cells with stainless steel covered by a film of densely inter-grown silicalite-1 crystals with defined outer and inner surfaces. The chemical composition of this film, labeled as SF(RT), was tuned by heat treatment at 300°C and 500°C (labeled as SF(300) and SF(500), respectively) and characterized by X-ray photoelectron spectroscopy (XPS), water drop contact angle (WCA) measurements and scanning electron microscopy (SEM). The number, the spreading area and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells in cultures on the silicalite-1 film were affected by the chemical composition of its outer surface and by its micro-porous structure. The number and the spreading area of the adhered osteoblast-like cells on day 1 was highest on the surface of SF(RT) relative to their adhesion and spreading on a glass cover slip due to the SF(RT) topology. However, SF(300) markedly supported cell growth during days 3 and 7 after seeding. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Properties of vanadium-loaded iron sorbent after alkali regeneration.

    PubMed

    Khalid, Muhammad Kamran; Leiviskä, Tiina; Tanskanen, Juha

    2017-11-01

    The aim of this research was to investigate the regeneration and reuse of a commercial granular iron sorbent (mainly goethite) when used in vanadium removal. A regeneration rate of 3 M NaOH was the highest (85%) achieved, followed by 2 M NaOH (79%) and 1 M NaOH (68%). The breakthrough curves show that the regenerated material can be reused. The BET (Brunauer-Emmett-Teller) surface area increased by 35-38% and the total pore volume increased by 123-130% as a consequence of NaOH treatment. The results indicated that sodium hydroxide could be used for the regeneration of iron sorbent although the regeneration was incomplete. This may be explained by the fact that vanadium diffusion into pores is a significant sorption mechanism in addition to complex formation with surface functional groups. As a consequence, vanadium desorbability from pores is not as effective as the regeneration of surface sites. X-ray photoelectron spectroscopy analyses confirmed a very low vanadium content on the surface of the NaOH-treated iron sorbent.

  6. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at FUG. The highest temperature was recorded at all the sites in July, when its highest mean values were observed at GAS and HYT (6.1°C and 6.0°C, respectively), while the lowest occurred at FUG (2.4°C) and HG4 (3.1°C). The other meteorological element considered was relative humidity, which positively correlates with the course of air temperature. During the year, the most humid sites were those located at the mountain top (FUG) and on the Treskelen peninsula (TRE), towards the end of the fjord (94% and 91%, respectively). The lowest RH values were measured at HOR and HYT (80% in both). In the annual course, the lowest RH was observed in February with the lowest mean monthly values (74%) at HOR and HYT, and the highest at FUG (88%) and TRE (87%). As with air temperature, the highest relative humidity occurred in July. Its lowest mean values were recorded at HOR (87%), and the highest - at FUG (96%).

  7. Polycyclic aromatic hydrocarbons in surface sediment of typical estuaries and the spatial distribution in Haihe river basin.

    PubMed

    Liu, Jing L; Zhang, Jing; Liu, Feng; Zhang, Lu L

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic and mutagenic characteristics have been detected in many estuaries and bays around the world. To detect the contaminated level in typical estuaries in Haihe river basin, China, a comprehensive survey of 16 PAHs in surface sediment has been conducted and an ecological risk assessment has been taken. It showed that Haihe river estuary had the highest concentration, ranging from 92.91 to 15886.00 ng g(-1). And Luan river estuary has the lowest polluted level, ranging from 39.55 to 328.10 ng g(-1). PAHs in sediment were dominated by low and mid molecular weight PAHs in all the sampling sites. Most of the sampling sites in all sampling seasons indicated a rarely happened ecological risk of ΣPAHs, while the S6 in Haihe river estuary was in an occasionally anticipated risk. To illustrate the spatial distribution pattern of PAHs in surface sediment in Haihe river basin, the results were compared with previous research of the research team. Based on data of the comparison, it had been revealed that Haihe river had the most serious PAHs pollution, with an average concentration of 5884.86 ng g(-1), and showed the highest contamination level in all four ecological units. The ΣPAHs concentration showed in a rank of reservoir > estuary > rural area > city.

  8. Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia.

    PubMed

    Hill, Wendy; Pickering, Catherine Marina

    2006-01-01

    Tourism infrastructure such as walking tracks can have negative effects on vegetation including in mountain regions. In the alpine area around continental Australia's highest mountain, Mt Kosciuszko (2228 m), there is a range of walking tracks (paved, gravel and raised steel mesh surfaces) in addition to an extensive network of informal/non-hardened tracks. Vegetation characteristics were compared between track types on/under tracks, on the track verge, and in the adjacent native vegetation. For a raised steel mesh walkway there was no difference in vegetation under the walkway, on the verge, and 3m away. In contrast, for a non-hardened track there was 35% bare ground on the track surface but no other detectable impacts. Gravel and paved tracks had distinct verges largely comprising bare ground and exotic species. For non-hardened tracks there was an estimated 270 m2 of disturbance per km of track. For wide gravel tracks the combined area of bare ground, exotic plants and gravel was estimated as 4290 m2 per km, while for narrow gravel tracks it was estimated as 2940 m2 per km. For paved tracks there was around 2680 m2 per km of damage. In contrast, there was no detectable effect of raised steel mesh walkway on vegetation highlighting some of the benefits of this surface over other track types.

  9. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    NASA Astrophysics Data System (ADS)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  10. A Comparative Clinical Study on Five Types of Compression Therapy in Patients with Venous Leg Ulcers

    PubMed Central

    Dolibog, Pawel; Franek, Andrzej; Taradaj, Jakub; Dolibog, Patrycja; Blaszczak, Edward; Polak, Anna; Brzezinska-Wcislo, Ligia; Hrycek, Antoni; Urbanek, Tomasz; Ziaja, Jacek; Kolanko, Magdalena

    2014-01-01

    The aim of this study was to compare five types of compression therapy in venous leg ulcers (intermittent pneumatic vs. stockings vs. multi layer vs. two layer short stretch bandages vs. Unna boots). Primary study endpoints were analysis of changes of the total ulcer surface area, volume and linear dimensions inside observed groups. The secondary end points were comparisons between all groups the number of completely healed wounds (ulcer healing rates), Gilman index and percentage change of ulcer surface area. In total, 147 patients with unilateral venous leg ulcers were included to this study. Participants were randomly allocated to the groups: A, B, C, D and E. After two months the healing rate was the highest in group A (intermittent pneumatic compression) - 57.14%, 16/28 patients, B (ulcer stocking system) - 56.66%, 17/30 patients and C (multi layer short stretch bandage) - 58.62%, 17/29 patients. Significantly much worse rate found in group D (two layer short stretch bandages) - only 16.66%, 5/30 patients and E (Unna boots) - 20%, 6/30 patients. The analysis of changes of the percentage of Gilman index and wound total surface area confirmed that intermittent pneumatic compression, stockings and multi layer bandages are the most efficient. The two layer short - stretch bandages and Unna boots appeared again much less effective. PMID:24396284

  11. Preliminary water quality assessment of Spunky Bottoms restored wetland.

    PubMed

    Jin, Guang; Eilts, Kristen; Kelley, Timothy R; Webb, James W

    2009-02-15

    The approximately 1200-acre "Spunky Bottoms" wetland in Southern Illinois has been undergoing restoration to conditions prior to levying of the Illinois River and draining of adjacent floodplain for intensive agriculture (circa 1900). As part of a long-term water quality impact assessment of this restoration project, baseline water quality monitoring was conducted soon after restoration began. During this baseline/preliminary assessment, water samples were taken every 2-4 weeks from 10 sampling wells and seven surface water sites throughout the wetlands area for a period of 18 months. Measured parameters include nutrients (nitrate (NO3-) and phosphate (PO4(3-)), cations and anions (SO4(2-), Cl-, Na+, K+, Mg2+, Ca2+) commonly found in surface and well water, trace metals (Al, Cd, Cu, Fe, Mn, Ni, Pb, Se, Zn), total dissolved solids (TDS), pH, and trace organics (triazine herbicides and their metabolites). In general, highest concentrations of ions were found in the southwest and northeast perimeter of the wetland area for both surface and ground water samples. Primarily low concentrations of heavy metals and organic compounds were found throughout the wetland sampling area. Distribution of NO3--N suggests that this restored wetland, even at its infant age, may still contribute to biogeochemical (particularly N) element cycling. Continued monitoring and further research is necessary to determine long-term specific contribution of restored wetland to biogeochemical cycles.

  12. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  13. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    PubMed

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  14. Selective ablation of carious lesions using an integrated near-IR imaging system and a novel 9.3-μm CO2 Laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Nathaniel M.; Fried, Daniel

    2018-02-01

    Previous studies have shown that reflectance imaging at wavelengths greater than 1200-nm can be used to image demineralization on tooth occlusal surfaces with high contrast and without the interference of stains. In addition, these near-IR imaging systems can be integrated with laser ablation systems for the selective removal of carious lesions. Higher wavelengths, such as 1950-nm, yield higher lesion contrast due to higher water absorption and lower scattering. In this study, a point-to-point scanning system employing diode and fiber lasers operating at 1450, 1860, 1880, and 1950-nm was used to acquire reflected light images of the tooth surface. Artificial lesions were imaged at these wavelengths to determine the highest lesion contrast. Near-IR images at 1880-nm were used to demarcate lesion areas for subsequent selective carious lesion removal using a new compact air-cooled CO2 laser prototype operating at 9.3-μm. The highest lesion contrast was at 1950-nm and the dual NIR/CO2 laser system selectively removed the simulated lesions with a mean loss of only 12-μm of sound enamel.

  15. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  16. Highest Resolution Comet Picture Ever Reveals Rugged Terrain - Deep Space 1

    NASA Image and Video Library

    2001-11-04

    In this highest resolution view of the icy, rocky nucleus of comet Borrelly, (about 45 meters or 150 feet per pixel) a variety of terrains and surface textures, mountains and fault structures, and darkened material are visible over the nucleus's surface. This was the final image of the nucleus of comet Borrelly, taken just 160 seconds before Deep Space1's closest approach to it. This image shows the 8-km (5-mile) long nucleus about 3417 kilometers (over 2,000 miles) away. Smooth, rolling plains containing brighter regions are present in the middle of the nucleus and seem to be the source of dust jets seen in the coma. The rugged land found at both ends of the nucleus has many high ridges along the jagged line between day and night on the comet. This rough terrain contains very dark patches that appear to be elevated compared to surrounding areas. In some places the dark material accentuates grooves and apparent faults. Stereo analysis shows the smaller end of the nucleus (lower right) is tipped toward the viewer (out of frame). Sunlight is coming from the bottom of the frame. http://photojournal.jpl.nasa.gov/catalog/PIA03500

  17. Alkylphenols in Surface Sediments of the Gulf of Gdansk (Baltic Sea).

    PubMed

    Koniecko, Iga; Staniszewska, Marta; Falkowska, Lucyna; Burska, Dorota; Kielczewska, Joanna; Jasinska, Anita

    2014-01-01

    The widespread use of alkylphenols in European industry has led to their presence in the environment and the living organisms of the Baltic Sea. The present study (2011-2012) was designed to determine the concentrations of alkylphenols, 4-nonylphenol (NP) and 4- tert -octylphenol (OP), in surface sediments of the Gulf of Gdansk, a section of the Baltic that lies in close proximity to industrial and agricultural areas and borders with an agglomeration of nearly one million inhabitants. It is also where the Vistula, the largest Polish river, ends its course. In spring, large concentrations of 4-nonylphenol and 4- tert -octylphenol were washed off into the coastal zone with meltwater. In summertime, sediments near the beach had the highest alkylphenol concentrations (NP-2.31 ng g -1 dw, OP-13.09 ng g -1 dw), which was related to tourism and recreational activity. In silt sediments located off the coast, the highest NP (1.46 ng g -1 dw) and OP (6.56 ng g -1 dw) amounts were observed in autumn. The origin of OP and NP at those test stations was linked to atmospheric transport of black carbon along with adsorbed alkylphenols.

  18. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1993-01-01

    An extensive flight series was carried out during May-June 1990 in the remote North and South Pacific free tropospheric aboard the NASA DC-8. Condensation nuclei counters and optical particle counters provided information on aerosol particles with diameters between 0.003 and 7.0 micrometers. Vertical profiles revealed aerosol layers to be a common feature of the free troposphere. Regions with highest aerosol mass tended to have the highest concentrations of surface-derived nuclei but the lowest concentrations of total nuclei. Regions with lowest aerosol mass tended to have the highest concentrations of the smaller 'ultrafine' condensation nuclei with diameters below 0.02 mircometers. Horizontal transects totaling over 35,000 km at about 9 to 10-km altitude exhibited variability of approximately 3 orders of magnitude in both aerosol mass and number concentrations over spatial scales ranging from 1 to 1000 km. At these altitudes an approximate inverse relationship between ultrafine concentrations and the surface area of the larger aerosol was evident. Regions having lowest aerosol mass were characterized by aerosol thermal volatility, indicative of a predominately sulfuric acid composition, and by very high concentrations of ultrafine nuclei, indicative of recent homogeneous nucleation. These conditions were frequently observed but were conspicuously evident above cloud over the intertropical convergence zone. The clean, free troposphere appears to be a significant source region for new tropospheric nuclei. A simplified model of the lifetime, coagulation, and cycling of these nuclei suggests that they constitute a source of cloud condensation nuclei in the lower troposphere.

  19. Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics.

    PubMed

    Peterman, W E; Semlitsch, R D

    2014-10-01

    Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.

  20. Iodine distribution in natural waters of different chemical composition in relation to water-bearing soils and rocks and water fractions in areas subjected to radioiodine contamination

    NASA Astrophysics Data System (ADS)

    Kolmykova, Liudmila; Korobova, Elena

    2017-04-01

    Iodine is an essential microelement required for normal functioning of thyroid gland. Natural deficiency of stable iodine is compensated by its active intake by thyroid and provokes its higher irradiation in case of radiation accidents and contamination of the environment by radioiodine isotopes. The bioavailability of both stable and radioactive iodine and the specificity of its uptake by living organisms largely depends on geochemical parameters of the environment related to natural conditions of water migration. The goal of the study was to investigate spatial distribution of iodine in natural water of different chemical composition in relation to typical water-bearing soils and rocks and water fractions in Bryansk areas subjected to radioiodine contamination after the Chernobyl accident and to evaluate contribution of this factor to the occurrence of endemic thyroid diseases among local population inhabiting geochemically different areas of fluvioglacial and loess-like sedimentary rocks. The highest content of iodine (Me=13.3 µg/l) was observed in surface water of landscapes with H-Ca, Ca and H-Ca-Fe classes of water migration. The lowest microelement level (Me=5.25 µg/l) was noted in groundwater of landscapes with H, H-Fe classes of water migration in areas of Paleogene water bearing rocks. Regardless of the type of source and class of water migration up to 90% of the total content of iodide is present in the fraction <0.45 µm (as determined by membrane filtration). Up to 50% of iodine pass to solution containing particles < 0.1 µm and increases up to 80% in absence of roughly dispersed sorbents in this fraction. The surface water in areas of loess-like sedimentary rocks hosts the highest levels of iodine where its associated with calcium mineral aquatic complexes and the suspended particles. The obtained data is believed to be useful in explanation of mobility and intake of iodine and its radioactive analogues by rural population living in different geochemical conditions and using local drinking waters. The data should be accounted of in planning prophylactics of endemic diseases and counter measures in case of radioiodine fallout.

  1. Water Quality of a Tropical Montane Cloud Forest Watershed, Monteverde, Costa Rica

    NASA Astrophysics Data System (ADS)

    Rhodes, A. L.; Guswa, A. J.; Dallas, S.; Kim, E. M.; Katchpole, S.; Newell, S. E.; Pufall, A.

    2004-05-01

    The Rio Guacimal originates in the Monteverde Cloud Forest Preserve, located on the leeward side of the continental divide through Costa Rica. Agriculture and ecotourism has spurred growth adjacent to the preserve. Continued development coupled with changes in precipitation patterns could stress the quality and quantity of water. This study characterizes water chemistry and surface water hydrology of a 21 km2 headwater catchment to evaluate effects of current and projected land use on water quality. Stream samples have been collected from up to 11 sites since March 2000. Two sites located on tributaries in remote, forested areas serve as references for sites located downstream of agricultural and residential areas. Waters were analyzed for specific conductance, pH, DO, acid neutralizing capacity (ANC), Ca, Mg, Na, NH4, SO4, NO3, Cl, PO4 and dissolved silica. In the upland, forested streams, chemical loading is dominated by mineral weathering and cation exchange reactions. Silica, ANC and base cation concentrations all exceed sum of acid anions. During the dry season, concentrations of all dissolved constituents increase synchronously, but at different magnitudes (SO4 and Cl by 15 μ eq/L; silica by 250 μ mol/L; sum of base cations and ANC by 120 μ eq/L), suggesting that increased baseflow has a greater effect on temporal changes of chemical loads in high-elevation, forested streams than does evapotranspiration. Chemical loads of streams receiving runoff from populated areas are 2-5x more concentrated than the upland sites. Highest concentrations occur in Queb. Sucia (QS), which receives grey-water runoff from residential areas. Acidic runoff decreases the ANC of QS by 90-200 μ eq/L; however high alkalinity (ANC=400-1000 μ eq/L) prevents acidification. Acid anions in streams receiving grey-water runoff throughout the year are most concentrated during the dry season when dilution from precipitation is least. Conversely, a site that receives nonpoint source pollution from agricultural areas has its highest concentrations of acid anions during the wet season when surface runoff is the dominant flowpath.

  2. Influence of Surface Features for Increased Heat Dissipation on Tool Wear

    PubMed Central

    Beno, Tomas; Hoier, Philipp; Wretland, Anders

    2018-01-01

    The critical problems faced during the machining process of heat resistant superalloys, (HRSA), is the concentration of heat in the cutting zone and the difficulty in dissipating it. The concentrated heat in the cutting zone has a negative influence on the tool life and surface quality of the machined surface, which in turn, contributes to higher manufacturing costs. This paper investigates improved heat dissipation from the cutting zone on the tool wear through surface features on the cutting tools. Firstly, the objective was to increase the available surface area in high temperature regions of the cutting tool. Secondly, multiple surface features were fabricated for the purpose of acting as channels in the rake face to create better access for the coolant to the proximity of the cutting edge. The purpose was thereby to improve the cooling of the cutting edge itself, which exhibits the highest temperature during machining. These modified inserts were experimentally investigated in face turning of Alloy 718 with high-pressure coolant. Overall results exhibited that surface featured inserts decreased flank wear, abrasion of the flank face, cutting edge deterioration and crater wear probably due to better heat dissipation from the cutting zone. PMID:29693579

  3. Historical and seasonal dynamics of phosphorus mobility in Sancha Lake of Southwest China's Sichuan Province.

    PubMed

    Jia, Binyang; Tang, Ya; Yang, Bo; Huang, Jen-How

    2017-01-01

    Phosphorus (P) fractionations in the surface sediment of Sancha Lake in China's southwestern Sichuan Province were examined to assess the potential P release at the water-sediment interface and to understand its seasonal (2009-2010) and historical dynamics (1989-2010) in the surface water. Elevated P concentrations were detected in the sediment at main reservoir inflow, south canal of the Dujiangyan irrigation network, and intensive cage fish farming area, accounting for 32 and 40% of current total P discharges. The highest total P concentration (11,200 μg P g -1 ) was observed in the upper sediment below intensive fish farming area with a specific enrichment of HCl-P (51% of total P) mainly from fish feeds and feces. These sediments had larger MgCl 2 -P pools with higher diffusive P fluxes (0.43-0.47 mg m -2  d -1 ) from surface sediment than those from other areas (0.25-0.42 mg m -2  d -1 ). The general small proportion of MgCl 2 -P (5.7-10%) and low diffusive P fluxes from surface sediment (<0.02% of sediment P storage (0-1 cm)) indicate low mobility and slow release of P from sediments. The sediment as an internal P source led to a 3-4-year lag for P concentration decrease in the surface water after restriction of anthropogenic P discharges since 2005. Thus, the peak P concentration in April and September could be explained as a combined effect of supplementing internal loading via reductive processes in sediments and seasonal water vertical circulation in the early spring and fall. Policy played a crucial role in reducing P inputs to the lake.

  4. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    PubMed

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  5. Associating Land Surface Temperature Retrieved From Satellite and Unmanned Aerial Vehicle Data With Urban Cover and Topography in Aburrá Valley

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Hoyos Ortiz, C. D.

    2017-12-01

    Urban heat island effect commonly refers to temperature differences between urban areas and their countrysides due to urbanization. These temperature differences are evident at surface, and within the canopy and the boundary layer. This effect is heterogeneous within the city, and responds to urban morphology, prevailing materials, amount of vegetation, among others, which are also important in the urban balance of energy. In order to study the relationship between land surface temperature (LST) and urban coverage over Aburrá Valley, which is a narrow valley locate at tropical Andes in northern South America, Landsat 8 mission products of LST, density of vegetation (normalized difference vegetation index, NDVI), and a proxy of soil humidity are derived and used. The results are analyzed from the point of view of dominant urban form and settlement density at scale of neighborhoods, and also from potential downward solar radiation received at the surface. Besides, specific sites were chosen to obtain LST from thermal imaging using an unmanned aerial vehicle to characterize micro-scale patterns and to validate Landast retrievals. Direct relationships between LST, NDVI, soil humidity, and duration of insolation are found, showing the impact of the current spatial distribution of land uses on surface temperature over Aburrá Valley. In general, the highest temperatures correspond to neighborhoods with large, flat-topped buildings in commercial and industrial areas, and low-rise building in residential areas with scarce vegetation, all on the valley bottom. Landsat images are in the morning for the Aburrá Valley, for that reason the coldest temperatures are prevalent at certain orientation of the hillslope, according with the amount of radiation received from sunrise to time of data.

  6. The Effect of Two Soft Drinks on Bracket Bond Strength and on Intact and Sealed Enamel: An In Vitro Study

    PubMed Central

    Pasha, Azam; Sindhu, D; Nayak, Rabindra S; Mamatha, J; Chaitra, K R; Vishwakarma, Swati

    2015-01-01

    Background and Objectives: This study was conducted to evaluate the effect of two soft drinks, Coca-Cola and Mirinda orange on bracket bond strength, on adhesive remnant on teeth after debonding the bracket, and to observe by means of scanning electron microscope (SEM) the effect of these drinks on intact and sealed enamel. Methods: 120 non-carious maxillary premolar teeth already extracted for Orthodontic purposes were taken and divided into three groups, i.e., Coca-Cola drink, Mirinda orange, and control (artificial saliva) group. Brackets were bonded using conventional methods. Teeth were kept in soft drinks for 15 days, for 15 min, 3 times a day, separated by intervals of 2 h. At other times, they were kept in artificial saliva. The samples, thus obtained were evaluated for shear bond strength using the universal testing machine and subsequently subjected for adhesive remnant index (ARI) scores. SEM study on all the three groups was done for evaluating enamel surface of the intact and sealed enamel. Results: The lowest mean resistance to shearing forces was shown by Mirinda orange group (5.30 ± 2.74 Mpa) followed by Coca-Cola group (6.24 ± 1.59 Mpa) and highest resistance to shearing forces by control group (7.33 ± 1.72 Mpa). The ARI scores revealed a cohesive failure in control samples and an adhesive failure in Mirinda and cola samples. SEM results showed areas of defect due to erosion caused by acidic soft drinks on intact and sealed enamel surface. Conclusion: Mirinda group showed the lowest resistance to shearing forces, followed by Coca-Cola group and with the highest resistance to shearing forces by the control group. There were significant differences between the control group and the study groups. Areas of defects, which were caused by erosion related to acidic soft drinks on the enamel surface around the adhesive, were seen. Areas of defects caused by Coca-Cola were more extensive when compared to Mirinda orange drink. PMID:26668477

  7. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation

    NASA Astrophysics Data System (ADS)

    Keep, Myra; Hansen, Vicki L.

    1994-12-01

    Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.

  8. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.

    PubMed

    Chrzanowski, Wojciech; Armitage, David Andrew; Knowles, Jonathan Campbell; Szade, Jacek; Korlacki, Wojciech; Marciniak, Jan

    2008-07-01

    The aim of this work is to examine the corrosion properties, chemical composition, and material-implant interaction after different periods of implantation of plates used to correct funnel chest. The implants are made of 316L stainless steel. Examinations are carried out on three implants: new (nonimplanted) and two implanted for 29 and 35 months. The corrosion study reveals that in the potential range that could occur in the physiological condition the new bar has the lowest current density and the highest corrosion potential. This indicates that the new plate has the highest corrosion resistance and the corrosion resistance could be reduced during implantation by the instruments used during the operation. XPS analysis reveals changes in the surface chemistry. The longer the implantation time the more carbon and oxygen are observed and only trace of elements such as Cr, Mo are detected indicating that surface is covered by an organic layer. On some parts of the implants whitish tissue is observed: the thickness of which increased with the time of implantation. This tissue was identified as an organic layer; mainly attached to the surface on the areas close to where the implant was bent to attain anatomical fit and thus where the implant has higher surface roughness. The study indicates that the chest plates are impaired by the implantation procedure and contact with biological environment. The organic layer on the surface shows that the implant did not stay passive but some reactions at the tissue-implant interface occurred. These reactions should be seen as positive, as it indicates that the implants were accepted by the tissues. Nevertheless, if the implants react, they may continue to release chromium, nickel, and other harmful ions long term as indicated by lower corrosion resistance of the implants following implantation.

  9. The effect of cutting parameters on the performance of ZTA-MgO cutting tool

    NASA Astrophysics Data System (ADS)

    Ali, A. M.; Hamidon, N. E.; Zaki, N. K. M.; Mokhtar, S.; Azhar, A. Z. A.; Bahar, R.; Ahmad, Z. A.

    2018-01-01

    The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.

  10. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    PubMed

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tidal river sediments in the Washington, D.C. area. 11. Distribution and sources of organic containmants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, T.L.; Velinsky, D.J.; Reinharz, E.

    1994-06-01

    Concentrations of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenytrichloroethande), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBx (total polychlorinated biphenyls) and total chlordanes (oxy-, {alpha}-, and {gamma}-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstreammore » of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products and direct discharges of petroleum products. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed. 33 refs., 6 figs., 3 tabs.« less

  12. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    PubMed Central

    Wickman, B.; Bastos Fanta, A.; Burrows, A.; Hellman, A.; Wagner, J. B.; Iandolo, B.

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance. PMID:28091573

  13. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  14. Nanostructured ZnO films for potential use in LPG gas sensors

    NASA Astrophysics Data System (ADS)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  15. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  16. Scales of Spatial Heterogeneity of Plastic Marine Debris in the Northeast Pacific Ocean

    PubMed Central

    Goldstein, Miriam C.; Titmus, Andrew J.; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris. PMID:24278233

  17. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean.

    PubMed

    Goldstein, Miriam C; Titmus, Andrew J; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the "Great Pacific Garbage Patch," has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20-40°N, 120-155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m(-2) and in Fall 2010 was 0.021 particles m(-2), but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm(2). Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris.

  18. Adsorptive separation of CO 2 in sulfur-doped nanoporous carbons: Selectivity and breakthrough simulation

    DOE PAGES

    Saha, Dipendu; Orkoulas, Gerassimos; Chen, Jihua; ...

    2017-03-01

    In this research, we have synthesized two sulfur functionalized nanoporous carbons by post-synthesis modifications with sulfur bearing activating agents that simultaneously enhanced the surface area and introduced sulfur functionalities on the carbon surface. The Brunauer–Emmett–Teller (BET) surface areas of these materials were 2865 and 837 m 2/g with total sulfur contents of 8.2 and 12.9 %, respectively. The sulfur-functionalized carbons were characterized with pore textural properties, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electron microscopy (SEM and TEM). In both the carbons, CO 2 adsorption isotherms and kinetics were measured in three different temperatures of 298, 288 and 278more » K and pressures up to 760 torr. The gravimetric CO 2 uptake followed the trend with BET surface area but the surface area-based uptake was reversed and it followed the trend of sulfur content. The heat of adsorption of CO 2 in low uptake was 60-65 kJ/mol, which is the highest for CO 2 adsorption in porous carbons. In order to investigate the adsorptive separation of CO 2, N 2 and CH 4 adsorption isotherms were also measured at 298 K and 760 torr. The selectivity of separation for CO 2/N 2 and CO 2/CH 4 was calculated based on the Ideal Adsorbed Solution Theory (IAST) and all the results demonstrated the high CO 2 selectivity for the carbon with higher sulfur content. The adsorption isotherms were combined with mass balances to calculate the breakthrough behavior of the binary mixtures of CO 2/N 2 and CO 2/CH 4. The simulation results demonstrated that the dimensionless breakthrough time is a decreasing function of the mole fraction of CO 2 in the feed stream. The overall results suggest that the sulfurfunctionalized carbons can be employed as potential adsorbents for CO 2 separation.« less

  19. What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.

    2015-12-01

    Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.

  20. Effects of different surface treatments on the bond strength of acrylic denture teeth to polymethylmethacrylate denture base material.

    PubMed

    Akin, Hakan; Kirmali, Omer; Tugut, Faik; Coskun, Mehmet Emre

    2014-09-01

    The purpose of this study was to investigate the effects of various surface pretreatments in the ridge lap area of acrylic resin denture teeth on the shear bond strength to heat-polymerized polymethylmethacrylate (PMMA) denture base resin. Tooth debonding of the denture is a major problem for patients with removable prostheses. A total of 84 central incisor denture teeth were used in this study. Seven test groups with 12 specimens for each group were prepared as follows: untreated (control, group C), ground, with a tungsten carbide bur (group H), airborne-particle abrasion (group AA), primed with methyl methacrylate (group M), treated with izobutyl methacrylate (group iBMA), Eclipse Bonding Agent applied (group E), and Er:YAG laser irradiated (group L). Test specimens were produced according to the manufacturers' instructions and mounted to a universal testing machine for shear testing with a crosshead speed of 1 mm/min. Data were evaluated by one way variance analysis (ANOVA) and Tukey's test (α=0.05). Similar bond strength values were found between groups L and M, and these were the highest shear bond strengths among the groups. The lowest one was observed in group E. All surface treatments, except group E, exhibited significant difference when compared with group C (p<0.05). Lasing of the ridge lap area to enhance the bond strength of acrylic resin denture teeth to PMMA denture base resin might be an alternative to wetting with MMA monomer. To overcome tooth debonding, surface treatment of the ridge lap area should be performed as part of denture fabrication.

  1. Tracing sources of sulfur in the Florida everglades

    USGS Publications Warehouse

    Bates, A.L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2002-01-01

    We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as ??34S in parts per thousand [???] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate -reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and ??34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and ??34S values distinct from those found in surface water. The ??34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.

  2. Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran

    NASA Astrophysics Data System (ADS)

    Zareinejad, M.

    2011-12-01

    Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.

  3. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  4. Radiological Risk Assessments for Occupational Exposure at Fuel Fabrication Facility in AlTuwaitha Site Baghdad – Iraq by using RESRAD Computer Code

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ziadoon H.; Ibrahim, S. A.; Mohammed, M. K.; Shaban, A. H.

    2018-05-01

    The purpose of this study is to evaluate the radiological risks for workers for one year of their activities at Fuel Fabrication Facility (FFF) so as to make the necessary protection to prevent or minimize risks resulted from these activities this site now is under the Iraqi decommissioning program (40). Soil samples surface and subsurface were collected from different positions of this facility and analyzed by gamma rays spectroscopy technique High Purity Germanium detector (HPGe) was used. It was found out admixture of radioactive isotopes (232Th 40K 238U 235U137Cs) according to the laboratory results the highest values were (975758) for 238U (21203) for 235U (218) for 232Th (4046) for 40K and (129) for 137Cs in (Bqkg1) unit. The annual total radiation dose and risks were estimated by using RESRAD (onsite) 70 computer code. The highest total radiation dose was (5617μSv/year) in area that represented by soil sample (S7) and the radiological risks morbidity and mortality (118E02 8661E03) respectively in the same area

  5. Preparation of mesoporous titanium dioxide anode by a film- and pore-forming agent for the dye-sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Wenjing; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn

    2016-04-15

    Highlights: • PVP is used as a film- and pore-forming agent to prepare the mesoporous TiO{sub 2} anode. • The TiO{sub 2} anode supplies high surface area for the dye adsorption. • The DSSC efficiency is strongly dependent on the pore properties of the TiO{sub 2} anode. • The DSSC efficiency with the TiO{sub 2} anode prepared by 20 wt% PVP reaches 8.39%. - Abstract: A novel mean of generating mesoporous titanium dioxide (TiO{sub 2}) anodes by employing polyvinylpyrrolidone (PVP) as the film- and pore-forming agent are proposed for dye-sensitized solar cells (DSSCs). The influences on the morphology and photovoltaicmore » performances of the TiO{sub 2} anodes are investigated by adjusting the PVP content in synthesizing the mesoporous TiO{sub 2} anodes. The photovoltaic conversion efficiency of the DSSC is found to be strongly dependent on the pore properties of the TiO{sub 2} anode. After the sintering process, the removal of the PVP leaves porously interconnected channel structures inside the TiO{sub 2} anode, supplying enhanced specific surface area for the dye adsorption as well as the efficient electron transmission. As a result, the TiO{sub 2} anode prepared by 20 wt% PVP presents the highest performances, based on which the DSSC achieves the highest conversion efficiency of 8.39%, approximately increased by 56.53% than that of the DSSC fabricated without PVP (5.36%).« less

  6. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  7. Extracting uranium from seawater: Promising AF series adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  8. Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg.

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Tongway, D; van Rensburg, L

    2012-12-30

    The tremendous growth of the platinum mining industry in South Africa has affected the natural environment adversely. The waste produced by platinum mineral processing is alkaline, biologically sterile and has a low water-holding capacity. These properties in the environment may constitute dysfunctional areas that will create 'leaky' and dysfunctional landscapes, limiting biological development. Landscape Function Analysis (LFA) is a monitoring procedure that assesses the degradation of landscapes, as brought about by human, animal and natural activities, through rapidly assessing certain soil surface indicators which indicate the biophysical functionality of the system. The "Trigger-Transfer-Reserve-Pulse" (TTRP) conceptual framework forms the foundation for assessing landscape function when using LFA. The two main aspects of this framework are the loss of resources from the system and the utilisation of resources by the system. After a survey of landscape heterogeneity to reflect the spatial organisation of the landscape, soil surface indicators are assessed within different patch types (identifiable units that retains resources that pass through the system) and interpatches (units between patches where vital resources are not retained, but lost) to assess the capacity of patches with various physical properties in regulating the effectiveness of resource control in the landscape. Indices describing landscape organisation are computed by a spreadsheet analysis, as well as soil surface quality indices. When assembled in different combinations, three indices emerge that reflect soil productive potential, namely: the (1) surface stability, (2) infiltration capacity, and (3) the nutrient cycling potential of the landscape. In this study we compared the landscape functionality of natural thornveld areas, rehabilitated opencast mines and rehabilitated slopes of tailings dams in the area leased for mining in the Rustenburg area. Our results show that the rehabilitated areas had a higher total SSA functionality due to higher infiltration and nutrient cycling indices than the natural thornveld landscapes. The length of interpatches and the width of patches greatly influenced the landscape function of the studied areas. The natural thornveld areas had a marginally higher total patch area than the rehabilitated areas. Vegetated patches (grass-, sparse grass-, grassy forb-, and grassy shrub-patches) generally scored the highest functionality indices, whilst bare soil interpatches contributed to the landscape functionality of the various plant communities the least. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  10. [Research of the Stormwater Runoff and Pollution Characteristics in Rural Area of Yuhang District, Hangzhou].

    PubMed

    Duan, Sheng-hui; Zhao, Yu; Shan, Bao-qing; Tang, Wen-zhong; Zhang, Wen-qiang; Zhang, Shu-zhen; Lang, Chao

    2015-10-01

    In order to investigate the pollution characteristics of stormwater runoff in the southern developed rural region, the runoff samples were collected from four different underlying surfaces during three storm events in Caoqiao and Pujia Tou, which are two typical villages and are located in Yuhang District of Hangzhou. The content of nutrition (nitrogen and phosphorus) and heavy metals (Mn, Cu, Zn, Ni, Cr, Cd, As, Pb) in the simples were analyzed, and the difference of EMC ( event mean concentration) and pollution load of the contaminants in the runoff on different underlying surfaces were compared. The results showed that the EMC of TSS, COD, NH4(+)-N, TP and TN were 16.19, 21.01, 0.74, 1.39 and 2.39 mg x L(-1) in the Caoqiao, respectively; as to Pujia Tou, they were 3.10, 15.69, 0.90, 0.78 and 3.58 mg x L(-1), respectively. The content of heavy metals was all lower than the national surface water quality of two type water in the runoff. Compared with the quality standards for surface water, the EMC of TP was 9 times and 3. 5 times higher and TN was 1. 8 times and 1. 2 times higher in two areas. Besides, the pollution loads of TSS and COD were the highest in farmland.

  11. Adsorption properties of Silochrom chemically modified with nickel acetylacetonate

    NASA Astrophysics Data System (ADS)

    Pakhnutova, Evgeniya; Slizhov, Yuriy

    2017-11-01

    One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.

  12. Synthesis of high surface area carbon adsorbents prepared from pine sawdust-Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption.

    PubMed

    Álvarez-Torrellas, S; Muñoz, M; Zazo, J A; Casas, J A; García, J

    2016-12-01

    Chemically activated carbon materials prepared from pine sawdust-Onopordum acanthium L. were studied for the removal of diclofenac and naproxen from aqueous solution. Several carbons, using different proportions of precursors were obtained (carbon C1 to carbon C5) and the chemical modification by liquid acid and basic treatments of C1 were carried out. The textural properties of the carbons, evaluated by N2 adsorption-desorption isotherms, revealed that the treatments with nitric acid and potassium hydroxide dramatically reduced the specific surface area and the pore volume of the carbon samples. The surface chemistry characterization, made by thermal programmed decomposition studies, determination of isoelectric point and Boehm's titration, showed the major presence of lactone and phenol groups on the activated carbons surface, being higher the content when the acidic strength of the carbon increased. Diclofenac and naproxen kinetic data onto C1 carbon followed pseudo-second order model. The adsorption equilibrium isotherms of C1 and the modified carbons were well described by both Sips and GAB isotherm equations. The highest adsorption capacity was found for naproxen onto C1 activated carbon, 325 mg g(-1), since the liquid acid and basic functionalization of the carbon led to a severe decreasing in the adsorption removal of the target compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number. Linear regression analysis of the same data showed statistically significant regression coefficients only for the mass-based aerosol measures. Similar results were seen for rank correlation in the stationary rig, and linear regression analysis implied significant correlation for mass-based and particle surface area measures. The mass-based air concentration levels of cobalt and tungsten in the hard metal plant in our study were low compared to Swedish OELs. Particle number and particle surface area concentrations were in the same order of magnitude as for other industrial settings. Regression analysis implied the use of stationary determined mass-based and particle surface area aerosol concentration as proxies for various exposure measures in our study. PMID:27143598

  14. Heavy metal accumulation in surface sediments at the port of Cagliari (Sardinia, western Mediterranean): Environmental assessment using sequential extractions and benthic foraminifera.

    PubMed

    Schintu, Marco; Marrucci, Alessandro; Marras, Barbara; Galgani, Francois; Buosi, Carla; Ibba, Angelo; Cherchi, Antonietta

    2016-10-15

    Superficial sediments were taken at the port of Cagliari (Sardinia, Italy), which includes the oil terminal of one of the largest oil refineries in the Mediterranean. Significant trace metal concentrations were found in the whole port area. Sequential extraction of metals from the different sediment fractions (BCR method) showed a higher risk of remobilisation for Cd, which is mostly bound to the exchangeable fraction. Foraminiferal density and richness of species were variable across the study area. The living assemblages were characterized by low diversity in samples collected close to the port areas. Ammonia tepida and bolivinids, which were positively correlated with concentrations of heavy metals and organic matter content, appeared to show tolerance to the environmental disturbance. The sampling sites characterized by the highest values of biotic indices were located far from the port areas and present an epiphytic and epifaunal biocoenosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  16. Experimental Research on Fatigue Failure for 2219-T6 Aluminum Alloy Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Niu, Jiang-Pei; Chen, Ya-Jing; Sun, Feng-Yang; Shang, De-Guang; Chen, Shu-Jun

    2017-08-01

    The fatigue experiment was executed for the 2219-T6 aluminum alloy friction stir-welded joints at the rotation speed of 800 r/min and the welding velocity of 150 mm/min. Most fatigue failures occurred in the weld nugget zone (WNZ), the thermo-mechanical affected zone and the nearby areas. The experimental results demonstrated that the sudden hardness gradient increases sites corresponding to the fatigue failure locations. The high-angle grain boundaries with the highest concentration were scattered within the WNZ. The microcracks initiated at the intersection of the soft grains. More than one crack initiation site was observed within the WNZ and the thermo-mechanical affected zone, when the fracture occurred in these areas. The rough surface of the welding area should be one of the main reasons for the fatigue failure occurrence. The fatigue crack growth rate in the WNZ at the first stage was fastest in comparison with the fatigue crack growth rate in the other areas of the joint.

  17. Coulomb energy of uniformly charged spheroidal shell systems.

    PubMed

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  18. Hydrogeology, geochemistry, and quality of water of The Basin and Oak Spring areas of the Chisos Mountains, Big Bend National Park, Texas

    USGS Publications Warehouse

    Baker, E.T.; Buszka, P.M.

    1993-01-01

    Water-chemistry data, hydrochemical facies, and isotopic data also indicate that water from Oak Spring originates principally from precipitation onto the land surface of the Oak Spring area. Tritium data indicate that Oak Spring water is "modern," with an average age of recharge less than 14 years. The flow rates recorded almost continuously at Oak Spring beginning in December 1986 show a close relation between precipitation and discharge. The highest recorded spring flow of 167 gallons per minute in December 1986 is attributed to record high precipitation in the area during 1986. The lowest recorded flow of 22.4 gallons per minute, in December 1989, followed a period of 20 out of 26 months of below-normal precipitation. Flow at Oak Spring typically lags behind precipitation by about 1 month. This fairly rapid response indicates the spring is fed by a shallow aquifer having good permeability and effective recharge areas with the ability to absorb precipitation rapidly.

  19. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.

    PubMed

    Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi

    2015-09-01

    The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.

  20. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation performances

    NASA Astrophysics Data System (ADS)

    Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.

    2017-05-01

    Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.

  1. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  2. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  3. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  4. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans

    PubMed Central

    2013-01-01

    Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6–2.3 L, with the hands (80–160 g.h−1) and feet (50–150 g.h−1) losing the most, the head and neck losing intermediate amounts (40–75 g.h−1) and all remaining sites losing 15–60 g.h−1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm−2) and the lowest on the upper lip (16 glands.cm−2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min−1, the forehead (0.99 mg.cm−2.min−1), dorsal fingers (0.62 mg.cm−2.min−1) and upper back (0.59 mg.cm−2.min−1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm−2.min−1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm−2.min−1, sodium losses of 26.5–49.7 mmol.L−1 could be expected, with the corresponding chloride loss being 26.8–36.7 mmol.L−1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise. PMID:23849497

  5. Geohydrology and distribution of volatile organic compounds in ground water in the Casey Village area, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.

    1998-01-01

    Casey Village and the adjoining part of the U.S. Naval Air Warfare Center (NAWC) are underlain by the Late Triassic-age Stockton Formation, which consists of a dipping series of siltstones and sandstones.The direction of vertical ground-water gradients in the Stockton Formation varies among well locations and sometimes with time. Vertical gradients can be substantial; the difference in water levels at one well pair (two wells screened at different depths) was 7.1 ft (feet) over a 32-ft vertical section of the aquifer.Potentiometric-surface maps show a groundwater divide that bisects the Casey Village area. For wells screened between 18 and 64 ft below land surface (bls), the general ground-water gradient is to the east and northeast on the east side of the divide and to the south and southwest on the west side of the divide. For wells screened between 48 and 106 ft bls, the general ground-water gradient is to the northeast on the east side of the divide and to the southwest and northwest on the west side of the divide. An aquifer test at one well in Casey Village caused drawdown in wells on the opposite side of the ground-water divide on the NAWC and shifted the ground-water divide in the deeper potentiometric surface to the west. Drawdowns formed an elliptical pattern, which indicates anisotropy; however, anisotropy is not aligned with strike or dip. Hydraulic stress caused by pumping crosses stratigraphic boundaries.Between 1993 and 1996, the trichloroethylene (TCE) concentration in water samples collected from wells in Casey Village decreased. The highest concentration of TCE measured in water from one well decreased from 1,200 mg/L (micrograms per liter) in 1993 when domestic wells were pumped in Casey Village to 140 mg/L in 1996, 3 years after the installation of public water and the cessation of domestic pumping. This suggests that pumping of domestic wells may have contributed to TCE migration. Between 1993 and 1996, the tetrachloroethylene (PCE) concentration in water samples collected from wells in Casey Village decreased only slightly. The highest concentration of PCE measured in water from one well decreased from 720 mg/L in 1993 to 630 mg/L in 1996.The distribution of TCE and PCE in ground water indicates the presence of separate PCE and TCE plumes, each with a different source area. The TCE plume appears to be moving in two directions away from the ground-water divide area. The pumping of a domestic well may have caused TCE migration into the ground-water divide area. From the divide area, the TCE plume appears to be moving both to the east and the west under the natural hydraulic gradient.Aquifer-isolation tests conducted in the well with the highest TCE concentrations showed that concentrations of TCE in water samples from the isolated intervals were similar but slightly lower in the deeper isolated zones than in the shallower isolated zones. Upward flow was measured in this well during geophysical logging. If the source of TCE to the well was from shallow fractures, upward flow of less contaminated water could be flushing TCE from the immediate vicinity of this well. This may help explain why the concentration of TCE in water from this well decreased an order of magnitude between 1993 and 1996.

  6. Are boundary conditions in surface productivity at the Southern Polar Front reflected in benthic activity?

    NASA Astrophysics Data System (ADS)

    Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura

    2014-10-01

    In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.

  7. Mapping the surface characteristics of the Mojave with remote sensing for terrestrial habitat modeling

    NASA Astrophysics Data System (ADS)

    Nowicki, S. A.; Skuse, R. J.

    2012-12-01

    High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.

  8. A Simple Test to Determine the Effectiveness of Different Braze Compositions for Joining Ti-Tubes to C/C Composite Plates

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Singh, Mrityunjay; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    A simple tube-plate joint tensile test was implemented to compare the effectiveness of commercial brazes, namely, TiCuNi, TiCuSil, and Cu-ABA, used for bonding Ti-tubes joined to C-C composite plates. The different braze systems yielded different; yet, repeatable results. The Cu-ABA system proved to have about twice the load-carrying ability of the other two systems due to the fact that the bonded area between the braze material and the C-C plate was largest for this system. The orientation of the surface fiber tows also had a significant effect on load-carrying ability with tows oriented perpendicular to the tube axis displaying the highest failure loads. Increasing the process load and modifying the surface of the C-C plate by grooving out channels for the Ti-Tube to nest in resulted in increased load-carrying ability for the TiCuSil and Cu-ABA systems due to increased bonded area and better penetration of the braze material into the C-C composite.

  9. Dual-Templated Cobalt Oxide for Photochemical Water Oxidation.

    PubMed

    Deng, Xiaohui; Bongard, Hans-Josef; Chan, Candace K; Tüysüz, Harun

    2016-02-19

    Mesoporous Co3 O4 was prepared using a dual templating approach whereby mesopores inside SiO2 nanospheres, as well as the void spaces between the nanospheres, were used as templates. The effect of calcination temperature on the crystallinity, morphology, and textural parameters of the Co3 O4 replica was investigated. The catalytic activity of Co3 O4 for photochemical water oxidation in a [Ru(bpy)3 ](2+) [S2 O8 ](2-) system was evaluated. The Co3 O4 replica calcined at the lowest temperature (150 °C) exhibited the best performance as a result of the unique nanostructure and high surface area arising from the dual templating. The performance of Co3 O4 with highest surface area was further examined in electrochemical water oxidation. Superior activity over high temperature counterpart and decent stability was observed. Furthermore, CoO with identical morphology was prepared from Co3 O4 using an ethanol reduction method and a higher turnover-frequency number for photochemical water oxidation was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were collected in small-diameter observation wells screened over short intervals near the middle of the production zone and were considered to best represent the potentiometric head in the production zone. The water-level measurements were collected by various local and Federal agencies. The water year 2012 potentiometric surface map was created in a geographic information system, and the change in water-level altitude from predevelopment to water year 2012 was calculated. The 2012 potentiometric surface indicates that the general direction of groundwater flow is from the Rio Grande towards clusters of supply wells in the east, north, and west. Water-level changes from predevelopment to 2012 were variable across the Albuquerque metropolitan area. Estimated drawdown from 2008 was spatially variable across the Albuquerque metropolitan area. Hydrographs from piezometers on the east side of the river indicate an increase in the annual highest water-level measurement from 2008 to 2012. Hydrographs from piezometers in the northwest part of the study area indicate either steady decline of the water-level altitude over the period of record or recently variable trends in which water-level altitudes increased for a number of years but have declined since water year 2012.

  12. Synoptic meteorological conditions associated with high spring and summer ozone levels at a rural site in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos

    2017-04-01

    For the identification of the nature of spring and summertime ozone episodes, rural ozone measurements from the Eastern Mediterranean station of Finokalia-Crete, Greece during the first 4-year period of its record (1998-2001) have been analyzed with emphasis on periods of high ozone concentrations, according to the daily variation of the afternoon (12:00 - 18:00) ozone values. For the 7% highest spring and summertime ozone episodes composite NOAA/ESRL reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical wind velocity omega, vector wind speed and temperature) have been examined together with their corresponding HYSPLIT back trajectories. This work is a continuation of a previous first approach regarding summer highest and lowest surface ozone episodes in Finokalia and other Central and Eastern Mediterranean stations (Kalabokas et al., 2008), which is now extended to more meteorological parameters and higher pressure levels. The results show that the examined synoptic meteorological condition during springtime ozone episodes over the Eastern Mediterranean station of Finokalia are quite similar with those conditions during high ozone springtime episodes observed at rural stations over the Western Mediterranean (Kalabokas et al., 2016). On the other hand the summer time synoptic conditions corresponding to highest surface ozone episodes at Finokalia are comparable with the conditions encountered during highest ozone episodes in the lower troposphere following analysis of MOZAIC vertical profiles over the Aegean Sea and the Eastern Mediterranean (Kalabokas et al., 2015 and references therein). During the highest ozone episodes, for both examined seasons, the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  13. Evaluation of a New Environmental Sampling Protocol for Detection of Human Norovirus on Inanimate Surfaces

    PubMed Central

    Lee, David; Treffiletti, Aimee; Hrsak, Mario; Shugart, Jill; Vinjé, Jan

    2015-01-01

    Inanimate surfaces are regarded as key vehicles for the spread of human norovirus during outbreaks. ISO method 15216 involves the use of cotton swabs for environmental sampling from food surfaces and fomites for the detection of norovirus genogroup I (GI) and GII. We evaluated the effects of the virus drying time (1, 8, 24, or 48 h), swab material (cotton, polyester, rayon, macrofoam, or an antistatic wipe), surface (stainless steel or a toilet seat), and area of the swabbed surface (25.8 cm2 to 645.0 cm2) on the recovery of human norovirus. Macrofoam swabs produced the highest rate of recovery of norovirus from surfaces as large as 645 cm2. The rates of recovery ranged from 2.2 to 36.0% for virus seeded on stainless-steel coupons (645.0 cm2) to 1.2 to 33.6% for toilet seat surfaces (700 cm2), with detection limits of 3.5 log10 and 4.0 log10 RNA copies. We used macrofoam swabs to collect environmental samples from several case cabins and common areas of a cruise ship where passengers had reported viral gastroenteritis symptoms. Seventeen (18.5%) of 92 samples tested positive for norovirus GII, and 4 samples could be sequenced and had identical GII.1 sequences. The viral loads of the swab samples from the cabins of the sick passengers ranged from 80 to 31,217 RNA copies, compared with 16 to 113 RNA copies for swab samples from public spaces. In conclusion, our swab protocol for norovirus may be a useful tool for outbreak investigations when no clinical samples are available to confirm the etiology. PMID:26116675

  14. Enhanced Pacific Ocean Sea Surface Temperature and Its Relation to Typhoon Haiyan

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perez, Gay Jane P.; Stock, Larry V.

    2015-01-01

    Typhoon Haiyan, which devastated the Visayan Islands in the Philippines on November 8, 2013 was recorded as the strongest typhoon ever-observed using satellite data. Typhoons in the region usually originate from the mid-Pacific region that includes the Warm Pool, which is regarded as the warmest ocean surface region globally. Two study areas were considered: one in the Warm Pool Region and the other in the West Pacific Region near the Philippines. Among the most important factors that affect the strength of a typhoon are sea surface temperature (SST) and water vapor. It is remarkable that in November 2013 the average SST in the Warm Pool Region was the highest observed during the 1981 to 2014 period while that of the West Pacific Region was among the highest as well. Moreover, the increasing trend in SST was around 0.20C per decade in the warm pool region and even higher at 0.23C per decade in the West Pacific region. The yearly minimum SST has also been increasing suggesting that the temperature of the ocean mixed layer is also increasing. Further analysis indicated that water vapor, clouds, winds and sea level pressure for the same period did not reveal strong signals associated with the 2013 event. The SST is shown to be well-correlated with wind strength of historically strong typhoons in the country and the observed trends in SST suggest that extremely destructive typhoons like Haiyan are likely to occur in the future.

  15. TA×4

    NASA Astrophysics Data System (ADS)

    Sagawa, Hiroyuki

    How cosmic rays obtain energies of about 1020 eV and where they come from are big mysteries in physics. The Telescope Array (TA) is comprised of Surface Detectors (SDs) and Fluorescence Detectors (FDs) located in Utah, U.S.A., and aims to explore the origin of highest-energy cosmic rays. The SD array consists of 507 scintillation detectors arranged on a square grid of 1.2-km spacing, covering approximately 700 km2. The FD telescopes, located at three sites, look over the surface array. Using the first five years of data collected by the surface detectors, we found a cluster of cosmic rays with energies greater than 5.7 × 1019 eV that we call the hot spot. With enhanced statistics, we expect to observe the structure of that hot spot along with other possible excesses, and point sources along with the correlations with extreme phenomena in the nearby universe. We plan to make the area of the TA SD array four times larger to approximately 3,000 km2, by adding 500 SDs on a square grid of 2.08-km spacing. Two FD stations will be built viewing the new SD array. This TA extension that we call TA×4 will greatly accelerate the speed at which we will reach the goals mentioned above, and will enhance cosmic-ray energy spectrum measurement and composition study at the highest energies by TA. At this conference, we present our plan for TA×4.

  16. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  17. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less

  18. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence.

    PubMed

    Kulkarni, Mukta; Mazare, Anca; Park, Jung; Gongadze, Ekaterina; Killian, Manuela Sonja; Kralj, Slavko; von der Mark, Klaus; Iglič, Aleš; Schmuki, Patrik

    2016-11-01

    In the present work we investigate the key factors involved in the interaction of small-sized charged proteins with TiO 2 nanostructures, i.e. albumin (negatively charged), histone (positively charged). We examine anodic nanotubes with specific morphology (simultaneous control over diameter and length, e.g. diameter - 15, 50 or 100nm, length - 250nm up to 10μm) and nanopores. The nanostructures surface area has a direct influence on the amount of bound protein, nonetheless the protein physical properties as electric charge and size (in relation to nanotopography and biomaterial's electric charge) are crucial too. The highest quantity of adsorbed protein is registered for histone, for 100nm diameter nanotubes (10μm length) while higher values are registered for 15nm diameter nanotubes when normalizing protein adsorption to nanostructures' surface unit area (evaluated from dye desorption measurements) - consistent with theoretical considerations. The proteins presence on the nanostructures is evaluated by XPS and ToF-SIMS; additionally, we qualitatively assess their presence along the nanostructures length by ToF-SIMS depth profiles, with decreasing concentration towards the bottom. Surface nanostructuring of titanium biomedical devices with TiO 2 nanotubes was shown to significantly influence the adhesion, proliferation and differentiation of mesenchymal stem cells (and other cells too). A high level of control over the nanoscale topography and over the surface area of such 1D nanostructures enables a direct influence on protein adhesion. Herein, we investigate and show how the nanostructure morphology (nanotube diameter and length) influences the interactions with small-sized charged proteins, using as model proteins bovine serum albumin (negatively charged) and histone (positively charged). We show that the protein charge strongly influences their adhesion to the TiO 2 nanostructures. Protein adhesion is quantified by ELISA measurements and determination of the nanostructures' total surface area. We use a quantitative surface charge model to describe charge interactions and obtain an increased magnitude of the surface charge density at the top edges of the nanotubes. In addition, we track the proteins presence on and inside the nanostructures. We believe that these aspects are crucial for applications where the incorporation of active molecules such as proteins, drugs, growth factors, etc., into nanotubes is desired. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Mitigation of efflorescence of wallboard by means of bio-mineralization

    PubMed Central

    Xue, Bin; Qian, Chunxiang

    2015-01-01

    Cement-based material is one of the most versatile and largest amounts of building materials which can not only be used in load-bearing structure but also be used as decoration materials, like brick, wallboard, and tile. However, white calcium carbonate always be found on the surface of wallboard. This phenomenon is generally called efflorescence, which has no damage to wallboard, but has aesthetic impact. In this research, Bacillus mucilaginosus was pre-added to the cement matrix to reduce the efflorescence of wallboard. Image processing, thermogravimetric analysis and permeability test were used to characterize the efflorescence degree of wallboard. The results showed that the bacterium captured atmospheric CO2 by carbonic anhydrase and promoted the CO2to react with Ca(OH)2. This process not only reduced the content of Ca(OH)2 but also improved the compactness of wallboard. In addition, the maximal decrease of efflorescence area of wallboard was gotten when the content of microbial was up to 4% of the mass of cementitious material and the proportion of efflorescence area reduced from 32 ± 3 to 5 ± 1% of the whole area of surface layer. At the same time, the values of compressive and flexural strength were the highest and the surface layer of wallboard was the most compact. The observed reduction of efflorescence was indeed due to the effect of bio-mineralization. This promising method was noted to be cheap, convenient, environment friendly, and which has the potential in various practical applications. PMID:26539182

  20. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    PubMed

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  1. Selective growth of titanium dioxide by low-temperature chemical vapor deposition.

    PubMed

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2015-05-13

    A key factor in engineering integrated optical devices such as electro-optic switches or waveguides is the patterning of thin films into specific geometries. In particular for functional oxides, etching processes are usually developed to a much lower extent than for silicon or silicon dioxide; therefore, selective area deposition techniques are of high interest for these materials. We report the selective area deposition of titanium dioxide using titanium isopropoxide and water in a high-vacuum chemical vapor deposition (HV-CVD) process at a substrate temperature of 225 °C. Here—contrary to conventional thermal CVD processes—only hydrolysis of the precursor on the surface drives the film growth as the thermal energy is not sufficient to thermally decompose the precursor. Local modification of the substrate surface energy by perfluoroalkylsilanization leads to a reduced surface residence time of the precursors and, consequently, to lower reaction rate and a prolonged incubation period before nucleation occurs, hence, enabling selective area growth. We discuss the dependence of the incubation time and the selectivity of the deposition process on the presence of the perfluoroalkylsilanization layer and on the precursor impinging rates—with selectivity, we refer to the difference of desired material deposition, before nucleation occurs in the undesired regions. The highest measured selectivity reached (99 ± 5) nm, a factor of 3 superior than previously reported in an atomic layer deposition process using the same chemistry. Furthermore, resolution of the obtained patterns will be discussed and illustrated.

  2. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    PubMed

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  3. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    PubMed Central

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  4. Mitigation of efflorescence of wallboard by means of bio-mineralization.

    PubMed

    Xue, Bin; Qian, Chunxiang

    2015-01-01

    Cement-based material is one of the most versatile and largest amounts of building materials which can not only be used in load-bearing structure but also be used as decoration materials, like brick, wallboard, and tile. However, white calcium carbonate always be found on the surface of wallboard. This phenomenon is generally called efflorescence, which has no damage to wallboard, but has aesthetic impact. In this research, Bacillus mucilaginosus was pre-added to the cement matrix to reduce the efflorescence of wallboard. Image processing, thermogravimetric analysis and permeability test were used to characterize the efflorescence degree of wallboard. The results showed that the bacterium captured atmospheric CO2 by carbonic anhydrase and promoted the CO2to react with Ca(OH)2. This process not only reduced the content of Ca(OH)2 but also improved the compactness of wallboard. In addition, the maximal decrease of efflorescence area of wallboard was gotten when the content of microbial was up to 4% of the mass of cementitious material and the proportion of efflorescence area reduced from 32 ± 3 to 5 ± 1% of the whole area of surface layer. At the same time, the values of compressive and flexural strength were the highest and the surface layer of wallboard was the most compact. The observed reduction of efflorescence was indeed due to the effect of bio-mineralization. This promising method was noted to be cheap, convenient, environment friendly, and which has the potential in various practical applications.

  5. Satellite chlorophyll off the British Columbia Coast, 1997-2010

    NASA Astrophysics Data System (ADS)

    Jackson, Jennifer M.; Thomson, Richard E.; Brown, Leslie N.; Willis, Peter G.; Borstad, Gary A.

    2015-07-01

    We examine the spatial and temporal variability of satellite-sensed sea surface chlorophyll off the west coast of North America from 1997 to 2010, with focus on coastal British Columbia. The variability in surface chlorophyll is complex. Whereas the spring bloom generates the highest phytoplankton concentration for coastal Alaska, the north and east coasts of Haida Gwaii, Queen Charlotte Sound, the Strait of Georgia, and coastal Oregon and California, it is the fall bloom that normally generates the highest concentration for the west coast of Vancouver Island, Juan de Fuca Strait, and the west coast of Washington. The highest satellite-sensed chlorophyll concentrations occur in the Strait of Georgia, where mean values are at least 2 times higher than elsewhere in the northeast Pacific. Moreover, the annual average surface chlorophyll concentration increased significantly in the Strait of Georgia during this period, with highest concentration observed during the near neutral ENSO conditions of the spring of 2007. The next highest concentrations occur off southwest Vancouver Island but have no statistically significant trend. The lowest average peak chlorophyll concentration is observed off Southern California. The timing of the highest chlorophyll concentration is latest off the coast of Washington and earliest off the coast of Southern California. Small increasing concentration trends are observed off the Washington and California coasts.

  6. Monitoring of nutrients, pesticides, and metals in waters, sediments, and fish of a wetland.

    PubMed

    Salvadó, V; Quintana, X D; Hidalgo, M

    2006-10-01

    Wetland areas are of extraordinary importance for the conservation of wildlife. The Aiguamolls de l'Empordà Natural Park, located in Girona (northeast Spain), is one of the few areas in Europe acting as a way station for migratory birds. The natural park is made up of a brackish water reserve and a fresh water reserve. Agriculture and tourism, which are concentrated especially around coastal population centers, are the main activities in this area and result in the release into the environment of nutrients, pesticides, and heavy metals. This article aims to investigate the presence of nutrients, selected pesticides (organochlorine compounds, permethrin and triazines) and metals (Cr, Cu, Cd, Ni and Pb) in water, sediments, and fish samples. In the case of water, seasonal variations in levels of contamination were also monitored. Comparison was made of the fresh and brackish water reserves and concentration factors for metals and pesticides in sediment were determined. We conclude that the most significant sources of contamination in the natural park are from the entry of pesticides and nutrients into surface waters and sediments as a result of the intensive farming activity of the surrounding areas. The pesticides with the greatest presence were found to be lindane, heptachlor epoxide, permethrin, and atrazine. Among the metals analyzed, Cu and Cr presented the highest concentrations in surface waters and sediments.

  7. A study on the cytotoxicity of carbon-based materials

    DOE PAGES

    Saha, Dipendu; Heldt, Caryn L.; Gencoglu, Maria F.; ...

    2016-05-25

    With an aim to understand the origin and key contributing factors towards carboninduced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, x-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROX) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicitymore » in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under study. None of the carbons induced oxidative stress to the cells as indicated by the ROX generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.« less

  8. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  9. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    NASA Astrophysics Data System (ADS)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  11. Investigating the Origin of Bright Materials on Vesta: Synthesis, Conclusions, and Implications

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Schroder, S. E.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn spacecraft started orbiting the second largest asteroid (4) Vesta in August 2011, revealing the details of its surface at an unprecedented pixel scale as small as approx.70 m in Framing Camera (FC) clear and color filter images and approx.180 m in the Visible and Infrared Spectrometer (VIR) data in its first two science orbits, the Survey Orbit and the High Altitude Mapping Orbit (HAMO) [1]. The surface of Vesta displays the greatest diversity in terms of geology and mineralogy of all asteroids studied in detail [2, 3]. While the albedo of Vesta of approx.0.38 in the visible wavelengths [4, 5] is one of the highest among all asteroids, the surface of Vesta shows the largest variation of albedos found on a single asteroid, with geometric albedos ranging at least from approx.0.10 to approx.0.67 in HAMO images [5]. There are many distinctively bright and dark areas observed on Vesta, associated with various geological features and showing remarkably different forms. Here we report our initial attempt to understand the origin of the areas that are distinctively brighter than their surroundings. The dark materials on Vesta clearly are different in origin from bright materials and are reported in a companion paper [6].

  12. Regional Impacts of Urbanization in the United States

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Zhang, Ping; Nigro, Joseph; Lachir, Asia; Thome, Kurtis

    2017-01-01

    We simulate the impact of impervious surface areas (ISA) on the U.S. local and regional climate. At a local scale, we find the urban area warmer than the surrounding vegetation in most cities, except in arid climate cities where urban temperature is cooler for much of the daytime. For all 9 regions studied, simulated results show that the growing season maximum surface temperature difference between urban and the dominant vegetation occurs around mid-day and is strongest in the northern regions. Regional temperature differences of 3.0 C, 3.4 C, and 3.9 C were simulated in the Northeast, Midwest, and Northwest, respectively. In these regions evaporative cooling, during the growing season, creates a stronger urban heat island (UHI). The UHI is less pronounced during winter when vegetation is dormant. Our results suggest that the ISA temperature is set by building material's characteristics and its departure from that of the surrounding vegetation is essentially driven by evaporative cooling. Except when rainfall is small, the highest surface runoff to precipitation ratios are simulated in most cities, especially when precipitation events occur as heavy downpours. In terms of photosynthesis, we provide a detailed distribution of maximum production in the U.S., a needed product for policy and urban planners.

  13. Occupational exposure to diesel engine exhaust: A literature review

    PubMed Central

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia

    2010-01-01

    Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 μg/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 μg/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 μg/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies. PMID:19277070

  14. Occupational exposure to diesel engine exhaust: a literature review.

    PubMed

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.

  15. Wilcox group (Paleocene to Eocene) coals of the Sabine Uplift area, Texas and Louisiana

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The Wilcox Group (Paleocene to Eocene) of the Sabine uplift, a structural arch in northeastern Texas and northwestern Louisiana (Figure 1), has lignite zones that approach subbituminous rank (see Chapter 4, this publication). These coals are among the highest quality resources known within the Gulf Coastal Plain because of their low ash yield and sulfur content. The surface expression of the Sabine uplift is defined by the contact between coal-bearing rocks of the Wilcox Group and overlying fluvial rocks of the Carrizo Sand, which is the basal unit of the Claiborne Group (Figures 2, 3). The Sabine uplift study area includes parts of Harrison, Marion, Nacogdoches, Panola, Rusk, Sabine, San Augustine, and Shelby Counties in Texas and Bossier, Caddo, De Soto, Natchitoches, Red River, and Sabine Parishes in Louisiana (Figure 1). Adjacent counties and parishes that include the subsurface Wilcox Group extend the regional Sabine uplift area. The Wilcox in the subsurface is underlain by the Midway Group (Figure 3), a mudstone-dominated marine sequence of Paleocene age. Quaternary alluvium and terrace deposits overlying the Wilcox Group at the surface are limited to areas of modern drainage.The total thickness of the Wilcox Group within the Sabine uplift area ranges from approximately 400 ft on outcrop to 2500 ft in subsurface (Kaiser, 1990). In a few places, the contact between the overlying Carrizo Sand and Wilcox Group is erosional, but in other places, the contact is gradational.

  16. Where do uncertainties reside within environmental risk assessments? Expert opinion on uncertainty distributions for pesticide risks to surface water organisms.

    PubMed

    Skinner, Daniel J C; Rocks, Sophie A; Pollard, Simon J T

    2016-12-01

    A reliable characterisation of uncertainties can aid uncertainty identification during environmental risk assessments (ERAs). However, typologies can be implemented inconsistently, causing uncertainties to go unidentified. We present an approach based on nine structured elicitations, in which subject-matter experts, for pesticide risks to surface water organisms, validate and assess three dimensions of uncertainty: its level (the severity of uncertainty, ranging from determinism to ignorance); nature (whether the uncertainty is epistemic or aleatory); and location (the data source or area in which the uncertainty arises). Risk characterisation contains the highest median levels of uncertainty, associated with estimating, aggregating and evaluating the magnitude of risks. Regarding the locations in which uncertainty is manifest, data uncertainty is dominant in problem formulation, exposure assessment and effects assessment. The comprehensive description of uncertainty described will enable risk analysts to prioritise the required phases, groups of tasks, or individual tasks within a risk analysis according to the highest levels of uncertainty, the potential for uncertainty to be reduced or quantified, or the types of location-based uncertainty, thus aiding uncertainty prioritisation during environmental risk assessments. In turn, it is expected to inform investment in uncertainty reduction or targeted risk management action. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment.

    PubMed

    Yan, Caixia; Yang, Yi; Zhou, Junliang; Liu, Min; Nie, Minghua; Shi, Hao; Gu, Lijun

    2013-04-01

    The occurrence and distribution of five groups of antibiotics were investigated in the surface water of Yangtze Estuary over four seasons. Of the 20 antibiotics, only sulfamerazine was not detected at all sampling sites, indicating widespread occurrence of antibiotic residues in the study area. Detection frequencies and concentrations of antibiotics were generally higher in January, indicating that low flow conditions and low temperature might enhance the persistence of antibiotics in water. Antibiotic levels varied with location, with the highest concentrations being observed around river discharge and sewage outfall. Furthermore, a positive correlation between total antibiotic and DOC concentrations revealed the significant role played by DOC. Risk assessment based on single compound exposure showed that sulfapyridine and sulfamethoxazole could cause medium risk to daphnid in the Yangtze Estuary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Mucorales from the semiarid of Pernambuco, Brazil

    PubMed Central

    de Azevedo Santiago, André Luiz Cabral Monteiro; dos Santos, Paulo Jorge Parreira; Maia, Leonor Costa

    2013-01-01

    Nineteen taxa of Mucorales, belonging to Absidia, Apophysomyces, Cunninghamella, Fennellomyces, Lichtheimia, Mucor, Mycotypha, Rhizopus and Syncephalastrum were isolated from 36 composite soil samples in three semiarid areas in the State of Pernambuco (Triunfo, Cabrobó and Belém de São Francisco), Northeast Brazil, which are characterized by Caatinga vegetation. Triunfo is preserved, whereas Cabroró and Belém de São Francisco are experiencing low and severe desertification processes, respectively. Mucorales were isolated in Petri dishes in triplicate from 5 mg samples of soil placed on the surface of wheat germ agar plus chloramphenicol and Cercobin [Dimethyl 4,49-(103 phenylene) bis (3-thioallophanate)] medium. The plates were left on a bench at room temperature (28 ± 2 °C) for 72 h of alternating dark and light periods. Absidia cylindrospora presented the highest amount of CFU/g of soil, followed by L. hyalospora, C. phaeospora and C. echinulata var. echinulata. The latter, and R. microsporus var. microsporus, presented the highest frequencies of occurrence. Soils from Triunfo showed higher diversity of Mucorales than the samples from the other areas, although without differing statistically in relation to species richness. The communities of Mucorales from the degraded areas were more similar, while that from the preserved area was quite different. Most of the identified specimens have been commonly isolated from soil in other Brazilian regions, which indicates that they are not endemic of the semiarid. Eleven taxa are registered for the first time in this ecosystem, while F. heterothallicus is reported for the first time in Brazil. PMID:24159320

  19. Mucorales from the semiarid of Pernambuco, Brazil.

    PubMed

    de Azevedo Santiago, André Luiz Cabral Monteiro; Dos Santos, Paulo Jorge Parreira; Maia, Leonor Costa

    2013-01-01

    Nineteen taxa of Mucorales, belonging to Absidia, Apophysomyces, Cunninghamella, Fennellomyces, Lichtheimia, Mucor, Mycotypha, Rhizopus and Syncephalastrum were isolated from 36 composite soil samples in three semiarid areas in the State of Pernambuco (Triunfo, Cabrobó and Belém de São Francisco), Northeast Brazil, which are characterized by Caatinga vegetation. Triunfo is preserved, whereas Cabroró and Belém de São Francisco are experiencing low and severe desertification processes, respectively. Mucorales were isolated in Petri dishes in triplicate from 5 mg samples of soil placed on the surface of wheat germ agar plus chloramphenicol and Cercobin [Dimethyl 4,49-(103 phenylene) bis (3-thioallophanate)] medium. The plates were left on a bench at room temperature (28 ± 2 °C) for 72 h of alternating dark and light periods. Absidia cylindrospora presented the highest amount of CFU/g of soil, followed by L. hyalospora, C. phaeospora and C. echinulata var. echinulata. The latter, and R. microsporus var. microsporus, presented the highest frequencies of occurrence. Soils from Triunfo showed higher diversity of Mucorales than the samples from the other areas, although without differing statistically in relation to species richness. The communities of Mucorales from the degraded areas were more similar, while that from the preserved area was quite different. Most of the identified specimens have been commonly isolated from soil in other Brazilian regions, which indicates that they are not endemic of the semiarid. Eleven taxa are registered for the first time in this ecosystem, while F. heterothallicus is reported for the first time in Brazil.

  20. Development of high efficiency thin film polycrystalline silicon solar cells using VEST process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, T.; Arimoto, S.; Morikawa, H.

    1998-12-31

    Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less

  1. Mineralogical, chemical and toxicological characterization of urban air particles.

    PubMed

    Čupr, Pavel; Flegrová, Zuzana; Franců, Juraj; Landlová, Linda; Klánová, Jana

    2013-04-01

    Systematic characterization of morphological, mineralogical, chemical and toxicological properties of various size fractions of the atmospheric particulate matter was a main focus of this study together with an assessment of the human health risks they pose. Even though near-ground atmospheric aerosols have been a subject of intensive research in recent years, data integrating chemical composition of particles and health risks are still scarce and the particle size aspect has not been properly addressed yet. Filling this gap, however, is necessary for reliable risk assessment. A high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts. Finally, the risk level for inhalation exposure associated to the carcinogenic character of the studied PAHs has been assessed. The finest fraction (<0.45 μm) exhibited the highest mass, highest active surface, highest amount of associated PAHs and also highest direct and indirect genotoxic potentials in our model air sample. Risk assessment of inhalation scenario indicates the significant cancer risk values in PM 1.5 size fraction. This presented new approach proved to be a useful tool for human health risk assessment in the areas with significant levels of air dust concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures.

    PubMed

    Stawarczyk, Bogna; Lümkemann, Nina; Eichberger, Marlis; Wimmer, Timea

    2017-12-19

    The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL)-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D) software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x -, y - and z -axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the vicinity of the denture teeth area and the bases. The conventional transfer of CAD/CAM-fabricated wax dentures into acrylic resin leads to the highest deviations from the STL-reference.

  3. Capability of Integrated MODIS Imagery and ALOS for Oil Palm, Rubber and Forest Areas Mapping in Tropical Forest Regions

    PubMed Central

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-01-01

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions. PMID:24811079

  4. Capability of integrated MODIS imagery and ALOS for oil palm, rubber and forest areas mapping in tropical forest regions.

    PubMed

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-05-07

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.

  5. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  6. Antifungal activity of gold nanoparticles prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less

  7. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  8. Mapping Vegetation Community Types in a Highly-Disturbed Landscape: Integrating Hiearchical Object-Based Image Analysis with Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Snavely, Rachel A.

    Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.

  9. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation

    NASA Astrophysics Data System (ADS)

    Keep, Myra; Hansen, Vicki L.

    1994-12-01

    Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.

  10. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario.

    PubMed

    Iqubal, Md Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-03-27

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), copper ferrite (CuFe₂O₄), zinc ferrite (ZnFe₂O₄), and manganese ferrite (MnFe₂O₄) nanoparticles surfaces, in the temperature range from 50-120 °C for 1-35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe₂O₄ produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe₂O₄ was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C.

  11. Thermal Condensation of Glycine and Alanine on Metal Ferrite Surface: Primitive Peptide Bond Formation Scenario

    PubMed Central

    Iqubal, Md. Asif; Sharma, Rachana; Jheeta, Sohan; Kamaluddin

    2017-01-01

    The amino acid condensation reaction on a heterogeneous mineral surface has been regarded as one of the important pathways for peptide bond formation. Keeping this in view, we have studied the oligomerization of the simple amino acids, glycine and alanine, on nickel ferrite (NiFe2O4), cobalt ferrite (CoFe2O4), copper ferrite (CuFe2O4), zinc ferrite (ZnFe2O4), and manganese ferrite (MnFe2O4) nanoparticles surfaces, in the temperature range from 50–120 °C for 1–35 days, without applying any wetting/drying cycles. Among the metal ferrites tested for their catalytic activity, NiFe2O4 produced the highest yield of products by oligomerizing glycine to the trimer level and alanine to the dimer level, whereas MnFe2O4 was the least efficient catalyst, producing the lowest yield of products, as well as shorter oligomers of amino acids under the same set of experimental conditions. It produced primarily diketopiperazine (Ala) with a trace amount of alanine dimer from alanine condensation, while glycine was oligomerized to the dimer level. The trend in product formation is in accordance with the surface area of the minerals used. A temperature as low as 50 °C can even favor peptide bond formation in the present study, which is important in the sense that the condensation process is highly feasible without any sort of localized heat that may originate from volcanoes or hydrothermal vents. However, at a high temperature of 120 °C, anhydrides of glycine and alanine formation are favored, while the optimum temperature for the highest yield of product formation was found to be 90 °C. PMID:28346388

  12. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study period. Groundwater flows simulated using daily time steps over a 10-year period were used to describe the relationship between climate, the size of the groundwater catchment, and the relative importance of groundwater inflow to the lake water budget. Modeling approaches used in this study should be applicable to other surface-water bodies such as wetlands and playa lakes. Lake Starr watershed (depressions from sinkholes)

  13. Scanning electron microscope comparative surface evaluation of glazed-lithium disilicate ceramics under different irradiation settings of Nd:YAG and Er:YAG lasers.

    PubMed

    Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij

    2018-01-01

    To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.

  14. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    PubMed

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  15. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    PubMed

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  16. 76 FR 13289 - Approval of One-Year Extension for Attaining the 1997 8-Hour Ozone Standard in the Baltimore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ...). This extension is based on the air quality data for the 4th highest daily 8-hour monitored value during... first one-year extension, the area's 4th highest daily 8-hour average in the attainment year is 0.084 parts per million (ppm) or less. (b) For the second one-year extension, the area's 4th highest daily 8...

  17. The effect of urban heat island on Izmir's city ecosystem and climate.

    PubMed

    Corumluoglu, Ozsen; Asri, Ibrahim

    2015-03-01

    Depending on the researches done on urban landscapes, it is found that the heat island intensity caused by the activities in any city has some impact on the ecosystem of the region and on the regional climate. Urban areas located in arid and semiarid lands somehow represent heat increase when it is compared with the heat in the surrounding rural areas. Thus, cities located amid forested and temperate climate regions show moderate temperatures. The impervious surfaces let the rainfall leave the city lands faster than undeveloped areas. This effect reduces water's cooling effects on these lands. More significantly, if trees and other vegetations are rare in any region, it means less evapotranspiration-the process by which trees "exhale" water. Trees also contribute to the cooling of urban lands by their shade. Land cover and land use maps can easily be produced by processing of remote sensing satellites' images, like processing of Landsat's images. As a result of this process, urban regions can be distinguished from vegetation. Analyzed GIS data produced and supported by these images can be utilized to determine the impact of urban land on energy, water, and carbon balances at the Earth's surface. Here in this study, it is found that remote sensing technique with thermal images is a liable technique to asses where urban heat islands and hot spots are located in cities. As an application area, in Izmir, it was found that the whole city was in high level of surface temperature as it was over 28 °C during the summer times. Beside this, the highest temperature values which go up to 47 °C are obtained at industrial regions especially where the iron-steel factories and the related industrial activities are.

  18. Assessment of Environmental Contamination with Pathogenic Bacteria at a Hospital Laundry Facility.

    PubMed

    Michael, Karen E; No, David; Daniell, William E; Seixas, Noah S; Roberts, Marilyn C

    2017-11-10

    Little is known about exposure to pathogenic bacteria among industrial laundry workers who work with soiled clinical linen. To study worker exposures, an assessment of surface contamination was performed at an industrial laundry facility serving hospitals in Seattle, WA, USA. Surface swab samples (n = 240) from the environment were collected during four site visits at 3-month intervals. These samples were cultured for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Voluntary participation of 23 employees consisted of nasal swabs for detection of MRSA, observations during work, and questionnaires. Contamination with all three pathogens was observed in both dirty (laundry handling prior to washing) and clean areas (subsequent to washing). The dirty area had higher odds of overall contamination (≥1 pathogen) than the clean area (odds ratio, OR = 18.0, 95% confidence interval 8.9-36.5, P < 0.001). The odds of contamination were high for each individual pathogen: C. difficile, OR = 15.5; MRSA, OR = 14.8; and VRE, OR = 12.6 (each, P < 0.001). The highest odds of finding surface contamination occurred in the primary and secondary sort areas where soiled linens were manually sorted by employees (OR = 63.0, P < 0.001). The study substantiates that the laundry facility environment can become contaminated by soiled linens. Workers who handle soiled linen may have a higher risk of exposure to C. difficile, MRSA, and VRE than those who handle clean linens. Improved protocols for prevention and reduction of environmental contamination were implemented because of this study. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  20. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality

    USGS Publications Warehouse

    Alpers, Charles N.; Fleck, Jacob A.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Stephenson, Mark; Taylor, Howard E.

    2014-01-01

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37 ng L−1 unfiltered; 0.04 to 7.3 ng L−1 filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4 2 −/Cl− ratio, and δ34S in aqueous sulfate. These relationships suggest that microbial reduction of SO4 2−, Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.

  1. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Oyola, Y.; Mayes, Richard T.

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked withmore » 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.« less

  2. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  3. Analysis of pesticides in surface water and sediment from Yolo Bypass, California, 2004-2005

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.; Kuivila, Kathryn

    2005-01-01

    Inputs to the Yolo Bypass are potential sources of pesticides that could impact critical life stages of native fish. To assess the direct inputs during inundation, pesticide concentrations were analyzed in water, in suspended and bed-sediment samples collected from six source watersheds to the Yolo Bypass, and from three sites within the Bypass in 2004 and 2005. Water samples were collected in February 2004 from the six input sites to the Bypass during the first flood event of the year representing pesticide inputs during high-flow events. Samples were also collected along a transect across the Bypass in early March 2004 and from three sites within the Bypass in the spring of 2004 under low-flow conditions. Low-flow data were used to understand potential pesticide contamination and its effects on native fish if water from these areas were used to flood the Bypass in dry years. To assess loads of pesticides to the Bypass associated with suspended sediments, large-volume water samples were collected during high flows in 2004 and 2005 from three sites, whereas bed sediments were collected from six sites in the fall of 2004 during the dry season. Thirteen current-use pesticides were detected in surface water samples collected during the study. The highest pesticide concentrations detected at the input sites to the Bypass corresponded to the first high-flow event of the year. The highest pesticide concentrations at the two sites sampled within the Bypass during the early spring were detected in mid-April following a major flood event as the water began to subside. The pesticides detected and their concentrations in the surface waters varied by site; however, hexazinone and simazine were detected at all sites and at some of the highest concentrations. Thirteen current-use pesticides and three organochlorine insecticides were detected in bed and suspended sediments collected in 2004 and 2005. The pesticides detected and their concentrations varied by site and sediment sample type. Trifluralin, p,p'-DDE, and p,p'-DDT were highest in the bed sediments, whereas oxyfluorfen and thiobencarb were highest in the suspended sediments. With the exception of the three organochlorine insecticides, suspended sediments had higher pesticide concentrations compared with bed sediments, indicating the potential for pesticide transport throughout the Bypass, especially during high-flow events. Understanding the distribution of pesticides between the water and sediment is needed to assess fate and transport within the Bypass and to evaluate the potential effects on native fish.

  4. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    NASA Astrophysics Data System (ADS)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (<600 m) on both sides of the KP canyon. The area with high sedimentation rates on Pb-210 time scale coincides with the area covered by a flood layer resulting from Typhoon Haitang during July 18-20, 2005. This suggests that the open margin on the upper slope is a depocenter for sediment dispersed via a surface component of the river's plume on various timescales (from events to centennial). With a total of 76 sampling points laid out, a framework consisting of 105 triangular grids is configured to calculate the budget of sediment in the study area. The calculated budget, at 7.2 MT/yr, accounts for only ~15% of KP river's sediment discharge. We speculate that most of the remainder is exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  5. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  6. Edge Length and Surface Area of a Blank: Experimental Assessment of Measures, Size Predictions and Utility

    PubMed Central

    Dogandžić, Tamara; Braun, David R.; McPherron, Shannon P.

    2015-01-01

    Blank size and form represent one of the main sources of variation in lithic assemblages. They reflect economic properties of blanks and factors such as efficiency and use life. These properties require reliable measures of size, namely edge length and surface area. These measures, however, are not easily captured with calipers. Most attempts to quantify these features employ estimates; however, the efficacy of these estimations for measuring critical features such as blank surface area and edge length has never been properly evaluated. In addition, these parameters are even more difficult to acquire for retouched implements as their original size and hence indication of their previous utility have been lost. It has been suggested, in controlled experimental conditions, that two platform variables, platform thickness and exterior platform angle, are crucial in determining blank size and shape meaning that knappers can control the interaction between size and efficiency by selecting specific core angles and controlling where fracture is initiated. The robustness of these models has rarely been tested and confirmed in context other than controlled experiments. In this paper, we evaluate which currently employed caliper measurement methods result in the highest accuracy of size estimations of blanks, and we evaluate how platform variables can be used to indirectly infer aspects of size on retouched artifacts. Furthermore, we investigate measures of different platform management strategies that control the shape and size of artifacts. To investigate these questions, we created an experimental lithic assemblage, we digitized images to calculate 2D surface area and edge length, which are used as a point of comparison for the caliper measurements and additional analyses. The analysis of aspects of size determinations and the utility of blanks contributes to our understanding of the technological strategies of prehistoric knappers and what economic decisions they made during process of blank production. PMID:26332773

  7. Deconvolution analysis of 24-h serum cortisol profiles informs the amount and distribution of hydrocortisone replacement therapy.

    PubMed

    Peters, Catherine J; Hill, Nathan; Dattani, Mehul T; Charmandari, Evangelia; Matthews, David R; Hindmarsh, Peter C

    2013-03-01

    Hydrocortisone therapy is based on a dosing regimen derived from estimates of cortisol secretion, but little is known of how the dose should be distributed throughout the 24 h. We have used deconvolution analysis of 24-h serum cortisol profiles to determine 24-h cortisol secretion and distribution to inform hydrocortisone dosing schedules in young children and older adults. Twenty four hour serum cortisol profiles from 80 adults (41 men, aged 60-74 years) and 29 children (24 boys, aged 5-9 years) were subject to deconvolution analysis using an 80-min half-life to ascertain total cortisol secretion and distribution throughout the 24-h period. Mean daily cortisol secretion was similar between adults (6.3 mg/m(2) body surface area/day, range 5.1-9.3) and children (8.0 mg/m(2) body surface area/day, range 5.3-12.0). Peak serum cortisol concentration was higher in children compared with adults, whereas nadir serum cortisol concentrations were similar. Timing of the peak serum cortisol concentration was similar (07.05-07.25), whereas that of the nadir concentration occurred later in adults (midnight) compared with children (22.48) (P = 0.003). Children had the highest percentage of cortisol secretion between 06.00 and 12.00 (38.4%), whereas in adults this took place between midnight and 06.00 (45.2%). These observations suggest that the daily hydrocortisone replacement dose should be equivalent on average to 6.3 mg/m(2) body surface area/day in adults and 8.0 mg/m(2) body surface area/day in children. Differences in distribution of the total daily dose between older adults and young children need to be taken into account when using a three or four times per day dosing regimen. © 2012 Blackwell Publishing Ltd.

  8. Diffuse helium and hydrogen degassing to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Pérez, Nemesio M.; Padrón, Eleazar; Dionis, Samara; López, Gabriel; Melián, Gladys V.; Asensio-Ramos, María; Hernández, Pedro A.; Padilla, German; Barrancos, José; Marrero, Rayco; Hidalgo, Raúl

    2015-04-01

    During geothermal exploration, the geochemical methods are extensively used and play a major role in both exploration and exploitation phases. They are particularly useful to assess the subsurface temperatures in the reservoir, the origin of the fluid, and flow directions within the reservoir. The geochemical exploration is based on the assumption that fluids on the surface reflect physico-chemical and thermal conditions in the geothermal reservoir at depth. However, in many occasions there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system. Discovery of new geothermal systems will therefore require exploration of areas where the resources are either hidden or lie at great depths. Geochemical methods for geothermal exploration at these areas must include soil gas surveys, based on the detection of anomalously high concentrations of some hydrothermal gases in the soil atmosphere, generally between 40 cm and 1 meter depth from the surface. Among soil gases, particularly interest has been addressed to non-reactive and/or highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. This is the case of helium (He) and hydrogen (H2), that have unique characteristics as a geochemical tracer, owing to their chemical and physical characteristics. Enrichments of He and H2 observed in the soil atmosphere can be attributed almost exclusively to migration of deep-seated gas toward the surface. In this work we show the results of soil gas geochemistry studies, focused mainly in non-reactive and/or highly mobile gases as He and H2, in five minning grids at Tenerife and Gran Canaria, Canay Islands, Spain, during 2011-2014. The primary objective was to use different geochemical evidences of deep-seated gas emission to sort the possible geothermal potential in five minning grids, thus reducing the uncertainty inherent to the selection of the area with the highest success in the selection of future exploratory wells. By combining the overall information obtained by statistical-graphical analysis of the soil He and H2 data, visual inspection of their spatial distribution and analysis of some interesting chemical ratios, two of the five minning licenses, located at the southern and western parts of Tenerife Islands, seemed to show the highest geothermal potential of the five mining grids studied. These results will be useful for future implementation and development of geothermal energy in the Canaries, the only Spanish territory with potential high enthalpy geothermal resources.

  9. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies.

    PubMed

    López de Dicastillo, Carol; Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela; Escrig, Juan

    2018-02-24

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration.

  10. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

    PubMed Central

    Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela

    2018-01-01

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318

  11. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    NASA Astrophysics Data System (ADS)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  12. Apollo 11 stereo view showing lump of surface powder with glassy material

    NASA Image and Video Library

    1969-07-20

    AS11-45-6704 (20 July 1969) --- An Apollo stereo view showing a close-up of a small lump of lunar surface powder about a half inch across, with a splash of a glassy material over it. It seems that a drop of molten material fell on it, splashed and froze. The exposure was made by the Apollo 11 35mm stereo close-up camera. The camera was specially developed to get the highest possible resolution of a small area. A three-inch square area is photographed with a flash illumination and at a fixed distance. The camera is mounted on a walking stick, and the astronauts use it by holding it up against the object to be photographed and pulling the trigger. The pictures are in color and give a stereo view, enabling the fine detail to be seen very clearly. The project is under the direction of Professor T. Gold of Cornell University and Dr. F. Pearce of NASA. The camera was designed and built by Eastman Kodak. Professor E. Purcell of Harvard University and Dr. E. Land of the Polaroid Corporation have contributed to the project. The pictures brought back from the moon by the Apollo 11 crew are of excellent quality and allow fine detail of the undisturbed lunar surface to be seen. Scientists hope to be able to deduce from them some of the processes that have taken place that have shaped and modified the surface.

  13. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-08-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur is also highest at coastal sites, with increasing values as a function of normalized difference vegetation index and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements, and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 µm at a desert and coastal site with nearly all MSA mass (≥84%) in submicrometer sizes; MSA:non-sea-salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.

  14. How does vineyard management intensity affect inter-row plant diversity and associated root parameters

    NASA Astrophysics Data System (ADS)

    Winter, Silvia; Labuda, Thomas; Probus, Sandra; Penke, Nicole; Himmelbauer, Margarita; Loiskandl, Willibald; Strauss, Peter; Bauer, Thomas; Popescu, Daniela; Comsa, Maria; Bunea, Claudiu-Ioan; Zaller, Johann G.; Kriechbaum, Monika

    2017-04-01

    Vineyard management has changed dramatically in the last 50 years. In many wine-growing regions, vineyard inter-rows are kept clean of vegetation by frequent tillage or use of herbicides to establish bare soil systems. In the last thirty years, policy-makers and several winegrowers have realized that temporary or permanent vegetation cover between the vine rows may increase ecosystem services like soil erosion mitigation, soil fertility and biodiversity conservation. The inter-row area of a vineyard can host a diverse flora providing habitat and food resources for pollinating insects and natural enemies of pests. The goal of this study was to analyze the influence of different soil management intensities on plant diversity and root parameters in the vineyard inter-rows. We investigated 15 vineyards in Romania and 14 in Austria to study the effects of three different management intensities on plant diversity, above and below-ground plant biomass, total root length and surface area of roots. Management intensity ranged from bare soil inter-rows to alternative soil tillage every second year to permanent vegetation cover for more than five years. In each vineyard inter-row, six soil samples (7 cm diameter and 10 cm height) of the upper soil layer were extracted for root analyses. Root were separated from the soil, stained and finally scanned and analyzed with the WinRHIZO software. Finally, roots were dried at 70°C to obtain dry matter of the root samples. Vegetation cover and vascular plant diversity was recorded in four 1 m2 plots within each vineyard inter-row two times a year. The most intensive bare soil management regime in Romania significantly reduced root biomass, total root length and surface area in comparison to the alternative and permanent vegetation cover management. Plant biodiversity was also reduced by intensive management, but differences were not significant. While alternative tillage every second year showed the highest values of plant species diversity and functional richness, total root length, surface area and root biomass always showed the highest value in the vineyards with permanent vegetation cover. In Austria, the difference between temporary and permanent vegetation cover was much less pronounced than in Romania. The overall synthesis of these results combined with additional biodiversity datasets and soil parameters gathered within the transdisciplinary BiodivERsA project VineDivers will be used to draft management and policy recommendations for various stakeholder groups engaged in viticulture.

  15. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface-water stations that have water-quality data, only one has chemical analyses from more than 10 samples. Therefore, sufficient data to characterize the area in detail are not available. Suspended sediment data are available only for a few surface- water stations in the area. Erosion rates generally are less than 1 acre-foot per square mile per year. Greater erosion rates are found within the badland areas. Water levels are periodically measured at 21 selected wells in Area 62. These observation wells are located mostly along the Rio San Jose and northeast of Gallup, New Mexico. The recharge to ground-water aquifers generally coincide with areas of greater precipitation in the mountainous areas. Depth to water below land surface is generally less than 200 feet. Well yields of 100 gallons per minute are common in most of the area. Ground-water quality is variable both within each aquifer and between aquifers. Water quality generally is best near recharge areas. Historical and current data related to stream discharge, water quality, and suspended sediment are available from computer files in the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) and through the National Water Data Exchange (NAWDEX).

  16. Patterning of graphene for flexible electronics with remote atmospheric-pressure plasma using dielectric barrier

    NASA Astrophysics Data System (ADS)

    Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon

    2016-08-01

    We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C-O bonding at 1240 cm-1, the peak intensity at 1710 cm-1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.

  17. Trace DNA Sampling Success from Evidence Items Commonly Encountered in Forensic Casework.

    PubMed

    Dziak, Renata; Peneder, Amy; Buetter, Alicia; Hageman, Cecilia

    2018-05-01

    Trace DNA analysis is a significant part of a forensic laboratory's workload. Knowing optimal sampling strategies and item success rates for particular item types can assist in evidence selection and examination processes and shorten turnaround times. In this study, forensic short tandem repeat (STR) casework results were reviewed to determine how often STR profiles suitable for comparison were obtained from "handler" and "wearer" areas of 764 items commonly submitted for examination. One hundred and fifty-five (155) items obtained from volunteers were also sampled. Items were analyzed for best sampling location and strategy. For casework items, headwear and gloves provided the highest success rates. Experimentally, eyeglasses and earphones, T-shirts, fabric gloves and watches provided the highest success rates. Eyeglasses and latex gloves provided optimal results if the entire surfaces were swabbed. In general, at least 10%, and up to 88% of all trace DNA analyses resulted in suitable STR profiles for comparison. © 2017 American Academy of Forensic Sciences.

  18. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    PubMed

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.

    PubMed

    Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora

    2011-10-01

    This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.

  20. Wire Roughness Assessment of 0.016'' × 0.022'' the Technique Lingual Orthodontics.

    PubMed

    Facchini, Fátima Mm; Filho, Mario Vedovello; Vedovello, Silvia As; Cotrim, Flávio A; Cotrim-Ferreira, Andrຟa; Tubel, Carlos Am

    2017-04-01

    To evaluate the difference in surface roughness of stainless steel archwires of different commercial brands used in lingual orthodontics. Precontoured arches measuring 0.016'' × 0.022'' were selected of the following brands: Tecnident, Adenta, G&H, Highland Metals Inc., Ormco, Incognito, and Ebraces. Quantitative evaluation of the surface roughness of archwires was performed by means of an atomic force microscope in contact mode. Three surface readouts were taken of each sample, analyzing areas of 20 × 20 μm. Each scan of the samples produced a readout of 512 lines, generating three-dimensional images of the wires. The analysis of variance statistical test was applied to prove significant variables (p > 0.05), with H 0 being rejected and H 1 accepted. The Incognito brand showed the lowest surface roughness. The archwires of brands Adenta, Tecnident, Highland, and Ormco showed similar values among them, and all close to these obtained by the Incognito brand. The archwires of the Ebraces brand showed the highest surface roughness, with values being close to those of the G&H Brand. There was a statistical difference in surface roughness of orthodontic archwires among the brands studied. Companies should pay attention to the quality control of their materials, as these may directly affect the quality of orthodontic treatment.

  1. Mechanical response of dental cements as determined by nanoindentation and scanning electron microscopy.

    PubMed

    Saghiri, Mohammad Ali; Nazari, Amir; Garcia-Godoy, Franklin; Asatourian, Armen; Malekzadeh, Mansour; Elyasi, Maryam

    2013-12-01

    This study evaluated the effects of nanoindentation on the surface of white mineral trioxide aggregate (WMTA), Bioaggregate and Nano WMTA cements. Cements were mixed according to the manufacturer directions, condensed inside glass tubes, and randomly divided into three groups (n = 8). Specimens were soaked in synthetic tissue fluid (pH = 7.4) and incubated for 3 days. Cement pellets were subjected to nanoindentation tests and observed by scanning electron microscopy. Then, the images were processed and the number of cracks and total surface area of defects on the surface were calculated and analyzed using ImageJ. Data were submitted to one-way analysis of variance and a post hoc Tukey's test. The lowest number of cracks and total surface of defects were detected in Nano WMTA samples; however, it was not significantly different from WMTA samples (p = 0.588), while the highest values were noticed in Bioaggregate specimens that were significantly different from Nano WMTA and WMTA (p = 0.0001). The surface of WMTA and Nano WMTA showed more resistance after exposure to nano-compressive forces which indicated a better surface tolerance against these forces and crack formation. This suggests these substances are more tolerant cement materials which can predictably withstand loaded situations in a clinical scenario.

  2. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.

    PubMed

    Mohamed, Badr A; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao

    2017-11-01

    Microwave-assisted catalytic pyrolysis was investigated using K 3 PO 4 and clinoptilolite to enhance biochar sorption affinity for heavy metals. The performance of resulting biochar samples was characterized through their effects on plant growth, bioavailability, phytotoxicity, and uptake of heavy metals in a sandy soil contaminated with Pb, Ni, and Co. The produced biochars have high cation-exchange capacity (CEC) and surface area, and rich in plant nutrients, which not only reduced heavy metals (Pb, Ni, and Co), bioavailability and phytotoxicity, but also increased plant growth rate by up to 145%. The effectiveness of biochar in terms of reduced phytotoxicity and plant uptake of heavy metals was further improved by mixing K 3 PO 4 and clinoptilolite with biomass through microwave pyrolysis. This may be due to the predominance of different mechanisms as 10KP/10Clino biochar has the highest micropore surface area (405 m 2 /g), high concentrations of K (206 g/kg), Ca (26.5 g/kg), Mg (6.2 g/kg) and Fe (11.9 g/kg) for ion-exchange and high phosphorus content (79.8 g/kg) for forming insoluble compounds with heavy metals. The largest wheat shoot length (143 mm) and lowest extracted amounts of Pb (107 mg/kg), Ni (2.4 mg/kg) and Co (63.9 mg/kg) were also obtained by using 10KP/10Clino biochar at 2 wt% load; while the smallest shoot length (68 mm) and highest extracted amounts of heavy metals (Pb 408 mg/kg, Ni 15 mg/kg and Co 148 mg/kg) for the samples treated with biochars were observed for soils mixed with 1 wt% 10Clino biochar. Strong negative correlations were also observed between biochar micropore surface area, CEC and the extracted amounts of heavy metals. Microwave-assisted catalytic pyrolysis of biomass has a great potential for producing biochar with high sorption affinity for heavy metals and rich nutrient contents using properly selected catalysts/additives that can increase microwave heating rate and improve biochar and bio-oil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The summit part of Mount Etna revealed by High Resolution DC Electrical Resistivity Tomography coupled with complementary geophysical and soil gas techniques

    NASA Astrophysics Data System (ADS)

    Finizola, Anthony; Ricci, Tullio; Antoine, Raphael; Delcher, Eric; Peltier, Aline; Bernard, Julien; Brothelande, Elodie; Fargier, Yannick; Fauchard, Cyrille; Foucart, Brice; Gailler, Lydie; Gusset, Rachel; Lazarte, Ivonne; Martin, Erwan; Mézon, Cécile; Portal, Angélie; Poret, Matthieu; Rossi, Matteo

    2016-04-01

    In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes", one profile coupling DC electrical resistivity tomography (Pole-Dipole configuration with a remote electrode located between 8-10 km from the middle of the different acquisitions, 64 electrodes and 40 m spacing between the electrodes), self-potential, soil CO2 degassing, Radon measurements and sub-surface (30cm depth) temperature have been performed between June 25th and July 13th 2015. This profile, NE-SW direction, crossed the summit part of Mount Etna. A total 5720m of profile was performed, with a roll along protocol of 1/4 of the dispositive, for each new acquisitions. A total of 6 acquisitions was made to complete the entire profile. For the first time in the world, a multi-electrodes DC ERT profile, of high resolution (40 m of spacing between the electrodes) reached, thanks to a pole-dipole configuration, 900m for the depth of investigation. The ERT profile clearly evidences the hydrothermal system of Mount Etna: the lowest resistivity values are associated with a large scale positive self-potential anomaly, and smaller wavelength anomalies for temperature, CO2 concentration and Radon, in the area where the electrical conductor reach the surface. Structural discontinuities such as the Elliptic crater, was clearly evidenced by a sharp decrease of the self-potential values in the inner part of this crater. The striking result of this profile is the presence of a resistive body located just below the NE crater. This structure displays the highest degassing values of the entire profile. We interpret this resistive body as a consequence of the thermic over-heated plume rising from the top of the shallow feeding system. Indeed, above several hundred of degrees Celsuis, it is impossible to consider rain water infiltration and the presence of a wet hydrothermal system. The consequence would be therefore to obtain this resistive body, centred on the area of main heat transfer. Above this resistive body, we clearly note a preferential hydrothermal fluid flow, associated with maximum of self-potential anomaly, temperature and radon, and reaching the surface on the highest elevation area along the profile.

  4. Model tests for the efficacy of disinfectants on surfaces. IV. Communication: dependence of test results on the amount of contamination and the kind of active substance.

    PubMed

    Peters, J; Spicher, G

    1998-12-01

    In the assessment of efficacy of surface disinfectants, many influencing factors have to be taken into account. One essential item is whether the surface to be disinfected is clean or soiled. Among the feasible soilings, the blood is of particular consequences because it ads impediments to many disinfecting agents. This paper shows to what extent the impairment of the efficacy of typical active agents depends on the blood burden of the surfaces. Therefore, test surfaces (varnished plywood) were contaminated with 0.01 to 0.08 ml of coagulating blood per test area (3 cm2). The blood contained cells of Staphylococcus aureus as test germs. The disinfection was effected by immersing the test objects in the disinfecting solution for 5 seconds and mingling the adhering disinfecting solution (about 0.02 ml) with the coagulated blood on the test surface with a glass spatula for about 20 seconds. Subsequently, the test objects remained in a horizontal position at room conditions for 4 hours and then the numbers of surviving test germs were determined. The graphical representation of the results shows that the efficacy curves of formaldehyde and phenol lie very closely together, i.e. their effect is hardly impaired by the different blood burdens of the test areas. The efficacy curves of glutaraldehyde, peracetic acid, chloramine T, and quaternary ammonium compounds lie very far apart from each other. To achieve the same microbicidal effect (log N/N0 = -5) when the contaminating amount is raised from 10 microliters/3 cm2 to 80 microliters/3 cm2, the concentration of chloramine T has to be raised by a factor of 5.4, peracetic acid by a factor of 9, glutaraldehyde by a factor of 24, quaternary ammonium compound even by a factor of 67. Ethanol and sodium hypochlorite showed a divergent behaviour. For ethanol, the efficacy diminution produced by increasing the contamination amount by a factor of 4 can be compensated by raising the concentration from 50% to about 70%. But again and again, there were test objects on which the number of germs able to reproduce had only been lowered by a factor of about 10(-3). At the highest contamination of 80 microliters/3 cm2, even 95% ethanol proved to be completely insufficient. With sodium hypochlorite even at the lowest contamination of 10 microliters/3 cm2, a microbicidal effect of only about 10(-5) was obtained. With increasing contamination, the highest achievable microbicidal effect clearly decreased. It is remarkable that the microbicidal effect of this active agent decreased with increasing concentrations. The results show how important it is in testing the efficacy of disinfecting agents to exactly lay down the amount of contaminating substances. To find out how safely an agent works under harder circumstances, the dependence of the microbicidal effect from the amount of contaminating substances per test area has to be determined.

  5. Mapping the Spatial Distribution of CO2 release from Kīlauea Volcano, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Elias, T.; Werner, C. A.; Kern, C.; Sutton, A. J.; Hauri, E. H.; Kelly, P. J.

    2014-12-01

    Kīlauea Volcano is a large emitter of volcanic CO2 with emission rates ranging from 7500-30,000 t/d. However, Kīlauea presents a challenging situation for CO2 emission rate measurement in that the main source of SO2 is the active vent in Halema'uma'u Crater, whereas CO2 emits mainly from a large (> 1km2) diffuse region east of the vent. Previous researchers recognized this issue and advocated for the use of a plume-integrated concentration ratio paired with the SO2 emission to determine CO2 emission rates; however, this worked best prior to the opening of the summit vent in 2008, or when SO2emission was still diffuse as opposed to focused degassing from the vent. We used two techniques to study the spatial distribution and temporal variability of CO2 release from the summit caldera in July, 2014. Eddy covariance measurements made at 14 locations in the area of diffuse emission resulted in elevated fluxes that generally ranged from 500 to > 5000 g/m2d, or typical of other volcanic and hydrothermal areas worldwide. MultiGas measurements of the CO2 and SO2 concentration in air at 1-m above the ground identified approximately seven areas of elevated area of CO2 degassing in the caldera. The CO2 concentrations in air were spatially well correlated to approximately 100 m and displayed anisotropy that was consistent with the measured wind direction. Areas of highest CO2 concentration correlated with the areas of highest flux using the eddy covariance method and were found near the middle of the caldera approximately 1 km NE of the active vent. This area overlies the inferred location of the shallow summit reservoir, and is characterized by linear fractures with adhered sublimate deposits at the surface. A few of the fractures are visibly fuming, but much of the degassing in the area is not apparent. Future work includes monitoring the fluxes in this area over time, and attempting to quantify emission rates from the areas of measured flux.

  6. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    USGS Publications Warehouse

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface partly occupied by fresh-water lakes and marshes. Elsewhere in southern Florida the deposits are mainly limestone and sandy terrace deposits. The Pliocene surface upon which there Pleistocene sediments were deposited was highest to the north and west of the present Everglades and Kissimmee River basin, and it sloped gently to the south, southeast, and east. On this slightly sloping floor, alternately submerged and emerged, the later materials were built; these materials, modified by wind, rain, and surface and ground waters. Have largely determined the present topographic and ecologic character of southern Florida. The most important aquifer in southern Florida, and the one in which most of the wells are developed, is the Biscayne aquifer. It is composed of parts of the Tamiami formation (Miocene), Caloosahatchee marl (Pliocene), fort Thompson formation, Anastasia formation, Key Largo limestone, Miami oolite, and Pamlico sand (Pleistoncene). In some parts of southern Florida, the Pamlico sand and the Anastasia formation are not a part of the Biscayne aquifer; however, they are utilized in the development of small water supplies. Most of the Calossahatchee marl and the Fort Thompson formation in the Lake Okeechobeee area is of very low permeability. In the northern Everglades their less permeable parts contain highly mineralized waters, which appear to have been trapped since the invasions by the Pleistocene seas. These waters have been modified by dilution with fresh ground water and by chemical reactions with surrounding materials. Sea-level fluctuations, starting at the close of the Pliocene with highest levels and progressing toward the Recent with successively lower levels. Have built a series of nearly flat marine terraces abutting against one another much like a series of broad stairsteps. Erosion and solution have deface and, in places, have obliterated the original surficial forms of these old sea bottoms, shores, and shoreline feathers,

  7. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a local scale. Information on the functional mechanisms linking porpoise distribution to static and dynamic physical habitat variables is extremely valuable to the monitoring and management of the species within the context of European conservation policies and marine renewable energy infrastructure development.

  8. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter.

  9. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biofilms associated with poultry processing equipment.

    PubMed

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  11. Measuring pesticides in surface waters - continuous versus event-based sampling design

    NASA Astrophysics Data System (ADS)

    Eyring, J.; Bach, M.; Frede, H.-G.

    2009-04-01

    Monitoring pesticides in surface waters is still a work- and cost-intensive procedure. Therefore, studies are normally carried out with a low monitoring frequency or with only a small selection of substances to be analyzed. In this case, it is not possible to picture the high temporal variability of pesticide concentrations, depending on application dates, weather conditions, cropping seasons and other factors. In 2007 the Institute of Landscape Ecology and Resource Management at Giessen University implemented a monitoring program during two pesticide application periods aiming to produce a detailed dataset of pesticide concentration for a wide range of substances, and which would also be suitable for the evaluation of catchment-scale pesticide exposure models. The Weida catchment in Thuringia (Eastern Germany) was selected as study area due to the availability of detailed pesticide application data for this region. The samples were taken from the river Weida at the gauge Zeulenroda, where it flows into a drinking water reservoir. The catchment area is 102 km². 67% of the area are in agricultural use, the main crops being winter wheat, maize, winter barley and winter rape. Dominant soil texture classes are loamy sand and loamy silt. About one third of the agricultural area is drained. The sampling was carried out in cooperation with the water supply agency of Thuringia (Fernwasserversorgung Thueringen). The sample analysis was done by the Institute of Environmental Research at Dortmund University. Two sampling schemes were carried out using two automatic samplers: continuous sampling with composite samples bottled two times per week and event-based sampling triggered by a discharge threshold. 53 samples from continuous sampling were collected. 19 discharge events were sampled with 45 individual samples (one to six per event). 34 pesticides and two metabolites were analyzed. 21 compounds were detected, nine of which having concentrations above the drinking water limit (0.1 µg/l). Pesticide loads were calculated separately from continuous and event-based samples. Only three pesticides dominated the total load. These were the herbicides metazachlor, terbuthylazine and quinmerac amounting to 75 % of the total load. This result seems to be plausible considering the fact that these three substances are the pesticides with the highest applied amounts in the Weida catchment. The highest pesticide loads of single pesticides were observed during or shortly after their application period, mostly accompanied by larger discharge events. They can be explained as surface runoff and drainage inputs from treated fields, since spray-drift inputs would be detected during the application periods without dependency on discharge events, and inputs from point-sources are usually independent of discharge as well. Annual loads calculated from continuous samples were mainly higher than those of event-based samples due to the fact that they represent a much longer time period. On the other hand, the highest concentrations were found in the event-based samples; in many cases they double the maximum concentrations of continuous samples. The monitoring study presented shows that different sampling strategies lead to different results and can answer different questions. If the intention is to detect maximum concentrations caused by surface runoff or drainage inputs, e.g. to assess the resulting risk to the aquatic community, the event based sampling method can be recommended. If one is rather interested in calculating annual pesticide loads and assessing which fractions of applied amounts finally enter the surface water network, continuous sampling is advisable. The dataset of continuous and event-based pesticide concentrations offers the possibility to evaluate and improve pesticide exposure models at the catchment scale. Further work is scheduled on this issue.

  12. Hydrothermally grown β-V₂O₅ electrode at 95°C.

    PubMed

    Vernardou, D; Apostolopoulou, M; Louloudakis, D; Katsarakis, N; Koudoumas, E

    2014-06-15

    The hydrothermal growth of crystalline β-V2O5 microstructures was performed on fluorine doped tin dioxide glass substrates using oxalic acid to adjust the pH of the solution for various deposition periods. It was observed that the sample grown for 48 h at pH 2 exhibited the best electrochemical response in terms of the highest specific charge and capacitance, being 772 C g(-1) and 386 F g(-1) respectively. The importance of achieving high crystalline quality samples and increased surface area toward the improvement of the electrochemical performance of β-V2O5 is highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  14. Heats of immersion of titania powders in primer solutions

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1983-01-01

    The oxide layer present on titanium alloys can play an important role in determining the strength and durability of adhesive bonds. Here, three titania powders in different crystalline phases, rutile-R1, anatase-A1, and anatase-A2, are characterized by several techniques. These include microelectrophoresis, X-ray diffractometry, surface area pore volume analysis, X-ray photoelectron spectroscopy, and measurements of the heats of immersion. Of the three powders, R1 has the highest heat of immersion in water, while the interaction between water and A1 powder is low. Experimental data also suggest a specific preferential interaction of polyphenylquinoxaline with anatase.

  15. Carbon supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  16. Comparison of hyperspectral transformation accuracies of multispectral Landsat TM, ETM+, OLI and EO-1 ALI images for detecting minerals in a geothermal prospect area

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen Tien; Koike, Katsuaki

    2018-03-01

    Hyperspectral remote sensing generally provides more detailed spectral information and greater accuracy than multispectral remote sensing for identification of surface materials. However, there have been no hyperspectral imagers that cover the entire Earth surface. This lack points to a need for producing pseudo-hyperspectral imagery by hyperspectral transformation from multispectral images. We have recently developed such a method, a Pseudo-Hyperspectral Image Transformation Algorithm (PHITA), which transforms Landsat 7 ETM+ images into pseudo-EO-1 Hyperion images using multiple linear regression models of ETM+ and Hyperion band reflectance data. This study extends the PHITA to transform TM, OLI, and EO-1 ALI sensor images into pseudo-Hyperion images. By choosing a part of the Fish Lake Valley geothermal prospect area in the western United States for study, the pseudo-Hyperion images produced from the TM, ETM+, OLI, and ALI images by PHITA were confirmed to be applicable to mineral mapping. Using a reference map as the truth, three main minerals (muscovite and chlorite mixture, opal, and calcite) were identified with high overall accuracies from the pseudo-images (> 95% and > 42% for excluding and including unclassified pixels, respectively). The highest accuracy was obtained from the ALI image, followed by ETM+, TM, and OLI images in descending order. The TM, OLI, and ALI images can be alternatives to ETM+ imagery for the hyperspectral transformation that aids the production of pseudo-Hyperion images for areas without high-quality ETM+ images because of scan line corrector failure, and for long-term global monitoring of land surfaces.

  17. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    NASA Technical Reports Server (NTRS)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  18. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird.

    PubMed

    Khimoun, Aurélie; Peterman, William; Eraud, Cyril; Faivre, Bruno; Navarro, Nicolas; Garnier, Stéphane

    2017-10-01

    Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. © 2017 John Wiley & Sons Ltd.

  19. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    PubMed

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com; Huang, Chih-Jen; Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ{sup 2} andmore » Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas.« less

  1. Assessment of soil-gas and soil contamination at the South Prong Creek Disposal Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to four times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

  2. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land.

    PubMed

    Dolliver, Holly; Gupta, Satish

    2008-01-01

    A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.

  3. A high-performance dual-scale porous electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.

    2016-09-01

    In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.

  4. Space and surface power for the space exploration initiative: Results from project outreach

    NASA Technical Reports Server (NTRS)

    Shipbaugh, C.; Solomon, K.; Gonzales, D.; Juncosa, M.; Bauer, T.; Salter, R.

    1991-01-01

    The analysis and evaluations of the Space and Surface Power panel, one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program, is documented. In addition to managing and evaluating the responses, or submissions, to this public outreach program, RAND conducted its own analysis and evaluation relevent to SEI mission concepts, systems, and technologies. The Power panel screened and analyzed submissions for which a substantial portion of the concepts involved power generation sources, transmission, distribution, thermal management, and handling of power (including conditioning, conversion, packaging, and enhancements in system components). A background discussion of the areas the Power panel covered and the issues the reviewers considered pertinent to the analysis of power submissions are presented. An overview of each of the highest-ranked submissions and then a discussion of these submissions is presented. The results of the analysis is presented.

  5. Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.

    PubMed

    Chabot, Nancy L; Ernst, Carolyn M; Paige, David A; Nair, Hari; Denevi, Brett W; Blewett, David T; Murchie, Scott L; Deutsch, Ariel N; Head, James W; Solomon, Sean C

    2016-09-28

    Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well-defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps.

  6. Distribution and pollution assessment of heavy metals in surface sediments in Xiaoqing river estuary and its adjacent sea of Laizhou bay

    NASA Astrophysics Data System (ADS)

    Wang, Li; Luo, Xianxiang; Fan, Yuqing

    2018-03-01

    In this paper, the monitoring results of four heavy metals Cu, Pb, Zn and Hg at 10 sampling stations in Xiaoqing river estuary and its adjacent sea of Laizhou Bay in November 2008 were analyzed and evaluated. The results showed that the concentrations of heavy metals in the steam channel and estuary are higher than those in the adjacent sea, and the metal concentrations were below the standard for I class of marine sediment quality, excepting the station 2 in the steam channel and station 5 in the estuary. The assessment of the single-factor pollution index showed that the overall pollution level of the study area was relatively low, but there was serious pollution phenomenon in individual station. The potential ecological risk of heavy metals in the surface sediments was generally at a low level, and Hg had the highest potential risk.

  7. Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.

    PubMed

    Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A

    2017-09-13

    Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.

  8. Polycyclic Aromatic Hydrocarbons in Coastal Sediment of Klang Strait, Malaysia: Distribution Pattern, Risk Assessment and Sources

    PubMed Central

    Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid

    2014-01-01

    Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349

  9. Bisecting Microfluidic Channels with Metallic Nanowires Fabricated by Nanoskiving.

    PubMed

    Kalkman, Gerard A; Zhang, Yanxi; Monachino, Enrico; Mathwig, Klaus; Kamminga, Machteld E; Pourhossein, Parisa; Oomen, Pieter E; Stratmann, Sarah A; Zhao, Zhiyuan; van Oijen, Antoine M; Verpoorte, Elisabeth; Chiechi, Ryan C

    2016-02-23

    This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced.

  10. Snow Sublimation in Mountain Environments and Its Sensitivity to Forest Disturbance and Climate Warming

    NASA Astrophysics Data System (ADS)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-02-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  11. Using environmental DNA to assess population-wide spatiotemporal reserve use.

    PubMed

    Stewart, Kathryn; Ma, Hongjuan; Zheng, Jinsong; Zhao, Jianfu

    2017-10-01

    Scientists increasingly rely on protected areas to assist in biodiversity conservation, yet the efficacy of these areas is rarely systematically assessed, often because of underfunding. Still, adaptive management strategies to maximize conservation success often rely on understanding the temporal and spatial dynamism of populations therein. Examination of environmental DNA (eDNA) is a time and cost-effective way to monitor species' distribution, and quantitative polymerase chain reaction (qPCR) provides information on organismal abundance. To date, however, such techniques remain underused for population assessments in protected areas. We determined eDNA concentration of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to describe its occurrence, range, and use of the Tian e-Zhou National Nature Reserve in Hubei, China, across seasons and hydrological depths. Despite the observation that total eDNA concentrations were highest in surface waters in summer, finless porpoise eDNA concentrations were significantly higher in deeper waters than in surface waters in summer. During the breeding season (spring), eDNA signals were site specific and restricted to the core area of the reserve. However, postbreeding eDNA concentrations were widespread across the reserve, encompassing sites previously thought to be unfrequented by the species. Our results suggest spatiotemporal idiosyncrasies in site, depth, and seasonal use of the reserve and a propensity for postbreeding population dispersal. With eDNA and qPCR we were able to assess an entire population's use of a protected area. Illuminating nuances in habitat use via eDNA could be valuable to set pragmatic conservation goals for this, and other, species. © 2017 Society for Conservation Biology.

  12. Soil-landform-plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2014-08-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of Maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on monitoring climate change in Maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated in Potter Peninsula, King George Island, Maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a Quickbird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities at Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils with greater moisture or poorly drained, and acid to neutral pH, are favourable for mosses subformations. Saline, organic-matter rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felseenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens, at the highest surface. Lichens subformations cover the largest vegetated area, showing varying associations with mosses.

  13. Design Considerations and Economics of Water Harvesting System for Crop Production

    NASA Astrophysics Data System (ADS)

    Pali, A. K.

    2016-06-01

    By and large, the design of water harvesting pond is generally based on thumb rules and needs to be upgraded on scientific and engineering principles. In this study, the design procedure of on-farm water harvesting pond has been discussed and two farm ponds of circular, rectangular and square shapes were designed for 50, 60, 75 and 80 % probability of occurrence of rainfall and runoff. Though, the circular shape resulted in the least mean water surface area, but due to not being practicable for agricultural operations, it was discarded. The square shaped ponds resulted in giving least water surface areas as 0.761 ha for the micro watershed of 8.19 ha and as 0.246 ha for the micro watershed of 1.7 ha at 80 % probability level of rainfall and runoff at 80 % level of probability. The storage capacity of the first pond was found as 32,314 m3 and it was 12,962 m3 for the second farm pond. The area to be occupied by the two ponds was worked out as about 11 % of the total land area (8.19 ha) of the first micro watershed and about 18-22 % of the area (1.7 ha) of second micro watershed. Results indicated that the designed size of the first farm pond can be acceptable for construction. The economics of farm pond based agricultural production showed that the highest B/C ratio of 2 and 1.9 were possible for the farm pond designed at 80 and 75 % probability of occurrence of rainfall and runoff respectively.

  14. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  15. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    USGS Publications Warehouse

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  16. Estimating malaria burden in Nigeria: a geostatistical modelling approach.

    PubMed

    Onyiri, Nnadozie

    2015-11-04

    This study has produced a map of malaria prevalence in Nigeria based on available data from the Mapping Malaria Risk in Africa (MARA) database, including all malaria prevalence surveys in Nigeria that could be geolocated, as well as data collected during fieldwork in Nigeria between March and June 2007. Logistic regression was fitted to malaria prevalence to identify significant demographic (age) and environmental covariates in STATA. The following environmental covariates were included in the spatial model: the normalized difference vegetation index, the enhanced vegetation index, the leaf area index, the land surface temperature for day and night, land use/landcover (LULC), distance to water bodies, and rainfall. The spatial model created suggests that the two main environmental covariates correlating with malaria presence were land surface temperature for day and rainfall. It was also found that malaria prevalence increased with distance to water bodies up to 4 km. The malaria risk map estimated from the spatial model shows that malaria prevalence in Nigeria varies from 20% in certain areas to 70% in others. The highest prevalence rates were found in the Niger Delta states of Rivers and Bayelsa, the areas surrounding the confluence of the rivers Niger and Benue, and also isolated parts of the north-eastern and north-western parts of the country. Isolated patches of low malaria prevalence were found to be scattered around the country with northern Nigeria having more such areas than the rest of the country. Nigeria's belt of middle regions generally has malaria prevalence of 40% and above.

  17. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers.

    PubMed

    Kostal, Elisabeth; Stroj, Sandra; Kasemann, Stephan; Matylitsky, Victor; Domke, Matthias

    2018-03-06

    The exciting functionalities of natural superhydrophilic and superhydrophobic surfaces served as inspiration for a variety of biomimetic designs. In particular, the combination of both extreme wetting states to micropatterns opens up interesting applications, as the example of the fog-collecting Namib Desert beetle shows. In this paper, the beetle's elytra were mimicked by a novel three-step fabrication method to increase the fog-collection efficiency of glasses. In the first step, a double-hierarchical surface structure was generated on Pyrex wafers using femtosecond laser structuring, which amplified the intrinsic wetting property of the surface and made it superhydrophilic (water contact angle < 10°). In the second step, a Teflon-like polymer (CF 2 ) n was deposited by a plasma process that turned the laser-structured surface superhydrophobic (water contact angle > 150°). In the last step, the Teflon-like coating was selectively removed by fs-laser ablation to uncover superhydrophilic spots below the superhydrophobic surface, following the example of the Namib Desert beetle's fog-collecting elytra. To investigate the influence on the fog-collection behavior, (super)hydrophilic, (super)hydrophobic, and low and high contrast wetting patterns were fabricated on glass wafers using selected combinations of these three processing steps and were exposed to fog in an artificial nebulizer setup. This experiment revealed that high-contrast wetting patterns collected the highest amount of fog and enhanced the fog-collection efficiency by nearly 60% compared to pristine Pyrex glass. The comparison of the fog-collection behavior of the six samples showed that the superior fog-collection efficiency of surface patterns with extreme wetting contrast is due to the combination of water attraction and water repellency: the superhydrophilic spots act as drop accumulation areas, whereas the surrounding superhydrophobic areas allow a fast water transportation caused by gravity. The presented method enables a fast and flexible surface functionalization of a broad range of materials including transparent substrates, which offers exciting possibilities for the design of biomedical and microfluidic devices.

  18. 76 FR 3838 - Approval and Promulgation of One-Year Extension for Attaining the 1997 8-Hour Ozone Standard for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... accordance with requirements for a 1-year extension, the Philadelphia Area's 4th highest daily 8-hour...) The maximum 4th highest daily 8-hour monitored value at any monitoring site in the Philadelphia area...

  19. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    USGS Publications Warehouse

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of groundwater flow is from the Rio Grande towards clusters of production wells in the east, north, and west. Water-level changes from predevelopment to 2008 are variable across the area. Hydrographs from piezometers on the east side of the river generally indicate a trend of decline in the annual highest water level through most of the period of record. Hydrographs from piezometers in the valley near the river and on the west side of the river indicate spatial variability in water-level trends.

  20. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama.

    PubMed

    Batista-Andrade, Jahir Antonio; Caldas, Sergiane Souza; Batista, Rodrigo Moço; Castro, Italo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto

    2018-03-01

    Antifouling biocides in surface sediments and gastropod tissues were assessed for the first time along coastal areas of Panama under the influence of maritime activities, including one of the world's busiest shipping zones: the Panama Canal. Imposex incidence was also evaluated in five muricid species distributed along six coastal areas of Panama. This TBT-related biological alteration was detected in three species, including the first report in Purpura panama. Levels of organotins (TBT, DBT, and MBT) in gastropod tissues and surficial sediments ranged from <5 to 104 ng Sn g -1 and <1-149 ng Sn g -1 , respectively. In addition, fresh TBT inputs were observed in areas considered as moderate to highly contaminated mainly by inputs from fishing and leisure boats. Regarding booster biocides, TCMTB and dichlofluanid were not detected in any sample, while irgarol 1051, diuron and DCOIT levels ranged from <0.08 to 2.8 ng g -1 , <0.75-14.1 ng g -1 , and <0.38-81.6 ng g -1 , respectively. The highest level of TBT (149 ng Sn g -1 ) and irgarol 1051 (2.8 ng g -1 ), as well as relevant level of DCOIT (5.7 ng g -1 ), were detected in a marina used by recreational boats. Additionally, relatively high diuron values (14.1 ng g -1 ) were also detected in the Panama Canal associate to a commercial port. DCOIT concentrations were associated with the presence of antifouling paint particles in sediments obtained nearby shipyard or boat maintenance sites. The highest levels of TBT, irgarol 1051, and diuron exceeded international sediment quality guidelines indicating that toxic effects could be expected in coastal areas of Panama. Thus, the simultaneous impacts produced by new and old generations of antifouling paints highlight a serious environmental issue in Panamanian coastal areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top