DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
Rehagen, Thomas J.; Greenough, Jeffrey A.; Olson, Britton J.
2017-04-20
In this paper, the compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution.more » The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. Finally, to have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).« less
Time resolution of resistive plate chambers investigated with 10 MeV electrons
NASA Astrophysics Data System (ADS)
Paradela, C.; Ayyad, Y.; Benlliure, J.; Casarejos, E.; Duran, I.
2014-01-01
The time resolution of double-gap timing resistive plate chambers (tRPC) has been measured with 10 MeV electron bunches of variable intensity. The use of electrons delivered in bunches of a few picoseconds was an attempt to mimic the energy deposition of heavy ions in the tRPC gas gap. The measurements show a clear dependence of the time resolution with the number of electrons per bunch, reaching 21 ps (standard deviation) for the highest beam intensity. The signal charge distribution and the time resolution are compared to data obtained with the same detectors for cosmic rays and 238U ions at 1 AGeV.
Scott, A D; Boubertakh, R; Birch, M J; Miquel, M E
2012-11-01
The objective of this study was to demonstrate soft palate MRI at 1.5 and 3 T with high temporal resolution on clinical scanners. Six volunteers were imaged while speaking, using both four real-time steady-state free-precession (SSFP) sequences at 3 T and four balanced SSFP (bSSFP) at 1.5 T. Temporal resolution was 9-20 frames s(-1) (fps), spatial resolution 1.6 × 1.6 × 10.0-2.7 × 2.7 × 10.0 mm(3). Simultaneous audio was recorded. Signal-to-noise ratio (SNR), palate thickness and image quality score (1-4, non-diagnostic-excellent) were evaluated. SNR was higher at 3 T than 1.5 T in the relaxed palate (nasal breathing position) and reduced in the elevated palate at 3 T, but not 1.5 T. Image quality was not significantly different between field strengths or sequences (p=NS). At 3 T, 40% acquisitions scored 2 and 56% scored 3. Most 1.5 T acquisitions scored 1 (19%) or 4 (46%). Image quality was more dependent on subject or field than sequence. SNR in static images was highest with 1.9 × 1.9 × 10.0 mm(3) resolution (10 fps) and measured palate thickness was similar (p=NS) to that at the highest resolution (1.6 × 1.6 × 10.0 mm(3)). SNR in intensity-time plots through the soft palate was highest with 2.7 × 2.7 × 10.0 mm(3) resolution (20 fps). At 3 T, SSFP images are of a reliable quality, but 1.5 T bSSFP images are often better. For geometric measurements, temporal should be traded for spatial resolution (1.9 × 1.9 × 10.0 mm(3), 10 fps). For assessment of motion, temporal should be prioritised over spatial resolution (2.7 × 2.7 × 10.0 mm(3), 20 fps). Advances in knowledge Diagnostic quality real-time soft palate MRI is possible using clinical scanners and optimised protocols have been developed. 3 T SSFP imaging is reliable, but 1.5 T bSSFP often produces better images.
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
Integrated Real-Time Control and Imaging System for Microbiorobotics and Nanobiostructures
2016-01-11
kit with a control board and ALP 4.1 basic controller suite. The digital micromirror device is the highest resolution 16:9 aspect ratio system. This...in Figure 1, consisted of the following: (1) digital micromirror device (DMD) and controller, (2) an inverted epifluorescence microscope with a flat...accompanying control board and ALP 4.1 basic controller suite. The digital micromirror device is currently the highest commercially available
Tactile Cueing for Target Acquisition and Identification
2005-09-01
method of coding tactile information, and the method of presenting elevation information were studied. Results: Subjects were divided into video game experienced...VGP) subjects and non- video game (NVGP) experienced subjects. VGPs showed a significantly lower’ target acquisition time with the 12...that video game players performed better with the highest level of tactile resolution, while non- video game players performed better with simpler pattern and a lower resolution display.
Digital multi-channel high resolution phase locked loop for surveillance radar systems
NASA Astrophysics Data System (ADS)
Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed
This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.
The Substructure of the Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.
SRTM Data Release for Africa, Colored Height
2004-06-17
Elevation data at the highest possible resolution from NASA SRTM mission in February 2000 are being released for the first time for most of the African continent. This color shaded relief image shows the extent of SRTM digital elevation data for Africa.
Terahertz time-gated spectral imaging for content extraction through layered structures
Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh
2016-01-01
Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers. PMID:27610926
NASA Astrophysics Data System (ADS)
Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.
Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.
High resolution in galaxy photometry and imaging
NASA Astrophysics Data System (ADS)
Nieto, J.-L.; Lelievre, G.
Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-07-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-04-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.
Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.
2012-01-01
Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104
NASA Astrophysics Data System (ADS)
Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.
Space telescope scientific instruments
NASA Technical Reports Server (NTRS)
Leckrone, D. S.
1979-01-01
The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.
A reexamination of plasma measurements from the Mariner 5 Venus encounter
NASA Technical Reports Server (NTRS)
Shefer, R. E.; Lazarus, A. J.; Bridge, H. S.
1979-01-01
Mariner 5 plasma data from the Venus encounter have been analyzed with twice the time resolution of the original analysis of Bridge et al. (1967). The velocity distribution function for each spectrum is used to determine more precisely the locations of boundaries and characteristic flow parameters in the interaction region around the planet. A new region is identified in the flow located between magnetosheathlike plasma inside the shock front and an interior low-flux region near the geometrical shadow of the planet. The region is characterized by a wide velocity distribution function and a decrease in ion flux. Using the highest time resolution magnetic field data, it is proposed that rapid magnetic field fluctuations in this region may result in an artificial broadening of the distribution function. It is concluded that very high time resolution is required in future experiments in order to determine the true nature of the plasma in this region.
Systematic characterization of maturation time of fluorescent proteins in living cells
Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe
2017-01-01
Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; McGinnis, S. A.
2017-12-01
Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities.
Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco
2015-01-01
Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥ 65). A long time-series (2001-2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using "Crichton's Risk Triangle" hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies.
Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities
Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco
2015-01-01
Background Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Objectives Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥65). Methods A long time-series (2001–2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using “Crichton’s Risk Triangle” hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). Results The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. Conclusions This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies. PMID:25985204
Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.
Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A
2013-08-15
Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Titania - Highest Resolution Voyager Picture
1996-01-29
On Jan. 24, 1986, NASA Voyager 2 returned the highest-resolution picture of Titania, Uranus largest satellite. Abundant impact craters of many sizes pockmark the ancient surface; most prominent features are fault valleys that stretch across Titania. http://photojournal.jpl.nasa.gov/catalog/PIA00039
2014-05-08
This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370
Infrared speckle interferometry and spectroscopy of Io
NASA Technical Reports Server (NTRS)
Howell, Robert R.
1991-01-01
The goal during the last year was to continue the speckle monitoring of volcanic hot spots on Io, and to begin observations of the 1991 series of mutual events between Io and Europa. The former provide a time history of the volcanic activity, while the latter give the highest spatial resolution and the best sensitivity to faint spots. A minor component of the program is lunar occultation observations of young T Tauri stars. The occultations provide milliarcsecond resolution which let us search for circumstellar material and determine which systems are multiple.
Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G
2014-12-01
F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.
Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.
Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D
2013-01-01
We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.
Sodar - PNNL Scintec MFAS, Oregon Raceway Park - Raw Data
Pekour, Mikhail
2017-10-23
Provide measurements of wind speed and direction up to 400 m AGL (max). The data are stored in 2 forms: ASCII and raw (binary). ASCII files contain averaged data (currently -- 15 min time step and 10 m range gate); raw files could be reprocessed with the sodar software (APRun by Scintec) to produce ASCII files with different time and/or height averaging settings (highest resolution is approx. 90 sec and 10 m).
NASA Astrophysics Data System (ADS)
Choudhury, Devanil; Das, Someshwar
2017-06-01
The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.
Ambient atomic resolution atomic force microscopy with qPlus sensors: Part 1.
Wastl, Daniel S
2017-01-01
Atomic force microscopy (AFM) is an enormous tool to observe nature in highest resolution and understand fundamental processes like friction and tribology on the nanoscale. Atomic resolution in highest quality was possible only in well-controlled environments like ultrahigh vacuum (UHV) or controlled buffer environments (liquid conditions) and more specified for long-term high-resolution analysis at low temperatures (∼4 K) in UHV where drift is nearly completely absent. Atomic resolution in these environments is possible and is widely used. However, in uncontrolled environments like air, with all its pollutants and aerosols, unspecified thin liquid films as thin as a single molecular water-layer of 200 pm or thicker condensation films with thicknesses up to hundred nanometer, have been a problem for highest resolution since the invention of the AFM. The goal of true atomic resolution on hydrophilic as well as hydrophobic samples was reached recently. In this manuscript we want to review the concept of ambient AFM with atomic resolution. The reader will be introduced to the phenomenology in ambient conditions and the problems will be explained and analyzed while a method for scan parameter optimization will be explained. Recently developed concepts and techniques how to reach atomic resolution in air and ultra-thin liquid films will be shown and explained in detail, using several examples. Microsc. Res. Tech. 80:50-65, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging
Yu, Ping; Repp, Jascha; Huber, Rupert
2017-01-01
Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788
NASA Technical Reports Server (NTRS)
Potter, Christopher; Tan, Pang-Ning; Kumar, Vipin; Kicharik, Chris; Klooster, Steven; Genovese, Vanessa
2004-01-01
Ecosystem structure and function are strongly impacted by disturbance events, many of which in North America are associated with seasonal temperature extremes, wildfires, and tropical storms. This study was conducted to evaluate patterns in a 19-year record of global satellite observations of vegetation phenology from the Advanced Very High Resolution Radiometer (AVHRR) as a means to characterize major ecosystem disturbance events and regimes. The fraction absorbed of photosynthetically active radiation (FPAR) by vegetation canopies worldwide has been computed at a monthly time interval from 1982 to 2000 and gridded at a spatial resolution of 8-km globally. Potential disturbance events were identified in the FPAR time series by locating anomalously low values (FPAR-LO) that lasted longer than 12 consecutive months at any 8-km pixel. We can find verifiable evidence of numerous disturbance types across North America, including major regional patterns of cold and heat waves, forest fires, tropical storms, and large-scale forest logging. Summed over 19 years, areas potentially influenced by major ecosystem disturbances (one FPAR-LO event over the period 1982-2000) total to more than 766,000 km2. The periods of highest detection frequency were 1987-1989, 1995-1997, and 1999. Sub- continental regions of Alaska and Central Canada had the highest proportion (greater than 90%) of FPAR-LO pixels detected in forests, tundra shrublands, and wetland areas. The Great Lakes region showed the highest proportion (39%) of FPAR-LO pixels detected in cropland areas, whereas the western United States showed the highest proportion (16%) of FPAR-LO pixels detected in grassland areas. Based on this analysis, an historical picture is emerging of periodic droughts and heat waves, possibly coupled with herbivorous insect outbreaks, as among the most important causes of ecosystem disturbance in North America.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus
2015-09-03
Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.
Spectral decomposition of internal gravity wave sea surface height in global models
NASA Astrophysics Data System (ADS)
Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-10-01
Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
Sodar - PNNL Scintec MFAS, Oregon Raceway Park - Reviewed Data
Pekour, Mikhail
2018-01-26
These data provide measurements of wind speed and direction up to 400 m above ground level (AGL) (max). The data are stored in two forms: ASCII and raw (binary). ASCII files contain averaged data (currently: 15 min time step and 10 m range gate). Raw files can be reprocessed with sodar software (APRun by Scintec) to produce ASCII files with different time and/or height averaging settings (highest resolution is approximately 90 sec and 10 m). NOTE: Wind direction is reported with respect to magnetic North.
NASA Astrophysics Data System (ADS)
Ma, M.
2015-12-01
The Qinghai-Tibet Plateau (QTP) is the world's highest and largest plateau and is occasionally referred to as "the roof of the world". As the important "water tower", there are 1,091 lakes of more than 1.0 km2 in the QTP areas, which account for 49.4% of the total area of lakes in China. Some studies focus on the lake area changes of the QTP areas, which mainly use the middle-resolution remote sensing data (e.g. Landsat TM). In this study, the coarse-resolution time series remote sensing data, MODIS data at a spatial resolution of 250m, was used to monitor the lake area changes of the QTP areas during the last 15 years. The dataset is the MOD13Q1 and the Normal Difference Vegetation Index (NDVI) is used to identify the lake area when the NDVI is less than 0. The results show the obvious inner-annual changes of most of the lakes. Therefore the annually average and maximum lake areas are calculated based on the time series remote data, which can better quantify the change characteristics than the single scene of image data from the middle-resolution data. The results indicate that there are big spatial variances of the lake area changes in the QTB. The natural driving factors are analyzed for revealing the causes of changes.
Extraction of temporal information in functional MRI
NASA Astrophysics Data System (ADS)
Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia
2002-10-01
The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.
Aberration-free superresolution imaging via binary speckle pattern encoding and processing
NASA Astrophysics Data System (ADS)
Ben-Eliezer, Eyal; Marom, Emanuel
2007-04-01
We present an approach that provides superresolution beyond the classical limit as well as image restoration in the presence of aberrations; in particular, the ability to obtain superresolution while extending the depth of field (DOF) simultaneously is tested experimentally. It is based on an approach, recently proposed, shown to increase the resolution significantly for in-focus images by speckle encoding and decoding. In our approach, an object multiplied by a fine binary speckle pattern may be located anywhere along an extended DOF region. Since the exact magnification is not known in the presence of defocus aberration, the acquired low-resolution image is electronically processed via a parallel-branch decoding scheme, where in each branch the image is multiplied by the same high-resolution synchronized time-varying binary speckle but with different magnification. Finally, a hard-decision algorithm chooses the branch that provides the highest-resolution output image, thus achieving insensitivity to aberrations as well as DOF variations. Simulation as well as experimental results are presented, exhibiting significant resolution improvement factors.
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Resolution analysis of archive films for the purpose of their optimal digitization and distribution
NASA Astrophysics Data System (ADS)
Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek
2017-09-01
With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.
Dersch, Simon; Graumann, Peter L
2018-06-01
We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved optical flow motion estimation for digital image stabilization
NASA Astrophysics Data System (ADS)
Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao
2015-11-01
Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.
Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna
2018-06-05
Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.
NASA Astrophysics Data System (ADS)
Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.
2011-12-01
From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.
NASA Astrophysics Data System (ADS)
Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.; Michael, Scott; McConnell, Caitlin R.
2013-05-01
We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an α-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective α arising from gravitational stresses is typically a few × 10-3 and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.
Application of AXUV diode detectors at ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Bernert, M.; Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.
2014-03-01
In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.
Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses
Kim, Hyun Seok; Park, Kwang Suk
2017-01-01
Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735
Blais, P; Patel, A; Sayuk, G S; Gyawali, C P
2017-12-01
The upper esophageal sphincter (UES) reflexively responds to bolus presence within the esophageal lumen, therefore UES metrics can vary in achalasia. Within consecutive patients undergoing esophageal high-resolution manometry (HRM), 302 patients (58.2±1.0 year, 57% F) with esophageal outflow obstruction were identified, and compared to 16 asymptomatic controls (27.7±0.7 year, 56% F). Esophageal outflow obstruction was segregated into achalasia subtypes 1, 2, and 3, and esophagogastric junction outflow obstruction (EGJOO with intact peristalsis) using Chicago Classification v3.0. UES and lower esophageal sphincter (LES) metrics were compared between esophageal outflow obstruction and normal controls using univariate and multivariate analysis. Linear regression excluded multicollinearity of pressure metrics that demonstrated significant differences across individual subtype comparisons. LES integrated relaxation pressure (IRP) had utility in differentiating achalasia from controls (P<.0001), but no utility in segregating between subtypes (P=.27). In comparison to controls, patients collectively demonstrated univariate differences in UES mean basal pressure, relaxation time to nadir, recovery time, and residual pressure (UES-RP) (P≤.049). UES-RP was highest in type 2 achalasia (P<.0001 compared to other subtypes and controls). In multivariate analysis, only UES-RP retained significance in comparison between each of the subgroups (P≤.02 for each comparison). Intrabolus pressure was highest in type 3 achalasia; this demonstrated significant differences across some but not all subtype comparisons. Nadir UES-RP can differentiate achalasia subtypes within the esophageal outflow obstruction spectrum, with highest values in type 2 achalasia. This metric likely represents a surrogate marker for esophageal pressurization. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Schulz, Volkmar
2015-06-01
This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.
Gurney-Champion, Oliver J; Nederveen, Aart J; Klaassen, Remy; Engelbrecht, Marc R; Bel, Arjan; van Laarhoven, Hanneke W M; Stoker, Jaap; Goncalves, Sonia I
2016-09-01
The aim was to investigate the value of optimized 3-dimensional alternating repetition time balanced steady-state free precession (ATR-SSFP), as an alternative to conventional segmented balanced steady-state free precession (bSSFP) with fat suppression prepulse (FS-bSSFP), in single breath-hold abdominal magnetic resonance imaging at 3 T. Bloch simulations were performed to determine the optimal flip angle (FA = 1-90 degrees) and τ (1-3) with respect to signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between abdominal organs for ATR-SSFP. These were corroborated by phantom measurements for different T1/T2 values (5-47) as well as in a healthy volunteer. In addition, fat suppression efficiency was studied using phantom and volunteer measurements. The effect of resolution on image quality was studied in a healthy volunteer. Using the optimal settings, ATR-SSFP images as well as FS-bSSFP images were obtained in 15 pancreatic cancer patients. For 10 structures of interest, the signal ratio with respect to the pancreas was computed and compared between both sequences. Finally, 10 items on image quality (fat suppression, artifacts, and sharpness) and tissue conspicuity (ducts, vessels, and duodenum) were scored by 2 abdominal radiologists for both image sequences. The results of simulations, phantom measurements, and volunteer measurements showed that, considering scan time, fat suppression, and clinical relevance, the ideal settings for ATR-SSFP were as follows: τ = 3; TR1 = 3.46 milliseconds; radiofrequency phase cycling 0, 180, 180, 0 degrees; and FA = 13-16 degrees (highest SNR) and 24-26 degrees (highest CNR). The optimized feasible additional settings implemented for patient scans were FA = 18 degrees and resolution = 1.4 × 1.4 × 1.4 mm. In patients, the signal ratios of both ATR-SSFP and FS-bSSFP were comparable and had a T2-like contrast behavior, although more accentuated in ATR-SSFP. The ATR-SSFP scored significantly higher than FS-bSSFP for 9 of 10 items scored. For single breath-hold abdominal imaging at 3 T, ATR-SSFP performs best with τ = 3 and an FA between 13 degrees (highest SNR) and 26 degrees (highest CNR). The scoring of both abdominal radiologists indicated that, at τ = 3, FA = 18 degrees, and 1.4 × 1.4 × 1.4 mm resolution, ATR-SSFP was preferred over conventional FS-bSSFP with similar settings.
The investigation of classification methods of high-resolution imagery
Tracey S. Frescino; Gretchen G. Moisen; Larry DeBlander; Michel Guerin
2007-01-01
As remote-sensing technology advances, high-resolution imagery, such as Quickbird and photography from the National Agriculture Imagery Program (NAIP), is becoming more readily available for use in forestry applications. Quickbird imagery is currently the highest resolution imagery commercially available. It consists of 2.44-m (8-ft) resolution multispectral bands...
Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Morcrette, J. J.
1999-01-01
Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.
NASA Astrophysics Data System (ADS)
Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela
2017-01-01
The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.
The Extended Pulsar Magnetosphere
NASA Technical Reports Server (NTRS)
Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos
2012-01-01
We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.
NASA Astrophysics Data System (ADS)
Pawłowicz, Joanna A.
2017-10-01
The TLS method (Terrestrial Laser Scanning) may replace the traditional building survey methods, e.g. those requiring the use measuring tapes or range finders. This technology allows for collecting digital data in the form of a point cloud, which can be used to create a 3D model of a building. In addition, it allows for collecting data with an incredible precision, which translates into the possibility to reproduce all architectural features of a building. This data is applied in reverse engineering to create a 3D model of an object existing in a physical space. This study presents the results of a research carried out using a point cloud to recreate the architectural features of a historical building with the application of reverse engineering. The research was conducted on a two-storey residential building with a basement and an attic. Out of the building’s façade sticks a veranda featuring a complicated, wooden structure. The measurements were taken at the medium and the highest resolution using a ScanStation C10 laser scanner by Leica. The data obtained was processed using specialist software, which allowed for the application of reverse engineering, especially for reproducing the sculpted details of the veranda. Following digitization, all redundant data was removed from the point cloud and the cloud was subjected to modelling. For testing purposes, a selected part of the veranda was modelled by means of two methods: surface matching and Triangulated Irregular Network. Both modelling methods were applied in the case of data collected at medium and the highest resolution. Creating a model based on data obtained at medium resolution, both by means of the surface matching and the TIN method, does not allow for a precise recreation of architectural details. The study presents certain sculpted elements recreated based on the highest resolution data with superimposed TIN juxtaposed against a digital image. The resulting model is very precise. Creating good models requires highly accurate field data. It is important to properly choose the distance between the measuring station and the measured object in order to ensure that the angles of incidence (horizontal and vertical) of the laser beam are as straight as possible. The model created based on medium resolution offers very poor quality of details, i.e. only the bigger, basic elements of each detail are clearly visible, while the smaller ones are blurred. This is why in order to obtain data sufficient to reproduce architectural details laser scanning should be performed at the highest resolution. In addition, modelling by means of the surface matching method should be avoided - a better idea is to use the TIN method. In addition to providing a realistically-looking visualization, the method has one more important advantage - it is 4 times faster than the surface matching method.
A quartz-based micro catalytic methane sensor by high resolution screen printing
NASA Astrophysics Data System (ADS)
Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong
2016-02-01
A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.
Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A
2017-04-01
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging
NASA Astrophysics Data System (ADS)
Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert
2016-11-01
Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.
Photonuclear activation of pure isotopic mediums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohman, Mark A.; Lukosi, Eric Daniel
2010-06-01
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to themore » material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.« less
Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M
2014-12-01
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.
Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps
NASA Astrophysics Data System (ADS)
De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
Anti-parallel Filament Flows and Bright Dots Observed in the EUV with Hi-C
NASA Technical Reports Server (NTRS)
Alexander, Caroline E.; Regnier, Stephane; Walsh, Robert; Winebarger, Amy
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observations ever taken in the solar EUV corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed various fine-scale features that SDO/AIA could not pick out. For the first time in the corona, Hi-C revealed magnetic braiding and component reconnection consistent with coronal heating. Hi-C shows evidence of reconnection and heating in several different regions and magnetic configurations with plasma being heated to 0.3 - 8 x 10(exp 6) K temperatures. Surprisingly, many of the first results highlight plasma at temperatures that are not at the peak of the response functions.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; LaFontaine, Frank; Berndt, Emily; Meyer, Paul; Jedlovec, Gary
2017-01-01
The SPoRT SST composite is a reliable and robust high-resolution product generated twice per day in near real time. It incorporates highest quality data satellite data from infrared imagers and global analysis from NESDIS and UKMO. Recent updates to the product include the inclusion of VIIRS data to extend the life of the product beyond the MODIS era. It is used by a number of users in their DSS.
Policy issues and data communications for NASA earth observation missions until 1985
NASA Technical Reports Server (NTRS)
Corte, A. B.; Warren, C. J.
1975-01-01
The series of LANDSAT sensors with the highest potential data rates of the missions were examined. An examination of LANDSAT imagery uses shows that relatively few require transmission of the full resolution data on a repetitive quasi real time basis. Accuracy of global crop size forecasting can possibly be improved through information derived from LANDSAT imagery. A current forecasting experiment uses the imagery for crop area estimation only, yield being derived from other data sources.
Versatile all-digital time interval measuring system
NASA Astrophysics Data System (ADS)
Vyhlidal, David; Cech, Miroslav
2011-06-01
This paper describes a design and performance of a versatile all-digital time interval measuring system. The measurement method is based on an interpolation principle. In this principle the time interval is first roughly digitized by a coarse counter driven by a high stability reference clock and the fractions between the clock periods are measured by two Time-to-Digital Converter chips TDC-GPX manufactured by Acam messelectronic. Control circuits allow programmable customization of the system to satisfy many applications such as laser range finding, event counting, or time-of-flight measurements in various physics experiments. The system has two reference clocks inputs and two independent channels for measuring start and stop events. Only one 40 MHz reference is required for the measurement. The second reference can be, for example, 1 PPS (Pulse per Second) signal from a GPS (Global Positioning System) to time tag events. Time intervals are measured using the highest resolution mode of the TDC-GPX chips. The resolution of each chip is software programmable and is PLL (Phase Locked Loop) stabilized against temperature and voltage variations. The system can achieve a timing resolution better than 15 ps rms with up to 90 kHz repetition rate. The time interval measurement range is from 0 ps up to 1 second. The power consumption of the whole system is 18 W including an embedded computer board and an LCD (Liquid Crystal Display) screen. The embedded computer controls the whole system, collects and evaluates measurement data and with the display provides a user interface. The system is implemented using commercially available components.
NASA Astrophysics Data System (ADS)
Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark
2017-03-01
There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.
NASA Astrophysics Data System (ADS)
Le Roy, L.; Altwegg, K.; Berthelier, J. J.; Calmonte, U.; Dhooghe, F.; Fiethe, B.; Fuselier, S.; Gombosi, T. I.; Rubin, M.; Tzou, C. Y.
2014-12-01
Starting in August 2014, the ROSINA experiment will characterize the composition and dynamics of 67P/Churyumov-Gerasimenko's coma. ROSINA consists of a suite of three instruments: a pressure sensor (COPS: COmetary Pressure Sensor) and two mass spectrometers: the Reflectron Time of Flight mass spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS). Here we will focus on the first results obtained by DFMS, the high-resolution mass spectrometer of ROSINA. DFMS is a traditional magnetic mass spectrometer that combines an electrostatic analyzer for energy analysis with a magnet for momentum analysis. To date, DFMS is the highest mass resolution mass spectrometer in space, with resolution (m/Δm = 3000 at 1% of the peak height at 28 amu/q). It will be able to resolve CO from N2 at m/z= 28 amu/q or 12CH and 13C at m/z= 13 amu/q. We will present the first results of DFMS: the detection of organic species and their implication for the origin of cometary material.
NASA Astrophysics Data System (ADS)
Rössler, Erik; Mattea, Carlos; Stapf, Siegfried
2015-02-01
Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.
Negotiation From a Near and Distant Time Perspective
Henderson, Marlone D.; Trope, Yaacov; Carnevale, Peter J.
2011-01-01
Across 3 experiments, the authors examined the effects of temporal distance on negotiation behavior. They found that greater temporal distance from negotiation decreased preference for piecemeal, single-issue consideration over integrative, multi-issue consideration (Experiment 1). They also found that greater temporal distance from an event being negotiated increased interest in conceding on the lowest priority issue and decreased interest in conceding on the highest priority issue (Experiment 2). Lastly, they found increased temporal distance from an event being negotiated produced a greater proportion of multi-issue offers, a greater likelihood of conceding on the lowest priority issue in exchange for a concession on the highest priority issue, and greater individual and joint outcomes (Experiment 3). Implications for conflict resolution and construal level theory are discussed. PMID:17014295
Precision timing detectors with cadmium-telluride sensor
NASA Astrophysics Data System (ADS)
Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.
2017-09-01
Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.
NASA Astrophysics Data System (ADS)
Kukkonen, Jaakko; Kangas, Leena; Kauhaniemi, Mari; Sofiev, Mikhail; Aarnio, Mia; Jaakkola, Jouni J. K.; Kousa, Anu; Karppinen, Ari
2018-06-01
Reliable and self-consistent data on air quality are needed for an extensive period of time for conducting long-term, or even lifetime health impact assessments. We have modelled the urban-scale concentrations of fine particulate matter (PM2.5) in the Helsinki Metropolitan Area for a period of 35 years, from 1980 to 2014. The regional background concentrations were evaluated based on reanalyses of the atmospheric composition on global and European scales, using the SILAM model. The high-resolution urban computations included both the emissions originated from vehicular traffic (separately exhaust and suspension emissions) and those from small-scale combustion, and were conducted using the road network dispersion model CAR-FMI and the multiple-source Gaussian dispersion model UDM-FMI. The modelled concentrations of PM2.5 agreed fairly well with the measured data at a regional background station and at four urban measurement stations, during 1999-2014. The modelled concentration trends were also evaluated for earlier years, until 1988, using proxy analyses. There was no systematic deterioration of the agreement of predictions and data for earlier years (the 1980s and 1990s), compared with the results for more recent years (2000s and early 2010s). The local vehicular emissions were about 5 times higher in the 1980s, compared with the emissions during the latest considered years. The local small-scale combustion emissions increased slightly over time. The highest urban concentrations of PM2.5 occurred in the 1980s; these have since decreased to about to a half of the highest values. In general, regional background was the largest contribution in this area. Vehicular exhaust has been the most important local source, but the relative shares of both small-scale combustion and vehicular non-exhaust emissions have increased in time. The study has provided long-term, high-resolution concentration databases on regional and urban scales that can be used for the assessment of health effects associated with air pollution.
Pineda, Federico D; Medved, Milica; Wang, Shiyang; Fan, Xiaobing; Schacht, David V; Sennett, Charlene; Oto, Aytekin; Newstead, Gillian M; Abe, Hiroyuki; Karczmar, Gregory S
2016-09-01
The study aimed to evaluate the feasibility and advantages of a combined high temporal and high spatial resolution protocol for dynamic contrast-enhanced magnetic resonance imaging of the breast. Twenty-three patients with enhancing lesions were imaged at 3T. The acquisition protocol consisted of a series of bilateral, fat-suppressed "ultrafast" acquisitions, with 6.9- to 9.9-second temporal resolution for the first minute following contrast injection, followed by four high spatial resolution acquisitions with 60- to 79.5-second temporal resolution. All images were acquired with standard uniform Fourier sampling. A filtering method was developed to reduce noise and detect significant enhancement in the high temporal resolution images. Time of arrival (TOA) was defined as the time at which each voxel first satisfied all the filter conditions, relative to the time of initial arterial enhancement. Ultrafast images improved visualization of the vasculature feeding and draining lesions. A small percentage of the entire field of view (<6%) enhanced significantly in the 30 seconds following contrast injection. Lesion conspicuity was highest in early ultrafast images, especially in cases with marked parenchymal enhancement. Although the sample size was relatively small, the average TOA for malignant lesions was significantly shorter than the TOA for benign lesions. Significant differences were also measured in other parameters descriptive of early contrast media uptake kinetics (P < 0.05). Ultrafast imaging in the first minute of dynamic contrast-enhanced magnetic resonance imaging of the breast has the potential to add valuable information on early contrast dynamics. Ultrafast imaging could allow radiologists to confidently identify lesions in the presence of marked background parenchymal enhancement. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cirtain, Jonathan
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.
Highest-resolution Europa Image & Mosaic from Galileo
2017-02-08
This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
High-Resolution Mass Spectrometers
NASA Astrophysics Data System (ADS)
Marshall, Alan G.; Hendrickson, Christopher L.
2008-07-01
Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.
MRI of articular cartilage at microscopic resolution
Xia, Y.
2013-01-01
This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T1ρ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative. PMID:23610697
Very high resolution observations of waves in the OH airglow at low latitudes.
NASA Astrophysics Data System (ADS)
Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert E.; Djupvik, Amanda A.
2017-04-01
Vibrationally excited hydroxyl (OH) is produced in the mesosphere by the reaction of atomic hydrogen and ozone. This excited OH radiates a strong, near-infrared airglow emission in a thin ( 8 km thick) layer near 87 km. In the past, remote sensing of perturbations in the OH Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through this region. However, information on the highest frequency gravity waves is often limited by the temporal and spatial resolution of the available observations. In an effort to expand the wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements are taken with a 10 s integration time (24 s repetition rate), and the spatial resolution at 87 km is as small as 10 m, allowing us to quantify the transition between the gravity and acoustic wave domains in the mesosphere.
Challenge toward the prediction of typhoon behaviour and down pour
NASA Astrophysics Data System (ADS)
Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.
2013-08-01
Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.
Highest Resolution Topography of 433 Eros and Implications for MUSES-C
NASA Technical Reports Server (NTRS)
Cheng, A. F.; Barnouin-Jha, O.
2003-01-01
The highest resolution observations of surface morphology and topography at asteroid 433 Eros were obtained by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft on 12 February 2001, as it landed within a ponded deposit on Eros. Coordinated observations were obtained by the imager and the laser rangefinder, at best image resolution of 1 cm/pixel and best topographic resolution of 0.4 m. The NEAR landing datasets provide unique information on rock size and height distributions and regolith processes. Rocks and soil can be distinguished photometrically, suggesting that bare rock is indeed exposed. The NEAR landing data are the only data at sufficient resolution to be relevant to hazard assessment on future landed missions to asteroids, such as the MUSES-C mission which will land on asteroid 25143 (1998 SF36) in order to obtain samples. In a typical region just outside the pond where NEAR landed, the areal coverage by resolved positive topographic features is 18%. At least one topographic feature in the vicinity of the NEAR landing site would have been hazardous for a spacecraft.
Ramachandra, Ranjan; de Jonge, Niels
2012-01-01
Three-dimensional (3D) data sets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). The deconvolution of the 3D datasets was optimized to obtain the highest possible axial resolution. The deconvolution involved two different point spread function (PSF)s, each calculated iteratively via blind deconvolution.. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but at the cost of a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only. PMID:22152090
Lucky imaging multiplicity studies of exoplanet host stars
NASA Astrophysics Data System (ADS)
Ginski, C.; Mugrauer, M.; Neuhäuser, R.
2014-03-01
The multiplicity of stars is an important parameter in order to understand star and planet formation. In the past decades extrasolar planets have been discovered around more than 600 stars with the radial velocity and transit techniques. Many of these systems present extreme cases of massive planetary objects at very close separations to their primary stars. To explain the configurations of such systems is hence a continued challenge in the development of formation theories. It will be very interesting to determine if there are significant differences between planets in single and multiple star systems. In our ongoing study we use high resolution imaging techniques to clarify the multiplicity status of nearby (within 250 pc) planet host stars. For targets on the northern hemisphere we employ the lucky imaging instrument Astralux at the 2.2 m telescope of the Calar Alto Observatory. The lucky imaging approach consists of taking several thousand short images with integration times shorter than the speckle coherence time, to sample the speckle variations during the observation window. We then only choose the so called "lucky shots" with a very high Strehl ratio in one of the speckles, to shift and add, resulting in a final image with the highest possible Strehl ratio and therefore highest possible angular resolution. We will present recent results of our study at the Calar Alto Observatory, as well as observations undertaken with the RTK camera at the 20 cm guiding telescope in our own observatory in Großschwabhausen.
Where are the lightning hotspots on Earth?
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.
2015-12-01
The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.
Validation of stationary phases in (111)In-pentetreotide planar chromatography.
Moreno-Ortega, E; Mena-Bares, L M; Maza-Muret, F R; Hidalgo-Ramos, F J; Vallejo-Casas, J A
2013-01-01
Since Pall-German stopped manufacturing ITLC-SG, it has become necessary to validate alternative stationary phases. To validate different stationary phases versus ITLC-SG Pall-Gelman in the determination of the radiochemical purity (RCP) of (111)In-pentetreotide ((111)In-Octreoscan) by planar chromatography. We conducted a case-control study, which included 66 (111)In-pentetreotide preparations. We determined the RCP by planar chromatography, using a freshly prepared solution of 0,1M sodium citrate (pH 5) and the following stationary phases: ITLC-SG (Pall-Gelman) (reference method), iTLC-SG (Varian), HPTLC silica gel 60 (Merck), Whatman 1, Whatman 3MM and Whatman 17. For each of the methods, we calculated: PRQ, relative front values (RF) of the radiopharmaceutical and free (111)In, chromatographic development time, resolution between peaks. We compared the results obtained with the reference method. The statistical analysis was performed using the SPSS program. The p value was calculated for the study of statistical significance. The highest resolution is obtained with HPTLC silica gel 60 (Merck). However, the chromatographic development time is too long (mean=33.62minutes). Greater resolution is obtained with iTLC-SG (Varian) than with the reference method, with lower chromatographic development time (mean=3.61minutes). Very low resolutions are obtained with Whatman paper, essentially with Whatman 1 and 3MM. Therefore, we do not recommend their use. Although iTLC-SG (Varian) and HPTLC silica gel 60 (Merck) are suitable alternatives to ITLC-SG (Pall-Gelman) in determining the RCP of (111)In-pentetreotide, iTLC-SG (Varian) is the method of choice due to its lower chromatographic development time. Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.
Remotely-sensed near real-time monitoring of reservoir storage in India
NASA Astrophysics Data System (ADS)
Tiwari, A. D.; Mishra, V.
2017-12-01
Real-time reservoir storage information at a high temporal resolution is crucial to mitigate the influence of extreme events like floods and droughts. Despite large implications of near real-time reservoir monitoring in India for water resources and irrigation, remotely sensed monitoring systems have been lacking. Here we develop remotely sensed real-time monitoring systems for 91 large reservoirs in India for the period from 2000 to 2017. For the reservoir storage estimation, we combined Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day 250 m Enhanced Vegetation Index (EVI), and Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) ICESat/GLAS elevation data. Vegetation data with the highest temporal resolution available from the MODIS is at 16 days. To increase the temporal resolution to 8 days, we developed the 8-day composite of near infrared, red, and blue band surface reflectance. Surface reflectance 8-Day L3 Global 250m only have NIR band and Red band, therefore, surface reflectance of 8-Day L3 Global at 500m is used for the blue band, which was regridded to 250m spatial resolution. An area-elevation relationship was derived using area from an unsupervised classification of MODIS image followed by an image enhancement and elevation data from ICESat/GLAS. A trial and error method was used to obtain the area-elevation relationship for those reservoirs for which ICESat/GLAS data is not available. The reservoir storages results were compared with the gauge storage data from 2002 to 2009 (training period), which were then evaluated for the period of 2010 to 2016. Our storage estimates were highly correlated with observations (R2 = 0.6 to 0.96), and the normalized root mean square error (NRMSE) ranged between 10% and 50%. We also developed a relationship between precipitation and reservoir storage that can be used for prediction of storage during the dry season.
Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurement
NASA Technical Reports Server (NTRS)
Weimer, Daniel R.
2001-01-01
The first draft of a manuscript titled "Variable time delays in the propagation of the interplanetary magnetic field" has been completed, for submission to the Journal of Geophysical Research. In the preparation of this manuscript all data and analysis programs had been updated to the highest temporal resolution possible, at 16 seconds or better. The program which computes the "measured" IMF propagation time delays from these data has also undergone another improvement. In another significant development, a technique has been developed in order to predict IMF phase plane orientations, and the resulting time delays, using only measurements from a single satellite at L1. The "minimum variance" method is used for this computation. Further work will be done on optimizing the choice of several parameters for the minimum variance calculation.
Rössler, Erik; Mattea, Carlos; Stapf, Siegfried
2015-02-01
Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.
High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements
NASA Technical Reports Server (NTRS)
Berger, Thomas E.
2001-01-01
This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.
NASA Astrophysics Data System (ADS)
Richards-Kortum, Rebecca
2016-03-01
Esophageal squamous cell neoplasia (ESCN) is the sixth leading cause of cancer death worldwide. Most deaths due to ESCN occur in developing countries, with highest risk areas in northern China. Lugol's chromoendoscopy (LCE) is the gold-standard for ESCN screening; while the sensitivity of LCE for ESCN is >95%, LCE suffers poor specificity (< 65%) due to false positive findings from inflammatory lesions. High resolution microendoscopy (HRME) uses a low-cost, fiber-optic fluorescence microscope to image morphology of the surface epithelium without need for biopsy. We developed a tablet-interfaced HRME with automated, real-time image analysis. In an in vivo study of 177 patients referred for endoscopy in China, use of the algorithm identified neoplasia with a sensitivity and specificity of 95% and 91% compared to the gold standard of histology.
Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.
DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina
In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to bemore » smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.« less
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
Time resolution deterioration with increasing crystal length in a TOF-PET system
NASA Astrophysics Data System (ADS)
Gundacker, S.; Knapitsch, A.; Auffray, E.; Jarron, P.; Meyer, T.; Lecoq, P.
2014-02-01
Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-050P MPPC) we achieve a CTR of 108±5 ps FWHM at an energy of 511 keV. Under the same experimental conditions an increase in crystal length to 5 mm deteriorates the CTR to 123±7 ps FWHM, 10 mm to 143±7 ps FWHM and 20 mm to 176±7 ps FWHM. This degradation in CTR is caused by the light transfer efficiency (LTE) and light transfer time spread (LTTS) in the crystal. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB incorporating the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal simulated by SLITRANI. In this work, we show that the predictions of the simulation are in good agreement with the experimental data. We conclude that for longer crystals the deterioration in CTR is mainly caused by the LTE, i.e. the ratio of photons reaching the photodetector to the total amount of photons generated by the scintillation whereas the LTTS influence is partly offset by the gamma absorption in the crystal.
Standard, Random, and Optimum Array conversions from Two-Pole resistance data
Rucker, D. F.; Glaser, Danney R.
2014-09-01
We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less
Chuang, Yung-Chung Matt; Shiu, Yi-Shiang
2016-01-01
Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply. PMID:27128915
Chuang, Yung-Chung Matt; Shiu, Yi-Shiang
2016-04-26
Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Kim, H. J.; Lee, M. H.
2016-06-01
This study presents luminescence and scintillation properties of Silver doped LiI crystals. Single crystals of LiI: x% Ag (x=0.02, 0.05, 0.1 and 0.5) were grown by using the Bridgman technique. X-ray induced luminescence spectra show emission bands spanning from 275 nm to 675 nm, dominated by Ag+ band having a peak at 300 nm. Under UV-luminescence, a similar emission band was observed with the peak excitation wavelength of 265 nm. Energy resolution, light yield and decay time profiles of the samples were measured under a 137Cs γ-ray irradiation. The LiI(0.1%Ag) showed the highest light yield and the best energy resolution among the samples. The light yield of LiI(0.1%Ag) is higher than commercially available LiI(Eu) crystal (15,000±1500 ph/MeV). The LiI(Ag) samples exhibit three exponential decay time components except the LiI(0.02%Ag), where the fitting found two decay time components. Temperature dependences of emission spectra, light yield and decay time were studied from 300 K to 10 K. The LiI(0.1%Ag) crystal showed an increase in the light yield and a shortening of decay time with a decrease in temperature..
Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio
2010-12-01
Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.
Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio
2010-01-01
Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221
NASA Astrophysics Data System (ADS)
Smith, W.; Weisz, E.; McNabb, J. M. C.
2017-12-01
A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.
Personal exposure to airborne ultrafine particles in the urban area of Milan
NASA Astrophysics Data System (ADS)
Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D. M.
2009-02-01
The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter < 100 nm) can be better evaluated using high-resolution strategies for measuring particle number concentrations. In this study, two different portable Condensation Particle Counters (CPCs) were used to measure personal exposure to UFPs in the central area of Milan for one week period during spring, with three sampling sessions per day. Experimental data were continuously collected along an established urban pathway, moving afoot or by different private and public means of transport. Correlation analysis between data measured by two CPCs was performed and general results showed a good agreement, especially at concentrations lower than 2×105 particles /cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.
NASA Technical Reports Server (NTRS)
Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.;
2011-01-01
Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.
2016-02-01
We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.
Mass selectivity of dipolar resonant excitation in a linear quadrupole ion trap.
Douglas, D J; Konenkov, N V
2014-03-15
For mass analysis, linear quadrupole ion traps operate with dipolar excitation of ions for either axial or radial ejection. There have been comparatively few computer simulations of this process. We introduce a new concept, the excitation contour, S(q), the fraction of the excited ions that reach the trap electrodes when trapped at q values near that corresponding to the excitation frequency. Ion trajectory calculations are used to calculate S(q). Ions are given Gaussian distributions of initial positions in x and y, and thermal initial velocity distributions. To model gas damping, a drag force is added to the equations of motion. The effects of the initial conditions, ejection Mathieu parameter q, scan speed, excitation voltage and collisional damping, are modeled. We find that, with no buffer gas, the mass resolution is mostly determined by the excitation time and is given by R~dβ/dq qn, where β(q) determines the oscillation frequency, and n is the number of cycles of the trapping radio frequency during the excitation or ejection time. The highest resolution at a given scan speed is reached with the lowest excitation amplitude that gives ejection. The addition of a buffer gas can increase the mass resolution. The simulation results are in broad agreement with experiments. The excitation contour, S(q), introduced here, is a useful tool for studying the ejection process. The excitation strength, excitation time and buffer gas pressure interact in a complex way but, when set properly, a mass resolution R0.5 of at least 10,000 can be obtained at a mass-to-charge ratio of 609. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.
2008-01-01
Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category fires based on MODIS measured FRP from 2002 to 2006 does not show any moticeable trend because of the short time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua
Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less
Assessment of a new web-based sexual concurrency measurement tool for men who have sex with men.
Rosenberg, Eli S; Rothenberg, Richard B; Kleinbaum, David G; Stephenson, Rob B; Sullivan, Patrick S
2014-11-10
Men who have sex with men (MSM) are the most affected risk group in the United States' human immunodeficiency virus (HIV) epidemic. Sexual concurrency, the overlapping of partnerships in time, accelerates HIV transmission in populations and has been documented at high levels among MSM. However, concurrency is challenging to measure empirically and variations in assessment techniques used (primarily the date overlap and direct question approaches) and the outcomes derived from them have led to heterogeneity and questionable validity of estimates among MSM and other populations. The aim was to evaluate a novel Web-based and interactive partnership-timing module designed for measuring concurrency among MSM, and to compare outcomes measured by the partnership-timing module to those of typical approaches in an online study of MSM. In an online study of MSM aged ≥18 years, we assessed concurrency by using the direct question method and by gathering the dates of first and last sex, with enhanced programming logic, for each reported partner in the previous 6 months. From these methods, we computed multiple concurrency cumulative prevalence outcomes: direct question, day resolution / date overlap, and month resolution / date overlap including both 1-month ties and excluding ties. We additionally computed variants of the UNAIDS point prevalence outcome. The partnership-timing module was also administered. It uses an interactive month resolution calendar to improve recall and follow-up questions to resolve temporal ambiguities, combines elements of the direct question and date overlap approaches. The agreement between the partnership-timing module and other concurrency outcomes was assessed with percent agreement, kappa statistic (κ), and matched odds ratios at the individual, dyad, and triad levels of analysis. Among 2737 MSM who completed the partnership section of the partnership-timing module, 41.07% (1124/2737) of individuals had concurrent partners in the previous 6 months. The partnership-timing module had the highest degree of agreement with the direct question. Agreement was lower with date overlap outcomes (agreement range 79%-81%, κ range .55-.59) and lowest with the UNAIDS outcome at 5 months before interview (65% agreement, κ=.14, 95% CI .12-.16). All agreements declined after excluding individuals with 1 sex partner (always classified as not engaging in concurrency), although the highest agreement was still observed with the direct question technique (81% agreement, κ=.59, 95% CI .55-.63). Similar patterns in agreement were observed with dyad- and triad-level outcomes. The partnership-timing module showed strong concurrency detection ability and agreement with previous measures. These levels of agreement were greater than others have reported among previous measures. The partnership-timing module may be well suited to quantifying concurrency among MSM at multiple levels of analysis.
Time-domain Astronomy with the Advanced X-ray Imaging Satellite
NASA Astrophysics Data System (ADS)
Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard
2018-01-01
The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.
GPUs benchmarking in subpixel image registration algorithm
NASA Astrophysics Data System (ADS)
Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier
2015-05-01
Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.
High resolution simulations of a variable HH jet
NASA Astrophysics Data System (ADS)
Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.
2007-04-01
Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.
Duvivier, Wilco F; van Beek, Teris A; Nielen, Michel W F
2016-11-15
Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyzers have been evaluated regarding their selectivity and sensitivity for the detection of Δ9-tetrahydrocannabinol (THC) from intact hair samples using direct analysis in real time (DART) ionization. Four different mass analyzers, namely (1) an orbitrap, (2) a quadrupole orbitrap, (3) a triple quadrupole, and (4) a quadrupole time-of-flight (QTOF), were evaluated. Selectivity and sensitivity were assessed by analyzing secondary THC standard dilutions on stainless steel mesh screens and blank hair samples, and by the analysis of authentic cannabis user hair samples. Additionally, separation of isobaric ions by use of travelling wave ion mobility (TWIM) was investigated. The use of a triple quadrupole instrument resulted in the highest sensitivity; however, transitions used for multiple reaction monitoring were only found to be specific when using high mass resolution product ion measurements. A mass resolution of at least 30,000 FWHM at m/z 315 was necessary to avoid overlap of THC with isobaric ions originating from the hair matrix. Even though selectivity was enhanced by use of TWIM, the QTOF instrument in resolution mode could not indisputably differentiate THC from endogenous isobaric ions in drug user hair samples. Only the high resolution of the (quadrupole) orbitrap instruments and the QTOF instrument in high-resolution mode distinguished THC in hair samples from endogenous isobaric interferences. As expected, enhanced selectivity compromises sensitivity and THC was only detectable in hair from heavy users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
An Overview of Downhole Imaging Tools
NASA Astrophysics Data System (ADS)
Luthi, S. M.
In this presentation we give an overview of downhole imaging tools that can be used to image the borehole wall and its vicinity with a variety of physical methods. Among these are ultrasonic scans with a rotating transducer that performs a pulse-echo mea- surement in rapid succession. This gives a transit time and a reflected amplitude image of the borehole wall. Electrical imaging is done with a whole family of measurements that operate mostly in the low AC range. All of them feature a number of electrodes that is inversely proportional to the desired resolution and depth of investigation. They image layering, fracturing and other heterogeneities in the rocks traversed by the bore- hole. Some of these images can be recorded and transmitted to the surface in real-time while the well is being drilled. Imaging using nuclear methods is also possible, for ex- ample for the natural radioactivity, density, or neutron porosity of the rock. However, these devices have generally low spatial resolutions. Finally, optical imaging is pos- sible in translucent and slightly opaque muds with a downhole video camera. Recent developments have resulted in a device that can withstand high pressures and temper- atures and that transmits live video images to the surface in real-time. This method has the highest resolution but is of limited applicability in the oil industry where gener- ally opaque muds are used. These images can be successfully used to determined the structural and intrinsic properties of rock traversed by a borehole.
Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S
NASA Astrophysics Data System (ADS)
Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.
2017-08-01
The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.
NASA Technical Reports Server (NTRS)
Russell, Christopher T.; Hoffman, Robert (Technical Monitor)
2002-01-01
At this writing we have received all the CDROMs for the grant period. We have completed generating our timing tables past September 20, 2001. The calibration of the instrument has been checked for the entire mission up to the end of December 2000 and the key parameters provided to the project until the end of December 2000. These data are available to other experimenters over the web at http://www-ssc.igpp.ucla.edu/forms/polar/. High resolution spun data, 8 samples per see, have been created up to November, 2000 and have been made available to the community over the world wide web. This is a new data set that was a major effort this year. Our near term plans are to continue to provide key parameter data to the Polar project with the highest possible speed and to continue to reduce all high resolution magnetometer data and provide these data to the scientific community over the web.
CARMENES science preparation. High-resolution spectroscopy of M dwarfs
NASA Astrophysics Data System (ADS)
Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium
2015-05-01
To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.
CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS
NASA Astrophysics Data System (ADS)
Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.
2013-07-01
To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.
The prototype of the Micro Vertex Detector of the CBM Experiment
NASA Astrophysics Data System (ADS)
Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Li, Qiyan; Michel, Jan; Milanović, Borislav; Müntz, Christian; Neumann, Bertram; Schrader, Christoph; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael
2013-12-01
The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility at Darmstadt, Germany. This fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. Reconstructing those short lived particles requires a vacuum compatible Micro Vertex Detector (MVD) with unprecedented properties. Its sensor technology has to feature a spatial resolution of <5 μm, a non-ionizing radiation tolerance of >1013 neq/cm2, an ionizing radiation tolerance of >3 Mrad and a time resolution of a few 10 μs. The MVD-prototype project aimed to study the integration the CMOS Monolithic Active Pixel Sensors foreseen for the MVD into an ultra light (0.3% X0) and a vacuum compatible detector system based on a cooling support made of CVD-diamond.
Community Exoplanet Follow-up Program
NASA Technical Reports Server (NTRS)
Howell, Steve
2017-01-01
During the Kepler mission, our team provided the community with the highest resolution images available anywhere of exoplanet host stars. Using speckle interferometry on the 3.5-m WIYN, and 8-m Gemini telescopes, thousands of observations have been obtained reaching the diffraction limit of the telescope. From these public data available at the NASA Exoplanet Archive, numerous publications have resulted and many scientific results have been obtained for exoplanets including the fact that high-resolution imaging is critical to fully characterize the planet host stars and the planets themselves (e.g., planet radius and incident flux). Exoplanet host star observations have also occurred (and continue) for K2 mission candidates with archival data available as well. Observational programs for TESS candidates, WFIRST program stars, and Zodiacal light candidates are currently on-going. Availability to propose or obtain such observations are possible through 1) collaboration with our team, 2) successfully proposing to WIYN or GEMINI for telescope time, or 3) using publically available archival data. This poster will highlight the observational program, how time is allocated and how our queue observational program works, and new features and observational modes that are available now.
Maximum likelihood positioning and energy correction for scintillation detectors
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten
2016-02-01
An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.
NASA Astrophysics Data System (ADS)
Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.
2018-04-01
The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.
Overview of the development of high-resolution 920 MHz NMR in NIMS
NASA Astrophysics Data System (ADS)
Shimizu, Tadashi; Hashi, Kenjiro; Goto, Atsushi; Tansyo, Masataka; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Kirihara, Noriaki; Suematsu, Hiroto; Kida, Yoshiki; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji
2004-04-01
We have developed a 920 MHz NMR system and performed the proton NMR measurement of ethylbenzene and water using the superconducting magnet operating at 21.6 T ( 920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high-resolution NMR. The sensitivity has been examined by 1H NMR of 0.1% ethylbenzene in Wilmad 555 tube and obtained the signal-to-noise ratio as S/ N=2981, which is the highest record, to our knowledge, among the room temperature measurements.
The SUVIT Instrument on the Solar-C Mission
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Ichimoto, Kiyoshi
2014-06-01
Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes precise spectro-polarimetric observations. With their powerful sets of spectral lines, FG and SP collect physical measurements from the lower photosphere to upper chromosphere with much better spatial and temporal resolution than Hinode SOT.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2015-04-01
Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error and the erosivity density (Rainfall erosivity per mm of precipitation) are available in the European Soil Data Centre (ESDAC). The highest erosivity has been found in the mediterrean countries (Italy, Western Greece, Spain, Northern Portugal), South Austria, Slovenia, Croatia and Western United Kingdom.
Hurricane Maria's Strengthening Winds Seen in NASA SMAP Image
2017-09-19
The radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) spacecraft captured this image of Hurricane Maria at 6:27 a.m. EDT on Sept. 19, 2017 (10:27 UTC), showing an estimated maximum surface wind speed of 126.6 miles per hour (56.6 meters per second). While Maria was already a Category 5 hurricane at the time of this observation, it is an extremely tightly organized hurricane and SMAP cannot fully resolve its highest winds due to the 25-mile (40-kilometer) resolution of SMAP. https://photojournal.jpl.nasa.gov/catalog/PIA21960
View of Callisto at Increasing Resolutions
NASA Technical Reports Server (NTRS)
1998-01-01
These four views of Jupiter's second largest moon, Callisto, highlight how increasing resolutions enable interpretation of the surface. In the global view (top left) the surface is seen to have many small bright spots, while the regional view (top right) reveals the spots to be the larger craters. The local view (bottom right) not only brings out smaller craters and detailed structure of larger craters, but also shows a smooth dark layer of material that appears to cover much of the surface. The close-up frame (bottom left) presents a surprising smoothness in this highest resolution (30 meters per picture element) view of Callisto's surface.
North is to the top of these frames which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft between November 1996 and November 1997. Even higher resolution images (better than 20 meters per picture element) of Callisto will be taken on June 30, 1999 during the 21st orbit of the spacecraft around Jupiter.The top left frame is scaled to 10 kilometers (km) per picture element (pixel) and covers an area about 4400 by 2500 km. The moon Callisto, which has a diameter of 4806 km, appears to be peppered with many bright spots. Images at this resolution of other cratered moons in the Solar System indicate that the bright spots could be impact craters. The ring structure of Valhalla, the largest impact structure on Callisto, is visible in the center of the frame. This color view combines images obtained in November 1997 taken through the green, violet, and 1 micrometer filters of the SSI system.The top right frame is ten times higher resolution (about 1 km per pixel) and covers an area approximately 440 by 250 km. Craters, which are clearly recognizable, appear to be the dominant landform on Callisto. The crater rims appear bright, while the adjacent area and the crater interiors are dark. This resolution is comparable to the best data available from the 1979 flyby's of NASA's two Voyager spacecraft; it reflects the understanding of Callisto prior to new data from Galileo. This Galileo image was taken in November 1996.The resolution of the bottom right image is again ten times better (100 meters per pixel) and covering an area of about 44 by 25 km. This resolution reveals that some crater rims are not complete rings, but are composed of bright isolated segments. Steep slopes near crater rims reveal dark material that appears to have slid down to reveal bright material. The thickness of the dark layer could be tens of meters. The image was taken in June 1997.The bottom left image at about 29 meters per pixel is the highest resolution available for Callisto. It covers an area about 4.4 by 2.5 km and is somewhat oblique. Craters are visible but no longer dominate the surface. The image was taken in November 1996.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoShi, Junjie; Li, Xin; Chen, Qian; Gao, Kun; Song, Hui; Guo, Shixi; Li, Quanfu; Fang, Ming; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli
2015-05-07
A biosensor array with differential output based on a monocrystal graphene domain is proposed to realize high resolution measurements. The differential output structure can eliminate the noise that comes from graphene crystal orientation and grain boundary, as well as the fluctuation that comes from the contact resistance and experiment process, so as to improve resolution in the lower concentration. We have fabricated a high quality monocrystal graphene domain that has millimeter size by the chemical vapor deposition method. Two identical graphene ribbons that are cut from the same domain are used as field effect transistor source-to-drain channels for the reference and the test of differential output, respectively. The experimental results show that the source-to-drain current has a fast response shorter than 0.5 second in glucose, normal saline and pH buffer solutions of different concentrations. Sensitivity increases exponentially with the increase of concentration of the tested liquid and the high resolution range is 0.01-2 wt% in glucose and 0.0009-0.018 wt% in saline, and the highest resolutions of glucose and saline are 0.01 wt% and 0.0009 wt%, respectively. We have fabricated a 1 × 4 array structure with differential outputs that pave the way for rapidly detecting ultra-low concentration of analytes.
Is there potential added value in COSMO-CLM forced by ERA reanalysis data?
NASA Astrophysics Data System (ADS)
Lenz, Claus-Jürgen; Früh, Barbara; Adalatpanah, Fatemeh Davary
2017-12-01
An application of the potential added value (PAV) concept suggested by Di Luca et al. (Clim Dyn 40:443-464, 2013a) is applied to ERA Interim driven runs of the regional climate model COSMO-CLM. They are performed for the time period 1979-2013 for the EURO-CORDEX domain at horizontal grid resolutions 0.11°, 0.22°, and 0.44° such that the higher resolved model grid fits into the next coarser grid. The concept of the potential added value is applied to annual, seasonal, and monthly means of the 2 m air temperature. Results show the highest potential added value at the run with the finest grid and generally increasing PAV with increasing resolution. The potential added value strongly depends on the season as well as the region of consideration. The gain of PAV is higher enhancing the resolution from 0.44° to 0.22° than from 0.22° to 0.11°. At grid aggregations to 0.88° and 1.76° the differences in PAV between the COSMO-CLM runs on the mentioned grid resolutions are maximal. They nearly vanish at aggregations to even coarser grids. In all cases the PAV is dominated by at least 80% by its stationary part.
bHROS: A New High-Resolution Spectrograph Available on Gemini South
NASA Astrophysics Data System (ADS)
Margheim, S. J.; Gemini bHROS Team
2005-12-01
The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.
NASA Astrophysics Data System (ADS)
Michael, Scott A.; Steiman-Cameron, T.; Durisen, R.; Boley, A.
2008-05-01
Using 3D simulations of a cooling disk undergoing gravitational instabilities (GIs), we compute the effective Shakura and Sunyaev (1973) alphas due to gravitational torques and compare them to predictions from an analytic local theory for thin disks by Gammie (2001). Our goal is to determine how accurately a locally defined alpha can characterize mass and angular momentum transport by GIs in disks. Cases are considered both with cooling by an imposed constant global cooling time (Mejia et al. 2005) and with realistic radiative transfer (Boley et al. 2007). Grid spacing in the azimuthal direction is varied to investigate how the computed alpha is affected by numerical resolution. The azimuthal direction is particularly important, because higher resolution in azimuth allows GI power to spread to higher-order (multi-armed) modes that behave more locally. We find that, in many important respects, the transport of mass and angular momentum by GIs is an intrinsically global phenomenon. Effective alphas are variable on a dynamic time scale over global spatial scales. Nevertheless, preliminary results at the highest resolutions for an imposed cooling time show that our computed alphas, though systematically higher, tend on average to follow Gammie's prediction to within perhaps a factor of two. Our computed alphas include only gravitational stresses, while in Gammie's treatment the effective alpha is due equally to hydrodynamic (Reynolds) and gravitational stresses. So Gammie's prediction may significantly underestimate the true average stresses in a GI-active disk. Our effective alphas appear to be reasonably well converged for 256 and 512 azimuthal zones. We also have a high-resolution simulation under way to test the extent of radial mixing by GIs of gas and its entrained dust for comparison with Stardust observations. Results will be presented if available at the time of the meeting.
NASA Astrophysics Data System (ADS)
Hennen, Mark; White, Kevin; Shahgedanova, Maria
2017-04-01
This paper compares Dust RGB products derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data at 15 minute, 30 minute and hourly temporal resolutions. From January 2006 to December 2006, observations of dust emission point sources were observed at each temporal resolution across the entire Middle East region (38.50N; 30.00E - 10.00N; 65.50E). Previous work has demonstrated that 15-minute resolution SEVIRI data can be used to map dust sources across the Sahara by observing dust storms back through sequential images to the point of first emission (Schepanski et al., 2007; 2009; 2012). These observations have improved upon lower resolution maps, based on daily retrievals of aerosol optical depth (AOD), whose maxima can be biased by prevalent transport routes, not necessarily coinciding with sources of emissions. Based on the thermal contrast of atmospheric dust to the surface, brightness temperature differences (BTD's) in the thermal infrared (TIR) wavelengths (8.7, 10.8 and 12.0 µm) highlight dust in the scene irrespective of solar illumination, giving both increased accuracy of dust source areas and a greater understanding of diurnal emission behaviour. However, the highest temporal resolution available (15-minute repeat capture) produces 96 images per day, resulting in significantly higher data storage demands than 30 minute or hourly data. To aid future research planning, this paper investigates what effect lowering the temporal resolution has on the number and spatial distribution of the observed dust sources. The results show a reduction in number of dust emission events observed with each step decrease in temporal resolution, reducing by 17% for 30-minute resolution and 50% for hourly. These differences change seasonally, with the highest reduction observed in summer (34% and 64% reduction respectively). Each resolution shows a similar spatial distribution, with the biggest difference seen near the coastlines, where near-shore convective cloud patterns obscure atmospheric dust soon after emission, restricting the opportunity to be observed at hourly resolution.
Review of GaN-based devices for terahertz operation
NASA Astrophysics Data System (ADS)
Ahi, Kiarash
2017-09-01
GaN provides the highest electron saturation velocity, breakdown voltage, operation temperature, and thus the highest combined frequency-power performance among commonly used semiconductors. The industrial need for compact, economical, high-resolution, and high-power terahertz (THz) imaging and spectroscopy systems are promoting the utilization of GaN for implementing the next generation of THz systems. As it is reviewed, the mentioned characteristics of GaN together with its capabilities of providing high two-dimensional election densities and large longitudinal optical phonon of ˜90 meV make it one of the most promising semiconductor materials for the future of the THz emitters, detectors, mixers, and frequency multiplicators. GaN-based devices have shown capabilities of operation in the upper THz frequency band of 5 to 12 THz with relatively high photon densities in room temperature. As a result, THz imaging and spectroscopy systems with high resolution and deep depth of penetration can be realized through utilizing GaN-based devices. A comprehensive review of the history and the state of the art of GaN-based electronic devices, including plasma heterostructure field-effect transistors, negative differential resistances, hetero-dimensional Schottky diodes, impact avalanche transit times, quantum-cascade lasers, high electron mobility transistors, Gunn diodes, and tera field-effect transistors together with their impact on the future of THz imaging and spectroscopy systems is provided.
Zimmermann, Petra; Tebruegge, Marc; Curtis, Nigel; Ritz, Nicole
2015-07-01
Cervicofacial lymphadenitis is the most common manifestation of infection with non-tuberculous mycobacteria (NTM) in immunocompetent children. Although complete excision is considered standard management, the optimal treatment remains controversial. This study reviews the evidence for different management options for NTM lymphadenitis. A systematic literature review and meta-analysis were performed including 1951 children from sixty publications. Generalised linear mixed model regressions were used to compare treatment modalities. The adjusted mean cure rate was 98% (95% CI 97.0-99.5%) for complete excision, 73.1% (95% CI 49.6-88.3%) for anti-mycobacterial antibiotics, and 70.4% (95% CI 49.6-88.3%) for 'no intervention'. Compared to 'no intervention', only complete excision was significantly associated with cure (OR 33.1; 95% CI 10.8-102.9; p < 0.001). Complete excision was associated with a 10% risk of facial nerve palsy (2% permanent). 'No intervention' was associated with delayed resolution. Complete excision is associated with the highest cure rate in NTM cervicofacial lymphadenitis, but also had the highest risk of facial nerve palsy. In the absence of large, well-designed RCTs, the choice between surgical excision, anti-mycobacterial antibiotics and 'no intervention' should be based on the location and extent of the disease, and acceptability of prolonged time to resolution. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Barnes, Samuel R; Ng, Thomas S C; Montagne, Axel; Law, Meng; Zlokovic, Berislav V; Jacobs, Russell E
2016-05-01
To determine optimal parameters for acquisition and processing of dynamic contrast-enhanced MRI (DCE-MRI) to detect small changes in near normal low blood-brain barrier (BBB) permeability. Using a contrast-to-noise ratio metric (K-CNR) for Ktrans precision and accuracy, the effects of kinetic model selection, scan duration, temporal resolution, signal drift, and length of baseline on the estimation of low permeability values was evaluated with simulations. The Patlak model was shown to give the highest K-CNR at low Ktrans . The Ktrans transition point, above which other models yielded superior results, was highly dependent on scan duration and tissue extravascular extracellular volume fraction (ve ). The highest K-CNR for low Ktrans was obtained when Patlak model analysis was combined with long scan times (10-30 min), modest temporal resolution (<60 s/image), and long baseline scans (1-4 min). Signal drift as low as 3% was shown to affect the accuracy of Ktrans estimation with Patlak analysis. DCE acquisition and modeling parameters are interdependent and should be optimized together for the tissue being imaged. Appropriately optimized protocols can detect even the subtlest changes in BBB integrity and may be used to probe the earliest changes in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. © 2015 Wiley Periodicals, Inc.
Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant
2018-01-01
Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.
Mitkus, Mindaugas; Nevitt, Gabrielle A; Danielsen, Johannis; Kelber, Almut
2016-11-01
Procellariiform or 'tubenosed' seabirds are challenged to find prey and orient over seemingly featureless oceans. Previous studies have found that life-history strategy (burrow versus surface nesting) was correlated to foraging strategy. Burrow nesters tended to track prey using dimethyl sulphide (DMS), a compound associated with phytoplankton, whereas surface-nesting species did not. Burrow nesters also tended to be smaller and more cryptic, whereas surface nesters were larger with contrasting plumage coloration. Together these results suggested that differences in life-history strategy might also be linked to differences in visual adaptations. Here, we used Leach's storm petrel, a DMS-responder, and northern fulmar, a non-responder, as model species to test this hypothesis on their sensory ecology. From the retinal ganglion cell density and photoreceptor dimensions, we determined that Leach's storm petrels have six times lower spatial resolution than the northern fulmars. However, the optical sensitivity of rod photoreceptors is similar between species. These results suggest that under similar atmospheric conditions, northern fulmars have six times the detection range for similarly sized objects. Both species have extended visual streaks with a central area of highest spatial resolution, but only the northern fulmar has a central fovea. The prediction that burrow-nesting DMS-responding procellariiforms should differ from non-responding species nesting in the open holds true for spatial resolution, but not for optical sensitivity. This result may reflect the fact that both species rely on olfaction for their nocturnal foraging activity, but northern fulmars might use vision more during daytime. © 2016. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.
2011-01-01
Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.
Mass resolution of linear quadrupole ion traps with round rods.
Douglas, D J; Konenkov, N V
2014-11-15
Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with mass-selective ejection of ions by up to a factor of 2.7. The optimum ratio r/r0 is 1.14 to 1.16, which differs from the optimum ratio for a mass filter of 1.128-1.130. Copyright © 2014 John Wiley & Sons, Ltd.
An, Meichen; Liu, Ning
2010-02-01
A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.
Imaging White Matter in Human Brainstem
Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo. PMID:23898254
Imaging white matter in human brainstem.
Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-02-01
Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.
NOAA Photo Library - Navigating the Collection
will have to change the setting to 800x600 to view the full image without having to scroll from left to view or download the highest resolution image available, click on the message "High Resolution viewing individual images associated with albums. If wishing to view the image ID number of a thumbnail
7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals.
Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas
2007-12-01
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.
Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng
2018-02-01
The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO 4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. © 2017 American Association of Physicists in Medicine.
Deep Impact Autonomous Navigation : the trials of targeting the unknown
NASA Technical Reports Server (NTRS)
Kubitschek, Daniel G.; Mastrodemos, Nickolaos; Werner, Robert A.; Kennedy, Brian M.; Synnott, Stephen P.; Null, George W.; Bhaskaran, Shyam; Riedel, Joseph E.; Vaughan, Andrew T.
2006-01-01
On July 4, 2005 at 05:44:34.2 UTC the Impactor Spacecraft (s/c) impacted comet Tempel 1 with a relative speed of 10.3 km/s capturing high-resolution images of the surface of a cometary nucleus just seconds before impact. Meanwhile, the Flyby s/c captured the impact event using both the Medium Resolution Imager (MRI) and the High Resolution Imager (HRI) and tracked the nucleus for the entire 800 sec period between impact and shield attitude transition. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and capture high-resolution context images of the impact site. This was accomplished by using autonomous navigation (AutoNav) algorithms and precise attitude information from the attitude determination and control subsystem (ADCS). The Flyby s/c had two primary objectives: 1) capture the impact event with the highest temporal resolution possible in order to observe the ejecta plume expansion dynamics; and 2) track the impact site for at least 800 sec to observe the crater formation and capture the highest resolution images possible of the fully developed crater. These two objectives were met by estimating the Flyby s/c trajectory relative to Tempel 1 using the same AutoNav algorithms along with precise attitude information from ADCS and independently selecting the best impact site. This paper describes the AutoNav system, what happened during the encounter with Tempel 1 and what could have happened.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T.P.; Schrag, D.P.; Kashgarian, M.
1998-10-01
We have generated a high resolution coral {Delta}{sup 14}C record spanning the last 50 years to document the seasonal and interannual redistribution of surface waters in the western tropical Pacific. Prebomb (1947{endash}1956) {Delta}{sup 14}C values average {minus}63{per_thousand} and have a total range of 30{per_thousand}. Values begin to increase in 1957, reaching a maximum of 137{per_thousand} in mid-1983. Large interannual variability of up to 80{per_thousand} closely follows the El Ni{tilde n}o-Southern Oscillation (ENSO). During each ENSO warm phase, {Delta}{sup 14}C values begin to increase, reflecting the reduction of low-{sup 14}C water upwelling in the east and the invasion of subtropical watermore » into the western equatorial tropical Pacific. Maximum {Delta}{sup 14}C values are in phase or lag the corresponding sea surface temperature maxima in the eastern tropical Pacific, whereas the rapid return to more negative {Delta}{sup 14}C is in phase with eastern Pacific ENSO indices. The highest-amplitude excursions occur during the 1965/1966 and 1972/1973 events, when the {sup 14}C contrast is highest between the eastern Pacific and subtropics. The 1982/1983 El Ni{tilde n}o, although a larger ENSO event, has a lower {Delta}{sup 14}C amplitude, reflecting the penetration of bomb radiocarbon into the equatorial undercurrent and the reduced contrast in {Delta}{sup 14}C between thermocline and subtropical surface waters at that time. This coral record demonstrates the potential for using similar radiocarbon time series for documenting variability in Pacific shallow circulation over interannual and decadal timescales. {copyright} 1998 American Geophysical Union« less
Selecting a spatial resolution for estimation of per-field green leaf area index
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Williamson, H. Dawn
1988-01-01
For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.
The validity of flow approximations when simulating catchment-integrated flash floods
NASA Astrophysics Data System (ADS)
Bout, B.; Jetten, V. G.
2018-01-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.
HRSC: High resolution stereo camera
Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.
2009-01-01
The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.
The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars
NASA Astrophysics Data System (ADS)
Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.
2014-04-01
The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.
On effective and optical resolutions of diffraction data sets.
Urzhumtseva, Ludmila; Klaholz, Bruno; Urzhumtsev, Alexandre
2013-10-01
In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.
NASA Astrophysics Data System (ADS)
Ludwig, V. S.; Istomina, L.; Spreen, G.
2017-12-01
Arctic sea ice concentration (SIC), the fraction of a grid cell that is covered by sea ice, is relevant for a multitude of branches: physics (heat/momentum exchange), chemistry (gas exchange), biology (photosynthesis), navigation (location of pack ice) and others. It has been observed from passive microwave (PMW) radiometers on satellites continuously since 1979, providing an almost 40-year time series. However, the resolution is limited to typically 25 km which is good enough for climate studies but too coarse to properly resolve the ice edge or to show leads. The highest resolution from PMW sensors today is 5 km of the AMSR2 89 GHz channels. Thermal infrared (TIR) and visible (VIS) measurements provide much higher resolutions between 1 km (TIR) and 30 m (VIS, regional daily coverage). The higher resolutions come at the cost of depending on cloud-free fields of view (TIR and VIS) and daylight (VIS). We present a merged product of ASI-AMSR2 SIC (PMW) and MODIS SIC (TIR) at a nominal resolution of 1 km. This product benefits from both the independence of PMW towards cloud coverage and the high resolution of TIR data. An independent validation data set has been produced from manually selected, cloud-free Landsat VIS data at 30 m resolution. This dataset is used to evaluate the performance of the merged SIC dataset. Our results show that the merged product resolves features which are smeared out by the PMW data while benefitting from the PMW data in cloudy cases and is thus indeed more than the sum of its parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Christian; Sawall, Stefan; Knaup, Michael
2014-06-15
Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT.« less
The SMM UV observations of Active Region 5395
NASA Technical Reports Server (NTRS)
Drake, Stephen A.; Gurman, Joseph B.
1989-01-01
The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.
An ultra-high resolution last deglacial marine sediment records of the Northwest Atlantic Ocean
NASA Astrophysics Data System (ADS)
Rashid, H.; Piper, D.; Marche, B.; Vermooten, M.; Lazar, K.; Brockway, B.
2016-12-01
Lack of high sedimentation rate records of past changes pertaining to the late Pleistocene Laurentide ice-sheet (LIS) dynamics has prevented efforts to differentiate the various forcings in modulating abrupt climate changes. Here, we present an ultra-high resolution sediment record spanning approximately 1,500 km of the Eastern Canadian continental margin. The new record comprises four sediment cores which were collected from the northwest Labrador Sea (i.e., Saglek Bank) to southwestern Flemish Pass to the southeast Grand Banks in outer shelf and slope settings. Fifty new 14C-accelerator mass spectrometric dates were obtained to construct the stratigraphy. The total sediment thickness of the new record is 41 m covering the past 26 ka with 1.58/ka mean sediment rate, the highest sediment rate ever reported from the Northwest Atlantic Ocean for this time interval. Further, the temporal resolution of the record varies from a couple of decades to centuries depending on the time interval. X-ray fluorescence (XRF) data in conjunction with physical properties of sediments and petrology allowed us to distinguish sediment delivered by major ice-streams of the LIS namely the Hudson Strait, Hopedale Saddle, and Cumberland Sound ice streams. Heinrich layers 1 and 2 are well identified by their Labrador Sea specific characteristics. The so-called Younger Dryas equivalent Heinrich layer H0 was identified in these cores but the timing of onset of H0 has an offset by nearly 1,000 years with that of the 12.9 ka, suggesting that the YD event was not initiated by the Hudson Strait compared to other Heinrich events.
Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.
Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza
2017-10-01
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.
A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.
1984-01-01
High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.
Wang, Diya; Xiao, Mengnan; Hu, Hong; Zhang, Yu; Su, Zhe; Xu, Shanshan; Zong, Yujin; Wan, Mingxi
2018-03-01
This study aimed to develop a focal microvascular contrast-enhanced ultrasonic parametric perfusion imaging (PPI) scheme to overcome the tradeoff between the resolution, contrast, and accuracy of focal PPI in the tumor. Its resolution was limited by the low signal-to-clutter ratio (SCR) of time-intensity-curves (TICs) induced by multiple limitations, which deteriorated the accuracy and contrast of focal PPI. The scheme was verified by the in-vivo perfusion experiments. Single-pixel TICs were first extracted to ensure PPI with the highest resolution. The SCR of focal TICs in the tumor was improved using respiratory motion compensation combined with detrended fluctuation analysis. The entire and focal PPIs of six perfusion parameters were then accurately created after filtrating the valid TICs and targeted perfusion parameters. Compared with those of the conventional PPIs, the axial and lateral resolutions of focal PPIs were improved by 30.29% (p < .05) and 32.77% (p < .05), respectively; the average contrast and accuracy evaluated by SCR improved by 7.24 ± 4.90 dB (p < .05) and 5.18 ± 1.28 dB (p < .05), respectively. The edge, morphostructure, inhomogeneous hyper-enhanced distribution, and ring-like perfusion features in intratumoral microvessel were accurately distinguished and highlighted by the focal PPIs. The developed focal PPI can assist clinicians in making confirmed diagnoses and in providing appropriate therapeutic strategies for liver tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, H.; Lin, T.
2017-12-01
Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
NASA Astrophysics Data System (ADS)
van den Bout, Bastian; Jetten, Victor
2017-04-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.
Downscaling of land surface temperatures from SEVIRI
NASA Astrophysics Data System (ADS)
Bechtel, B.; Zaksek, K.
2013-12-01
Land surface temperature (LST) determines the radiance emitted by the surface and hence is an important boundary condition of the energy balance. In urban areas, detailed knowledge about the diurnal cycle in LST can contribute to understand the urban heat island (UHI). Although the increased surface temperatures compared to the surrounding rural areas (surface urban heat island, SUHI) have been measured by satellites and analysed for several decades, an operational SUHI monitoring is still not available due to the lack of sensors with appropriate spatiotemporal resolution. While sensors on polar orbiting satellites are still restricted to approx. 100 m spatial resolution and coarse temporal coverage (about 1-2 weeks), sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (>3 km). Further, all polar orbiting satellites have a similar equator crossing time and hence the SUHI can at best be observed at two times a day. A downscaling DS scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 8 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg. Various data were tested as predictors, including multispectral data and derived indices, morphological parameters from interferometric SAR and multitemporal thermal data. All predictors were upscaled to the coarse resolution approximating the point spread function of SEVIRI. Then empirical relationships between the predictors and LST were derived which are then transferred to the high resolution domain, assuming they are scale invariant. For validation LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Enhanced Thematic Mapper Plus (ETM+) for two dates were used. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R^2 = 0.71) and relatively low root mean square errors (RMSE = 2.2 K) for the ASTER scene and slightly higher errors (R^2 = 0.73, RMSE = 2.53) for the ETM+ scene. A considerable percentage of the error was systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K for ASTER and 0.66 K for ETM+). This shows that DS of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multitemporal thermal data are particularly suitable as predictors. Further, the scheme was used to produce an entire diurnal cycle in high resolution. While essential characteristics of the diurnal cycle were well reproduced, certain artefacts resulting from the multitemporal predictors from different seasons (like phenology and different water surface temperatures) were generated. Eventually, the bias and its dependence on the viewing geometry and topography are currently investigated.
Studying AGN Jets At Extreme Angular Resolution
NASA Astrophysics Data System (ADS)
Bruni, Gabriele
2016-10-01
RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.
NASA Astrophysics Data System (ADS)
Abdullah, M.; Krishnan, Ganesan; Saliman, Tiffany; Fakaruddin Sidi Ahmad, M.; Bidin, Noriah
2018-03-01
A mirrorless refractometer was studied and analyzed using the quasi-Gaussian beam approach. The Fresnel equation for reflectivity at the interface between two mediums with different refractive indices was used to calculate the directional reflectivity, R. Various liquid samples from 1.3325 to 1.4657 refractive indices units were used. Experimentally, a fiber bundle probe with a concentric configuration of 16 receiving fibers and a single transmitting fiber was employed to verify the developed models. The sensor performance in term of sensitivity, linear range, and resolution, were analyzed and calculated. It has been shown that the developed theoretical models are capable of providing quantitative guidance of the output of the sensor with high accuracy. The highest resolution of the sensor was 4.39 × 10-3 refractive indices units, obtained by correlating the peak voltage along the refractive index. The resolution is sufficient for determining the specific refractive index increment of most polymer solutions, certain proteins, and also in monitoring bacterial growth. The accuracy, simplicity, and effectiveness of the proposed sensor over a long period of time while having non-contact measurements reflect a good potential for commercialization.
Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale
Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...
2017-04-18
Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.
We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less
Global cancer control: responding to the growing burden, rising costs and inequalities in access
Braga, Sofia; Bystricky, Branislav; Qvortrup, Camilla; Criscitiello, Carmen; Esin, Ece; Sonke, Gabe S; Martínez, Guillem Argilés; Frenel, Jean-Sebastian; Karamouzis, Michalis; Strijbos, Michiel; Yazici, Ozan; Bossi, Paolo; Banerjee, Susana; Troiani, Teresa; Eniu, Alexandru; Ciardiello, Fortunato; Tabernero, Josep; Zielinski, Christoph C; Casali, Paolo G; Cardoso, Fatima; Douillard, Jean-Yves; McGregor, Keith; Bricalli, Gracemarie; Vyas, Malvika; Ilbawi, André
2018-01-01
The cancer burden is rising globally, exerting significant strain on populations and health systems at all income levels. In May 2017, world governments made a commitment to further invest in cancer control as a public health priority, passing the World Health Assembly Resolution 70.12 on cancer prevention and control within an integrated approach. In this manuscript, the 2016 European Society for Medical Oncology Leadership Generation Programme participants propose a strategic framework that is in line with the 2017 WHO Cancer Resolution and consistent with the principle of universal health coverage, which ensures access to optimal cancer care for all people because health is a basic human right. The time for action is now to reduce barriers and provide the highest possible quality cancer care to everyone regardless of circumstance, precondition or geographic location. The national actions and the policy recommendations in this paper set forth the vision of its authors for the future of global cancer control at the national level, where the WHO Cancer Resolution must be implemented if we are to reduce the cancer burden, avoid unnecessary suffering and save as many lives as possible. PMID:29464109
NASA Astrophysics Data System (ADS)
Ajani, Penelope; Larsson, Michaela E.; Rubio, Ana; Bush, Stephen; Brett, Steve; Farrell, Hazel
2016-12-01
Dinoflagellates belonging to the toxigenic genus Dinophysis are increasing in abundance in the Hawkesbury River, south-eastern Australia. This study investigates a twelve year time series of abundance and physico-chemical data to model these blooms. Four species were reported over the sampling campaign - Dinophysis acuminata, Dinophysis caudata, Dinophysis fortii and Dinophysis tripos-with D. acuminata and D. caudata being most abundant. Highest abundance of D. acuminata occurred in the austral spring (max. abundance 4500 cells l-1), whilst highest D. caudata occurred in the summer to autumn (max. 12,000 cells l-1). Generalised additive models revealed abundance of D. acuminata was significantly linked to season, thermal stratification and nutrients, whilst D. caudata was associated with nutrients, salinity and dissolved oxygen. The models' predictive capability was up to 60% for D. acuminata and 53% for D. caudata. Altering sampling strategies during blooms accompanied with in situ high resolution monitoring will further improve Dinophysis bloom prediction capability.
Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany
NASA Astrophysics Data System (ADS)
Bechtel, Benjamin; Zakšek, Klemen
2013-04-01
Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.
Trajectories of high energy electrons in a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.
Soft gamma rays from black holes versus neutron stars
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1992-01-01
The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.
VizieR Online Data Catalog: Draco nebula Herschel 250um map (Miville-Deschenes+, 2017)
NASA Astrophysics Data System (ADS)
Miville-Deschenes, M.-A.; Salome, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.
2017-03-01
Draco was observed with Herschel PACS (110 and 170um) and SPIRE (250, 350 and 500um) as part of the open-time program "First steps toward star formation: unveiling the atomic to molecular transition in the diffuse interstellar medium" (P.I. M-A Miville-Deschenes). A field of 3.85x3.85 was observed in parallel mode. Unfortunately, an error occurred during the acquisition of the PACS data making them unusable. Therefore, the results presented here are solely based on SPIRE data, especially the 250um map that has the highest angular resolution. (2 data files).
1997-09-29
This is one of the highest resolution images ever recorded of Jupiter temperature field. It was obtained by NASA Galileo mission. This map, shown in the lower panel, indicates the forces powering Jovian winds.
Pluto Icy Plains Captured in Highest-Resolution Views from New Horizons
2016-01-08
NASA's New Horizons spacecraft continues to transmit the sharpest views of Pluto that it obtained (and recorded) during its flyby of the distant planet on July 14, 2015. The newest image, returned on Dec. 24, 2015, extends New Horizons' highest-resolution swath of Pluto to the very center of the informally named Sputnik Planum, and nearly completes the set of highest-resolution images taken by New Horizons last July. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's surface. The images shown here form a strip 50 miles (80 kilometers) wide and more than 400 miles (700 kilometers) long, trending from the northwestern shoreline of Sputnik Planum and out across its icy plains. The images illustrate the polygonal or cellular pattern of the plains, which are thought to result from the convective churning of a deep layer solid, but mobile, nitrogen ice. The surface of Sputnik Planum appears darker toward the shore (at top), possibly implying a change in composition or surface texture. The occasional raised, darker blocks at the cell edges are probably dirty water "icebergs" floating in denser solid nitrogen. The pictures were taken with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, from a range of approximately 10,000 miles (17,000 kilometers) over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20336
Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers
NASA Astrophysics Data System (ADS)
Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.
2015-04-01
Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.
Postglacial eruptive history of the Askja region, North Iceland
NASA Astrophysics Data System (ADS)
Hartley, Margaret E.; Thordarson, Thorvaldur; de Joux, Alexandra
2016-04-01
Temporal variations in magma discharge rates on Iceland's neovolcanic rift zones have been associated with deglaciation. We have used tephrochronological and stratigraphic dating of 175 separate eruptive units to estimate volumetric output and reconstruct eruption rates in the Askja region over the postglacial period. We have identified 14 tephra layers that can be used as time marker horizons in the near vicinity of Askja, including the Vatnaöldur (871 ± 2 AD) tephra which has not previously been reported in surface cover profiles in this region. Our improved tephrochronological resolution indicates that, over the past c. 1,500 years, Askja has been significantly more active than has previously been recognised. A minimum of 39 km3 of basaltic magma has been erupted at Askja since the area became ice-free at around 10.3 ka. The absence of the 7.2 ka Hekla 5 tephra from the Askja region suggests that all postglacial lavas now exposed at the surface are younger than 7.2 ka. Time-averaged magma discharge rates at Askja were highest between 7.2 and 4.3 ka. However, the available tephrochronological resolution is not sufficient to resolve any peak in volcanic activity following deglaciation.
Kass, M. Andy
2013-01-01
Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.
High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology
NASA Astrophysics Data System (ADS)
Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs
2014-05-01
U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.
Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy
NASA Astrophysics Data System (ADS)
Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.
2015-10-01
Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.
Elliptical storm cell modeling of digital radar data
NASA Technical Reports Server (NTRS)
Altman, F. J.
1972-01-01
A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.
Integrated nanopore sensing platform with sub-microsecond temporal resolution
Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L
2012-01-01
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489
Efficient generation and characterization of spectrally factorable biphotons.
Chen, Changchen; Bo, Cao; Niu, Murphy Yuezhen; Xu, Feihu; Zhang, Zheshen; Shapiro, Jeffrey H; Wong, Franco N C
2017-04-03
Spectrally unentangled biphotons with high single-spatiotemporal-mode purity are highly desirable for many quantum information processing tasks. We generate biphotons with an inferred heralded-state spectral purity of 99%, the highest to date without any spectral filtering, by pulsed spontaneous parametric downconversion in a custom-fabricated periodically-poled KTiOPO4 crystal under extended Gaussian phase-matching conditions. To efficiently characterize the joint spectral intensity of the generated biphotons at high spectral resolution, we employ a commercially available dispersion compensation module (DCM) with a dispersion equivalent to 100 km of standard optical fiber and with an insertion loss of only 2.8 dB. Compared with the typical method of using two temperature-stabilized equal-length fibers that incurs an insertion loss of 20 dB per fiber, the DCM approach achieves high spectral resolution in a much shorter measurement time. Because the dispersion amount and center wavelengths of DCMs can be easily customized, spectral characterization in a wide range of quantum photonic applications should benefit significantly from this technique.
Application of MCM image construction to IRAS comet observations
NASA Technical Reports Server (NTRS)
Schlapfer, Martin F.; Walker, Russell G.
1994-01-01
There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.
Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares
NASA Technical Reports Server (NTRS)
Bai, Taeil
1986-01-01
Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.
Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah
2012-09-18
A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.
Multi-Pass Quadrupole Mass Analyzer
NASA Technical Reports Server (NTRS)
Prestage, John D.
2013-01-01
Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.
Signal to Noise Ratio for Different Gridded Rainfall Products of Indian Monsoon
NASA Astrophysics Data System (ADS)
Nehra, P.; Shastri, H. K.; Ghosh, S.; Mishra, V.; Murtugudde, R. G.
2014-12-01
Gridded rainfall datasets provide useful information of spatial and temporal distribution of precipitation over a region. For India, there are 3 gridded rainfall data products available from India Meteorological Department (IMD), Tropical Rainfall Measurement Mission (TRMM) and Asian Precipitation - Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE), these compile precipitation information obtained through satellite based measurement and ground station based data. The gridded rainfall data from IMD is available at spatial resolution of 1°, 0.5° and 0.25° where as TRMM and APHRODITE is available at 0.25°. Here, we employ 7 years (1998-2004) of common time period amongst the 3 data products for the south-west monsoon season, i.e., the months June to September. We examine temporal mean and standard deviation of these 3 products to observe substantial variation amongst them at 1° resolution whereas for 0.25° resolution, all the data types are nearly identical. We determine the Signal to Noise Ratio (SNR) of the 3 products at 1° and 0.25° resolution based on noise separation technique adopting horizontal separation of the power spectrum generated with the Fast Fourier Transformation (FFT). A methodology is developed for threshold based separation of signal and noise from the power spectrum, treating the noise as white. The variance of signal to that of noise is computed to obtain SNR. Determination of SNR for different regions over the country shows the highest SNR with APHRODITE at 0.25° resolution. It is observed that the eastern part of India has the highest SNR in all cases considered whereas the northern and southern most Indian regions have lowest SNR. An incremental linear trend is observed among the SNR values and the spatial variance of corresponding region. Relationship between the computed SNR values and the interpolation method used with the dataset is analyzed. The SNR analysis provides an effective tool to evaluate the gridded precipitation data products. However detailed analysis is needed to determine the processes that lead to these SNR distributions so that the quality of the gridded rainfall data products can be further improved and transferability of the gridding algorithms can be explored to produce a unified high-quality rainfall dataset.
Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner
NASA Astrophysics Data System (ADS)
Ram Yu, A.; Kim, Jin Su; Kang, Joo Hyun; Moo Lim, Sang
2015-04-01
PET reconstruction is key to the quantification of PET data. To our knowledge, no comparative study of reconstruction methods has been performed to date. In this study, we compared reconstruction methods with various filters in terms of their spatial resolution, non-uniformities (NU), recovery coefficients (RCs), and spillover ratios (SORs). In addition, the linearity of reconstructed radioactivity between linearity of measured and true concentrations were also assessed. A Siemens Inveon PET scanner was used in this study. Spatial resolution was measured with NEMA standard by using a 1 mm3 sized 18F point source. Image quality was assessed in terms of NU, RC and SOR. To measure the effect of reconstruction algorithms and filters, data was reconstructed using FBP, 3D reprojection algorithm (3DRP), ordered subset expectation maximization 2D (OSEM 2D), and maximum a posteriori (MAP) with various filters or smoothing factors (β). To assess the linearity of reconstructed radioactivity, image quality phantom filled with 18F was used using FBP, OSEM and MAP (β =1.5 & 5 × 10-5). The highest achievable volumetric resolution was 2.31 mm3 and the highest RCs were obtained when OSEM 2D was used. SOR was 4.87% for air and 3.97% for water, obtained OSEM 2D reconstruction was used. The measured radioactivity of reconstruction image was proportional to the injected one for radioactivity below 16 MBq/ml when FBP or OSEM 2D reconstruction methods were used. By contrast, when the MAP reconstruction method was used, activity of reconstruction image increased proportionally, regardless of the amount of injected radioactivity. When OSEM 2D or FBP were used, the measured radioactivity concentration was reduced by 53% compared with true injected radioactivity for radioactivity <16 MBq/ml. The OSEM 2D reconstruction method provides the highest achievable volumetric resolution and highest RC among all the tested methods and yields a linear relation between the measured and true concentrations for radioactivity Our data collectively showed that OSEM 2D reconstruction method provides quantitatively accurate reconstructed PET data results.
Next Generation X-Ray Observatory: New Mission Concepts in Astrophysics
NASA Technical Reports Server (NTRS)
Cash, Webster
1998-01-01
This grant was to review the impact and possibilities for high resolution imaging as the theme for a new observatory early in the 21st Century. We proposed to investigate the suitability of a new approach to high resolution x-ray optics and investigate the range of science it might support. There is no question that high resolution x-ray imaging would lead to exciting, fundamental new discoveries. We demonstrated in this study that the technology already exists to improve imaging in the x-ray by up to six orders of magnitude. This would make the x-ray band the highest resolution band instead of its current status as second worst, behind gamma rays.
Mechanical detection of electron spin resonance beyond 1 THz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hideyuki; Ohmichi, Eiji; Ohta, Hitoshi
2015-11-02
We report the cantilever detection of electron spin resonance (ESR) in the terahertz (THz) region. This technique mechanically detects ESR as a change in magnetic torque that acts on the cantilever. The ESR absorption of a tiny single crystal of Co Tutton salt, Co(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}⋅6H{sub 2}O, was observed in frequencies of up to 1.1 THz using a backward travelling wave oscillator as a THz-wave source. This is the highest frequency of mechanical detection of ESR till date. The spectral resolution was evaluated with the ratio of the peak separation to the sum of the half-width at halfmore » maximum of two absorption peaks. The highest resolution value of 8.59 ± 0.53 was achieved at 685 GHz, while 2.47 ± 0.01 at 80 GHz. This technique will not only broaden the scope of ESR spectroscopy application but also lead to high-spectral-resolution ESR imaging.« less
Extended Late-Cretaceous Magnetostratigraphy of the James Ross Basin Island, Antarctica
NASA Astrophysics Data System (ADS)
Chaffee, T. M.; Mitchell, R.; Slotznick, S. P.; Buz, J.; Biasi, J.; O'Rourke, J.; Sousa, F.; Flannery, D.; Fu, R. R.; Kirschvink, J. L.
2017-12-01
Sediments in the James Ross Island Basin (JRB) in the West Antarctic Peninsula contain one of the world's highest-resolution records of the late Cretaceous period, including the end-Cretaceous (K-Pg) mass extinction event. However, the geological record of this region has been poorly studied, limited in the past only to the relative dating of local fossils. Recent studies of this region have provided only low-resolution data, with gaps of greater than 0.5 million years between samples where no data was collected. A high-resolution magnetostratigraphic sampling and analysis is necessary in order to accurately determine the age of the JRB sediments and connect them to the global time record. During the 2016 field season in Antarctica, our team collected nearly 1,300 sample cores from JRB sediments using a diamond-tipped, gasoline powered coring drill. Drill sites were densely clustered across bedding in order to obtain a high-resolution record of magnetostratigraphy, permitting the recognition of distinct, high-resolution units of time (<50 thousand years) present in local stratigraphy Our current results come from thermal demagnetization of the characteristic remanance (ChRM) of a group of over 300 of these samples from the Brandy Bay area which constrain the end of the Cretaceous Superchron (C34N) and the C34N/C34R reversal and allow us to investigate the presence of geomagnetic excursions before the end of superchron. These samples span in age from the top of C34N to the mid-Maastrichtian. We also test the Late Cretaceous True Polar Wander (TPW) hypothesis. Current theories on the global extent of TPW are not substantiated by any data sets that confirm the presence and similarity of the effect across multiple continents. Evidence of a rapid TPW oscillation in Antarctica can be correlated with other samples from the North American continent currently under study to provide evidence for the theory of global, short-timescale TPW.
Effect of spatial averaging on multifractal properties of meteorological time series
NASA Astrophysics Data System (ADS)
Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika
2016-04-01
Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.
Refining surface net radiation estimates in arid and semi-arid climates of Iran
NASA Astrophysics Data System (ADS)
Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar
2018-06-01
Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).
Mercury at First Encounter Closest Approach
2000-08-24
This picture, taken only minutes after NASA Mariner 10 made its closest approach to Mercury, is one of the highest resolution pictures obtained. Abundant craters in various stages of degradation dot the surface.
Jovian Temperatures--Highest Resolution
1997-09-24
This image, bottom panel, from NASA Galileo orbiter indicates the forces powering Jovian winds, and differentiates between areas of strongest upwelling and downwelling winds in the upper part of the atmosphere where winds are strong.
High Resolution Thz and FIR Spectroscopy of SOCl_2
NASA Astrophysics Data System (ADS)
Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.
2013-06-01
Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)
NASA Astrophysics Data System (ADS)
Baker, Kirk R.; Hawkins, Andy; Kelly, James T.
2014-12-01
Near source modeling is needed to assess primary and secondary pollutant impacts from single sources and single source complexes. Source-receptor relationships need to be resolved from tens of meters to tens of kilometers. Dispersion models are typically applied for near-source primary pollutant impacts but lack complex photochemistry. Photochemical models provide a realistic chemical environment but are typically applied using grid cell sizes that may be larger than the distance between sources and receptors. It is important to understand the impacts of grid resolution and sub-grid plume treatments on photochemical modeling of near-source primary pollution gradients. Here, the CAMx photochemical grid model is applied using multiple grid resolutions and sub-grid plume treatment for SO2 and compared with a receptor mesonet largely impacted by nearby sources approximately 3-17 km away in a complex terrain environment. Measurements are compared with model estimates of SO2 at 4- and 1-km resolution, both with and without sub-grid plume treatment and inclusion of finer two-way grid nests. Annual average estimated SO2 mixing ratios are highest nearest the sources and decrease as distance from the sources increase. In general, CAMx estimates of SO2 do not compare well with the near-source observations when paired in space and time. Given the proximity of these sources and receptors, accuracy in wind vector estimation is critical for applications that pair pollutant predictions and observations in time and space. In typical permit applications, predictions and observations are not paired in time and space and the entire distributions of each are directly compared. Using this approach, model estimates using 1-km grid resolution best match the distribution of observations and are most comparable to similar studies that used dispersion and Lagrangian modeling systems. Model-estimated SO2 increases as grid cell size decreases from 4 km to 250 m. However, it is notable that the 1-km model estimates using 1-km meteorological model input are higher than the 1-km model simulation that used interpolated 4-km meteorology. The inclusion of sub-grid plume treatment did not improve model skill in predicting SO2 in time and space and generally acts to keep emitted mass aloft.
SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, Steve B.; Scott, Nicholas J.; Everett, Mark E.
2016-09-20
We have obtained the highest-resolution images available of TRAPPIST-1 using the Gemini-South telescope and our speckle imaging camera. Observing at 692 and 883 nm, we reached the diffraction limit of the telescope providing a best resolution of 27 mas or, at the distance of TRAPPIST-1, a spatial resolution of 0.32 au. Our imaging of the star extends from 0.32 to 14.5 au. We show that to a high confidence level, we can exclude all possible stellar and brown dwarf companions, indicating that TRAPPIST-1 is a single star.
NASA Technical Reports Server (NTRS)
Wilcox, Mike
1993-01-01
The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.
High-resolution neutron-diffraction measurements to 8 kbar
NASA Astrophysics Data System (ADS)
Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.
2017-10-01
We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.
Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka
NASA Astrophysics Data System (ADS)
Pourmand, Ali; Marcantonio, Franco; Schulz, Hartmut
2004-04-01
High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate.
Grayscale transparent metasurface holograms
Wang, Lei; Kruk, Sergey; Tang, Hanzhi; ...
2016-12-16
In this paper, we demonstrate transparent metaholograms based on silicon metasurfaces that allow high-resolution grayscale images to be encoded. Finally, the holograms feature the highest diffraction and transmission efficiencies, and operate over a broad spectral range.
2012-08-20
With the addition of four high-resolution Navigation Camera, or Navcam, images, taken on Aug. 18 Sol 12, Curiosity 360-degree landing-site panorama now includes the highest point on Mount Sharp visible from the rover.
Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng
2009-01-01
As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.
Musumeci, P; Moody, J T; Scoby, C M
2008-10-01
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Wilson
Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less
The scale dependence of optical diversity in a prairie ecosystem
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.
2015-12-01
Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.
Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales
NASA Technical Reports Server (NTRS)
Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua;
2017-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
Achievement of a 920-MHz High Resolution NMR
NASA Astrophysics Data System (ADS)
Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji
2002-06-01
We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.
2008-02-15
Shown is a test of the TEM-13 solid rocket motor at the ATK test facility in Utah in support of the Ares/CLV first stage. This image is extracted from high definition video and is the highest resolution available.
2008-02-15
Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available.
2008-02-15
Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellaton/Ares project. This image is extracted from a high definition video file and is the highest resolution available.
New Horizons Best Close-Up of Pluto Surface
2016-05-27
This mosaic strip, extending across the hemisphere that faced the New Horizons spacecraft as it flew past Pluto on July 14, 2015, now includes all of the highest-resolution images taken by the NASA probe.
Jupiter Temperatures--Broad Latitude
1997-09-23
This is one of the highest resolution images ever recorded of Jupiter temperature field. It was obtained by NASA Galileo mission, with its Photopolarimeter-Radiometer PPR experiment, during the seventh of its 10 orbits around Jupiter to date.
2008-02-15
Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available
Kaymaz, Cihangir; Keleş, Nurşen; Özdemir, Nihal; Tanboğa, İbrahim Halil; Demircan, Hacer C; Can, Mehmet M; Koca, Fatih; İzgi, İbrahim Akın; Özkan, Alper; Türkmen, Muhsin; Kırma, Cevat; Esen, Ali M
2015-11-01
The present study was designed to determine the effects of tirofiban (Tiro) infusion on angiographic measures, ST-segment resolution, and clinical outcomes in patients with STEMI undergoing PCI. Glycoprotein (GP) IIb/IIIa inhibitors are beneficial in ST-segment elevation myocardial infarction (STEMI) patients undergoing percutaneous coronary intervention (PCI), while the most effective timing of administration is still under investigation. A total of 1242 patients (83.0% males, mean (standard deviation; SD) age: 54.7 (10.9) years) with STEMI who underwent primary PCI were included in this retrospective non-randomized study in four groups, composed of no tirofiban infusion [Tiro (-); n=248], tirofiban infusion before PCI (pre-Tiro; n=720), tirofiban infusion during PCI (peri-Tiro; n=50), and tirofiban infusion after PCI (post-Tiro; n=224). In all Tiro (+) patients, bolus administration of Tiro (10 µg/kg) was followed by infusion (0.15 µg/kg/min) for a mean (SD) duration of 22.4±6.8 hours. The pre-PCI Tiro group was associated with the highest percentage of patients with TIMI 3 flow (99.4%; p<0.001), the lowest corrected TIMI frame count [21(18-23.4); p<0.001], the highest percentage of patients with >75% ST-segment resolution (78.1%; p<0.001), and the lowest rate of in-hospital sudden cardiac death and in-hospital all-cause mortality (3.2%, p<0.05, 3.3%, p=0.01). Major bleeding was reported in 18 (1.8%) patients who received tirofiban. Use of standard-dose bolus tirofiban in addition to aspirin, high-dose clopidogrel, and unfractionated heparin prior to primary PCI significantly improves myocardial reperfusion, ST-segment resolution, in-hospital mortality rate, and in-hospital sudden cardiac death in patients with STEMI with no increased risk of major bleeding.
Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging
Staedler, Yannick M.; Masson, David; Schönenberger, Jürg
2013-01-01
Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be undertaken in areas ranging from morphology to systems biology. PMID:24086499
Bright and ultra-fast scintillation from a semiconductor?
Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew
2015-01-01
Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1989-01-01
The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.
Structure of the toxic core of α-synuclein from invisible crystals
Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; ...
2015-09-09
We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less
Visible AO Observations at Halpha for Accreting Young Planets
NASA Astrophysics Data System (ADS)
Close, L. M.; Follette, K.; Males, J. R.; Morzinski, K.; Rodigas, T. J.; Hinz, P.; Wu, Y.-L.; Apai, D.; Najita, J.; Puglisi, A.; Esposito, S.; Riccardi, A.; Bailey, V.; Xompero, M.; Briguglio, R.; Weinberger, A.
2014-01-01
We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high-resolution science in the visible with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5-0.7'') we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r' (0.63μm) images are slightly coarser at FWHM = 23-29 mas (Strehl ~ 28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~ 1 Myr) Orion Trapezium θ1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary θ1 Ori C 1 C 2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~ 0.6-5 mas accuracy. In the second commissioning run we were able to correct 378 modes and achieved good contrasts (Strehl>20% on young transition disks at Hα). We discuss the contrasts achieved at Hα and the possibility of detecting low mass (~ 1-5 Mjup) planets (past 5AU) with our new SAPPHIRES survey with MagAO at Hα.
Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca
2015-03-06
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.
Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca
2015-01-01
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867
Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations
NASA Astrophysics Data System (ADS)
de Kleer, Katherine R.; de Pater, Imke
2017-10-01
Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.
2008-02-15
THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.
2008-02-15
Testing of the subsonic and transonic mach number for clean and full protuberances in support of the Ares/CLV Integrated Vehicle at the Boeing facility in Missouri. This image is extracted from a high definition video file and is the highest resolution available.
NASA Technical Reports Server (NTRS)
2008-01-01
Shown is a test of the TEM-13 solid rocket motor at the ATK test facility in Utah in support of the Ares/CLV first stage. This image is extracted from high definition video and is the highest resolution available.
NASA Technical Reports Server (NTRS)
2008-01-01
Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellaton/Ares project. This image is extracted from a high definition video file and is the highest resolution available.
NASA Technical Reports Server (NTRS)
2008-01-01
Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available.
DigitalGlobe(TM) Incorporated Corporate and System Update
NASA Technical Reports Server (NTRS)
Thomassie, Brett
2007-01-01
This viewgraph presentation describes a system update of Quickbird, the world's highest resolution commercial imaging satellite, operated by DigitalGlobe (TM) Incorporated. A satellite comparison of Quickbird, WorldView-60, and WorldView-110 is also presented.
Topographic View of Ceres Mountain
2015-09-30
This view, made using images taken by NASA's Dawn spacecraft, features a tall conical mountain on Ceres. Elevations span a range of about 5 miles (8 kilometers) from the lowest places in this region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The white streaks seen running down the side of the mountain are especially bright parts of the surface. The image was generated using two components: images of the surface taken during Dawn's High Altitude Mapping Orbit (HAMO) phase, where it viewed the surface at a resolution of about 450 feet (140 meters) per pixel, and a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution Survey phase. The image of the region is color-coded according to elevation, and then draped over the shape model to give this view. http://photojournal.jpl.nasa.gov/catalog/PIA19976
Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity.
Owens, Gwen E; New, Danielle M; Olvera, Alejandra I; Manzella, Julia Ashlyn; Macon, Brittney L; Dunn, Joshua C; Cooper, David A; Rouleau, Robyn L; Connor, Daniel S; Bjorkman, Pamela J
2016-10-01
Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.
Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity
Owens, Gwen E.; New, Danielle M.; Olvera, Alejandra I.; Manzella, Julia Ashlyn; Macon, Brittney L.; Dunn, Joshua C.; Cooper, David A.; Rouleau, Robyn L.; Connor, Daniel S.; Bjorkman, Pamela J.
2016-01-01
Huntington’s disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity. PMID:27710941
Ensuring Safety of Navigation: A Three-Tiered Approach
NASA Astrophysics Data System (ADS)
Johnson, S. D.; Thompson, M.; Brazier, D.
2014-12-01
The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.
Oblique reconstructions in tomosynthesis. II. Super-resolution
Acciavatti, Raymond J.; Maidment, Andrew D. A.
2013-01-01
Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90°, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90°. Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer. PMID:24320445
NASA Technical Reports Server (NTRS)
Ford, J. P.
1982-01-01
A survey conducted to evaluate user preference for resolution versus speckle relative to the geologic interpretability of spaceborne radar images is discussed. Thirteen different resolution/looks combinations are simulated from Seasat synthetic-aperture radar data of each of three test sites. The SAR images were distributed with questionnaires for analysis to 85 earth scientists. The relative discriminability of geologic targets at each test site for each simulation of resolution and speckle on the images is determined on the basis of a survey of the evaluations. A large majority of the analysts respond that for most targets a two-look image at the highest simulated resolution is best. For a constant data rate, a higher resolution is more important for target discrimination than a higher number of looks. It is noted that sand dunes require more looks than other geologic targets. At all resolutions, multiple-look images are preferred over the corresponding single-look image. In general, the number of multiple looks that is optimal for discriminating geologic targets is inversely related to the simulated resolution.
Rocket Detection of Argon in Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Stern, S. A.; Festou, M. C.; Parker, J. Wm.; Slater, D. C.; Gladstone, G. R.; A'Hearn, M. F.
1998-12-01
The EUVS planetary sounding rocket spectrograph was flown on 30.2 March 1997 (UT) from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 A. At the time of launch the comet was near perihelion, 0.915 AU from the Sun, 1.340 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 12 A, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 A as yet achieved, and contains signatures of both the 1048.2 A and 1066.7 A Ar I resonance lines. These features represent the first-ever detections of any noble gas in a comet. The spectrum also includes significant detections which we tentatively attribute to due to 834 A 0 II, 972 A Lyman gamma, 989 A O I, the 1026 A H I Lyman beta/O I. We will discuss the Ar features, retrieve the Ar column in the coma, and discuss the implications of the total Ar/O abundance ratio in Hale-Bopp for the comet's origin.
Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.
2016-12-01
Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.
Analysis of hydroquinone and some of its ethers by using capillary electrochromatography.
Desiderio, C; Ossicini, L; Fanali, S
2000-07-28
Capillary electrochromatography (CEC) was used for the analysis of relevant compounds in cosmetic preparation. Hydroquinone (HQ) and some of its ethers (methyl-, dimethyl-, benzyl-, phenyl-, propyl-HQ derivatives) were analyzed by using an octadecylsilica (ODS) stationary phase packed in fused-silica capillary (100 microm I.D.; 30 cm and 21.5 cm total and effective lengths, respectively). 20 mM Ammonium acetate pH 6-acetonitrile (50-70%) were the mobile phases used for the experiments. The acetonitrile (ACN) content strongly influenced the resolution of the studied compounds as well as the efficiency and the retention factor. Baseline resolution for the studied analytes was achieved at both the lowest and the highest percentage of ACN, the last one providing the shortest analysis time. Mobile phase containing 70% of ACN was therefore used for the analysis of an extract of skin-toning cream declared to contain HQ. Good repeatability of both retention times, peak areas and peak areas ratio (Asample/Ainternational standard) was found. The calibration graphs were linear in the concentration range studied (5-90 microg/ml) with correlation coefficients between 0.9975 and 09991. The analysis of the cosmetic preparation revealed the presence of HQ (1.72%, w/w) and of two additional peaks (not identified).
Muscat Galea, Charlene; Didion, David; Clicq, David; Mangelings, Debby; Vander Heyden, Yvan
2017-12-01
A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously. Regression models for the retention times and peak widths of all mixture components were built. The factor levels for different grid points were then used to predict the retention times and peak widths of the mixture components using the regression models and the best separation for the worst separated peak pair in the experimental domain was identified. A plot of the minimal resolutions was used to help identifying the factor levels leading to the highest resolution between consecutive peaks. The effects of the DoE factors were visualized in a way that is familiar to the analytical chemist, i.e. by simulating the resulting chromatogram. The mixture of an active ingredient and seven impurities was separated in less than eight minutes. The approach discussed in this paper demonstrates how SFC methods can be developed and optimized efficiently using simple concepts and tools. Copyright © 2017 Elsevier B.V. All rights reserved.
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
2016-02-01
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
NASA Astrophysics Data System (ADS)
Flinders, Ashton F.; Mayer, Larry A.; Calder, Brian A.; Armstrong, Andrew A.
2014-05-01
We document a new high-resolution multibeam bathymetry compilation for the Canada Basin and Chukchi Borderland in the Arctic Ocean - United States Arctic Multibeam Compilation (USAMBC Version 1.0). The compilation preserves the highest native resolution of the bathymetric data, allowing for more detailed interpretation of seafloor morphology than has been previously possible. The compilation was created from multibeam bathymetry data available through openly accessible government and academic repositories. Much of the new data was collected during dedicated mapping cruises in support of the United States effort to map extended continental shelf regions beyond the 200 nm Exclusive Economic Zone. Data quality was evaluated using nadir-beam crossover-error statistics, making it possible to assess the precision of multibeam depth soundings collected from a wide range of vessels and sonar systems. Data were compiled into a single high-resolution grid through a vertical stacking method, preserving the highest quality data source in any specific grid cell. The crossover-error analysis and method of data compilation can be applied to other multi-source multibeam data sets, and is particularly useful for government agencies targeting extended continental shelf regions but with limited hydrographic capabilities. Both the gridded compilation and an easily distributed geospatial PDF map are freely available through the University of New Hampshire's Center for Coastal and Ocean Mapping (ccom.unh.edu/theme/law-sea). The geospatial pdf is a full resolution, small file-size product that supports interpretation of Arctic seafloor morphology without the need for specialized gridding/visualization software.
Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B
NASA Technical Reports Server (NTRS)
Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.
1999-01-01
We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.
Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.
2016-12-01
Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; Jing, Qifeng; Chen, Jun
Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed.more » In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.« less
Appleton, P L; Quyn, A J; Swift, S; Näthke, I
2009-05-01
Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of =10-15 mum into the sample, further compounding the ability to image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
NASA Astrophysics Data System (ADS)
Massimo Rossa, Andrea; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel
2010-05-01
Space and time scales of flash floods are such that flash flood forecasting and warning systems depend upon the accurate real-time provision of rainfall information, high-resolution numerical weather prediction (NWP) forecasts and the use of hydrological models. Currently available high-resolution NWP model models can potentially provide warning forecasters information on the future evolution of storms and their internal structure, thereby increasing convective-scale warning lead times. However, it is essential that the model be started with a very accurate representation of on-going convection, which calls for assimilation of high-resolution rainfall data. This study aims to assess the feasibility of using carefully checked radar-derived quantitative precipitation estimates (QPE) for assimilation into NWP and hydrological models. The hydrometeorological modeling chain includes the convection-permitting NWP model COSMO-2 and a hydrologic-hydraulic models built upon the concept of geomorphological transport. Radar rainfall observations are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood event which impacted the coastal area of north-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the Dese river, a 90 km2 catchment flowing to the Venice lagoon. The radar rainfall observations are carefully checked for artifacts, including beam attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar QPE in the assimilation cycle of the NWP model is very significant, in that the main individual organized convective systems were successfully introduced into the model state, both in terms of timing and localization. Also, incorrectly localized precipitation in the model reference run without rainfall assimilation was correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities were underestimated by 20% at a scale of 1000 km2, and the local peaks by 50%. The positive impact of the assimilated radar rainfall was carried over into the free forecast for about 2-5 hours, depending on when this forecast was started, and was larger, when the main mesoscale convective system was present in the initial conditions. The improvements of the meteorological model simulations were directly propagated to the river flow simulations, with an extension of the warning lead time up to three hours.
Pulsed Neutron Powder Diffraction for Materials Science
NASA Astrophysics Data System (ADS)
Kamiyama, T.
2008-03-01
The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1
High-resolution structure of viruses from random diffraction snapshots
Hosseinizadeh, A.; Schwander, P.; Dashti, A.; Fung, R.; D'Souza, R. M.; Ourmazd, A.
2014-01-01
The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects. PMID:24914154
High-resolution structure of viruses from random diffraction snapshots.
Hosseinizadeh, A; Schwander, P; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A
2014-07-17
The advent of the X-ray free-electron laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date and provides a potentially powerful alternative route for analysis of data from crystalline and nano-crystalline objects.
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
Video flow active control by means of adaptive shifted foveal geometries
NASA Astrophysics Data System (ADS)
Urdiales, Cristina; Rodriguez, Juan A.; Bandera, Antonio J.; Sandoval, Francisco
2000-10-01
This paper presents a control mechanism for video transmission that relies on transmitting non-uniform resolution images depending on the delay of the communication channel. These images are built in an active way to keep the areas of interest of the image at the highest resolution available. In order to shift the area of high resolution over the image and to achieve a data structure easy to process by using conventional algorithms, a shifted fovea multi resolution geometry of adaptive size is used. Besides, if delays are nevertheless too high, the different areas of resolution of the image can be transmitted at different rates. A functional system has been developed for corridor surveillance with static cameras. Tests with real video images have proven that the method allows an almost constant rate of images per second as long as the channel is not collapsed.
2008-02-15
Shown is the fabrication of the First Stage Main Parachute in support of Ares/CLV at the Pioneer Zodiac Facility in Mississippi in support of the Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available
NASA Technical Reports Server (NTRS)
2008-01-01
Shown is the fabrication of the First Stage Main Parachute in support of Ares/CLV at the Pioneer Zodiac Facility in Mississippi in support of the Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available
Miranda - Highest Resolution Color Picture
1999-08-30
This color composite of the Uranian satellite Miranda was taken by NASA Voyager 2 on January 24, 1986. Miranda, just 480 km 300 mi across, is the smallest of Uranus five major satellites. http://photojournal.jpl.nasa.gov/catalog/PIA00042
1999-10-08
NASA Mariner 10 spacecraft was coaxed into a third and final encounter with Mercury in March of 1975. This is one of the highest resolution images of Mercury acquired by the spacecraft. The prominent scarp snaking up the image was named Discovery Rupes.
Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E
2016-05-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).
Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources
Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.
2016-01-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147
1979-07-10
Range : 1,550,000 km ( 961,000 miles ) These high resolution pictures of Jupiter's ring were obtained by Voyager 2 some 26 hrs. past the planet, 2 degrees below the ring plane. The forward scattering of sunlight reveals a radial distribution and density gradient of very small particles extending inward from the ring toward Jupiter. There is an indication of structure within the ring, but unfortunatly the spacecrafts motion during these long exposures blurred out the highest resolution detail, particularly in the frame at right.
The optics of microscope image formation.
Wolf, David E
2013-01-01
Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.
Visual resolution in incoherent and coherent light: preliminary investigation
NASA Astrophysics Data System (ADS)
Sarnowska-Habrat, Katarzyna; Dubik, Boguslawa; Zajac, Marek
2001-05-01
In ophthalmology and optometry a number of measures are used for describing quality of human vision such as resolution, visual acuity, contrast sensitivity function, etc. In this paper we will concentrate on the vision quality understood as a resolution of periodic object being a set of equidistant parallel lines of given spacing and direction. The measurement procedure is based on presenting the test to the investigated person and determining the highest spatial frequency he/she can still resolve. In this paper we describe a number of experiments in which we use test tables illuminated with light both coherent and incoherent of different spectral characteristics. Our experiments suggest that while considering incoherent polychromatic illumination the resolution in blue light is substantially worse than in white light. In coherent illumination speckling effect causes worsening of resolution. While using laser light it is easy to generate a sinusoidal interference pattern which can serve as test object. In the paper we compare the results of resolution measurements with test tables and interference fringes.
Microinjections observed by MMS FEEPS in the dusk to midnight region
Fennell, Joseph F.; Turner, D. L.; Lemon, C. L.; ...
2016-06-13
Energetic electron injections are commonly observed in the premidnight to dawn regions in association with substorms. However, successive electron injections are generally separated in time by hours and are rarer in the dusk region of the inner magnetosphere. Early MMS energetic electron data taken in the dusk to premidnight regions above ~9 RE show many clusters of electron injections. These injections of 50–400 keV electrons have energy dispersion signatures indicating that they gradient and curvature drifted from earlier local times. We focus on burst rate data starting near 21:00 UT on 6 August 2015. A cluster of ~40 electron injectionsmore » occurred in the following 4 h interval. The highest-resolution data showed that the electrons in the injections were trapped and had bidirectional field-aligned angular distributions. Here, these injection clusters are a new phenomenon in this region of the magnetosphere.« less
Microinjections observed by MMS FEEPS in the dusk to midnight region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fennell, Joseph F.; Turner, D. L.; Lemon, C. L.
Energetic electron injections are commonly observed in the premidnight to dawn regions in association with substorms. However, successive electron injections are generally separated in time by hours and are rarer in the dusk region of the inner magnetosphere. Early MMS energetic electron data taken in the dusk to premidnight regions above ~9 RE show many clusters of electron injections. These injections of 50–400 keV electrons have energy dispersion signatures indicating that they gradient and curvature drifted from earlier local times. We focus on burst rate data starting near 21:00 UT on 6 August 2015. A cluster of ~40 electron injectionsmore » occurred in the following 4 h interval. The highest-resolution data showed that the electrons in the injections were trapped and had bidirectional field-aligned angular distributions. Here, these injection clusters are a new phenomenon in this region of the magnetosphere.« less
Saridakis, Emmanuel; Chayen, Naomi E.
2003-01-01
A systematic approach for improving protein crystals by growing them in the metastable zone using the vapor diffusion technique is described. This is a simple technique for optimization of crystallization conditions. Screening around known conditions is performed to establish a working phase diagram for the crystallization of the protein. Dilutions of the crystallization drops across the supersolubility curve into the metastable zone are then carried out as follows: the coverslips holding the hanging drops are transferred, after being incubated for some time at conditions normally giving many small crystals, over reservoirs at concentrations which normally yield clear drops. Fewer, much larger crystals are obtained when the incubation times are optimized, compared with conventional crystallization at similar conditions. This systematic approach has led to the structure determination of the light-harvesting protein C-phycocyanin to the highest-ever resolution of 1.45 Å. PMID:12547801
Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, F.; Vanni, P.; Canali, C.
1998-06-01
SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less
2015-04-16
Measurements from NASA MESSENGER MLA instrument during the spacecraft greater than four-year orbital mission have mapped the topography of Mercury northern hemisphere in great detail. This enhanced color mosaic shows (from left to right) Munch (61 km/38 mi.), Sander (52 km/32 mi.), and Poe (81 km/50 mi.) craters, which lie in the northwest portion of the Caloris basin. The smooth volcanic plains that fill the Caloris basin appear orange in this image. All three craters are superposed on these volcanic plains and have excavated low-reflectance material, which appears blue in this image, from the subsurface. Hollows, typically associated with low-reflectance material, dot the rims of Munch and Poe and cover the floor of Sander. These images were acquired as high-resolution targeted color observations. Targeted color observations are images of a small area on Mercury's surface at resolutions higher than the 1-kilometer/pixel 8-color base map. During MESSENGER's one-year primary mission, hundreds of targeted color observations were obtained. During MESSENGER's extended mission, high-resolution targeted color observations are more rare, as the 3-color base map is covering Mercury's northern hemisphere with the highest-resolution color images that are possible. Date acquired: July 03, 2011, July 04, 2011 Image Mission Elapsed Time (MET): 218204186, 218204190, 218204194, 218246487, 218246491, 218246495 Image ID: 458397, 458398, 458399, 460433, 460434, 460435 Instrument: Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 42° N Center Longitude: 154° E Projection: Equirectangular Resolution: 239 meters/pixel Scale: Munch crater is approximately 61 km (38 mi.) in diameter Incidence Angle: 43°, 42° Emission Angle: 35°, 13° Phase Angle: 79°, 55° http://photojournal.jpl.nasa.gov/catalog/PIA19421
A cloud masking algorithm for EARLINET lidar systems
NASA Astrophysics Data System (ADS)
Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina
2015-04-01
Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.
A high-resolution human contact network for infectious disease transmission
Salathé, Marcel; Kazandjieva, Maria; Lee, Jung Woo; Levis, Philip; Feldman, Marcus W.; Jones, James H.
2010-01-01
The most frequent infectious diseases in humans—and those with the highest potential for rapid pandemic spread—are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 m among 788 individuals. The data revealed a high-density network with typical small-world properties and a relatively homogeneous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immunization strategies suggested that contact network data are required to design strategies that are significantly more effective than random immunization. Immunization strategies based on contact network data were most effective at high vaccination coverage. PMID:21149721
High energy collisions on tandem time-of-flight mass spectrometers†
Cotter, Robert J.
2013-01-01
Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-02-01
To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6-59 months in Somalia using remote sensing and household survey data from nutritional surveys. Bayesian hierarchical space-time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km(2) spatial resolution and predict to seasons in each year of study from 2007 to 2010. The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. Copyright © 2016. Published by Elsevier Ltd.
Effects of processing conditions on mammographic image quality.
Braeuning, M P; Cooper, H W; O'Brien, S; Burns, C B; Washburn, D B; Schell, M J; Pisano, E D
1999-08-01
Any given mammographic film will exhibit changes in sensitometric response and image resolution as processing variables are altered. Developer type, immersion time, and temperature have been shown to affect the contrast of the mammographic image and thus lesion visibility. The authors evaluated the effect of altering processing variables, including film type, developer type, and immersion time, on the visibility of masses, fibrils, and speaks in a standard mammographic phantom. Images of a phantom obtained with two screen types (Kodak Min-R and Fuji) and five film types (Kodak Min-R M, Min-R E, Min-R H; Fuji UM-MA HC, and DuPont Microvision-C) were processed with five different developer chemicals (Autex SE, DuPont HSD, Kodak RP, Picker 3-7-90, and White Mountain) at four different immersion times (24, 30, 36, and 46 seconds). Processor chemical activity was monitored with sensitometric strips, and developer temperatures were continuously measured. The film images were reviewed by two board-certified radiologists and two physicists with expertise in mammography quality control and were scored based on the visibility of calcifications, masses, and fibrils. Although the differences in the absolute scores were not large, the Kodak Min-R M and Fuji films exhibited the highest scores, and images developed in White Mountain and Autex chemicals exhibited the highest scores. For any film, several processing chemicals may be used to produce images of similar quality. Extended processing may no longer be necessary.
NASA Technical Reports Server (NTRS)
2008-01-01
THIS IMAGE SHOWS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE AT STENNIS SPACE CENTER, MISSISSIPPI. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.
1999-11-19
This image is the highest-resolution thermal, or heat image, ever made of Amirani, a large volcano on Jupiter moon Io. It was taken on Oct. 10, 1999, by NASA Galileo spacecraft. Amirani is on the side of Io that permanently faces away from Jupiter.
Multielement analysis of interplanetary dust particles using TOF-SIMS
NASA Technical Reports Server (NTRS)
Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.
1993-01-01
Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.
Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S
2012-05-04
Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5 μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.
MMS Observation of Shock-Reflected He++ at Earth's Quasi-Perpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Broll, Jeffrey Michael; Fuselier, S. A.; Trattner, K. J.; Schwartz, S. J.; Burch, J. L.; Giles, B. L.; Anderson, B. J.
2018-01-01
Specular reflection of protons at Earth's supercritical quasi-perpendicular bow shock has long been known to lead to the thermalization of solar wind particles by velocity-space dispersion. The same process has been proposed for He++ but could not be confirmed previously due to insufficient time resolution for velocity distribution measurements. We present observations and simulations of a bow shock crossing by the Magnetospheric Multiscale (MMS) mission on 20 November 2015 indicating that a very similar reflection process for He++ is possible, and further that the part of the incoming distribution with the highest probability of reflecting is the same for H+ and He++. However, the reflection process for He++ is accomplished by deeper penetration into the downstream magnetic fields.
NASA Astrophysics Data System (ADS)
Borrelli, M.; Mague, S. T.; Smith, T. L.
2015-12-01
A new method of mapping storm-tide (inundation) pathways and linking those data with tidal elevations in real-time for local managers is being developed. Separate, ongoing studies in two coastal towns in Massachusetts have demonstrated the strengths of this method. High-resolution lidar datasets are imported into 3D data visualization software and water levels are raised incrementally from the highest spring tide of the year to the storm of record +1 m. This range was identified to include 'nuisance flooding' as well as present and future inundation pathways not yet observed by local authorities caused by storms superimposed on projected sea level rise. Potential storm-tide pathways are identified using Lidar data but are then verified with extensive fieldwork using RTK-GPS instruments (tested vertical accuracy of 4.9 cm at 95%) to overcome the vertical uncertainty associated with Lidar data. The fieldwork serves two purposes, first is to field check the lidar data with the highest resolution instrument available and, second to verify and document the presence or absence of a storm-tide pathway. Having developed the map of storm tide pathways within a GIS environment referenced to a geodetic datum (NAVD88), a tide gauge or staff is installed in the town's harbor or other sheltered coastal area and the elevations of all storm tide pathways are then referenced to the local tidal datum. The benefit here is three-fold. First, local officials can use the high-resolution data set that is tied to a local tidal datum to autonomously monitor predicted storm surges and be prepared for inundation at sites prior to flooding. Second, storm-tide pathways that have heretofore never been inundated can be identified and steps can be taken to remove or minimize flooding hazards. Finally, identification of present and future storm tide pathways can be used to prioritize and budget proactive solutions in response to increases in chronic, nuisance and more frequent flooding associated with sea level rise and climate change. This method does not rely on costly numerical models that are often too coarsely gridded to be of use on a street-by-street basis. Lidar data are publicly available in many coastal areas and can be used with little training to new or already existing local or regional GIS staff.
SU-E-T-784: Using MLC Log Files for Daily IMRT Delivery Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Linden, P
2015-06-15
Purpose: To verify daily intensity modulated radiation therapy (IMRT) treatments using multi-leaf collimator (MLC) log files. Methods: The MLC log files from a NovalisTX Varian linear accelerator were used in this study. The MLC files were recorded daily for all patients undergoing IMRT or volumetric modulated arc therapy (VMAT). The first record of each patient was used as reference and all records for subsequent days were compared against the reference. An in house MATLAB software code was used for the comparisons. Each MLC log file was converted to a fluence map (FM) and a gamma index (γ) analysis was usedmore » for the evaluation of each daily delivery for every patient. The tolerance for the gamma index was set to 2% dose difference and 2mm distance to agreement while points with signal of 10% or lower of the maximum value were excluded from the comparisons. Results: The γ between each of the reference FMs and the consecutive daily fraction FMs had an average value of 99.1% (ranged from 98.2 to 100.0%). The FM images were reconstructed at various resolutions in order to study the effect of the resolution on the γ and at the same time reduce the time for processing the images. We found that the comparison of images with the highest resolution (768×1024) yielded on average a lower γ (99.1%) than the ones with low resolution (192×256) (γ 99.5%). Conclusion: We developed an in-house software that allows us to monitor the quality of daily IMRT and VMAT treatment deliveries using information from the MLC log files of the linear accelerator. The information can be analyzed and evaluated as early as after the completion of each daily treatment. Such tool can be valuable to assess the effect of MLC positioning on plan quality, especially in the context of adaptive radiotherapy.« less
Rodríguez-Sánchez, S; Quintanilla-López, J E; Soria, A C; Sanz, M L
2014-11-01
Iminosugars are considered potential drug candidates for the treatment of several diseases, mainly as a result of their α-glycosidase inhibition properties. A method by hydrophilic interaction liquid chromatography tandem mass spectrometry has been optimized for the first time for the simultaneous determination of complex mixtures of bioactive iminosugars and other low molecular weight carbohydrates (LMWC) in vegetable extracts. Three hydrophilic stationary phases (sulfoalkylbetaine zwitterionic, polyhydroxyethyl aspartamide and ethylene bridge hybrid (BEH) with trifunctionally bonded amide) were compared under both basic and acidic conditions. The best sensitivity (limits of detection between 0.025 and 0.28ngmL -1 ) and overall chromatographic performance in terms of resolution, peak width and analysis time were obtained with the BEH amide column using 0.1% ammonium hydroxide as a mobile phase additive. The optimized method was applied to the analysis of extracts of hyacinth bulbs, buckwheat seeds and mulberry leaves. Iminosugar and other LMWC structures were tentatively assigned by their high resolution daughter ions mass spectra. Several iminosugars such as glycosyl-fagomine in mulberry extract were also described for the first time. Among the extracts analysed, mulberry showed the widest diversity of iminosugars, whereas the highest content of them was found in hyacinth bulb (2.5mgg -1 ) followed by mulberry (1.95 mgg -1 ). Copyright © 2014 Elsevier B.V. All rights reserved.
4D XMT of Reaction in Carbonates: Reactive Transport Dynamics at Multiples Scales
NASA Astrophysics Data System (ADS)
Menke, H. P.; Reynolds, C. A.; Andrew, M. G.; Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.
2016-12-01
Upscaling pore scale rock-fluid interaction processes for predictive modelling poses a challenge to underground carbon storage. We have completed experiments and flow modelling to investigate the impact of pore-space heterogeneity and scale on the dissolution of two limestones at both the mm and cm scales. Two samples were reacted with reservoir condition CO2-saturated brine at both scales and scanned dynamically as dissolution took place. First, 1-cm long 4-mm diameter micro cores were scanned during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using a laboratory μ-CT. Second, 3.8-cm diameter, 8-cm long macro cores were reacted at the same conditions inside a reservoir condition flow rig and imaged using a medical CT scanner. Each sample was imaged 10 times over the course of 1.5 hours at a 250 x 250 x 500-μm resolution. The reacted macro cores were then scanned inside a μ-CT at a 27-μm resolution to assess the alteration in pore-scale reaction-induced heterogeneity. It was found that both limestones showed channel formation at the pore-scale and progressive high porosity pathway dissolution at the core-scale with the more heterogeneous rock having dissolution progressing along direction of flow more quickly. Additionally, upon analysis of the high-resolution macro core images it was found that the dissolution pathways contained a distinct microstructure that was not visible at the resolution of the medical CT, where the reactive fluid had not completely dissolved the internal pore-structure. Flow was modelled in connected pathways, the flow streamlines were traced and streamline density for each voxel was calculated. It was found that the streamline density was highest in the most well-connected pathways and that density increased with increasing heterogeneity as the number of connected pathways decreased and flow was consolidated along fewer pathways. This work represents the first study of scale dependency using reservoir condition 4D X-ray tomography and provides insight into the mechanisms that control local reaction rates at multiple scales.
Ultrahigh-resolution CT and DR scanner
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.
1999-05-01
A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.
Looking Inside a Tyrannosaur’s Skull
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Sven; Nelson, Ron; Williamson, Tom
2017-08-15
Researchers using Los Alamos’ unique neutron-imaging and high-energy X-ray capabilities have exposed the inner structures of the fossil skull of a 74-million-year-old tyrannosauroid dinosaur nicknamed the Bisti Beast in the highest-resolution scan of tyrannosaur skull ever done.
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris
2010-01-01
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...
2010-04-20
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less
Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne
2017-02-15
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
MUSE, the Multi-Slit Solar Explorer
NASA Astrophysics Data System (ADS)
Lemen, J. R.; Tarbell, T. D.; De Pontieu, B.; Wuelser, J. P.
2017-12-01
The Multi-Slit Solar Explorer (MUSE) has been selected for a Phase A study for the NASA Heliophysics Small Explorer program. The science objective of MUSE is to make high spatial and temporal resolution imaging and spectral observations of the solar corona and transition region in order to probe the mechanisms responsible for energy release in the corona and understand the dynamics of the solar atmosphere. The physical processes are responsible for heating the corona, accelerating the solar wind, and the rapid release of energy in CMEs and flares. The observations will be tightly coupled to state-of-the-art numerical modeling to provide significantly improved estimates for understanding and anticipating space weather. MUSE contains two instruments: an EUV spectrograph and an EUV context imager. Both have similar spatial resolutions and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE spectrograph employs a novel multi-slit design that enables a 100x improvement in spectral scanning rates, which will reveal crucial information about the dynamics (e.g., temperature, velocities) of the physical processes that are not observable with current instruments. The MUSE investigation builds on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, and ITA Oslo.
An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1
NASA Astrophysics Data System (ADS)
Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard
2018-01-01
The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
NASA Astrophysics Data System (ADS)
Hanebuth, Till J. J.; Henrich, Rüdiger
2009-02-01
Sediment records from continental shelves and slopes might provide paleoenvironmental information in the highest temporal resolution but are often hampered due to strong erosional and reworking processes. Here, we present a Holocene sedimentary record from an exceptional shelf mud belt depocenter off northern Mauritania, compared to a second sediment core located inside a large canyon system at the adjacent continental slope. Both records are of outstandingly continuous and highest temporal resolution (9 a/cm) and are investigated by sedimentological and geochemical methods. A series of sharply defined, recurrent dust peaks is preserved in the shelf archive. Each event has lasted for a single decade only and seems to coincide with an individual turbidite bed in the canyon. A joint mechanism should, thus, be responsible for both of these deposits and we suggest a regional atmospheric trigger. Only short-lasting Trade wind strengthening would cause such pronounced aridity over western Saharan Africa. The effect would be massive dust export to shelf and slope. Recently developed high resolution aridity and humidity records from western Africa support the existence of these events over the Holocene and identify them as being controlled by the Atlantic system as far south as 19°N.
Cloud solution for histopathological image analysis using region of interest based compression.
Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana
2017-07-01
Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.
NASA Astrophysics Data System (ADS)
Jones, M. M.; Sageman, B. B.; Meyers, S. R.
2016-12-01
Late Cretaceous carbon isotope ratios (δ13C) recorded in organic matter and marine carbonates preserve an archive of the global carbon cycle in a greenhouse climate state. Due to excellent connectivity among surface carbon reservoirs and the low residence time of carbon in them, excursions in the δ13C that record changes in fluxes serve as widely correlative chronostratigraphic markers. In this study, floating astronomical time scales (ATS) from an organic carbon-rich marine Turonian succession at Demerara Rise (tropical N. Atlantic) are combined with high-resolution δ13C chemostratigraphy to estimate CIE timing and duration for refinement of the geologic time scale. In addition, a Gaussian kernel smoothing technique for objective correlation of astronomically tuned δ13C records is developed. Correlation with three coeval Turonian sections (Western Interior Basin, Texas, & Europe) shows consistency in astronomical and radioisotopic time scale ages for CIEs. In particular, a mid-Turonian sea level fall is demonstrated to be synchronous within 100 ka uncertainty. Spectral analyses of δ13Corg, %TOC, %Carbonate, and C/N time series provide insights into astronomical forcings influencing paleoclimate and paleoceanographic conditions in the tropical proto-North Atlantic upwelling zone. The stable long eccentricity cycle ( 405 ka) is robustly recorded in all geochemical data, and has the highest amplitude in %TOC, %Carbonate, and C/N time series. However, δ13C from Demerara Rise is dominated by a 1 Myr cycle resembling long obliquity, suggesting a dynamic organic carbon reservoir and/or climate feedback originating in high-latitudes was prominent during the Turonian greenhouse carbon cycle. This investigation emphasizes δ13C chemostratigraphy and astrochronology are useful chronostratigraphic methods for importing high-resolution time control into disparate basins to answer questions regarding sea level records, paleoclimate, and mass extinction on a global scale, and at the same time for deciphering the response of the global carbon cycle to astronomical climate forcing.
Finely Resolved On-Road PM2.5 and Estimated Premature Mortality in Central North Carolina.
Chang, Shih Ying; Vizuete, William; Serre, Marc; Vennam, Lakshmi Pradeepa; Omary, Mohammad; Isakov, Vlad; Breen, Michael; Arunachalam, Saravanan
2017-12-01
To quantify the on-road PM 2.5 -related premature mortality at a national scale, previous approaches to estimate concentrations at a 12-km × 12-km or larger grid cell resolution may not fully characterize concentration hotspots that occur near roadways and thus the areas of highest risk. Spatially resolved concentration estimates from on-road emissions to capture these hotspots may improve characterization of the associated risk, but are rarely used for estimating premature mortality. In this study, we compared the on-road PM 2.5 -related premature mortality in central North Carolina with two different concentration estimation approaches-(i) using the Community Multiscale Air Quality (CMAQ) model to model concentration at a coarser resolution of a 36-km × 36-km grid resolution, and (ii) using a hybrid of a Gaussian dispersion model, CMAQ, and a space-time interpolation technique to provide annual average PM 2.5 concentrations at a Census-block level (∼105,000 Census blocks). The hybrid modeling approach estimated 24% more on-road PM 2.5 -related premature mortality than CMAQ. The major difference is from the primary on-road PM 2.5 where the hybrid approach estimated 2.5 times more primary on-road PM 2.5 -related premature mortality than CMAQ due to predicted exposure hotspots near roadways that coincide with high population areas. The results show that 72% of primary on-road PM 2.5 premature mortality occurs within 1,000 m from roadways where 50% of the total population resides, highlighting the importance to characterize near-road primary PM 2.5 and suggesting that previous studies may have underestimated premature mortality due to PM 2.5 from traffic-related emissions. © 2017 Society for Risk Analysis.
Autonomous Navigation Performance During The Hartley 2 Comet Flyby
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam
2012-01-01
On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.
Cora, Stefania; Khan, Ehsan Ullah
2017-01-01
Abstract Volumetric-modulated arc therapy (VMAT) is an efficient form of radiotherapy used to deliver intensity-modulated radiotherapy beams. The aim of this study was to investigate the relative insensitivity of VMAT plan quality to gantry angle spacing (GS). Most previous VMAT planning and dosimetric work for GS resolution has been conducted for single arc VMAT. In this work, a quantitative comparison of dose–volume indices (DIs) was made for partial-, single- and double-arc VMAT plans optimized at 2°, 3° and 4° GS, representing a large variation in deliverable multileaf collimator segments. VMAT plans of six prostate cancer and six head-and-neck cancer patients were simulated for an Elekta SynergyS® Linac (Elekta Ltd, Crawley, UK), using the SmartArc™ module of Pinnacle³ TPS, (version 9.2, Philips Healthcare). All optimization techniques generated clinically acceptable VMAT plans, except for the single-arc for the head-and-neck cancer patients. Plan quality was assessed by comparing the DIs for the planning target volume, organs at risk and normal tissue. A GS of 2°, with finest resolution and consequently highest intensity modulation, was considered to be the reference, and this was compared with GS 3° and 4°. The differences between the majority of reference DIs and compared DIs were <2%. The metrics, such as treatment plan optimization time and pretreatment (phantom) dosimetric calculation time, supported the use of a GS of 4°. The ArcCHECK™ phantom–measured dosimetric agreement verifications resulted in a >95.0% passing rate, using the criteria for γ (3%, 3 mm). In conclusion, a GS of 4° is an optimal choice for minimal usage of planning resources without compromise of plan quality. PMID:27974507
Restoration of multichannel microwave radiometric images
NASA Technical Reports Server (NTRS)
Chin, R. T.; Yeh, C. L.; Olson, W. S.
1983-01-01
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.
Exploring the Moon and Mars Using an Orbiting Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Strayer, Donald M.
2004-01-01
Gravity measurement is fundamental to understanding the interior structure, dynamics, and evolution of planets. High-resolution gravity maps will also help locating natural resources, including subsurface water, and underground cavities for astronaut habitation on the Moon and Mars. Detecting the second spatial derivative of the potential, a gravity gradiometer mission tends to give the highest spatial resolution and has the advantage of requiring only a single satellite. We discuss gravity missions to the Moon and Mars using an orbiting Superconducting Gravity Gradiometer and discuss the instrument and spacecraft control requirements.
Imaging During MESSENGER's Second Flyby of Mercury
NASA Astrophysics Data System (ADS)
Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team
2008-12-01
During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an average resolution of 2.5 km/pixel. Two NAC mosaics of the entire departing planet will be acquired beginning about 66 minutes after closest approach, with resolutions of 500-700 m/pixel. About 89 minutes following closest approach, the WAC will acquire a multispectral image set with a resolution of about 5 km/pixel. Following this WAC image set, MDIS will continue to acquire occasional images with both the WAC and NAC until 20 hours after closest approach, at which time the flyby data will begin being transmitted to Earth.
Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph
NASA Astrophysics Data System (ADS)
Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto
2016-01-01
In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.
2018-01-01
We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6< z< 3.6. The resulting new composite spans 900< {λ }{rest}< 3000 Å, with a peak signal-to-noise ratio (S/N) of 103 per spectral resolution element (∼100 km s‑1). It is the highest S/N, highest spectral resolution composite spectrum of z ∼ 2–3 galaxies yet published. The composite reveals numerous weak nebular emission lines and stellar photospheric absorption lines that can serve as new physical diagnostics, particularly at high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.
1H Spectroscopic Imaging of Human Brain at 3T: Comparison of Fast 3D-MRSI Techniques
Zierhut, Matthew L.; Ozturk-Isik, Esin; Chen, Albert P.; Park, Ilwoo; Vigneron, Daniel B.; Nelson, Sarah J.
2011-01-01
Purpose To investigate the signal-to-noise-ratio (SNR) and data quality of time-reduced 1H 3D-MRSI techniques in the human brain at 3T. Materials and Methods Techniques that were investigated included ellipsoidal k-space sampling, parallel imaging, and EPSI. The SNR values for NAA, Cho, Cre, and lactate or lipid peaks were compared after correcting for effective spatial resolution and acquisition time in a phantom and in the brains of human volunteers. Other factors considered were linewidths, metabolite ratios, partial volume effects, and subcutaneous lipid contamination. Results In volunteers, the median normalized SNR for parallel imaging data decreased by 34–42%, but could be significantly improved using regularization. The normalized signal to noise loss in flyback EPSI data was 11–18%. The effective spatial resolutions of the traditional, ellipsoidal, SENSE, and EPSI data were 1.02, 2.43, 1.03, and 1.01cm3, respectively. As expected, lipid contamination was variable between subjects but was highest for the SENSE data. Patient data obtained using the flyback EPSI method were of excellent quality. Conclusions Data from all 1H 3D-MRSI techniques were qualitatively acceptable, based upon SNR, linewidths, and metabolite ratios. The larger FOV obtained with the EPSI methods showed negligible lipid aliasing with acceptable SNR values in less than 9.5 minutes without compromising the PSF. PMID:19711396
The 830--1120 A Spectrum of a Bright Comet: First Results on Hale-Bopp
NASA Astrophysics Data System (ADS)
Stern, S. Alan; Festou, Michel C.; Slater, David C.; Parker, Joel Wm.; A'Hearn, Michael F.
1998-09-01
The EUVS planetary sounding rocket spectrograph was flown on 29 March 1997 from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 Angstroms. At the time of launch the comet was near perihelion, 0.92 AU from the Sun, 1.34 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 3 Angstroms, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 Angstroms yet achieved. The spectrum includes significant detections which we tentatively attribute to due to 834 Angstroms 0 II, the 1026 Angstroms H I Lyman beta /O I blend, and 989 Angstroms O I; we will also discuss evidence for Argon signatures, as well as two additional, yet to be identified features. We will describe the EUVS Hale-Bopp experiment and its results, including feature brightnesses, corresponding columns, and species abundance ratios in the inner coma. In addition to its value for providing insight into comets in general, and Hale-Bopp in particular, this spectrum is serving as an excellent input for New Millennium Deep Space 1/MICAS and Rosetta/ALICE UV observation planning below 1200 Angstroms.
NASA Astrophysics Data System (ADS)
Adedayo, Bada; Wang, Qi; Alcaraz Calero, Jose M.; Grecos, Christos
2015-02-01
The recent explosion in video-related Internet traffic has been driven by the widespread use of smart mobile devices, particularly smartphones with advanced cameras that are able to record high-quality videos. Although many of these devices offer the facility to record videos at different spatial and temporal resolutions, primarily with local storage considerations in mind, most users only ever use the highest quality settings. The vast majority of these devices are optimised for compressing the acquired video using a single built-in codec and have neither the computational resources nor battery reserves to transcode the video to alternative formats. This paper proposes a new low-complexity dynamic resource allocation engine for cloud-based video transcoding services that are both scalable and capable of being delivered in real-time. Firstly, through extensive experimentation, we establish resource requirement benchmarks for a wide range of transcoding tasks. The set of tasks investigated covers the most widely used input formats (encoder type, resolution, amount of motion and frame rate) associated with mobile devices and the most popular output formats derived from a comprehensive set of use cases, e.g. a mobile news reporter directly transmitting videos to the TV audience of various video format requirements, with minimal usage of resources both at the reporter's end and at the cloud infrastructure end for transcoding services.
NASA Astrophysics Data System (ADS)
Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.
2017-12-01
Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.
Accuracy assessment of seven global land cover datasets over China
NASA Astrophysics Data System (ADS)
Yang, Yongke; Xiao, Pengfeng; Feng, Xuezhi; Li, Haixing
2017-03-01
Land cover (LC) is the vital foundation to Earth science. Up to now, several global LC datasets have arisen with efforts of many scientific communities. To provide guidelines for data usage over China, nine LC maps from seven global LC datasets (IGBP DISCover, UMD, GLC, MCD12Q1, GLCNMO, CCI-LC, and GlobeLand30) were evaluated in this study. First, we compared their similarities and discrepancies in both area and spatial patterns, and analysed their inherent relations to data sources and classification schemes and methods. Next, five sets of validation sample units (VSUs) were collected to calculate their accuracy quantitatively. Further, we built a spatial analysis model and depicted their spatial variation in accuracy based on the five sets of VSUs. The results show that, there are evident discrepancies among these LC maps in both area and spatial patterns. For LC maps produced by different institutes, GLC 2000 and CCI-LC 2000 have the highest overall spatial agreement (53.8%). For LC maps produced by same institutes, overall spatial agreement of CCI-LC 2000 and 2010, and MCD12Q1 2001 and 2010 reach up to 99.8% and 73.2%, respectively; while more efforts are still needed if we hope to use these LC maps as time series data for model inputting, since both CCI-LC and MCD12Q1 fail to represent the rapid changing trend of several key LC classes in the early 21st century, in particular urban and built-up, snow and ice, water bodies, and permanent wetlands. With the highest spatial resolution, the overall accuracy of GlobeLand30 2010 is 82.39%. For the other six LC datasets with coarse resolution, CCI-LC 2010/2000 has the highest overall accuracy, and following are MCD12Q1 2010/2001, GLC 2000, GLCNMO 2008, IGBP DISCover, and UMD in turn. Beside that all maps exhibit high accuracy in homogeneous regions; local accuracies in other regions are quite different, particularly in Farming-Pastoral Zone of North China, mountains in Northeast China, and Southeast Hills. Special attention should be paid for data users who are interested in these regions.
NASA Astrophysics Data System (ADS)
Nowicki, S. A.; Skuse, R. J.
2012-12-01
High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.
Ceres Sharper Than Ever Animation
2015-01-27
This frame from an animation of the dwarf planet Ceres was made by combining images taken by the Dawn spacecraft on January 25, 2015. These images of Ceres, and they represent the highest-resolution views to date of the dwarf planet. http://photojournal.jpl.nasa.gov/catalog/PIA19171
Mars Hand Lens Imager Sends Ultra High-Res Photo from Mars
2013-10-17
This image of a U.S. penny on a calibration target was taken by the Mars Hand Lens Imager MAHLI aboard NASA Curiosity rover in Gale Crater on Mars. At 14 micrometers per pixel, this is the highest-resolution image that MAHLI can acquire.
Resolution in forensic microbial genotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S P
2005-08-30
Resolution is a key parameter for differentiating among the large number of strain typing methods that could be applied to pathogens involved in bioterror events or biocrimes. In this report we develop a first-principles analysis of strain typing resolution using a simple mathematical model to provide a basis for the rational design of microbial typing systems for forensic applications. We derive two figures of merit that describe the resolving power and phylogenetic depth of a strain typing system. Rough estimates of these figures-of-merit for MLVA, MLST, IS element, AFLP, hybridization microarrays, and other bacterial typing methods are derived from mutationmore » rate data reported in the literature. We also discuss the general problem of how to construct a ''universal'' practical typing system that has the highest possible resolution short of whole-genome sequencing, and that is applicable with minimal modification to a wide range of pathogens.« less
Li, Zeyu; Li, Lei; Qin, Yu; Li, Guangbin; Wang, Du; Zhou, Xun
2016-09-05
We demonstrate the enhancement of resolution and image quality in terahertz (THz) lens-free in-line digital holography by sub-pixel sampling with double-distance reconstruction. Multiple sub-pixel shifted low-resolution (LR) holograms recorded by a pyroelectric array detector (100 μm × 100 μm pixel pitch, 124 × 124 pixels) are aligned precisely to synthesize a high-resolution (HR) hologram. By this method, the lateral resolution is no more limited by the pixel pitch, and lateral resolution of 150 μm is obtained, which corresponds to 1.26λ with respect to the illuminating wavelength of 118.8 μm (2.52 THz). Compared with other published works, to date, this is the highest resolution in THz digital holography when considering the illuminating wavelength. In addition, to suppress the twin-image and zero-order artifacts, the complex amplitude distributions of both object and illuminaing background wave fields are reconstructed simultaneously. This is achieved by iterative phase retrieval between the double HR holograms and background images at two recording planes, which does not require any constraints on object plane or a priori knowledge of the sample.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-01-01
Objective To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6–59 months in Somalia using remote sensing and household survey data from nutritional surveys. Methods Bayesian hierarchical space–time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km2 spatial resolution and predict to seasons in each year of study from 2007 to 2010. Results The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. Conclusion There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. PMID:26919757
NASA Astrophysics Data System (ADS)
Müller, K.; van Pinxteren, D.; Plewka, A.; Svrcina, B.; Kramberger, H.; Hofmann, D.; Bächmann, K.; Herrmann, H.
An extensive set of gaseous and particulate organic compounds was quantified before an orographic cloud passage at the upwind site of the research region in Thüringer Wald. Samples were collected with two different time resolutions, 2 h for gaseous species and spray absorber samples and the whole cloud event duration to determine the concentrations of ketones, aldehydes, monocarboxylic acids, dicarboxylic acids (DCA), hydrocarbons, biogenic sugars and alcohols in both the gas and particle phase. The measurement of different groups of organic compounds delivered size-segregated concentrations at the upwind site of a cloud experiment. The size distribution of DCA showed a peak in the mass-rich impactor stage 3 (0.42-1.2 μm). The concentrations of DCA from the filters, the impactor foils as well as the spray absorber samples decreased with increasing C-number. The time resolved measurements revealed an increasing mixing ratio from night time to midday for carboxylic and DCA, and related carbonyl compounds. The biogenic compounds xylitol (up to 103 ng m -3), levoglucosan (up to 62 ng m -3) and pinonaldehyde (up to 34 ng m -3) were the compounds found in highest concentrations in the particle phase beside the oxalate (up to 104 ng m -3). The organic trace gases with the highest mixing ratios identified were formaldehyde (up to 1.47 ppbv), acetaldehyde (up to 0.84 ppbv) and acetone (up to 0.65 ppbv), acetic acid (up to 0.43 ppbv) and formic acid (up to 0.41 ppbv).
Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderton, Christopher R.; Gamble, Lara J.
2016-03-01
Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods.more » The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.« less
Validation and Temporal Analysis of Lai and Fapar Products Derived from Medium Resolution Sensor
NASA Astrophysics Data System (ADS)
Claverie, M.; Vermote, E. F.; Baret, F.; Weiss, M.; Hagolle, O.; Demarez, V.
2012-12-01
Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) have been defined as Essential Climate Variables. Many Earth surface monitoring applications are based on global estimation combined with a relatively high frequency. The medium spatial resolution sensors (MRS), such as SPOT-VGT, MODIS or MERIS, have been widely used to provide land surface products (mainly LAI and FAPAR) to the scientific community. These products require quality assessment and consistency. However, due to consistency of the ground measurements spatial sampling, the medium resolution is not appropriate for direct validation with in situ measurements sampling. It is thus more adequate to use high spatial resolution sensors which can integrate the spatial variability. The recent availability of combined high spatial (8 m) and temporal resolutions (daily) Formosat-2 data allows to evaluate the accuracy and the temporal consistency of medium resolution sensors products. In this study, we proposed to validate MRS products over a cropland area and to analyze their spatial and temporal consistency. As a matter of fact, this study belongs to the Stage 2 of the validation, as defined by the Land Product Validation sub-group of the Earth Observation Satellites. Reference maps, derived from the aggregation of Formosat-2 data (acquired during the 2006-2010 period over croplands in southwest of France), were compared with (i) two existing global biophysical variables products (GEOV1/VGT and MODIS-15 coll. 5), and (ii) a new product (MODdaily) derived from the inversion of PROSAIL radiative transfer model (EMMAH, INRA Avignon) applied on MODIS BRDF-corrected daily reflectance. Their uncertainty was calculated with 105 LAI and FAPAR reference maps, which uncertainties (22 % for LAI and 12% for FAPAR) were evaluated with in situ measurements performed over maize, sunflower and soybean. Inter-comparison of coarse resolution (0.05°) products showed that LAI and FAPAR have consistent phenology (Figure). The GEOLAND-2 showed the smoothest time series due to a 30-day composite, while MODdaily noise was satisfactory (<12%). The RMSE of LAI calculated for the period 2006-2010 were 0.46 for GEOV1/VGT, 0.19 for MODIS-15 and 0.16 for MODdaily. A significant overestimation (bias=0.43) of the LAI peak were observed for GEOV1/VGT products, while MOD-15 showed a small underestimation (bias=-0.14) of highest LAI. Finally, over a larger area (a quarter of France) covered by cropland, grassland and forest, the products displayed a good spatial consistency.; LAI 2006-2010 time-series of a coarse resolution pixel of cropland (extent in upper-left corner). Products are compared to Formosat-2 reference maps.
Multiscale assessment of landscape structure in heterogeneous forested area
NASA Astrophysics Data System (ADS)
Simoniello, T.; Pignatti, S.; Carone, M. T.; Fusilli, L.; Lanfredi, M.; Coppola, R.; Santini, F.
2010-05-01
The characterization of landscape structure in space or time is fundamental to infer ecological processes (Ingegnoli, 2002). Landscape pattern arrangements strongly influence forest ecological functioning and biodiversity, as an example landscape fragmentation can induce habitat degradation reducing forest species populations or limiting their recolonization. Such arrangements are spatially correlated and scale-dependent, therefore they have distinctive operational-scales at which they can be best characterized (Wu, 2004). In addition, the detail of the land cover classification can have substantial influences on resulting pattern quantification (Greenberg et al.2001). In order to evaluate the influence of the observational scales and labelling details, we investigated a forested area (Pollino National Park; southern Italy) by analyzing the patch arrangement derived from three remote sensing sensors having different spectral and spatial resolutions. In particular, we elaborated data from the hyperspectral MIVIS (102 bands; ~7m) and Hyperion (220 bands; 30m), and the multispectral Landsat-TM (7 bands; 30m). Moreover, to assess the landscape evolution we investigated the hierarchical structure of the study area (landscape, class, patch) by elaborating two Landsat-TM acquired in 1987 and 1998. Preprocessed data were classified by adopting a supervised procedure based on the Minimum Distance classifier. The obtained labelling correspond to Corine level 5 for the high resolution MIVIS data, to Corine level 4 for Hyperion and to an intermediate level 4-3 for TM data. The analysis was performed by taking into account patch density, diversity and evenness at landscape level; mean patch size and interdispersion at class level; patch structure and perimeter regularity at patch level. The three sensors described a landscape with a quite high level of richness and distribution. The high spectral and spatial resolution of MIVIS data provided the highest diversity level (SHDI = 2.05), even if the results obtained for TM were not so different (1.93), Hyperion showed the lowest value (1.79). The obtained evenness index was similar for all the landscapes (~ 0.72). At class level, the interdispersion increases as the spatial and spectral resolution power decrease. Due to the low labelling detail, TM classes represent an aggregation of MIVIS and Hyperion classes; therefore they result larger and more diffused over the territory favouring higher interspersion values in the computation. The investigation of the patch structure highlighted the highest MIVIS capability in describing the patch articulation; Hyperion and TM showed quite similar situation. The historical analysis based on TM imagery showed a fragmentation process for some forested patches (mainly beeches): an increase of structure complexity (higher FRACT) is coupled with a higher patch number and an extension reduction. On the whole, the obtained results showed that the multispectral Landsat-TM images represent a good data source for supporting studies on landscape structure of forested areas and that for analyzing the articulation of particular species the high spectral resolution needs to be coupled with a high spatial resolution, i.e. Hyperion sampling is not adequate for such a purpose.
Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube
NASA Astrophysics Data System (ADS)
Peng, Qiyu; Choong, Woon-Seng; Moses, W. William
2013-10-01
We measured the timing resolution of 189 R9800-100 photomultiplier tubes (PMTs), which are a SBA (Super Bialkali, high quantum efficiency) variant of the R9800 high-performance PMT manufactured by Hamamatsu Photonics, and correlated their timing resolutions with various measures of PMT performance, namely Cathode Luminous Sensitivity (CLS), Anode Luminous Sensitivity (ALS), Gain times Collection Efficiency (GCE), Cathode Blue Sensitivity Index (CBSI), Anode Blue Sensitivity Index (ABSI) and dark current. The correlation results show: (1) strong correlations between timing resolution and ALS, ABSI, and GCE; (2) moderate correlations between timing resolution and CBSI; and (3) weak or no correlations between timing resolution and dark current and CLS. The results disclosed that all three measures that include data collected from the anode (ALS, ABSI, and GCE) affect the timing resolution more than either of the two measures that only include photocathode data (CBSI and CLS). We conclude that: (1) the photocathode Quantum Efficiency (QE) and the product of the Gain and the Collection Efficiency (GCE) are the two dominant factors that affect the timing resolution, (2) the GCE variation affects the timing resolution more than the QE variation in the R9800 PMT, and (3) the performance depends on photocathode position.
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Kundel, Harold L.; Shile, Peter E.; Carey, Bruce; Seshadri, Sridhar B.; Feingold, Eric R.
1994-05-01
As part of a study of the use of a PACS workstation compared to film in a Medical Intensive Care Unit, logs of workstation activity were maintained. The software for the workstation kept track of the type of user (i.e., intern, resident, fellow, or attending physician) and also of the workstation image manipulation functions used. The functions logged were: no operation, brightness/contrast adjustment, invert video, zoom, and high resolution display (this last function resulted in the display of the full 2 K X 2 K image rather than the usual subsampled 1 K X 1 K image. Associated data collection allows us to obtain the diagnostic category of the examination being viewed (e.g., location of tubes and lines, rule out: pneumonia, congestive heart failure, pneumothorax, and pleural effusion). The diagnostic categories and user type were then correlated with the use of workstation functions during viewing of images. In general, there was an inverse relationship between the level of training and the number of workstation uses. About two-thirds of the time, there was no image manipulation operation performed. Adjustment of brightness/contrast had the highest percentage of use overall, followed by zoom, video invert, and high resolution display.
Low material budget floating strip Micromegas for ion transmission radiography
NASA Astrophysics Data System (ADS)
Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.
2017-02-01
Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.
Time-dependent Optical Spectroscopy of GRB 010222: Clues to the Gamma-Ray Burst Environment
NASA Astrophysics Data System (ADS)
Mirabal, N.; Halpern, J. P.; Kulkarni, S. R.; Castro, S.; Bloom, J. S.; Djorgovski, S. G.; Galama, T. J.; Harrison, F. A.; Frail, D. A.; Price, P. A.; Reichart, D. E.; Ebeling, H.; Bunker, A.; Dawson, S.; Dey, A.; Spinrad, H.; Stern, D.
2002-10-01
We present sequential optical spectra of the afterglow of GRB 010222 obtained 1 day apart using the Low-Resolution Imaging Spectrometer (LRIS) and the Echellette Spectrograph and Imager (ESI) on the Keck Telescopes. Three low-ionization absorption systems are spectroscopically identified at z1=1.47688, z2=1.15628, and z3=0.92747. The higher resolution ESI spectrum reveals two distinct components in the highest redshift system at z1a=1.47590 and z1b=1.47688. We interpret the z1b=1.47688 system as an absorption feature of the disk of the host galaxy of GRB 010222. The best-fitted power-law optical continuum and [Zn/Cr] ratio imply low dust content or a local gray dust component near the burst site. In addition, we do not detect strong signatures of vibrationally excited states of H2. If the gamma-ray burst took place in a superbubble or young stellar cluster, there are no outstanding signatures of an ionized absorber either. Analysis of the spectral time dependence at low resolution shows no significant evidence for absorption-line variability. This lack of variability is confronted with time-dependent photoionization simulations designed to apply the observed flux from GRB 010222 to a variety of assumed atomic gas densities and cloud radii. The absence of time dependence in the absorption lines implies that high-density environments are disfavored. In particular, if the GRB environment was dust free, its density was unlikely to exceed nHI=102 cm-3. If depletion of metals onto dust is similar to Galactic values or less than solar abundances are present, then nHI>=2×104 cm-3 is probably ruled out in the immediate vicinity of the burst. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible with the generous financial support of the W. M. Keck Foundation.
Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders
2012-01-01
Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration. PMID:23443367
NASA Astrophysics Data System (ADS)
Iribas, Haritz; Loayssa, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien
2017-04-01
We demonstrate a simple technique to enhance the signal-to-noise ratio (SNR) in Brillouin optical time-domain analysis sensors by the addition of gain and loss processes. The technique is based on the shift of the pump pulse optical frequency in a double-sideband probe system, so that the gain and loss processes take place at different frequencies. In this manner, the loss and the gain do not cancel each other out, and it makes possible to take advantage of both informations at the same time, obtaining an improvement of 3 dB on the SNR. Furthermore, the technique does not need an optical filtering, so that larger improvement on SNR and a simplification of the setup are obtained. The method is experimentally demonstrated in a 101 km fiber spool, obtaining a measurement uncertainty of 2.6 MHz (2σ) at the worst-contrast position for 2 m spatial resolution. This leads, to the best of our knowledge, to the highest figure-of-merit in a BOTDA without using coding or raman amplification.
A method for generating high resolution satellite image time series
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.
High count-rate study of two TES x-ray microcalorimeters with different transition temperatures
NASA Astrophysics Data System (ADS)
Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.
2017-10-01
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.
Medusae Fossae Formation - High Resolution Image
NASA Technical Reports Server (NTRS)
1998-01-01
An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.
The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.NASA Astrophysics Data System (ADS)
Bauer, Harald; Hatzenbichler, Georg; Amon, Philipp; Fallah, Mohammad; Tari, Gabor; Grasemann, Bernhard
2013-04-01
As part of a cooperation project between OMV, RIEGL and the University of Vienna the new LiDAR (Light Detection and Ranging) VZ-4000 laser scanner was tested at the Grimming Mts. of the Eastern Alps in Austria. The prominent Grimming Mts. lies in the eastern part of the Dachstein Massif at the southern margin of the Northern Calcareous Alps. The Grimming, with a peak of 2,351 m above sea level, is one of the highest isolated mountains in Europe. Because of its spectacular topography, the Grimming has been used as an important surface reference mark since 1822. From a structural geology standpoint, the Grimming forms a huge antiform made up of dominantly well-bedded Triassic Dachstein Limestone. Because of the relatively well exposed bedrock surfaces above the tree-line and the fairly complex internal structure, the Grimming Mts. provides an ideal target for testing new high resolution laser scan techniques and devices. The maximum distance from the scanning positions on the nearby valley floor to the mountain face was about 4,500 m and the generated point cloud has an average resolution of 25 points per square meter. The purpose of this work was to test the latest version of the high resolution LiDAR laser equipment in a setting which falls beyond the capabilities of most existing LiDAR devices. The results of the pilot study include high-resolution spatial data on bedding planes, fault planes and the thickness variations of individual beds within the Dachstein Limestone. For the first time, the data obtained can be directly used to generate the proper 3D geometry of folds and faults observed on the Grimming Mts. This leads to a modern understanding of this prominent Alpine anticline in terms of structural geology.
Detection of Shock-Heated Gas Using the Sz Effect in Rxj 1347-1145
NASA Technical Reports Server (NTRS)
Mason, Brian S.; Dicker, S.; Korngut, P.; Devlin, M.; Cotton, W.; Koch, P.; Molnar, S.; Aguirre, J.; Benford, D.; Staguhn, J.;
2010-01-01
Using the MUSTANG 3.3 mm bolometer array on the GBT we have measured the Sunyaev-Zel'dovich Effect (SZE) in the most x-ray luminous cluster known, RXJ 1 347-1145 (z=0.45) at a resolution of 10" (fwhm). This is the highest resolution image of the SZE to date and confirms previous indications of a localized departure from pressure equilibrium in the form of a small, very hot (>0 keV) parcel of gas, presumably resulting from a merger shock. We discuss the measurements, their interpretation, and future work.
Evolution in High Spatial Resolution Imaging of Faint, Complex Objects
NASA Astrophysics Data System (ADS)
van Belle, G.
The astrophysical community has been working at the task of obtaining image information of the smallest structures in the sky via the use of optical interferometry for well over a century. A richly diverse family of technology architectures has been explored over the years, and yet the current family of facilities are all striking similar. Although there may be other, heretofore undeployed, architectures that support the goal of collecting image information at the highest resolutions, we expect dramatic advances at the component level of long-baseline interferometry to be the best avenue for advancing the technique, rather than entirely new architectures.
Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian
2009-09-01
Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field strengths. At 1.5 T the peak signal-to-noise ratio of the ERS was significantly lower in comparison to the IRS and the VS technique (14.6 vs. 26.7 and 39.6 respectively, P < 0.004). Using the IRS sampling algorithm comparable image quality and SNR can be achieved at 1.5 and 3 T. At 1.5 T VS offers the best possible solution for the conflicting requirements between a further increased temporal resolution and image quality. In consequence the gain of increased scanning efficiency from advanced k[r]-space sampling acquisition techniques can be exploited for a further improvement of image quality of pulmonary perfusion MRI.
User Friendly Real Time Display
NASA Astrophysics Data System (ADS)
McCarthy, Denise M.; McCracken, Bill
1989-02-01
Real-time viewing of high resolution infrared line scan reconnaissance imagery is greatly facilitated using Honeywell's Real Time Display in conjunction with a D-500 Infrared Reconnaissance System. The Real-Time Display (RTD) provides the capability of on-board review of high resolution infrared imagery using the wide infrared dynamic range of the D-500 infrared receiver to maximum advantage. The scan converter accepts, processes, and displays imagery from four channels of the IR Receiver after formatting by a multiplexer. The scan converter interfaces with a standard RS-170 video monitor. Detailed review and on-board analysis of infrared reconnaissance imagery stored on a videotape is easily accomplished using the many user-friendly features of the RTD. Using a convenient joystick controller, on-screen mode menus, and a moveable cursor, the operator can examine scenes of interest at four different display magnifications using a four step bidirectional zoom. Imagery areas of interest are first noted using the scrolling wide field display mode at 8x reduced display resolution. On noting an area of interest, the imagery can be marked on the tape record for future recovery and a freeze frame mode can be initiated. The operator can then move the cursor to the area of interest and zoom to higher display magnification for 4x, 2x, and lx display resolutions so that the full 4096 x 4096 pixel infrared frame can be matched to the 512 x 512 pixel display frame. At 8x wide field display magnification the full line scanner field of view is displayed at 8x reduced resolution. There are two selectable modes of obtaining this reduced resolution. The operator can use the default method, which averages the signal from an 8 x 8 pixel group, or it is also possible to select the peak signal of the 8 x 8 pixel block to represent the entire block on the display. In this alternate peak-signal display the wide field can be effectively scanned for hot objects which are more likely to be candidate targets. The intermediate 4x and 2x zoom steps are very useful in maintaining operator orientation in examining target clusters and industrial complexes. The four operating modes of the RTD are described and their use to the operator on a typical mission is outlined. Some installation details are given. The RTD as part of a complete D-500 Infrared Linescan Reconnaissance System is now being installed on a Beech 1900 Environmental Control Aircraft to monitor pollution in very sensitive and commercially important marine ecologies. Its application on military reconnaissance missions will allow the normal review of recorded videotape imagery at a ground station immediately after return of the aircraft to base. The areas of highest interest will have been previously marked during the airborne real-time review by the operator. The RTD packages into only two Line Replaceable Units (LRUs), a Scan Converter, and a Control Unit which includes a joystick hand controller. The CRT display is assumed to be part of the aircraft.
Dual-Band Deramp Radar Design for Ocean Current Measurements
NASA Technical Reports Server (NTRS)
Haynes, Mark S.
2005-01-01
A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.
Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Houlden, Heather P.
2014-01-01
Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.
NASA Astrophysics Data System (ADS)
Mares, Jiri A.; Nikl, Martin; Beitlerova, Alena; Blazek, Karel; Horodysky, Petr; Nejezchleb, Karel; D'Ambrosio, Carmelo
2011-12-01
Scintillation properties of Pr 3+-doped LuAG and YAG crystals were investigated and compared with those of Ce 3+-doped ones. The highest L.Y.'s were observed with the longest shaping time 10 μs. They can reach up to ˜16,000 ph/MeV or ˜23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8-12%, respectively. There were observed no large changes in proportionality of Pr 3+- or Ce 3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr 3+- or Ce 3+-doped LuAG crystals exhibit slow decay components in the time range 1.5-3.5 μs while those of YAG ones have shorter decay components between 0.3-1.7 μs.
Ashraf, Kamran; Mujeeb, Mohd; Ahmad, Altaf; Ahmad, Niyaz; Amir, Mohd
2015-09-01
Cucuma longa Linn. (Fam-Zingiberaceae) is a valued medicinal plant contains curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) as major bioactive constituents. Previously reported analytical methods for analysis of curcuminoids were found to suffer from low resolution, lower sensitivity and longer analytical times. In this study, a rapid, sensitive, selective high-throughput ultra high performance liquid chromatography-tandem mass spectrometry (UPLC/Q-TOF-MS) method was developed and validated for the quantification of curcuminoids with an aim to reduce analysis time and enhance efficiency. UPLC/Q-TOF-MS analysis showed large variation (1.408-5.027% w/w) of curcuminoids among different samples with respect to their occurrence of metabolite and their concentration. The results showed that Erode (south province) contains highest quantity of curcuminoids and concluded to be the superior varieties. The results obtained here could be valuable for devising strategies for cultivating this medicinal plant. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A volumetric flow sensor for automotive injection systems
NASA Astrophysics Data System (ADS)
Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.
2008-04-01
For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.
NASA Technical Reports Server (NTRS)
Betts, Bruce H.
1994-01-01
Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.
Radon monitoring and hazard prediction in Ireland
NASA Astrophysics Data System (ADS)
Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie
2016-04-01
Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given that an estimated 250,000 people in Ireland are exposed to high radon levels, the findings of this research stand to make a considerable positive impact in enhancing the quality of life and long-term health for a significant proportion of inhabitants.
Diagnosing causes of extreme aerosol optical depth events
NASA Astrophysics Data System (ADS)
Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.
2017-12-01
Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all seasons WRF-Chem exhibits some skill in reproducing the intensity of these events, but not the precise location of the AOD maximum. Model skill is generally (but not uniformly) highest for simulations employing MOZART LBC/IBC, modal aerosol description, meteorological nudging and a 3 day spin-up, with little or no sensitivity to longer spin up times.
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
C 3, A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs
NASA Astrophysics Data System (ADS)
Riccio, Giuseppe; Brescia, Massimo; Cavuoti, Stefano; Mercurio, Amata; di Giorgio, Anna Maria; Molinari, Sergio
2017-02-01
Modern Astrophysics is based on multi-wavelength data organized into large and heterogeneous catalogs. Hence, the need for efficient, reliable and scalable catalog cross-matching methods plays a crucial role in the era of the petabyte scale. Furthermore, multi-band data have often very different angular resolution, requiring the highest generality of cross-matching features, mainly in terms of region shape and resolution. In this work we present C 3 (Command-line Catalog Cross-match), a multi-platform application designed to efficiently cross-match massive catalogs. It is based on a multi-core parallel processing paradigm and conceived to be executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline, providing the maximum flexibility to the end-user, in terms of portability, parameter configuration, catalog formats, angular resolution, region shapes, coordinate units and cross-matching types. Using real data, extracted from public surveys, we discuss the cross-matching capabilities and computing time efficiency also through a direct comparison with some publicly available tools, chosen among the most used within the community, and representative of different interface paradigms. We verified that the C 3 tool has excellent capabilities to perform an efficient and reliable cross-matching between large data sets. Although the elliptical cross-match and the parametric handling of angular orientation and offset are known concepts in the astrophysical context, their availability in the presented command-line tool makes C 3 competitive in the context of public astronomical tools.
MUSE: the Multi-Slit Solar Explorer
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; De Pontieu, Bart
2017-08-01
The Multi-Slit Solar Explorer is a proposed Small Explorer mission for studying the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE’s multi-slit coronal spectroscopy will use a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.
Seismic Tomography and the Development of a State Velocity Profile
NASA Astrophysics Data System (ADS)
Marsh, S. J.; Nakata, N.
2017-12-01
Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.
NASA Astrophysics Data System (ADS)
Quinn, Kevin Martin
The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.
NASA Astrophysics Data System (ADS)
Jiang, S.; Wang, K.; Wang, J.; Zhou, C.; Wang, X.; Lee, X.
2017-12-01
This study compared the diurnal and seasonal cycles of atmospheric and surface urban heat islands (UHIs) based on hourly air temperatures (Ta) collected at 65 out of 262 stations in Beijing and land surface temperature (Ts) derived from Moderate Resolution Imaging Spectroradiometer in the years 2013-2014. We found that the nighttime atmospheric and surface UHIs referenced to rural cropland stations exhibited significant seasonal cycles, with the highest in winter. However, the seasonal variations in the nighttime UHIs referenced to mountainous forest stations were negligible, because mountainous forests have a higher nighttime Ts in winter and a lower nighttime T a in summer than rural croplands. Daytime surface UHIs showed strong seasonal cycles, with the highest in summer. The daytime atmospheric UHIs exhibited a similar but less seasonal cycle under clear-sky conditions, which was not apparent under cloudy-sky conditions. Atmospheric UHIs in urban parks were higher in daytime. Nighttime atmospheric UHIs are influenced by energy stored in urban materials during daytime and released during nighttime. The stronger anthropogenic heat release in winter causes atmospheric UHIs to increase with time during winter nights, but decrease with time during summer nights. The percentage of impervious surfaces is responsible for 49%-54% of the nighttime atmospheric UHI variability and 31%-38% of the daytime surface UHI variability. However, the nighttime surface UHI was nearly uncorrelated with the percentage of impervious surfaces around the urban stations.
Use of fiber-optic DTS to investigate physical processes in thermohaline environments
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Sarabia, A.; Silva, C.
2014-12-01
Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.
Curiosity and time: from not knowing to almost knowing.
Noordewier, Marret K; van Dijk, Eric
2017-04-01
How does it feel to be curious? We reasoned that there are two sides to curiosity: not knowing something (i.e. information-gap) and almost knowing something (i.e. anticipation of resolution). In three experiments, we showed that time affects the relative impact of these two components: When people did not expect to close their information-gap soon (long time-to-resolution) not knowing affected the subjective experience of curiosity more strongly than when they expected to close their information-gap quickly (short time-to-resolution). As such, people experienced less positive affect, more discomfort, and more annoyance with lack of information in a long than a short time-to-resolution situation. Moreover, when time in the long time-to-resolution setting passed, the anticipation of the resolution became stronger, positive affect increased, and discomfort and annoyance with lack of information decreased. Time is thus a key factor in the experience of curiosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.
X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less
Model-based review of Doppler global velocimetry techniques with laser frequency modulation
NASA Astrophysics Data System (ADS)
Fischer, Andreas
2017-06-01
Optical measurements of flow velocity fields are of crucial importance to understand the behavior of complex flow. One flow field measurement technique is Doppler global velocimetry (DGV). A large variety of different DGV approaches exist, e.g., applying different kinds of laser frequency modulation. In order to investigate the measurement capabilities especially of the newer DGV approaches with laser frequency modulation, a model-based review of all DGV measurement principles is performed. The DGV principles can be categorized by the respective number of required time steps. The systematic review of all DGV principle reveals drawbacks and benefits of the different measurement approaches with respect to the temporal resolution, the spatial resolution and the measurement range. Furthermore, the Cramér-Rao bound for photon shot is calculated and discussed, which represents a fundamental limit of the achievable measurement uncertainty. As a result, all DGV techniques provide similar minimal uncertainty limits. With Nphotons as the number of scattered photons, the minimal standard deviation of the flow velocity reads about 106 m / s /√{Nphotons } , which was calculated for a perpendicular arrangement of the illumination and observation direction and a laser wavelength of 895 nm. As a further result, the signal processing efficiencies are determined with a Monte-Carlo simulation. Except for the newest correlation-based DGV method, the signal processing algorithms are already optimal or near the optimum. Finally, the different DGV approaches are compared regarding errors due to temporal variations of the scattered light intensity and the flow velocity. The influence of a linear variation of the scattered light intensity can be reduced by maximizing the number of time steps, because this means to acquire more information for the correction of this systematic effect. However, more time steps can result in a flow velocity measurement with a lower temporal resolution, when operating at the maximal frame rate of the camera. DGV without laser frequency modulation then provides the highest temporal resolutions and is not sensitive with respect to temporal variations but with respect to spatial variations of the scattered light intensity. In contrast to this, all DGV variants suffer from velocity variations during the measurement. In summary, the experimental conditions and the measurement task finally decide about the ideal choice from the reviewed DGV methods.
Ex vivo mouse brain microscopy at 15T with loop-gap RF coil.
Cohen, Ouri; Ackerman, Jerome L
2018-04-18
The design of a loop-gap-resonator RF coil optimized for ex vivo mouse brain microscopy at ultra high fields is described and its properties characterized using simulations, phantoms and experimental scans of mouse brains fixed in 10% formalin containing 4 mM Magnevist™. The RF (B 1 ) and magnetic field (B 0 ) homogeneities are experimentally quantified and compared to electromagnetic simulations of the coil. The coil's performance is also compared to a similarly sized surface coil and found to yield double the sensitivity. A three-dimensional gradient-echo (GRE) sequence is used to acquire high resolution mouse brain scans at (47 μm) 3 resolution in 1.8 h and a 20 × 20 × 19 μm 3 resolution in 27 h. The high resolution obtained permitted clear visualization and identification of multiple structures in the ex vivo mouse brain and represents, to our knowledge, the highest resolution ever achieved for a whole mouse brain. Importantly, the coil design is simple and easy to construct. Copyright © 2018 Elsevier Inc. All rights reserved.
Conflict Resolution Automation and Pilot Situation Awareness
NASA Technical Reports Server (NTRS)
Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.
2010-01-01
This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.
2008-02-15
THIS IS A MODEL TEST OF THE 1ST STAGE RE-ENTRY. HEAT TESTING OF A 3% MODEL TO SUPPORT THE ARES/CLV FIRST STAGE RE-ENTRY. THIS OCCURRED AT ARNOLD AIR FORCE BASE, TENNESSEE IN SUPPORT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.
A3 TEST STAND DEVELOPMENT AND CONSTRUCTION
NASA Technical Reports Server (NTRS)
2008-01-01
THIS IMAGE DOCUMENTS THE DEVELOPMENT AND CONSTRUCTION OF THE A3 TEST STAND IN SUPPORT OF THE ARES/CLV UPPER STAGE ENGINE DEVELOPMENT AT STENNIS SPACE CENTER, MISSIPPI IN SUPPORT OF THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE
2005-08-31
This frame from an animation shows the Cassini spacecraft approaching Saturn's icy moon Enceladus. It shows the highest resolution images obtained of the moon's surface. This is followed by a depiction of Saturn's magnetic field, which interacts with Enceladus' atmosphere and presumed plume coming from the south pole. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA03554
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
The effect of bathymetric filtering on nearshore process model results
Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.
2009-01-01
Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.
NASA Astrophysics Data System (ADS)
Liu, Xinyu; Chen, Si; Luo, Yuemei; Bo, En; Wang, Nanshuo; Yu, Xiaojun; Liu, Linbo
2016-02-01
The evaluation of the endothelium coverage on the vessel wall is most wanted by cardiologists. Arterial endothelial cells play a crucial role in keeping low-density lipoprotein and leukocytes from entering into the intima. The damage of endothelial cells is considered as the first step of atherosclerosis development and the presence of endothelial cells is an indicator of arterial healing after stent implantation. Intravascular OCT (IVOCT) is the highest-resolution coronary imaging modality, but it is still limited by an axial resolution of 10-15 µm. This limitation in axial resolution hinders our ability to visualize cellular level details associated with coronary atherosclerosis. Spectral estimation optical coherence tomography (SE-OCT) uses modern spectral estimation techniques and may help reveal the microstructures underlying the resolution limit. In this presentation, we conduct an ex vivo study using SE-OCT to image the endothelium cells on the fresh swine aorta. We find that in OCT images with an axial resolution of 10 µm, we may gain the visibility of individual endothelium cells by applying the autoregressive spectral estimation techniques to enhance the axial resolution. We believe the SE-OCT can provide a potential to evaluate the coverage of endothelium cells using current IVOCT with a 10-µm axial resolution.
Ultra high resolution cation analysis of NGRIP deep ice via cryo-cell UV-laser-ablation ICPMS
NASA Astrophysics Data System (ADS)
Della Lunga, Damiano; Muller, Wolfgang; Olander Rasmussen, Sune; Svensson, Anders
2014-05-01
During glacial periods, Earth experienced abrupt climate change events that led to rapid natural warming/ cooling over a few years only (Steffensen et al., 2008). In order to investigate these rapid climate events especially in old thinned ice, highest spatial/time resolution analysis of climate proxies is required. A recently developed methodology at Royal Holloway University of London (Müller et al., 2011), which permits in situ chemical analysis of frozen ice with spatial (and thus time) resolution up to 0.1 mm (100 ?m) using cryo-cell UV-laser ablation inductively-coupled-plasma mass spectrometry (UV-LA-ICPMS), has been optimized and utilized for analysis of (major) elements indicative of dust and/or sea salt (e.g. Fe, Al, Ca, Mg, Na), while maintaining detection limits in the low(est) ppb-range. NGRIP samples of Greenland Stadial GS22 (~86 ka, depth of ~2690 m), representing a minor δ18O shift (of about ± 4) within the stadial phase of D-O event 22, have been selected and analysed. With a single storm-event resolution capability, seasonal, annual and multiannual periodicity of elements have been identified and will be presented with particular focus on the phasing of the climate proxies. Corresponding results include also an optimized UV-LA-ICPMS methodology, particularly with reference to depth-profiling, assessing contamination of the sample surface and standardization. Finally, the location and distribution of soluble and insoluble micro-inclusions in deep ice have also been assessed concerning the partitioning of elements between grain boundaries and grain interiors. Results show that impurities tend to be concentrated along boundaries in clear (winter) ice, whereas in cloudy bands ('dirtier' ice) they distribute equally between boundaries and interiors. References Müller, W., Shelley, J.M.G., Rasmussen, S.O., 2011. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS. J. Anal. At. Spectrom. 26, 2391-2395. Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S.J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S.O., Rothlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.L., Sveinbjornsdottir, A.E., Svensson, A., White, J.W.C., 2008. High-resolution Greenland Ice Core data show abrupt climate change happens in few years. Science 321, 680-684.
Waveform digitization for high resolution timing detectors with silicon photomultipliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Albrow, M. G.; Los, S.
2012-03-01
The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.
First imaging results from Apertif, a phased-array feed for WSRT
NASA Astrophysics Data System (ADS)
Adams, Elizabeth A.; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Hut, Boudewijn; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom; Staveley-Smith, Lister; van der Hulst, Thijs; Verheijen, Marc; Verstappen, Joris
2017-01-01
Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five. In 2017, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The medium-deep imaging survey will include coverage of the northern Herschel Atlas field, the CVn region, HetDex, and the Perseus-Pisces supercluster. The shallow imaging survey increases overlap with HetDex, has expanded coverage of the Perseus-Pisces supercluster, and includes part of the Zone of Avoidance. Both imaging surveys are coordinating with MaNGA and will have WEAVE follow-up. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The shallow survey will cover ~3500 square degrees with a four-sigma HI imaging sensitivity of 2.5x10^20 atoms cm^-2 (20 km/s linewidth) at the highest resolution and a continuum sensitivity of 15 uJy/beam (11 uJy/beam for polarization data). The current plan calls for the medium deep survey to cover 450 square degrees and provide an HI imaging sensitivity of 1.0x10^20 atoms cm^-2 at the highest resolution and a continuum sensitivity of 6 uJy/beam, close to the confusion limit (4 uJy/beam for polarization data, not confusion limited). Up-to-date information on Apertif and the planned surveys can be found at: http://www.apertif.nl.Commissioning of the Apertif instrument is currently underway. Here we present first results from the image commissioning, including the detection of HI absorption plus continuum and HI imaging. These results highlight the data quality that will be achieved for the surveys.
The time resolution of the St Petersburg paradox
Peters, Ole
2011-01-01
A resolution of the St Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions. PMID:22042904
NASA Astrophysics Data System (ADS)
Delitala, Alessandro M. S.; Deidda, Roberto; Mascaro, Giuseppe; Piga, Enrico; Querzoli, Giorgio
2010-05-01
During most of the 20th century, precipitation has been continuously measured by means of the so-called "pluviographs", i.e. rain gauges including a mechanical apparatus for continuously recording the depth of water from precipitation on specific strip charts, usually on a weekly basis. The signal recorded on such strips was visually examined by trained personnel on a regular basis, in order to extract the daily precipitation totals and the maximum precipitation intensities over short periods (from a few minutes to hours). The rest of the high-resolution information contained in the signal was usually not extracted, except for specific cases. A systematic recovering of the entire information at high temporal resolution contained in these precipitation signals would provide a fundamental database to improve the characterization of historical rainfall climatology during the previous century. The Department of Land Engineering of the University of Cagliari has recently developed and tested an automatic software, based on image analysis techniques, which is able to acquire the scanned images of the pluviograph strip charts, to automatically digitise the signal and to produce a digital database of continuous precipitation records at the highest possible temporal resolution, i.e. 5 to 10 minutes. Along with that, a significant amount of daily precipitation totals from the late 19th and the 20th century, either elaborated from pluviograph strip charts or simply derived from bucket rain gauges, still exists in paper form, but it has never been digitalized. Within a project partly-funded by the Operational Programme of the European Union "Italia-Francia Marittimo", the Regional Environmental Protection Agency of Sardinia and the University of Cagliari will recover both the high-resolution rainfall signals and the older time series of daily totals recorded by a large number of pluviographs belonging to the historical monitoring networks of the island of Sardinia. Such data will then be used to construct the high-resolution climatology of precipitation over Sardinia, both assuming stationary climate and slowly varying climate. Specific attention will be devoted to a set of critical hydrological basins, often affected by intense precipitation and flash floods. All information will then be made available to researchers, regional officers, technicians (e.g. hydraulic engineers) and the greater public interested into such information. The present poster describes the general scope of the E.U. project and the specific activities in the field of climatology of Sardinia rainfall that will be conducted as well as the expected results. A section will be dedicated to show how the pluviograph strips are automatically digitized.
Fabrellas, Núria; Vidal, Angel; Amat, Gemma; Lejardi, Yolanda; del Puig Deulofeu, Maria; Buendia, Carmen
2011-08-01
This paper is a report of a study to assess the feasibility and efficacy of a programme of nurse management for patients requesting same day consultation for minor illnesses in primary care. The efficacy of such programmes has been demonstrated in randomized studies but there is little information on these programmes in highly populated areas. Patients seeking same day consultation for one of 23 preselected minor illnesses (16 for adults, 7 for paediatric patients) from March 2009 to April 2010 were seen by trained nurses who followed predefined algorithms. If signs of alarm were detected, patients were referred to a general practitioner. A total of 629,568 consultations were performed, 575,189 in adults and 54,379 in paediatric patients. Case resolution was achieved in 61.8% of adult and 75.6% of paediatric patients. In adults, the highest resolution rates (>90%) were obtained for burns, skin injury and emergency contraception, and the lowest for lower urinary symptoms (46.7%), sore throat (45.7%), pink eye (45.5%) and upper respiratory symptoms (41.4%). In paediatric patients, the highest resolution rates (>90%) were obtained for stomach cramps and burns and the lowest for cough (36.2%). A return to consultation during a 7-day period for the same reason as the first consultation was low, 4% for adults and 2.4% for paediatric patients. An extended programme of nurse management for same day consultation of patients with minor illnesses showed an acceptably high rate of resolution and low rate of return to consultation. The application of such programmes in extensive areas is feasible and effective. © 2011 Blackwell Publishing Ltd.
Evaluation of GOCE-based Global Geoid Models in Finnish Territory
NASA Astrophysics Data System (ADS)
Saari, Timo; Bilker-Koivula, Mirjam
2015-04-01
The gravity satellite mission GOCE made its final observations in the fall of 2013. By then it had exceeded its expected lifespan of one year with more than three additional years. Thus, the mission collected more data from the Earth's gravitational field than expected, and more comprehensive global geoid models have been derived ever since. The GOCE High-level Processing Facility (HPF) by ESA has published GOCE global gravity field models annually. We compared all of the 12 HPF-models as well as 3 additional GOCE, 11 GRACE and 6 combined GOCE+GRACE models with GPS-levelling data and gravity observations in Finland. The most accurate models were compared against high resolution global geoid models EGM96 and EGM2008. The models were evaluated up to three different degrees and order: 150 (the common maximum for the GRACE models), 240 (the common maximum for the GOCE models) and maximum. When coefficients up to degree and order 150 are used, the results of the GOCE models are comparable with the results of the latest GRACE models. Generally, all of the latest GOCE and GOCE+GRACE models give standard deviations of the height anomaly differences of around 15 cm and of gravity anomaly differences of around 10 mgal over Finland. The best solutions were not always achieved with the highest maximum degree and order of the satellite gravity field models, since the highest coefficients (above 240) may be less accurately determined. Over Finland, the latest GOCE and GOCE+GRACE models give similar results as the high resolution models EGM96 and EGM2008 when coefficients up to degree and order 240 are used. This is mainly due to the high resolution terrestrial data available in the area of Finland, which was used in the high resolution models.
NASA Technical Reports Server (NTRS)
Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.
1994-01-01
High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.
Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database
Verdin, Kristine L.
2017-07-17
The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Nagesh, S Setlur
Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detectormore » was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.« less
NASA Astrophysics Data System (ADS)
Wagner, Roland; Schmedemann, Nico; Neukum, Gerhard; Werner, Stephanie C.; Ivanov, Boris A.; Stephan, Katrin; Jaumann, Ralf; Palumbo, Pasquale
2014-11-01
Crater distributions and origin of potential impactors on the Galilean satellites has been an issue of controversial debate. In this work, we review the current knowledge of the cratering record on Ganymede and Callisto and present strategies for further studies using images from ESA’s JUICE mission to Jupiter. Crater distributions in densely cratered units on these two satellites show a complex shape between 20 m and 200 km crater diameter, similar to lunar highland distributions implying impacts of members of a collisionally evolved projectile family. Also, the complex shape predominantly indicates production distributions. No evidence for apex-antapex asymmetries in crater frequency was found, therefore the majority of projectiles (a) preferentially impacted from planetocentric orbits, or (b) the satellites were rotating non-synchronously during a time of heavy bombardment. The currently available imaging data are insufficient to investigate in detail significant changes in the shape of crater distributions with time. Clusters of secondary craters are well mappable and excluded from crater counts, lack of sufficient image coverage at high resolution, however, in many cases impedes the identification of source craters. ESA’s future JUICE mission will study Ganymede as the first icy satellite in the outer Solar system from an orbit under stable viewing conditions. Measurements of crater distributions can be carried out based on global geologic mapping at highest spatial resolutions (10s of meters down to 3 m/pxl).
Improved Spacecraft Tracking and Navigation Using a Portable Radio Science Receiver
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Jacobs, Christopher; Navarro, Robert; Naudet, Charles; Rogstad, Stephen; White, Leslie; Finley, Susan; Goodhart, Charles; Sigman, Elliott; Trinh, Joseph
2013-01-01
The Portable Radio Science Receiver (PRSR) is a suitcase-sized open-loop digital receiver designed to be small and easy to transport so that it can be deployed quickly and easily anywhere in the world. The PRSR digitizes, downconverts, and filters using custom hardware, firmware, and software. Up to 16 channels can be independently configured and recorded with a total data rate of up to 256 Mbps. The design and implementation of the system's hardware, firmware, and software is described. To minimize costs and time to deployment, our design leveraged elements of the hardware, firmware, and software designs from the existing full-sized operational (non-portable) Radio Science Receivers (RSR) and Wideband VLBI Science Receivers (WVSR), which have successfully supported flagship NASA deep space missions at all Deep Space Network (DSN) sites. We discuss a demonstration of the PRSR using VLBI, with one part per billion angular resolution: 1 nano-radian / 200 ?as synthesized beam. This is the highest resolution astronomical instrument ever operated solely from the Southern Hemisphere. Preliminary results from two sites are presented, including the European Space Agency (ESA) sites at Cebreros, Spain and Malargue, Argentina. Malargue's South American location is of special interest because it greatly improves the geometric coverage for spacecraft navigation in the Southern Hemisphere and will for the first time provide coverage to the 1/4 of the range of declination that has been excluded from reference frame work at Ka-band.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K
2015-12-01
To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.
NASA Technical Reports Server (NTRS)
Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.
2000-01-01
The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.
Meridional Flow in Solar Cycle 24: The Impact on the Polar Magnetic Fields
NASA Technical Reports Server (NTRS)
Upton, Lisa; Hathaway, David; Kosak, Katie
2012-01-01
Axisymmetric flows, Differential Rotation and Meridional Flow (MF), were measured by tracking the motion of magnetic elements on the surface of the Sun using data obtained by the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. HMI provides the highest resolution full ]disk magnetograms available to date. This dramatically reduces the noise in axisymmetric flows, particularly at high latitudes (i.e. near the poles). The MF was found to vary greatly from one Carrington Rotation to the next. Furthermore, a distinct north ]south difference was found in the MF at high latitudes: Flow in the South was persistently weaker than flow in the North. Conclusions will be drawn concerning the MF variability, north ]south differences, and the impact on the polar magnetic field strengths and the timing of their reversals.
NMR Microscopy - Micron-Level Resolution.
NASA Astrophysics Data System (ADS)
Kwok, Wing-Chi Edmund
1990-01-01
Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is to implement a higher static magnetic field which will increase signal strength. In the future, NMR microscopy should prove to be useful in the studies of cell linings, T1 & T2 relaxation mechanisms and NMR contrast agents.
In-situ Fluorometers Reveal High Frequency Dynamics In Dissolved Organic Matter For Urban Rivers
NASA Astrophysics Data System (ADS)
Croghan, D.; Bradley, C.; Khamis, K.; Hannah, D. M.; Sadler, J. P.; Van Loon, A.
2017-12-01
To-date Dissolved Organic Matter (DOM) dynamics have been quantified poorly in urban rivers, despite the substantial water quality issues linked to urbanisation. Research has been hindered by the low temporal resolution of observations and over-reliance on manual sampling which often fail to capture precipitation events and diurnal dynamics. High frequency data are essential to estimate more accurately DOM fluxes/loads and to understand DOM furnishing and transport processes. Recent advances in optical sensor technology, including field deployable in-situ fluorometers, are yielding new high resolution DOM information. However, no consensus regarding the monitoring resolution required for urban systems exists, with no studies monitoring at <15 min time steps. High-frequency monitoring (5 min resolution; 4 week duration) was conducted on a headwater urban stream in Birmingham, UK (N 52.447430 W -1.936715) to determine the optimum temporal resolution for characterization of DOM event dynamics. A through-flow GGNU-30 monitored wavelengths corresponding to tryptophan-like fluorescence (TLF; Peak T1) (Ex 285 nm/ Em 345 nm) and humic-like fluorescence (HLF; Peak C) (Ex 365 nm/Em 490 nm). The results suggest that at base flow TLF and HLF are relatively stable, though episodic DOM inputs can pulse through the system, which may be missed during lower temporal resolution monitoring. High temporal variation occurs during storm events in TLF and HLF intensity: TLF intensity is highest during the rising limb of the hydrograph and can rapidly decline thereafter, indicating the importance of fast flow-path and close proximity sources to TLF dynamics. HLF intensity tracks discharge more closely, but can also quickly decline during high flow events due to dilution effects. Furthermore, the ratio of TLF:HLF when derived at high-frequency provides a useful indication of the presence and type of organic effluents in stream, which aids in the identification of Combined Sewage Overflow releases. Our work highlights the need for future studies to utilise shorter temporal scales than previously used to monitor urban DOM dynamics. The application of higher frequency monitoring enables the identification of finer-scale patterns and subsequently aids in deciphering the sources and pathways controlling urban DOM dynamics.
Printing colour at the optical diffraction limit.
Kumar, Karthik; Duan, Huigao; Hegde, Ravi S; Koh, Samuel C W; Wei, Jennifer N; Yang, Joel K W
2012-09-01
The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage.
Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.
Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie
2015-06-01
The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternberg, B.K.; Thomas, S.J.
1992-12-01
The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less
Time and position resolution of the scintillator strips for a muon system at future colliders
Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja
2016-03-31
In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.
NASA Astrophysics Data System (ADS)
Mitri, Giuseppe
2017-04-01
The NASA-ESA Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most interesting worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plumes, both harboring subsurface oceans, are prime environments in which to investigate the conditions for the emergence of life and the habitability of ocean worlds. Explorer of Enceladus and Titan (E2T) is dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed in response to ESA's M5 Call as a medium-class mission led by ESA in collaboration with NASA. E2T has a focused payload that will provide in-situ composition investigations and high-resolution imaging during multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. The E2T mission will provide high-resolution mass spectroscopy of the plumes currently emanating from Enceladus's south polar terrain (SPT) and of Titan's changing upper atmosphere. In addition, high-resolution IR imaging will detail Titan's geomorphology at 50-100 m resolution and the source fractures on Enceladus's SPT at meter resolution. These combined measurements of both Titan and Enceladus will permit to achieve the two major scientific goals of the E2T mission: 1) Study the origin and evolution of volatile-rich ocean worlds; and 2) Explore the habitability and potential for life in ocean worlds. More in detail, these goals will be achieved by measuring the nature, abundance and isotopic properties of solid- and vapor-phase species in Enceladus's plume and Titan's upper atmosphere, and determining the processes that are transporting and transforming organic materials on the surface of Titan and the mechanisms controlling, and the energy dissipated by, Enceladus's plumes. E2T's two high-resolution time-of-flight mass spectrometers will enable us to resolve the ambiguities left by Cassini regarding the identification of low-mass organic species, to identify high-mass organic species for the first time, to further constrain trace species such as the noble gases, and to clarify the evolution of solid and volatile species. E2T's high-resolution IR camera will reveal Titan's global surface only partly covered today and Enceladus's fractured SPT and plume in detail unattainable by the Cassini mission. The nominal science operation phase is 3.5 years after a 6 years transfer from Earth to Saturn with an expected launch in April 2030. The proposed mission will address key scientific questions regarding extraterrestrial habitability, abiotic/prebiotic chemistry and emergence of life in the outer solar system, which are among the highest priorities of ESA's Cosmic Vision program.
Multiple Acquisition InSAR Analysis: Persistent Scatterer and Small Baseline Approaches
NASA Astrophysics Data System (ADS)
Hooper, A.
2006-12-01
InSAR techniques that process data from multiple acquisitions enable us to form time series of deformation and also allow us to reduce error terms present in single interferograms. There are currently two broad categories of methods that deal with multiple images: persistent scatterer methods and small baseline methods. The persistent scatterer approach relies on identifying pixels whose scattering properties vary little with time and look angle. Pixels that are dominated by a singular scatterer best meet these criteria; therefore, images are processed at full resolution to both increase the chance of there being only one dominant scatterer present, and to reduce the contribution from other scatterers within each pixel. In images where most pixels contain multiple scatterers of similar strength, even at the highest possible resolution, the persistent scatterer approach is less optimal, as the scattering characteristics of these pixels vary substantially with look angle. In this case, an approach that interferes only pairs of images for which the difference in look angle is small makes better sense, and resolution can be sacrificed to reduce the effects of the look angle difference by band-pass filtering. This is the small baseline approach. Existing small baseline methods depend on forming a series of multilooked interferograms and unwrapping each one individually. This approach fails to take advantage of two of the benefits of processing multiple acquisitions, however, which are usually embodied in persistent scatterer methods: the ability to find and extract the phase for single-look pixels with good signal-to-noise ratio that are surrounded by noisy pixels, and the ability to unwrap more robustly in three dimensions, the third dimension being that of time. We have developed, therefore, a new small baseline method to select individual single-look pixels that behave coherently in time, so that isolated stable pixels may be found. After correction for various error terms, the phase values of the selected pixels are unwrapped using a new three-dimensional algorithm. We apply our small baseline method to an area in southern Iceland that includes Katla and Eyjafjallajökull volcanoes, and retrieve a time series of deformation that shows transient deformation due to intrusion of magma beneath Eyjafjallajökull. We also process the data using the Stanford method for persistent scatterers (StaMPS) for comparison.
Inundation and Gas Fluxes from Amazon Lakes and Wetlands
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.
2015-12-01
Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than previous values applied to regional extrapolations in the Amazon basin and elsewhere.
NASA Astrophysics Data System (ADS)
Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.
2013-12-01
It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under supersaturated O2 initial conditions).
High resolution time interval meter
Martin, A.D.
1986-05-09
Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-05-25
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir
2016-01-01
Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903
Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Stephen
The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator withmore » a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.« less
High speed, real-time, camera bandwidth converter
Bower, Dan E; Bloom, David A; Curry, James R
2014-10-21
Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.
High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, Simon R.; Qi, Jinyi
2012-01-08
There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less
Using CTX Image Features to Predict HiRISE-Equivalent Rock Density
NASA Technical Reports Server (NTRS)
Serrano, Navid; Huertas, Andres; McGuire, Patrick; Mayer, David; Ardvidson, Raymond
2010-01-01
Methods have been developed to quantitatively assess rock hazards at candidate landing sites with the aid of images from the HiRISE camera onboard NASA s Mars Reconnaissance Orbiter. HiRISE is able to resolve rocks as small as 1-m in diameter. Some sites of interest do not have adequate coverage with the highest resolution sensors and there is a need to infer relevant information (like site safety or underlying geomorphology). The proposed approach would make it possible to obtain rock density estimates at a level close to or equal to those obtained from high-resolution sensors where individual rocks are discernable.
High-resolution continuum observations of the Sun
NASA Technical Reports Server (NTRS)
Zirin, Harold
1987-01-01
The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.
High-resolution interferometic microscope for traceable dimensional nanometrology in Brazil
NASA Astrophysics Data System (ADS)
Malinovski, I.; França, R. S.; Lima, M. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.
2016-07-01
The double color interferometric microscope is developed for step height standards nanometrology traceable to meter definition via primary wavelength laser standards. The setup is based on two stabilized lasers to provide traceable measurements of highest possible resolution down to the physical limits of the optical instruments in sub-nanometer to micrometer range of the heights. The wavelength reference is He-Ne 633 nm stabilized laser, the secondary source is Blue-Green 488 nm grating laser diode. Accurate fringe portion is measured by modulated phase-shift technique combined with imaging interferometry and Fourier processing. Self calibrating methods are developed to correct systematic interferometric errors.
Hisatake, S; Kobayashi, T
2006-12-25
We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.
Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET
NASA Astrophysics Data System (ADS)
Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan
2013-06-01
TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.
The timing resolution of scintillation-detector systems: Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng
2009-11-01
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
The timing resolution of scintillation-detector systems: Monte Carlo analysis.
Choong, Woon-Seng
2009-11-07
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas
2018-02-23
Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low. Color improved finish line identification in some IOS. It is imperative that clinicians critically evaluate the digital impression, being aware of varying technical limitations among IOS, in particular when challenging subgingival conditions apply.
Study of bioconcentration of oxybenzone in gilt-head bream and characterization of its by-products.
Ziarrusta, Haizea; Mijangos, Leire; Montes, Rosa; Rodil, Rosario; Anakabe, Eneritz; Izagirre, Urtzi; Prieto, Ailette; Etxebarria, Nestor; Olivares, Maitane; Zuloaga, Olatz
2018-05-25
The widespread occurrence of UV filters such as oxybenzone (OXY) in the aquatic ecosystems has raised social and scientific concern due to their high bioaccumulation potential and possible adverse effects in organisms. Within this context, the aim of the present work was to study the uptake, distribution, metabolization and elimination of OXY in different tissues (liver, gill and muscle) and biofluids (bile and plasma) of gilt-head bream (Sparus aurata) in a controlled seawater ecosystem (50 ng/mL OXY) within a 14-day exposure. The highest OXY concentrations in all the tissue/biofluids were found at the end of the experiment. The highest OXY levels were found in bile (1.8-17 μg/mL). In the case of liver, the concentrations found (9-160 ng/g) were lower than those expected for a lipidic matrix, which could be explained by a high OXY metabolization. Up to 20 Phase I and Phase II by-products of OXY were annotated by means of liquid chromatography-high resolution mass spectrometry, of which 12 were reported for the first time. In addition to OXY, its by-products might also cause adverse effects and their biomonitoring is advisable in order to fully characterize OXY exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spectra of Cas A's Highest Velocity Ejecta
NASA Astrophysics Data System (ADS)
Fesen, Robert A.; Milisavljevic, Dan
2010-08-01
The young age and close distance of the Galactic supernova remnant Cassiopeia A (Cas A) make it perhaps our best case study and clearest look at the explosion dynamics of a core-collapse supernova (CCSN). Interestingly, Cas A exhibits two nearly opposing streams of high velocity ejecta or `jets' in its NE and SW regions racing outward at speeds more than twice that of the main shell. The nature of these jets, however, and their possible association with an aspherical supernova explosion mechanism is controversial. A handful of existing low-resolution spectra of outer knots in the NE jet display chemical abundances hinting at an origin from the S-Si-Ca- Ar rich layer deep inside the progenitor. If these abundances could be firmly established in both the NE and SW jets, it would be very strong evidence in support of a highly asymmetrical explosion engine for Cas A's progenitor and, in turn, for CCSNe in general. We request KPNO 4m telescope + MARS time to obtain high quality multi-object spectroscopy of Cas A's highest velocity ejecta to measure their nitrogen, sulfur, oxygen, calcium, and argon abundances. These spectra will be analyzed with the metal-rich shock models of J. Raymond and then compared to current sets of CCSN models paying particular attention to knot composition vs. ejection velocity and ejecta mixing.
Medical Malpractice: The Experience in Italy
2008-01-01
At the present time, legal actions against physicians in Italy number about 15,000 per year, and hospitals spend over €10 billion (~US$15.5 billion) to compensate patients injured from therapeutic and diagnostic errors. In a survey summary issued by the Italian Court for the Rights of the Patient, between 1996 and 2000 orthopaedic surgery was the highest-ranked specialty for the number of complaints alleging medical malpractice. Today among European countries, Italy has the highest number of physicians subject to criminal proceedings related to medical malpractice, a fact that is profoundly changing physicians’ approach to medical practice. The national health system has paid increasingly higher insurance premiums and is having difficulty finding insurance companies willing to bear the risk of monetary claims alleging medical malpractice. Healthcare costs will likely worsen as Italian physicians increasingly practice defensive medicine, thereby overutilizing resources with the goal of documenting diligence, prudence, and skill as defenses against potential litigation, rather than aimed at any patient benefit. To reduce the practice of defensive medicine and healthcare costs, a possible solution could be the introduction of an extrajudicial litigation resolution, as in other civil law countries, and a reform of the Italian judicial system on matters of medical malpractice litigation. PMID:18985423
Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira
2014-09-01
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
2008-02-15
THIS IS A TEST OF THE 1ST STAGE RE-ENTRY VEHICLE. HEAT TESTING OF A 3% MODEL TO SUPPORT THE ARES/ CLV FIRST STAGE RE-ENTRY. THIS TEST OCCURRED AT ARNOLD AIR FORCE BASE, TENNESSEE. THIS TESTING SUPPORTS THE DEVELOPMENT OF THE CONSTELLATION/ARES PROJECT. THIS IMAGE IS EXTRACTED FROM A HIGH DEFINITION VIDEO FILE AND IS THE HIGHEST RESOLUTION AVAILABLE.
Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography
Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.
2015-01-01
Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598
PET Timing Performance Measurement Method Using NEMA NEC Phantom
NASA Astrophysics Data System (ADS)
Wang, Gin-Chung; Li, Xiaoli; Niu, Xiaofeng; Du, Huini; Balakrishnan, Karthik; Ye, Hongwei; Burr, Kent
2016-06-01
When comparing the performance of time-of-flight whole-body PET scanners, timing resolution is one important benchmark. Timing performance is heavily influenced by detector and electronics design. Even for the same scanner design, measured timing resolution is a function of many factors including the activity concentration, geometry and positioning of the radioactive source. Due to lack of measurement standards, the timing resolutions reported in the literature may not be directly comparable and may not describe the timing performance under clinically relevant conditions. In this work we introduce a method which makes use of the data acquired during the standard NEMA Noise-Equivalent-Count-Rate (NECR) measurements, and compare it to several other timing resolution measurement methods. The use of the NEMA NEC phantom, with well-defined dimensions and radioactivity distribution, is attractive because it has been widely accepted in the industry and allows for the characterization of timing resolution across a more relevant range of conditions.
Estimation of time resolution for DOI-PET detector using diameter 0.2 mm WLS fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, A.; Ito, H.; Han, S.
We are developing the whole-body PET detector with high position resolution (1 mm) and low cost (1 M dollars). Scintillator plates, Wave Length Sifting Fibers and SiPMs are used. In this work, time resolution of our PET detector is estimated. Our detector may also have good time resolution such as a few ps. (authors)
Basu, Amar S
2013-05-21
Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.
Hypertension and exposure to noise near airports: the HYENA study.
Jarup, Lars; Babisch, Wolfgang; Houthuijs, Danny; Pershagen, Göran; Katsouyanni, Klea; Cadum, Ennio; Dudley, Marie-Louise; Savigny, Pauline; Seiffert, Ingeburg; Swart, Wim; Breugelmans, Oscar; Bluhm, Gösta; Selander, Jenny; Haralabidis, Alexandros; Dimakopoulou, Konstantina; Sourtzi, Panayota; Velonakis, Manolis; Vigna-Taglianti, Federica
2008-03-01
An increasing number of people are exposed to aircraft and road traffic noise. Hypertension is an important risk factor for cardiovascular disease, and even a small contribution in risk from environmental factors may have a major impact on public health. The HYENA (Hypertension and Exposure to Noise near Airports) study aimed to assess the relations between noise from aircraft or road traffic near airports and the risk of hypertension. We measured blood pressure and collected data on health, socioeconomic, and lifestyle factors, including diet and physical activity, via questionnaire at home visits for 4,861 persons 45-70 years of age, who had lived at least 5 years near any of six major European airports. We assessed noise exposure using detailed models with a resolution of 1 dB (5 dB for United Kingdom road traffic noise), and a spatial resolution of 250 x 250 m for aircraft and 10 x 10 m for road traffic noise. We found significant exposure-response relationships between night-time aircraft as well as average daily road traffic noise exposure and risk of hypertension after adjustment for major confounders. For night-time aircraft noise, a 10-dB increase in exposure was associated with an odds ratio (OR) of 1.14 [95% confidence interval (CI), 1.01-1.29]. The exposure-response relationships were similar for road traffic noise and stronger for men with an OR of 1.54 (95% CI, 0.99-2.40) in the highest exposure category (> 65 dB; p(trend) = 0.008). Our results indicate excess risks of hypertension related to long-term noise exposure, primarily for night-time aircraft noise and daily average road traffic noise.
Grazing-induced reduction of natural nitrous oxide release from continental steppe.
Wolf, Benjamin; Zheng, Xunhua; Brüggemann, Nicolas; Chen, Weiwei; Dannenmann, Michael; Han, Xingguo; Sutton, Mark A; Wu, Honghui; Yao, Zhisheng; Butterbach-Bahl, Klaus
2010-04-08
Atmospheric concentrations of the greenhouse gas nitrous oxide (N(2)O) have increased significantly since pre-industrial times owing to anthropogenic perturbation of the global nitrogen cycle, with animal production being one of the main contributors. Grasslands cover about 20 per cent of the temperate land surface of the Earth and are widely used as pasture. It has been suggested that high animal stocking rates and the resulting elevated nitrogen input increase N(2)O emissions. Internationally agreed methods to upscale the effect of increased livestock numbers on N(2)O emissions are based directly on per capita nitrogen inputs. However, measurements of grassland N(2)O fluxes are often performed over short time periods, with low time resolution and mostly during the growing season. In consequence, our understanding of the daily and seasonal dynamics of grassland N(2)O fluxes remains limited. Here we report year-round N(2)O flux measurements with high and low temporal resolution at ten steppe grassland sites in Inner Mongolia, China. We show that short-lived pulses of N(2)O emission during spring thaw dominate the annual N(2)O budget at our study sites. The N(2)O emission pulses are highest in ungrazed steppe and decrease with increasing stocking rate, suggesting that grazing decreases rather than increases N(2)O emissions. Our results show that the stimulatory effect of higher stocking rates on nitrogen cycling and, hence, on N(2)O emission is more than offset by the effects of a parallel reduction in microbial biomass, inorganic nitrogen production and wintertime water retention. By neglecting these freeze-thaw interactions, existing approaches may have systematically overestimated N(2)O emissions over the last century for semi-arid, cool temperate grasslands by up to 72 per cent.
A high time and spatial resolution MRPC designed for muon tomography
NASA Astrophysics Data System (ADS)
Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.
2014-12-01
A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.
Cui, Xiaoming; Li, Tao; Li, Xin; Zhou, Weihua
2015-05-01
The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0±8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Qiao, Y; Tyson, C; Hrynchak, M; Lopez-Rangel, E; Hildebrand, J; Martell, S; Fawcett, C; Kasmara, L; Calli, K; Harvard, C; Liu, X; Holden, J J A; Lewis, S M E; Rajcan-Separovic, E
2013-02-01
Higher resolution whole-genome arrays facilitate the identification of smaller copy number variations (CNVs) and their integral genes contributing to autism and/or intellectual disability (ASD/ID). Our study describes the use of one of the highest resolution arrays, the Affymetrix(®) Cytogenetics 2.7M array, coupled with quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF) for detection and validation of small CNVs. We studied 82 subjects with ASD and ID in total (30 in the validation and 52 in the application cohort) and detected putatively pathogenic CNVs in 6/52 cases from the application cohort. This included a 130-kb maternal duplication spanning exons 64-79 of the DMD gene which was found in a 3-year-old boy manifesting autism and mild neuromotor delays. Other pathogenic CNVs involved 4p14, 12q24.31, 14q32.31, 15q13.2-13.3, and 17p13.3. We established the optimal experimental conditions which, when applied to select small CNVs for QMPSF confirmation, reduced the false positive rate from 60% to 25%. Our work suggests that selection of small CNVs based on the function of integral genes, followed by review of array experimental parameters resulting in highest confirmation rate using multiplex PCR, may enhance the usefulness of higher resolution platforms for ASD and ID gene discovery. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Darmawan, S.; Takeuchi, W.; Nakazono, E.; Parwati, E.; Dien, V. T.; Oo, K. S.; Wikantika, K.; Sari, D. K.
2016-06-01
The objective of this research is to investigate characteristics of mangrove forest types and to identify spatial distribution of mangrove forest based on ALOS PALSAR mosaic 25m- resolution in Southeast Asia. Methodology consists of collecting of ALOS PALSAR image for overall Southeast Asia region, preprocessing include converting DN to NRCS and filtering, collecting regions of interest of mangrove forest in Southeast Asia, plotting, characterization and classification. Result on this research we found characteristics of mangrove forest on HH values around -10.88 dB to -6.65 dB and on HV value around -16.49 dB to -13.26 dB. On polarization of HH which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Thái Thủy Thai Binh Vietnam, and Vạn Ninh tp. Móng Cái Quảng Ninh Vietnam whereas the lowest backscattering value is mangrove forest in Thailand area. On polarization of HV which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Sorong and Teluk Bintuni Indonesia whereas the lowest backscattering value is mangrove forest in Subang Indonesia, Giao Thiện Giao Thuỷ Nam Định, Vietnam and Puyu Mueng Satun Thailand. Based on characterization, we create a rule criteria for classification of mangrove areas and non mangrove area. Finally we found spatial distribution of mangrove forest based on ALOS PALSAR 25m-resolution in Southeast Asia.
Ermis, E E; Celiktas, C
2012-12-01
Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Manning, Sturt W; Griggs, Carol B; Lorentzen, Brita; Barjamovic, Gojko; Ramsey, Christopher Bronk; Kromer, Bernd; Wild, Eva Maria
2016-01-01
500 years of ancient Near Eastern history from the earlier second millennium BCE, including such pivotal figures as Hammurabi of Babylon, Šamši-Adad I (who conquered Aššur) and Zimrilim of Mari, has long floated in calendar time subject to rival chronological schemes up to 150+ years apart. Texts preserved on clay tablets provide much information, including some astronomical references, but despite 100+ years of scholarly effort, chronological resolution has proved impossible. Documents linked with specific Assyrian officials and rulers have been found and associated with archaeological wood samples at Kültepe and Acemhöyük in Turkey, and offer the potential to resolve this long-running problem. Here we show that previous work using tree-ring dating to place these timbers in absolute time has fundamental problems with key dendrochronological crossdates due to small sample numbers in overlapping years and insufficient critical assessment. To address, we have integrated secure dendrochronological sequences directly with radiocarbon (14C) measurements to achieve tightly resolved absolute (calendar) chronological associations and identify the secure links of this tree-ring chronology with the archaeological-historical evidence. The revised tree-ring-sequenced 14C time-series for Kültepe and Acemhöyük is compatible only with the so-called Middle Chronology and not with the rival High, Low or New Chronologies. This finding provides a robust resolution to a century of uncertainty in Mesopotamian chronology and scholarship, and a secure basis for construction of a coherent timeframe and history across the Near East and East Mediterranean in the earlier second millennium BCE. Our re-dating also affects an unusual tree-ring growth anomaly in wood from Porsuk, Turkey, previously tentatively associated with the Minoan eruption of the Santorini volcano. This tree-ring growth anomaly is now directly dated ~1681-1673 BCE (68.2% highest posterior density range), ~20 years earlier than previous assessments, indicating that it likely has no association with the subsequent Santorini volcanic eruption.
Griggs, Carol B.; Lorentzen, Brita; Barjamovic, Gojko; Ramsey, Christopher Bronk; Kromer, Bernd; Wild, Eva Maria
2016-01-01
500 years of ancient Near Eastern history from the earlier second millennium BCE, including such pivotal figures as Hammurabi of Babylon, Šamši-Adad I (who conquered Aššur) and Zimrilim of Mari, has long floated in calendar time subject to rival chronological schemes up to 150+ years apart. Texts preserved on clay tablets provide much information, including some astronomical references, but despite 100+ years of scholarly effort, chronological resolution has proved impossible. Documents linked with specific Assyrian officials and rulers have been found and associated with archaeological wood samples at Kültepe and Acemhöyük in Turkey, and offer the potential to resolve this long-running problem. Here we show that previous work using tree-ring dating to place these timbers in absolute time has fundamental problems with key dendrochronological crossdates due to small sample numbers in overlapping years and insufficient critical assessment. To address, we have integrated secure dendrochronological sequences directly with radiocarbon (14C) measurements to achieve tightly resolved absolute (calendar) chronological associations and identify the secure links of this tree-ring chronology with the archaeological-historical evidence. The revised tree-ring-sequenced 14C time-series for Kültepe and Acemhöyük is compatible only with the so-called Middle Chronology and not with the rival High, Low or New Chronologies. This finding provides a robust resolution to a century of uncertainty in Mesopotamian chronology and scholarship, and a secure basis for construction of a coherent timeframe and history across the Near East and East Mediterranean in the earlier second millennium BCE. Our re-dating also affects an unusual tree-ring growth anomaly in wood from Porsuk, Turkey, previously tentatively associated with the Minoan eruption of the Santorini volcano. This tree-ring growth anomaly is now directly dated ~1681–1673 BCE (68.2% highest posterior density range), ~20 years earlier than previous assessments, indicating that it likely has no association with the subsequent Santorini volcanic eruption. PMID:27409585
U.S. Geological Survey Geospatial Data To Support STEM Education And Communication
NASA Astrophysics Data System (ADS)
Molnia, B. F.
2017-12-01
The U.S. Geological Survey (USGS) has a long history of contributing to STEM education, outreach, and communication. The USGS EarthExplorer website: https://earthexplorer.usgs.gov is the USGS gateway to more than 150 geospatial data sets that are freely available to STEM students, educators, and researchers. Two in particular, Global Fiducials data and Declassified Satellite Imagery provide the highest resolution visual record of the Earth's surface that is available for unlimited, unrestricted download. Global Fiducials Data - Since the mid-1990s, more than 500 locations, each termed a 'Fiducial Site', have been systematically and repeatedly imaged with U.S. National Imagery Systems space-based sensors. Each location was selected for long-term monitoring, based on its history and environmental values. Since 2008, imagery from about a quarter of the sites has been publicly released and is available on EarthExplorer. These 5,000 electro-optical (EO) images, with 1.0 - 1.3 m resolution, comprise more than 140 time-series. Individual time-series focus on wildland fire recovery, Arctic sea ice change, Antarctic habitats, temperate glacier behavior, eroding barrier islands, coastline evolution, resource and ecosystem management, natural disaster response, global change studies, and other topics. Declassified Satellite Imagery - Nearly 1 million declassified photographs, collected between 1960 and 1984, by U.S. intelligence satellites KH-1 through KH-9 have been released to the public. The USGS has copies of most of the released film and provides a digital finding aid that can be accessed from the USGS EarthExplorer website. Individual frames were collected at resolutions that range from 0.61 m - 7.6 m. Imagery exists for locations on all continents. Combined with Landsat imagery, also available from the USGS EarthExplorer website, the STEM Community has access to more than 7.5 million images providing nearly 50 years of visual observations of Earth's dynamic surface.
Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela
2013-11-26
A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.
de Jonge, Niels; Verch, Andreas; Demers, Hendrix
2018-02-01
The spatial resolution of aberration-corrected annular dark field scanning transmission electron microscopy was studied as function of the vertical position z within a sample. The samples consisted of gold nanoparticles (AuNPs) positioned in different horizontal layers within aluminum matrices of 0.6 and 1.0 µm thickness. The highest resolution was achieved in the top layer, whereas the resolution was reduced by beam broadening for AuNPs deeper in the sample. To examine the influence of the beam broadening, the intensity profiles of line scans over nanoparticles at a certain vertical location were analyzed. The experimental data were compared with Monte Carlo simulations that accurately matched the data. The spatial resolution was also calculated using three different theoretical models of the beam blurring as function of the vertical position within the sample. One model considered beam blurring to occur as a single scattering event but was found to be inaccurate for larger depths of the AuNPs in the sample. Two models were adapted and evaluated that include estimates for multiple scattering, and these described the data with sufficient accuracy to be able to predict the resolution. The beam broadening depended on z 1.5 in all three models.
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
Design of tangential multi-energy soft x-ray camera for NSTX-U
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip
2016-10-01
For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.
How to squeeze high quantum efficiency and high time resolution out of a SPAD
NASA Technical Reports Server (NTRS)
Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.
1993-01-01
We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.
MERLIN - A meV Resolution Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reininger, Ruben; Bozek, John; Chuang, Y.-D.
2007-01-19
An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translatingmore » the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 1011 photons/s at a resolving power of 5 x 104 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution.« less
Avalanche statistics from data with low time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Avalanche statistics from data with low time resolution
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; ...
2016-11-22
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Cell counting in whole mount tissue volumes using expansion OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.
2017-02-01
Abnormal cell proliferation and migration during heart development can lead to severe congenital heart defects (CHDs). Studying the spatial distribution of cells during embryonic development helps our understanding of how the heart develops and the etiology of certain CHDs. However, imaging large groups of single cells in intact tissue volumes is challenging. No current technique can accomplish this task in both a time-efficient and cost-effective manner. OCT has potential with its large field of view and micron-scale resolution, but even the highest resolution OCT systems have poor contrast for counting cells and have a small field of view compared to conventional OCT. We propose using a conventional OCT system and processing the sample to enhance cellular contrast. Inspired by the recently developed Expansion Microscopy, we permeated whole-mount embryonic tissue with a superabsorbent monomer solution and polymerized into a hydrogel. When hydrated in DI water, the tissue-hydrogel complex was uniformly enlarged ( 5X in all dimensions) without distorting the microscopic structure. This had a twofold effect: it increased the resolution by a factor of 5 and decreased scattering, which allowed us to resolve cellular level features deep in the tissue with high contrast using conventional OCT. We noted that cell nuclei caused significantly more backscattering than the other subcellular structures after expansion. Based on this property, we were able to distinguish individual cell nuclei, and thus count cells, in expanded OCT images with simple intensity thresholding. We demonstrate the technique with embryonic quail hearts at various developmental stages.
A New Approach to Observing Coronal Dynamics: MUSE, the Multi-Slit Solar Explorer
NASA Astrophysics Data System (ADS)
Tarbell, T. D.
2017-12-01
The Multi-Slit Solar Explorer is a Small Explorer mission recently selected for a Phase A study, which could lead to a launch in 2022. It will provide unprecendented observations of the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE's multi-slit coronal spectroscopy will exploit a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.
Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide
Liu, Weizhi; Boggon, Titus J.
2013-01-01
Integrin cytoplasmic domain-associated protein-1 (ICAP1) is a suppressor of integrin activation and directly binds to the cytoplasmic tail of β1 integrins; its binding suppresses integrin activation by competition with talin. Krev/Rap1 interaction trapped-1 (KRIT1) releases ICAP1 suppression of integrin activation by sequestering ICAP1 away from integrin cytoplasmic tails. Here, the cocrystal structure of the PTB domain of ICAP1 in complex with a 29-amino-acid fragment (residues 170–198) of KRIT1 is presented to 1.7 Å resolution [the resolution at which 〈I/σ(I)〉 = 2.9 was 1.83 Å]. In previous studies, the structure of ICAP1 with integrin β1 was determined to 3.0 Å resolution and that of ICAP1 with the N-terminal portion of KRIT1 (residues 1–198) was determined to 2.54 Å resolution; therefore, this study provides the highest resolution structure yet of ICAP1 and allows further detailed analysis of the interaction of ICAP1 with its minimal binding region in KRIT1. PMID:23695561
Obtaining high resolution XUV coronal images
NASA Technical Reports Server (NTRS)
Golub, L.; Spiller, E.
1992-01-01
Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.
Lu, Xingcheng; Lin, Changqing; Li, Ying; Yao, Teng; Fung, Jimmy C H; Lau, Alexis K H
2017-01-01
As the major engine of economic growth in China, the Pearl River Delta (PRD) region is one of the most urbanized regions in the world. Rapid development has brought great wealth to its citizens; however, at the same time, increasing emissions of ambient pollutants from vehicles and industrial combustions have caused considerable air pollution and negative health effects for the region's residents. In this study, the concentration response function method was applied together with satellite-retrieved particulate matter (PM 10 and PM 2.5 ) concentration data to estimate the health burden caused by this pollutant from 2004 to 2013. The value of statistical life was used to calculate the economic loss due to the negative health effects of particulate matter pollution. Our results show that in the whole PRD region, the estimated number of deaths from the four diseases attributable to PM 2.5 was the highest in 2012, at 45,000 (19,000-61,000); the number of all-cause hospital admissions due to PM 10 was the highest in 2013, reaching up to 91,000 (0-270,000) (excluding Hong Kong). Among the 10 cities, the capital city Guangzhou suffered the most from ambient particulate matter pollution and had the highest mortality and morbidity over the 10years. The cost of mortality in this region was the highest in 2012, at 46,000 million USD, or around 6.1% of local total gross domestic product (GDP). The positive spatial relationship between the degree of urbanization and the particulate matter concentration proves that the urbanization process does worsen air quality and hence increases the health risks of local urban citizens. It is recommended that local governments further enhance their control policies to better guarantee the health and wealth benefits of local residents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intercomparison of SOUP, ASP, LPSP, and MDI magnetograms
NASA Astrophysics Data System (ADS)
Berger, T.; Lites, B.; Martinez-Pillet, V.; Tarbell, T.; Title, A.
2001-05-01
We compare simultaneous magnetograms of a solar active region taken by the Advanced Stokes Polarimeter (ASP) and the Solar Optical Universal Polimeter (SOUP) in 1998. In addition we compare magnetograms taken by the La Palma Stokes Polarimeter (LPSP), the Michelson Doppler Imager (MDI) on SOHO, and the SOUP instrument in 2000. The SOUP instrument on the Swedish Vacuum Solar Telescope (SVST) attains the highest spatial resolution but has the least understood calibration; the ASP on the Dunn Solar Telescope (DST) at Sacramento Peak attains the highest magnetic field precision. The goal of the program is to better quantify the SOUP magnetograms and thereby study magnetic element dynamics in the photosphere with higher precision.
Stability of radiomic features in CT perfusion maps
NASA Astrophysics Data System (ADS)
Bogowicz, M.; Riesterer, O.; Bundschuh, R. A.; Veit-Haibach, P.; Hüllner, M.; Studer, G.; Stieb, S.; Glatz, S.; Pruschy, M.; Guckenberger, M.; Tanadini-Lang, S.
2016-12-01
This study aimed to identify a set of stable radiomic parameters in CT perfusion (CTP) maps with respect to CTP calculation factors and image discretization, as an input for future prognostic models for local tumor response to chemo-radiotherapy. Pre-treatment CTP images of eleven patients with oropharyngeal carcinoma and eleven patients with non-small cell lung cancer (NSCLC) were analyzed. 315 radiomic parameters were studied per perfusion map (blood volume, blood flow and mean transit time). Radiomics robustness was investigated regarding the potentially standardizable (image discretization method, Hounsfield unit (HU) threshold, voxel size and temporal resolution) and non-standardizable (artery contouring and noise threshold) perfusion calculation factors using the intraclass correlation (ICC). To gain added value for our model radiomic parameters correlated with tumor volume, a well-known predictive factor for local tumor response to chemo-radiotherapy, were excluded from the analysis. The remaining stable radiomic parameters were grouped according to inter-parameter Spearman correlations and for each group the parameter with the highest ICC was included in the final set. The acceptance level was 0.9 and 0.7 for the ICC and correlation, respectively. The image discretization method using fixed number of bins or fixed intervals gave a similar number of stable radiomic parameters (around 40%). The potentially standardizable factors introduced more variability into radiomic parameters than the non-standardizable ones with 56-98% and 43-58% instability rates, respectively. The highest variability was observed for voxel size (instability rate >97% for both patient cohorts). Without standardization of CTP calculation factors none of the studied radiomic parameters were stable. After standardization with respect to non-standardizable factors ten radiomic parameters were stable for both patient cohorts after correction for inter-parameter correlations. Voxel size, image discretization, HU threshold and temporal resolution have to be standardized to build a reliable predictive model based on CTP radiomics analysis.
Automated analysis for microcalcifications in high resolution digital mammograms
Mascio, Laura N.
1996-01-01
A method for automatically locating microcalcifications indicating breast cancer. The invention assists mammographers in finding very subtle microcalcifications and in recognizing the pattern formed by all the microcalcifications. It also draws attention to microcalcifications that might be overlooked because a more prominent feature draws attention away from an important object. A new filter has been designed to weed out false positives in one of the steps of the method. Previously, iterative selection threshold was used to separate microcalcifications from the spurious signals resulting from texture or other background. A Selective Erosion or Enhancement (SEE) Filter has been invented to improve this step. Since the algorithm detects areas containing potential calcifications on the mammogram, it can be used to determine which areas need be stored at the highest resolution available, while, in addition, the full mammogram can be reduced to an appropriate resolution for the remaining cancer signs.
Automated analysis for microcalcifications in high resolution digital mammograms
Mascio, L.N.
1996-12-17
A method is disclosed for automatically locating microcalcifications indicating breast cancer. The invention assists mammographers in finding very subtle microcalcifications and in recognizing the pattern formed by all the microcalcifications. It also draws attention to microcalcifications that might be overlooked because a more prominent feature draws attention away from an important object. A new filter has been designed to weed out false positives in one of the steps of the method. Previously, iterative selection threshold was used to separate microcalcifications from the spurious signals resulting from texture or other background. A Selective Erosion or Enhancement (SEE) Filter has been invented to improve this step. Since the algorithm detects areas containing potential calcifications on the mammogram, it can be used to determine which areas need be stored at the highest resolution available, while, in addition, the full mammogram can be reduced to an appropriate resolution for the remaining cancer signs. 8 figs.
NASA Astrophysics Data System (ADS)
Lopez-Gonzaga, N.
2015-09-01
The high resolution achieved by the instrument MIDI at the VLTI allowed to obtain more detail information about the geometry and structure of the nuclear mid-infrared emission of AGNs, but due to the lack of real images, the interpretation of the results is not an easy task. To profit more from the high resolution data, we developed a statistical tool that allows interpret these data using clumpy torus models. A statistical approach is needed to overcome effects such as, the randomness in the position of the clouds and the uncertainty of the true position angle on the sky. Our results, obtained by studying the mid-infrared emission at the highest resolution currently available, suggest that the dusty environment of Type I objects is formed by a lower number of clouds than Type II objects.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
NASA Astrophysics Data System (ADS)
Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M.
2014-12-01
The exploitation of the extended polymetallic deposits of the Altiplano in South America led to significant emissions of the neurotoxic Pb into the atmosphere already since pre-Colonial times. Long-term histories of Pb pollution in Eastern and Western Europe, Asia, and North America suggest that within the Northern Hemisphere emissions from metallurgy and coal combustion are minor compared to that from leaded gasoline during the second half of the 20th century. However, there is no equivalent data for Southern America. Here we present the first comprehensive, high-resolution two millennia Pb emission history for South America, based on an ice core record from Illimani glacier in Bolivia. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Bolivian Altiplano. The 2000 year ice-core based decadal Pb deposition history revealed highest Pb Enrichment Factors (EFs) during the period 1965-85. Metallurgical processing for silver production during periods of the Tiwanaku culture (400-900 AD), the Inca empire (1450-1532 AD), colonial times (1532-1900 AD), and the tin production at the beginning of the 20th century were identified as major sources for enhanced Pb EFs before the 1960s. Gasoline related Pb emissions in 1965-85, however, led to a threefold increase of the Pb EFs compared to the emission level from metal production, considerably preceding those of the past 2000 years. This finding is complementary to the local air pollution signal preserved in lake sediments and in good agreement with various studies from the Northern Hemisphere.
Nearshore Satellite Data as Relative Indicators of Intertidal Organism Physiological Stress
NASA Astrophysics Data System (ADS)
Matzelle, A.; Helmuth, B.; Lakshmi, V.
2011-12-01
The physiological performance of intertidal and shallow subtidal invertebrates and algae is significantly affected by water temperature, and so the ability to measure and model onshore water temperatures is critical for ecological and biogeographic studies. Because of the localized influences of processes such as upwelling, mixing, and surface heating from solar radiation, nearshore water temperatures can differ from those measured directly offshore by buoys and satellites. It remains an open question what the magnitude of the differences in these temperatures are, and whether "large pixel" measurements can serve as an effective proxy for onshore processes, particularly when extrapolating from laboratory physiological studies to field conditions. We compared 9 years of nearshore (~10km) MODIS (Terra and Aqua overpasses) SST data against in situ measurements of water temperature conducted at two intertidal sites in central Oregon- Boiler Bay and Strawberry Hill. We collapsed data into increasingly longer temporal averages to address the correlation and absolute differences between onshore and nearshore temperatures over daily, weekly and monthly timescales. Results indicate that nearshore SST is a reasonable proxy for onshore water temperature, and that the strength of the correlation increases with decreasing temporal resolution. Correlations between differences in maxima are highest, followed by average and minima, and were lower at a site with regular upwelling. While average differences ranged from ~0.199-1.353°C, absolute differences across time scales were ~0.446-6.906°C, and were highest for cold temperatures. The results suggest that, at least at these two sites, SST can be used as a relative proxy for general trends only, especially over longer time scales.
NASA Astrophysics Data System (ADS)
Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.
2015-05-01
211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-01-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-07-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.
An instrumental puzzle: the modular integration of AOLI
NASA Astrophysics Data System (ADS)
López, Roberto L.; Velasco, Sergio; Colodro-Conde, Carlos; Valdivia, Juan J. F.; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; MacKay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José Manuel M.; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo
2016-08-01
The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.
Do freshwater mussel shells record road-salt pollution?
NASA Astrophysics Data System (ADS)
O'Neil, Dane D.; Gillikin, David P.
2014-11-01
Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.
Dawn Color Topography of Ahuna Mons on Ceres
2016-03-11
These color topographic views show variations in surface height around Ahuna Mons, a mysterious mountain on Ceres. The views are colorized versions of PIA20348 and PIA20349. They represent an update to the view in PIA19976, which showed the mountain using data from an earlier, higher orbit. Both views were made using images taken by NASA's Dawn spacecraft during its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) from the surface. The resolution of the component images is about 120 feet (35 meters) per pixel. Elevations span a range of about 5.5 miles (9 kilometers) from the lowest places in the region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The streaks running down the side of the mountain, which appear white in the grayscale view, are especially bright parts of the surface (the brightness does not relate to elevation). The elevations are from a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution, high-altitude mapping orbit (HAMO) phase. The side perspective view was generated by draping the image mosaics over the shape model. http://photojournal.jpl.nasa.gov/catalog/PIA20399
Do freshwater mussel shells record road-salt pollution?
O'Neil, Dane D.; Gillikin, David P.
2014-01-01
Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687
Highest Resolution Comet Picture Ever Reveals Rugged Terrain - Deep Space 1
2001-11-04
In this highest resolution view of the icy, rocky nucleus of comet Borrelly, (about 45 meters or 150 feet per pixel) a variety of terrains and surface textures, mountains and fault structures, and darkened material are visible over the nucleus's surface. This was the final image of the nucleus of comet Borrelly, taken just 160 seconds before Deep Space1's closest approach to it. This image shows the 8-km (5-mile) long nucleus about 3417 kilometers (over 2,000 miles) away. Smooth, rolling plains containing brighter regions are present in the middle of the nucleus and seem to be the source of dust jets seen in the coma. The rugged land found at both ends of the nucleus has many high ridges along the jagged line between day and night on the comet. This rough terrain contains very dark patches that appear to be elevated compared to surrounding areas. In some places the dark material accentuates grooves and apparent faults. Stereo analysis shows the smaller end of the nucleus (lower right) is tipped toward the viewer (out of frame). Sunlight is coming from the bottom of the frame. http://photojournal.jpl.nasa.gov/catalog/PIA03500
[Microsporogenesis y microgametogenesis de annatto (Bixa orellana L.)].
Michelangeli, Claret; Medina, Ada Maureen; Artioli, Paola; Mata, Jonás
2002-01-01
A series of buds of increasing maturity were individually sampled in order to examine cytological events of annatto (Bixa orellana L.), genotype Portuguesa. They were fixed in Carnoy II at 12:30 am, time of the highest rate of meiotic division. Three stain solutions were attempted. In the microspores mother cells, the use of acetic orcein 1% resulted in a good nucleus coloration and sharpness. In contrast, a well chromosome resolution was achieved with the application of propionic carmin 2%. The pollen grain mother cells (n = 8 chromosomes) at metaphase I were found in floral buds of 0.5 to 0.6 cm long; tetrad stage in buds of 0.6 to 0.7 cm long, uninucleate stage of microspores in buds of 0.7 to 0.8 cm long and the binucleate stage (pollen) in buds longer than 0.8 cm. Microphotographies showing the sequence of meiotic division (microsporogenesis) and subsequent mitosis to originate pollen grains were included.
DR5 as a reporter system to study auxin response in Populus.
Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B
2013-03-01
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Refson, Keith; Parker, Stewart F
2015-01-01
The fullerene C70 may be considered as the shortest possible nanotube capped by a hemisphere of C60 at each end. Vibrational spectroscopy is a key tool in characterising fullerenes, and C70 has been studied several times and spectral assignments proposed. Unfortunately, many of the modes are either forbidden or have very low infrared or Raman intensity, even if allowed. Inelastic neutron scattering (INS) spectroscopy is not subject to selection rules, and all the modes are allowed. We have obtained a new INS spectrum from a large sample recorded at the highest resolution available. An advantage of INS spectroscopy is that it is straightforward to calculate the spectral intensity from a model. We demonstrate that all previous assignments are incorrect in at least some respects and propose a new assignment based on periodic density functional theory (DFT) that successfully reproduces the INS, infrared, and Raman spectra. PMID:26491642
NASA Astrophysics Data System (ADS)
Todd, Brian J.; Shaw, John; Li, Michael Z.; Kostylev, Vladimir E.; Wu, Yongsheng
2014-07-01
The Bay of Fundy, Canada, a large macrotidal embayment with the World's highest recorded tides, was mapped using multibeam sonar systems. High-resolution imagery of seafloor terrain and backscatter strength, combined with geophysical and sampling data, reveal for the first time the morphology, architecture, and spatial relationships of a spectrum of bedforms: (1) flow-transverse bedforms occur as both discrete large two-dimensional dunes and as three-dimensional dunes in sand sheets; (2) flow-parallel bedforms are numerous straight ridges described by others as horse mussel bioherms; (3) sets of banner banks that flank prominent headlands and major shoals. The suite of bedforms developed during the Holocene, as tidal energy increased due to the bay approaching resonance. We consider the evolution of these bedforms, their migration potential and how they may place limitations on future in-stream tidal power development in the Bay of Fundy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, Arnold, E-mail: aburger@fisk.edu; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235; Rowe, Emmanuel
We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent lightmore » yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.« less
Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury
NASA Technical Reports Server (NTRS)
Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael
2008-01-01
Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.
Detection of periods of food intake using Support Vector Machines.
Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Sazonov, Edward
2010-01-01
Studies of obesity and eating disorders need objective tools of Monitoring of Ingestive Behavior (MIB) that can detect and characterize food intake. In this paper we describe detection of food intake by a Support Vector Machine classifier trained on time history of chews and swallows. The training was performed on data collected from 18 subjects in 72 experiments involving eating and other activities (for example, talking). The highest accuracy of detecting food intake (94%) was achieved in configuration where both chews and swallows were used as predictors. Using only swallowing as a predictor resulted in 80% accuracy. Experimental results suggest that these two predictors may be used for differentiation between periods of resting and food intake with a resolution of 30 seconds. Proposed methods may be utilized for development of an accurate, inexpensive, and non-intrusive methodology to objectively monitor food intake in free living conditions.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season
NASA Astrophysics Data System (ADS)
Hakola, Hannele; Tarvainen, Virpi; Praplan, Arnaud P.; Jaars, Kerneels; Hemmilä, Marja; Kulmala, Markku; Bäck, Jaana; Hellén, Heidi
2017-03-01
We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C4-C10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C4-C10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)-1 h-1 for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)-1 h-1) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of α-pinene (25 ± 5 %) and β-pinene (7 ± 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90 % of the ozone reactivity most of the time, and about 70 % of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30 % most of the time.
X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution
NASA Astrophysics Data System (ADS)
Weinekoetter, Christian
2008-09-01
High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less
Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.
2015-01-01
Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048
NASA Astrophysics Data System (ADS)
Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.-W.; Liu, X.-G.; Zhang, Y.-H.; Jayne, J. T.; Ng, N. L.; Worsnop, D. R.
2010-09-01
As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m-3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA and COA species, probably due to stronger influences from local emissions. The lowest concentration levels for all major species were obtained during the Olympic game days (8 to 24 August 2008), possibly due to the effects of both strict emission controls and favorable meteorological conditions.
Optimization of a LSO-Based Detector Module for Time-of-Flight PET
NASA Astrophysics Data System (ADS)
Moses, W. W.; Janecek, M.; Spurrier, M. A.; Szupryczynski, P.; Choong, W.-S.; Melcher, C. L.; Andreaco, M.
2010-06-01
We have explored methods for optimizing the timing resolution of an LSO-based detector module for a single-ring, “demonstration” time-of-flight PET camera. By maximizing the area that couples the scintillator to the PMT and minimizing the average path length that the scintillation photons travel, a single detector timing resolution of 218 ps fwhm is measured, which is considerably better than the 385 ps fwhm obtained by commercial LSO or LYSO TOF detector modules. We explored different surface treatments (saw-cut, mechanically polished, and chemically etched) and reflector materials (Teflon tape, ESR, Lumirror, Melinex, white epoxy, and white paint), and found that for our geometry, a chemically etched surface had 5% better timing resolution than the saw-cut or mechanically polished surfaces, and while there was little dependence on the timing resolution between the various reflectors, white paint and white epoxy were a few percent better. Adding co-dopants to LSO shortened the decay time from 40 ns to 30 ns but maintained the same or higher total light output. This increased the initial photoelectron rate and so improved the timing resolution by 15%. Using photomultiplier tubes with higher quantum efficiency (blue sensitivity index of 13.5 rather than 12) improved the timing resolution by an additional 5%. By choosing the optimum surface treatment (chemically etched), reflector (white paint), LSO composition (co-doped), and PMT (13.5 blue sensitivity index), the coincidence timing resolution of our detector module was reduced from 309 ps to 220 ps fwhm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammarata, Marco; Eybert, Laurent; Ewald, Friederike
A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers. The chopper system can produce x-ray pulses as short as 200 ns in a continuous beam and repeat at frequencies from 0 to 3 kHz. For bunch filling patterns of the synchrotron with pulse separations greater than 100 ns, the high-speed chopper canmore » isolate single 100 ps x-ray pulses that are used for the highest time resolution. A new rotor in the high-speed chopper is presented with a single pulse (100 ps) and long pulse (10 {mu}s) option. In white beam experiments, the heatload of the (noncooled) high-speed chopper is lowered by a heatload chopper, which absorbs 95% of the incoming power without affecting the pulses selected by the high speed chopper.« less
Diagnostic and Therapeutic Approach for Acute Paraquat Intoxication
Hong, Jung-Rak; Jang, Si-Hyong
2014-01-01
Paraquat (PQ) has known negative human health effects, but continues to be commonly used worldwide as a herbicide. Our clinical data shows that the main prognostic factor is the time required to achieve a negative urine dithionite test. Patient survival is a 100% when the area affected by ground glass opacity is <20% of the total lung volume on high-resolution computed tomography imaging 7 days post-PQ ingestion. The incidence of acute kidney injury is approximately 50%. The average serum creatinine level reaches its peak around 5 days post-ingestion, and usually normalizes within 3 weeks. We obtain two connecting lines from the highest PQ level for the survivors and the lowest PQ level among the non-survivors at a given time. Patients with a PQ level between these two lines are considered treatable. The following treatment modalities are recommended to preserve kidney function: 1) extracorporeal elimination, 2) intravenous antioxidant administration, 3) diuresis with a fluid, and 4) cytotoxic drugs. In conclusion, this review provides a general overview on the diagnostic procedure and treatment modality of acute PQ intoxication, while focusing on our clinical experience. PMID:25408572
Crystal Growth and Scintillation Properties of Ce Doped Gd3Ga,Al5O12 Single Crystals
NASA Astrophysics Data System (ADS)
Kamada, Kei; Yanagida, Takayuki; Pejchal, Jan; Nikl, Martin; Endo, Takanori; Tsutsumi, Kousuke; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira
2012-10-01
Ce1%, 2% and 3% doped Gd3(Ga,Al)5O12 (GAGG) single crystals were grown by the Cz method. Luminescence and scintillation properties were measured. Light yield change along the growth direction and effects of Ce concentration on scintillation properties in Ce:GAGG were studied. Ce3+ 5d-4f emission within 520-530 nm was observed in the Ce:GAGG crystals. The Ce1%:GAGG sample with 3×3×1 mm size showed the highest light yield of 46000 photon/MeV. The energy resolution was 7.8%@662 keV. With increasing solidification fraction, the LY were decreased. It is proposed that the increase of Ga concentration along the growth direction is the main cause of the decrease of LY. The scintillation decay times were accelerated with increasing Ce concentration in the Ce:GAGG crystals. The scintillation decay times were 92.0 ns, 79.1 ns and 68.3 ns in the Ce1, 2 and 3% GAGG, respectively.
Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lu; Kollman, Matthew S.; Song, Chen
2014-01-28
The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.
2015-01-01
Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.
Aikawa, Masahide; Hiraki, Takatoshi; Tamaki, Motonori; Kasahara, Mikio; Kondo, Akira; Uno, Itsushi; Mukai, Hitoshi; Shimizu, Atsushi; Murano, Kentaro
2006-11-01
An intensive field survey, with 6-h measurement intervals, of concentrations of chemical species in particulate matter and gaseous compounds was carried out at coastal sites on the Sea of Japan during winter. The concentration variation of SO(2)(g) and HNO(3)(g) were well correlated, whereas the NH(3)(g) concentration variation had no correlation with those of SO(2)(g) and HNO(3)(g). The NH(4) (+) (p)/non-sea-salt- (nss-)SO(4) (2 -)(p) ratio in particulate matter was mainly affected by the location of the sampling site. One or more concentration peaks of nss-Ca(2 +) for survey period were observed. Backward trajectories analyses for the highest nss-Ca(2 +) concentration peaks showed some inconsistency in pathways. We consider that insufficient mixing of the atmosphere and/or insufficient time for the transported air pollutants to react with those discharged locally are the most likely explanations for the discrepancies between the measured products [HNO(3)][NH(3)] and the calculated values.
Analyzing gene expression time-courses based on multi-resolution shape mixture model.
Li, Ying; He, Ye; Zhang, Yu
2016-11-01
Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. [1]. Here we present the science objectives for the ChemCam instrument package.
ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover
NASA Technical Reports Server (NTRS)
Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.
2005-01-01
ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. Here we present the science objectives for the ChemCam instrument package.
Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman
2016-02-29
We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.
Surface compositional variation on the comet 67P/Churyumov-Gerasimenko by OSIRIS data
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Fornasier, S.; Feller, C.; Perna, D.; Hasselmann, H.; Deshapriya, J. D. P.; Fulchignoni, M.; Besse, S.; Sierks, H.; Forgia, F.; Lazzarin, M.; Pommerol, A.; Oklay, N.; Lara, L.; Scholten, F.; Preusker, F.; Leyrat, C.; Pajola, M.; Osiris-Rosetta Team
2015-10-01
Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on July 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System, [1]) NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) acquiring a huge quantity of surface's images at different wavelength bands, under variable illumination conditions and spatial resolution, and producing the most detailed maps at the highest spatial resolution of a comet nucleus surface.67/P C-G's nucleus shows an irregular bi-lobed shape of complex morphology with terrains showing intricate features [2, 3] and a heterogeneity surface at different scales.
Sparkling extreme-ultraviolet bright dots observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Régnier, S.; Alexander, C. E.; Walsh, R. W.
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs havemore » a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.« less
The 3D Recognition, Generation, Fusion, Update and Refinement (RG4) Concept
NASA Technical Reports Server (NTRS)
Maluf, David A.; Cheeseman, Peter; Smelyanskyi, Vadim N.; Kuehnel, Frank; Morris, Robin D.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an active (real time) recognition strategy whereby information is inferred iteratively across several viewpoints in descent imagery. We will show how we use inverse theory within the context of parametric model generation, namely height and spectral reflection functions, to generate model assertions. Using this strategy in an active context implies that, from every viewpoint, the proposed system must refine its hypotheses taking into account the image and the effect of uncertainties as well. The proposed system employs probabilistic solutions to the problem of iteratively merging information (images) from several viewpoints. This involves feeding the posterior distribution from all previous images as a prior for the next view. Novel approaches will be developed to accelerate the inversion search using novel statistic implementations and reducing the model complexity using foveated vision. Foveated vision refers to imagery where the resolution varies across the image. In this paper, we allow the model to be foveated where the highest resolution region is called the foveation region. Typically, the images will have dynamic control of the location of the foveation region. For descent imagery in the Entry, Descent, and Landing (EDL) process, it is possible to have more than one foveation region. This research initiative is directed towards descent imagery in connection with NASA's EDL applications. Three-Dimensional Model Recognition, Generation, Fusion, Update, and Refinement (RGFUR or RG4) for height and the spectral reflection characteristics are in focus for various reasons, one of which is the prospect that their interpretation will provide for real time active vision for automated EDL.
Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W
2016-10-01
To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.
NASA Astrophysics Data System (ADS)
Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.
2018-01-01
In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.
World-Wide Web Tools for Locating Planetary Images
NASA Technical Reports Server (NTRS)
Kanefsky, Bob; Deiss, Ron (Technical Monitor)
1995-01-01
The explosive growth of the World-Wide Web (WWW) in the past year has made it feasible to provide interactive graphical tools to assist scientists in locating planetary images. The highest available resolution images of any site of interest can be quickly found on a map or plot, and, if online, displayed immediately on nearly any computer equipped with a color screen, an Internet connection, and any of the free WWW browsers. The same tools may also be of interest to educators, students, and the general public. Image finding tools have been implemented covering most of the solar system: Earth, Mars, and the moons and planets imaged by Voyager. The Mars image-finder, which plots the footprints of all the high-resolution Viking Orbiter images and can be used to display any that are available online, also contains a complete scrollable atlas and hypertext gazetteer to help locating areas. The Earth image-finder is linked to thousands of Shuttle images stored at NASA/JSC, and displays them as red dots on a globe. The Voyager image-finder plots images as dots, by longitude and apparent target size, linked to online images. The locator (URL) for the top-level page is http: //ic-www.arc.nasa.gov/ic/projects/bayes-group/Atlas/. Through the efforts of the Planetary Data System and other organizations, hundreds of thousands of planetary images are now available on CD-ROM, and many of these have been made available on the WWW. However, locating images of a desired site is still problematic, in practice. For example, many scientists studying Mars use digital image maps, which are one third the resolution of Viking Orbiter survey images. When they douse Viking Orbiter images, they often work with photographically printed hardcopies, which lack the flexibility of digital images: magnification, contrast stretching, and other basic image-processing techniques offered by off-the-shelf software. From the perspective of someone working on an experimental image processing technique for super-resolution, the discovery that potential users are often not using the highest resolution already available, nor using conventional image processing techniques, was surprising. This motivated the present work.
The influence of channel bed disturbance on benthic Chlorophyll a: A high resolution perspective
NASA Astrophysics Data System (ADS)
Katz, Scott B.; Segura, Catalina; Warren, Dana R.
2018-03-01
This study explores how spatial dynamics and frequency of bed mobility events in a headwater stream affect the spatial and temporal variability in stream benthic algal abundance and ultimately the resilience of benthic algae to stream scouring events of different magnitudes. We characterized spatial variability in sediment transport for nine separate flow events (0.1-1.7 of bankfull flow), coupling high resolution (< 0.1 m2) two-dimensional shear stress values with detailed measurements of the channel substrate. The stream bed was categorized into regions of high and low disturbance based on potential mobility of different grain sizes. High resolution (< 0.25 m2), in situ measurements of benthic Chlorophyll-a concentrations (Chl-a) were taken on 18 sampling dates before and after high flow events in regions of the streambed with contrasting disturbance to understand how benthic algal communities respond to sediment transport disturbance through space and time. According to the modeling results, the percentage of the channel likely to be disturbed varied greatly across the different flows and considered grain sizes between 7.7 and 70.4% for the lowest and highest flow events respectively. Mean shear stress in the channel bed across all sampling dates explained 49% of the variance in Chl-a. Over the 18 sampling dates - encompassing post-disturbance impacts and subsequent recovery - Chl-a differed between disturbance level categories defined based on the relative movement of the median grain size on 14 occasions. However, low disturbance locations were not always associated with higher Chl-a. The algal Chl-a biomass at any given time was a function of the stage of algal recovery following a high flow event and the magnitude of the disturbance itself - impacting algal loss during the event. Resistance of the algal communities to bed disturbance and resilience to recovery following a flow event varied spatially. Areas with low shear stress were less susceptible to scour during moderate disturbance events but were slower to recover when scour occurred. In contrast, high shear stress areas responded rapidly to flood events with rapid declines, but also recovered more quickly and appeared to have high potential for maximum accrual within our study reach. Ultimately, timing along with the inverse relationship between resiliency and disturbance frequency highlights the complexity of these processes and the importance of studying the interactions between geomorphic and ecological processes with high resolution across spatial and temporal scales.
Search for ultra high energy astrophysical neutrinos with the ANITA experiment
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew
2010-12-01
This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.
Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.
Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L
2013-12-01
Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.
Theoretical model of the helium zone plate microscope
NASA Astrophysics Data System (ADS)
Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil
2017-01-01
Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000 times. Finally, we show that with present-day state-of-the-art detector technology (ionization efficiency 1 ×10-3 ), a resolution of the order of 10 nm is possible. In order to make this quantification, we have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle of 0.02 sr, following an existing helium microscope design.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Liu, Chong
2016-10-01
The common solution for a field programmable gate array (FPGA)-based time-to-digital converter (TDC) is constructing a tapped delay line (TDL) for time interpolation to yield a sub-clock time resolution. The granularity and uniformity of the delay elements of TDL determine the TDC time resolution. In this paper, we propose a dual-sampling TDL architecture and a bin decimation method that could make the delay elements as small and uniform as possible, so that the implemented TDCs can achieve a high time resolution beyond the intrinsic cell delay. Two identical full hardware-based TDCs were implemented in a Xilinx UltraScale FPGA for performance evaluation. For fixed time intervals in the range from 0 to 440 ns, the average time-interval RMS resolution is measured by the two TDCs with 4.2 ps, thus the timestamp resolution of single TDC is derived as 2.97 ps. The maximum hit rate of the TDC is as high as half the system clock rate of FPGA, namely 250 MHz in our demo prototype. Because the conventional online bin-by-bin calibration is not needed, the implementation of the proposed TDC is straightforward and relatively resource-saving.
Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi
2015-01-01
Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.
Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J
2017-10-03
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.
2017-01-01
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
NASA Astrophysics Data System (ADS)
Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro
2015-01-01
One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.
First results of high-resolution modeling of Cenozoic subduction orogeny in Andes
NASA Astrophysics Data System (ADS)
Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.
2016-12-01
The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (< 1km) 2D subduction models with application to Nazca-South America convergence. In particular, we will present the models focusing on the effect of friction reduction in the Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.
A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission
NASA Technical Reports Server (NTRS)
Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi;
2016-01-01
We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.
A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission
NASA Astrophysics Data System (ADS)
Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.
2016-07-01
We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.
High Count-Rate Study of Two TES X-Ray Microcalorimeters With Different Transition Temperatures
NASA Technical Reports Server (NTRS)
Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.;
2017-01-01
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures T(sub c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T(sub c)(sup s) had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.eV at 6 keV from lower and higher T(sub c) devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the socalled event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96 Percent throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T(sub c) (faster) device, and 5.8 eV FWHM with 97 Percent throughput with the lower T(sub c) (slower) device at 722 Hz.
Assessment of a New High-Performance Small-Animal X-Ray Tomograph
NASA Astrophysics Data System (ADS)
Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.
2008-06-01
We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.
4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework.
NASA Astrophysics Data System (ADS)
Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof
2016-04-01
During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse movement due to lateral sediment flux in the central part of the earthflow.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W., Jr.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.; Gupta, S. K.
2016-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces, validates and analyzes shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. The current release 3.0/3.1 consists of 1x1 degree radiative fluxes (available at gewex-srb.larc.nasa.gov) and is produced using the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This ISCCP DX product is subsampled to 30 km. ISCCP is currently recalibrating and reprocessing their entire data series, to be released as the H product series, with its highest resolution at 10km pixel resolution. The nine-fold increase in number of pixels will allow SRB to produce a higher resolution gridded product (e.g. 0.5 degree or higher), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice maps. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data (for at least 5 years, 2005-2009), various other improved input data sets and incorporation of many additional internal SRB model improvements. We assess the radiative fluxes from new SRB products and contrast these at various resolutions. All these fluxes are compared to both surface measurements and to CERES SYN1Deg and EBAF data products for assessment of the effect of improvements. The SRB data produced will be released as part of the Release 4.0 Integrated Product that shares key input and output quantities with other GEWEX global products providing estimates of the Earth's global water and energy cycle (i.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
Abstract ID: 242 Simulation of a Fast Timing Micro-Pattern Gaseous Detector for TOF-PET.
Radogna, Raffaella; Verwilligen, Piet
2018-01-01
Micro-Pattern Gas Detectors (MPGDs) are a new generation of gaseous detectors that have been developed thanks to advances in micro-structure technology. The main features of the MPGDs are: high rate capability (>50 MHz/cm 2 ); excellent spatial resolution (down to 50 μm); good time resolution (down to 3 ns); reduced radiation length, affordable costs, and possible flexible geometries. A new detector layout has been recently proposed that aims at combining both the high spatial resolution and high rate capability (100 MHz/cm 2 ) of the current state-of-the-art MPGDs with a high time resolution. This new type of MPGD is named the Fast Timing MPGD (FTM) detector [1,2]. The FTM developed for detecting charged particles can potentially reach sub-millimeter spatial resolution and 100 ps time resolution. This contribution introduces a Fast Timing MPGD technology optimized to detect photons, as an innovative PET imaging detector concept and emphases the importance of full detector simulation to guide the design of the detector geometry. The design and development of a new FTM, combining excellent time and spatial resolution, while exploiting the advantages of a reasonable energy resolution, will be a boost for the design of affordable TOF-PET scanner with improved image contrast. The use of such an affordable gas detector allows to instrument large areas in a cost-effective way, and to increase in image contrast for shorter scanning times (lowering the risk for the patient) and better diagnosis of the disease. In this report a dedicated simulation study is performed to optimize the detector design in the contest of the INFN project MPGD-Fatima. Results are obtained with ANSYS, COMSOL, GARFIELD++ and GEANT4 simulation tools. The final detector layout will be trade-off between fast time and good energy resolution. Copyright © 2017.
Detection of proximal caries using digital radiographic systems with different resolutions.
Nikneshan, Sima; Abbas, Fatemeh Mashhadi; Sabbagh, Sedigheh
2015-01-01
Dental radiography is an important tool for detection of caries and digital radiography is the latest advancement in this regard. Spatial resolution is a characteristic of digital receptors used for describing the quality of images. This study was aimed to compare the diagnostic accuracy of two digital radiographic systems with three different resolutions for detection of noncavitated proximal caries. Diagnostic accuracy. Seventy premolar teeth were mounted in 14 gypsum blocks. Digora; Optime and RVG Access were used for obtaining digital radiographs. Six observers evaluated the proximal surfaces in radiographs for each resolution in order to determine the depth of caries based on a 4-point scale. The teeth were then histologically sectioned, and the results of histologic analysis were considered as the gold standard. Data were entered using SPSS version 18 software and the Kruskal-Wallis test was used for data analysis. P <0.05 was considered as statistically significant. No significant difference was found between different resolutions for detection of proximal caries (P > 0.05). RVG access system had the highest specificity (87.7%) and Digora; Optime at high resolution had the lowest specificity (84.2%). Furthermore, Digora; Optime had higher sensitivity for detection of caries exceeding outer half of enamel. Judgment of oral radiologists for detection of the depth of caries had higher reliability than that of restorative dentistry specialists. The three resolutions of Digora; Optime and RVG access had similar accuracy in detection of noncavitated proximal caries.
NASA Astrophysics Data System (ADS)
Aghaei, A.
2017-12-01
Digital imaging and modeling of rocks and subsequent simulation of physical phenomena in digitally-constructed rock models are becoming an integral part of core analysis workflows. One of the inherent limitations of image-based analysis, at any given scale, is image resolution. This limitation becomes more evident when the rock has multiple scales of porosity such as in carbonates and tight sandstones. Multi-scale imaging and constructions of hybrid models that encompass images acquired at multiple scales and resolutions are proposed as a solution to this problem. In this study, we investigate the effect of image resolution and unresolved porosity on petrophysical and two-phase flow properties calculated based on images. A helical X-ray micro-CT scanner with a high cone-angle is used to acquire digital rock images that are free of geometric distortion. To remove subjectivity from the analyses, a semi-automated image processing technique is used to process and segment the acquired data into multiple phases. Direct and pore network based models are used to simulate physical phenomena and obtain absolute permeability, formation factor and two-phase flow properties such as relative permeability and capillary pressure. The effect of image resolution on each property is investigated. Finally a hybrid network model incorporating images at multiple resolutions is built and used for simulations. The results from the hybrid model are compared against results from the model built at the highest resolution and those from laboratory tests.