Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil
2018-05-01
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Tyrosine kinases in inflammatory dermatologic disease
Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.
2010-01-01
Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561
Neutrophils and the Inflammatory Tissue Microenvironment in the Mucosa
Campbell, Eric L.; Kao, Daniel J.; Colgan, Sean P.
2016-01-01
The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation. PMID:27558331
Inflammatory pathways in cervical cancer - the UCT contribution.
Sales, Kurt Jason; Katz, Arieh Anthony
2012-03-23
Cervical cancer is the leading gynaecological malignancy in Southern Africa. The main causal factor for development of the disease is infection of the cervix with human papillomavirus. It is a multi-step disease with several contributing co-factors including multiple sexual partners, a compromised immune system and cervical inflammation caused by infections with Chlamydia trachomatis or Neisseria gonorrhoeae. Inflammation involves extensive tissue remodelling events which are orchestrated by complex networks of cytokines, chemokines and bio-active lipids working across multiple cellular compartments to maintain tissue homeostasis. Many pathological disorders or diseases, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways. In this review we highlight our findings pertaining to activation of inflammatory pathways in cervical cancers, addressing their potential role in pathological changes of the cervix and the significance of these findings for intervention strategies.
Jiang, Fan; Guan, Haining; Liu, Danyi; Wu, Xi; Fan, Mingcheng; Han, Jianchun
2017-03-22
Sea buckthorn has long been used as a functional food to regulate cholesterol, relieve angina, and diminish inflammation. Flavonoids are one of the main active components in sea buckthorn. We investigated the effects of sea buckthorn flavonoid (SF) treatment on two pathways that mediate inflammation, the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways, to explore the anti-inflammatory activity of SFs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-induced over-production of nitric oxide (NO) and prostaglandin E2 (PGE 2 ) was inhibited by SFs through a mechanism related to the modulatory effects of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes. Additionally, SFs downregulated the production and mRNA expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. Moreover, SFs inhibited the phosphorylation of the p38 and stress-activated protein kinase/jun amino-terminal kinase (SAPK/JNK) MAPK pathways, and they reduced the nuclear translocation of NF-κB to prevent its activation by blocking the phosphorylation and degradation of inhibitor protein of NF-κB α (IκB-α). Based on these findings, SFs may exert their inhibitory effects on inflammation by regulating the release of inflammatory mediators through the MAPK and NF-κB pathways. SFs highlight the potential benefits of using functional foods with anti-inflammatory actions to combat inflammatory diseases.
The regulation of inflammatory pathways and infectious disease of the cervix by seminal fluid.
Adefuye, Anthonio; Katz, Arieh Anthony; Sales, Kurt Jason
2014-01-01
The connection between human papillomavirus (HPV) infection and the consequent sequelae which establishes cervical neoplastic transformation and invasive cervical cancer has redefined many aspects of cervical cancer research. However there is still much that we do not know. In particular, the impact of external factors, like seminal fluid in sexually active women, on pathways that regulate cervical inflammation and tumorigenesis, have yet to be fully understood. HPV infection is regarded as the initiating noninflammatory cause of the disease; however emerging evidence points to resident HPV infections as drivers of inflammatory pathways that play important roles in tumorigenesis as well as in the susceptibility to other infections such as human immunodeficiency virus (HIV) infection. Moreover there is emerging evidence to support a role for seminal fluid, in particular, the inflammatory bioactive lipids, and prostaglandins which are present in vast quantities in seminal fluid in regulating pathways that can exacerbate inflammation of the cervix, speed up tumorigenesis, and enhance susceptibility to HIV infection. This review will highlight some of our current knowledge of the role of seminal fluid as a potent driver of inflammatory and tumorigenic pathways in the cervix and will provide some evidence to propose a role for seminal plasma prostaglandins in HIV infection and AIDS-related cancer.
The Regulation of Inflammatory Pathways and Infectious Disease of the Cervix by Seminal Fluid
Katz, Arieh Anthony
2014-01-01
The connection between human papillomavirus (HPV) infection and the consequent sequelae which establishes cervical neoplastic transformation and invasive cervical cancer has redefined many aspects of cervical cancer research. However there is still much that we do not know. In particular, the impact of external factors, like seminal fluid in sexually active women, on pathways that regulate cervical inflammation and tumorigenesis, have yet to be fully understood. HPV infection is regarded as the initiating noninflammatory cause of the disease; however emerging evidence points to resident HPV infections as drivers of inflammatory pathways that play important roles in tumorigenesis as well as in the susceptibility to other infections such as human immunodeficiency virus (HIV) infection. Moreover there is emerging evidence to support a role for seminal fluid, in particular, the inflammatory bioactive lipids, and prostaglandins which are present in vast quantities in seminal fluid in regulating pathways that can exacerbate inflammation of the cervix, speed up tumorigenesis, and enhance susceptibility to HIV infection. This review will highlight some of our current knowledge of the role of seminal fluid as a potent driver of inflammatory and tumorigenic pathways in the cervix and will provide some evidence to propose a role for seminal plasma prostaglandins in HIV infection and AIDS-related cancer. PMID:25180120
Escobar, Javier; Pereda, Javier; Arduini, Alessandro; Sandoval, Juan; Sabater, Luis; Aparisi, Luis; López-Rodas, Gerardo; Sastre, Juan
2009-01-01
Acute pancreatitis is an acute inflammatory process localized in the pancreatic gland that frequently involves peripancreatic tissues. It is still under investigation why an episode of acute pancreatitis remains mild affecting only the pancreas or progresses to a severe form leading to multiple organ failure and death. Proinflammatory cytokines and oxidative stress play a pivotal role in the early pathophysiological events of the disease. Cytokines such as interleukin 1beta and tumor necrosis factor alpha initiate and propagate almost all consequences of the systemic inflammatory response syndrome. On the other hand, depletion of pancreatic glutathione is an early hallmark of acute pancreatitis and reactive oxygen species are also associated with the inflammatory process. Changes in thiol homestasis and redox signaling decisively contribute to amplification of the inflammatory cascade through mitogen activated protein kinase (MAP kinase) pathways. This review focuses on the relationship between oxidative stress, pro-inflammatory cytokines and MAP kinase/protein phosphatase pathways as major modulators of the inflammatory response in acute pancreatitis. Redox sensitive signal transduction mediated by inactivation of protein phosphatases, particularly protein tyrosin phosphatases, is highlighted.
Vendrame, Stefano; Klimis-Zacas, Dorothy
2015-06-01
Anthocyanins are a group of bioactive compounds present in plant foods. Although they have consistently shown an anti-inflammatory effect both in vitro and in vivo, their mechanisms of action are not fully understood and have only recently begun to be elucidated. The aim of this review is to highlight the anti-inflammatory activity of anthocyanins, including their effect on the expression of several genes involved in inflammation. The available evidence suggests that their anti-inflammatory action can be attributed primarily to their antioxidant properties, which result in downregulation of the redox-sensitive nuclear factor-κB signaling pathway. Other pathways at least partly involved in the inflammatory response, particularly the mitogen-activated protein kinase pathways, also appear to play a role. A discussion is presented on the most effective dose of anthocyanins, the differential contribution of specific compounds, the comparative effects of anthocyanins versus other anti-inflammatory phenolic compounds, and the extent to which the observed biological activities are exerted by anthocyanins themselves or their metabolites. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation
Ribeiro, Carla M. P.; Lubamba, Bob A.
2017-01-01
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361
The joint in psoriatic arthritis.
Mortezavi, Mahta; Thiele, Ralph; Ritchlin, Christopher
2015-01-01
Psoriatic arthritis (PsA), a chronic inflammatory joint disease associated with psoriasis, is notable for diversity in disease presentation, course and response to treatment. Equally varied are the types of musculoskeletal involvement which include peripheral and axial joint disease, dactylitis and enthesitis. In this review, we focus on the psoriatic joint and discuss pathways that underlie synovial, cartilage and bone inflammation and highlight key histopathologic features. The pivotal inflammatory mechanisms and pathobiology of PsA parallel findings in other forms of spondyloarthritis but are distinct from disease pathways described in rheumatoid synovitis and bone disease. The diagnosis of PsA from both a clinical and imaging perspective is also discussed.
The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases.
Cuda, Carla M; Pope, Richard M; Perlman, Harris
2016-08-23
Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.
Zhu, Conghui; Xie, Qunhui; Zhao, Bin
2014-01-01
AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ying; Li, Shu-Jun; Yang, Jian
Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less
Alwan, Wisam; Nestle, Frank O
2015-01-01
Psoriasis is a common, chronic inflammatory skin disease associated with multi-system manifestations including arthritis and obesity. Our knowledge of the aetiology of the condition, including the key genomic, immune and environmental factors, has led to the development of targeted, precision therapies that alleviate patient morbidity. This article reviews the key pathophysiological pathways and therapeutic targets and highlights future areas of interest in psoriasis research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ge; Wan, Rong; Hu, Yanling
2014-01-31
Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration ofmore » sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.« less
Wiedemann, Johanna; Rashid, Khalid; Langmann, Thomas
2018-06-18
Microglia activation is central to the pathophysiology of retinal degenerative disorders. Resveratrol, a naturally occurring non-flavonoid phenolic compound present in red wine has potent anti-inflammatory and immunomodulatory properties. However, molecular mechanisms by which resveratrol influences microglial inflammatory pathways and housekeeping functions remain unclear. Here, we first studied the immuno-modulatory effects of resveratrol on BV-2 microglial cells at the transcriptome level using DNA-microarrays and selected qRT-PCR analyses. We then analyzed resveratrol effects on microglia morphology, phagocytosis and migration and estimated their neurotoxicity on 661 W photoreceptors by quantification of caspase 3/7 levels. We found that resveratrol effectively blocked gene expression of a broad spectrum of lipopolysaccharide (LPS)-induced pro-inflammatory molecules, including cytokines and complement proteins. These transcriptomic changes were accompanied by potent inhibition of LPS-induced nitric oxide secretion and reduced microglia-mediated apoptosis of 661 W photoreceptor cultures. Our findings highlight novel targets involved in the anti-inflammatory and neuroprotective action of resveratrol against neuroinflammatory responses. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Qilu; Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang; Wang, Jingying
High glucose-induced inflammatory response in diabetic complications plays an important role in disease occurrence and development. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be a new avenue for treating diabetic complications. Chalcones are a class of natural products with various pharmacological activities. Previously, we identified L2H17 as a chalcone with good anti-inflammatory activity, inhibiting LPS-induced inflammatory response in macrophages. In this study, we examined L2H17's effect on hyperglycemia-induced inflammation both in mouse peritoneal macrophages and a streptozotocin-induced T1D mouse model. Our results indicate that L2H17 exhibits a strong inhibitory effect on the expression of pro-inflammatorymore » cytokines, cell adhesion molecules, chemokines and macrophage adhesion via modulation of the MAPK/NF-κB pathway. Furthermore, in vivo oral administration of L2H17 resulted in a significant decrease in the expression of pro-inflammatory cytokines and cell adhesion molecules, contributing to a reduction of key markers for renal and cardiac dysfunction and improvements in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. These findings provide the evidence supporting targeting MAPK/NF-κB pathway may be effective therapeutic strategy for diabetic complications, and suggest that L2H17 may be a promising anti-inflammatory agent with potential as a therapeutic agent in the treatment of renal and cardiac diabetic complications. - Highlights: • Chalcones are a class of natural products with various pharmacological activities. • We identified L2H17 a chalcone with good anti-inflammatory activity. • L2H17 improved histological abnormalities both in diabetic heart and kidney. • L2H17 reduced inflammatory responses in HG-stimulated mouse peritoneal macrophages. • MAPKs/NF-κB pathway may be a promising therapeutic target for diabetic complications.« less
Pathways leading to an immunological disease: systemic lupus erythematosus
Zharkova, Olga; Celhar, Teja; Cravens, Petra D.; Satterthwaite, Anne B.; Fairhurst, Anna-Marie
2017-01-01
Abstract SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE. PMID:28375453
Rath, Eva; Haller, Dirk
2011-06-01
Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.
Inflammatory pathways of importance for management of inflammatory bowel disease.
Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer; Salem, Mohammad; Nielsen, Ole Haagen
2014-01-07
Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.
Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael
2016-04-01
The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.
Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana
2008-01-01
Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863
Pathways leading to an immunological disease: systemic lupus erythematosus.
Zharkova, Olga; Celhar, Teja; Cravens, Petra D; Satterthwaite, Anne B; Fairhurst, Anna-Marie; Davis, Laurie S
2017-04-01
SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil
2006-12-15
Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol hasmore » anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Ke-Wu; Li, Jun; Dong, Xin
2013-11-15
Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators.more » Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.« less
Immunotherapy in inflammatory bowel disease: Novel and emerging treatments.
Catalan-Serra, Ignacio; Brenna, Øystein
2018-04-06
Inflammatory bowel disease (IBD) is a chronic disabling inflammatory process that affects young individuals, with growing incidence. The etiopathogenesis of IBD remains poorly understood. A combination of genetic and environmental factors triggers an inadequate immune response against the commensal intestinal flora in IBD patients. Thus, a better understanding of the immunological mechanisms involved in IBD pathogenesis is central to the development of new therapeutic options. Current pharmacological treatments used in clinical practice like thiopurines or anti-TNF are effective but can produce significant side effects and their efficacy may diminish over time. In fact, up to one third of the patients do not have a satisfactory response to these therapies. Consequently, the search for new therapeutic strategies targeting alternative immunological pathways has intensified. Several new oral and parenteral substances are in the pipeline for IBD. In this review we discuss novel therapies targeting alternative pro-inflammatory pathways like IL-12/23 axis, IL-6 pathway or Janus Kinase inhibitors; as well as others modulating anti-inflammatory signalling pathways like transforming growth factor-β1 (TGF-β1). We also highlight new emerging therapies targeting the adhesion and migration of leukocytes into the inflamed intestinal mucosa by blocking selectively different subunits of α 4 β 7 integrins or binding alternative adhesion molecules like MAdCAM-1. Drugs reducing the circulating lymphocytes by sequestering them in secondary lymphoid organs (sphingosine-1-phosphate (S1P) receptor modulators) are also discussed. Finally, the latest advances in cell therapies using mesenchymal stem cells or engineered T regs are reviewed. In addition, we provide an update on the current status in clinical trials of these new immune-regulating therapies that open a new era in the treatment of IBD.
Pathogenic mechanisms of pancreatitis
Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil
2017-01-01
Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis. PMID:28217371
Immunity and Inflammation in Epilepsy
Vezzani, Annamaria; Lang, Bethan; Aronica, Eleonora
2016-01-01
This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted. PMID:26684336
Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday
2014-08-01
Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.
Biologics that inhibit the Th17 pathway and related cytokines to treat inflammatory disorders.
Balato, Anna; Scala, Emanuele; Balato, Nicola; Caiazzo, Giuseppina; Di Caprio, Roberta; Monfrecola, Giuseppe; Raimondo, Annunziata; Lembo, Serena; Ayala, Fabio
2017-11-01
Advances in the understanding of TNF-α and IL-17 synergistic functions have recently led to the concept that patients who do not respond or who respond inadequately to TNF-α inhibitors may have IL-17-driven diseases, opening up the way for a new class of therapeutic development: Th17-inhibitors. Areas covered: In this review, the authors discuss the central role that the IL-23/Th17 axis plays in the pathogenesis of several inflammatory diseases, such as psoriasis, highlighting its position as a relevant therapeutic target. In particular, the authors start by giving a brief historical excursus on biologic agent development up until the success of TNF-α inhibitors, and continue with an overview of IL12/23 pathway inhibition. Next, they describe Th17 cell biology, focusing on the role of IL-17 in host defense and in human immune-inflammatory diseases, discussing the use and side effects of IL-17 inhibitors. Expert opinion: The IL-23/Th17 signaling pathway plays a central role in the pathogenesis of several inflammatory diseases, such as psoriasis. Recent data has demonstrated that biologics neutralizing IL-17 (ixekizumab, secukinumab) or its receptor (brodalumab) are highly effective with a positive safety profile in treating moderate to severe psoriasis, offering new treatment possibilities, especially for patients who do not respond adequately to anti-TNF-α therapies.
Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.
Cherry, Anne D; Piantadosi, Claude A
2015-04-20
Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yanyan; Gao, Chao; Shi, Yanru
2013-11-15
Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin.more » The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.« less
Contributions of Neutrophils to Resolution of Mucosal Inflammation
Colgan, Sean P.; Ehrentraut, Stefan F.; Glover, Louise E.; Kominsky, Douglas J.; Campbell, Eric L.
2014-01-01
Neutrophil (PMN) recruitment from the blood stream into surrounding tissues involves a regulated series of events central to acute responses in host defense. Accumulation of PMN within mucosal tissues have historically been considered pathognomonic features of both acute and chronic inflammatory conditions. Historically PMNs have been deemed necessary but detrimental when recruited, given the potential for tissue damage that results from a variety of mechanisms. Recent work, however, has altered our preconcieved notions of PMN contributions to inflammatory processes. In particular, significant evidence implicates a central role for the PMN in triggering inflammatory resolution. Such mechanisms involve both metabolic and biochemical crosstalk pathways during the intimate interactions of PMN with other cell types at inflammatory sites. Here, we highlight several recent examples of how PMN coordinate the resolution of ongoing inflammation, with a particular focus on the gastrointestinal mucosa. PMID:22968707
JNK: bridging the insulin signaling and inflammatory pathway.
Liu, Gang; Rondinone, Cristina M
2005-10-01
Obesity and insulin resistance are strongly associated with systemic markers of inflammation and endoplasmic reticulum stress. c-Jun N-terminal kinases (JNK) are activated by inflammatory cytokines and have a key role in beta-cell apoptosis and in negative regulation of insulin signaling. JNK1-deficient mice are protected from diet-induced obesity and insulin resistance, while genetically obese mice with targeted mutations in JNK1 are leaner and have reduced insulin and blood glucose levels. These studies validate JNK as a link between inflammation and metabolic diseases and as a promising drug target. This review highlights recent advances in small-molecule inhibitors of JNK that have also been targeted for other diseases with an inflammatory component such as stroke, rheumatoid arthritis, and Alzheimer's and Parkinson's diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiamin
Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 andmore » P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.« less
Regulation of Nlrp3 inflammasome by dietary metabolites
Camell, Christina; Goldberg, Emily; Dixit, Vishwa Deep
2015-01-01
The bidirectional communication between innate immune cells and energy metabolism is now widely appreciated to regulate homeostasis as well as chronic diseases that emerge from dysregulated inflammation. Macronutrients-derived from diet or endogenous pathways that generate and divert metabolites into energetic or biosynthetic pathways-regulate the initiation, duration and cessation of the inflammatory response. The NLRP3 inflammasome is an important innate sensor of structurally diverse metabolic damage-associated molecular patterns (DAMPs) that has been implicated in a wide range of inflammatory disorders associated with caloric excess, adiposity and aging. Understanding the regulators of immune-metabolic interactions and their contribution towards chronic disease mechanisms, therefore, has the potential to reduce disease pathology, improve quality of life in elderly and promote the extension of healthspan. Just as specialized subsets of immune cells dampen inflammation through the production of negative regulatory cytokines; specific immunoregulatory metabolites can deactivate inflammasome-mediated immune activation. Here, we highlight the role of energy substrates, alternative fuels and metabolic DAMPs in the regulation of the NLRP3 inflammasome and discuss potential dietary interventions that may impact sterile inflammatory disease. PMID:26776831
Zhou, Yang; Kang, Min-Jong; Jha, Babal Kant; Silverman, Robert H; Lee, Chun Geun; Elias, Jack A
2013-09-01
Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Department of Infectious Diseases, Peking University Third Hospital, Beijing; Zhang, Yuan
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1βmore » (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.« less
Lawless, Nathan; Reinhardt, Timothy A; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O'Farrelly, Cliona; Lippolis, John D; Lynn, David J
2014-01-27
Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per year. Because disease susceptibility is a multifactorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach using next-generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 hr) in milk and blood FACS-isolated CD14(+) monocytes from animals infected in vivo with Streptococcus uberis. More than 3700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Upregulated genes were significantly enriched for inflammatory pathways, whereas downregulated genes were enriched for nonglycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes upregulated in blood-isolated monocytes (BIMs) showed a significant association with interferon and chemokine signaling. Furthermore, 26 miRNAs were DE in MIMs and three were DE in BIMs. Pathway analysis revealed that predicted targets of downregulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8), particularly TLR signaling, whereas upregulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways. Copyright © 2014 Lawless et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuli; Wu, Hongxia; Shen, Ming
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assayingmore » reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.« less
Farzaei, Mohammad Hosein; Bahramsoltani, Roodabeh; Abdolghaffari, Amir Hossein; Sodagari, Hamid Reza; Esfahani, Shadi A; Rezaei, Nima
2016-06-01
Inflammatory bowel disease (IBD) is a recurrent idiopathic inflammatory condition, characterized by disruption of the gut mucosal barrier. This mechanistic review aims to highlight the significance of plant-derived natural compounds as dietary supplements, which can be used in addition to restricted conventional options for the prevention of IBD and induction of remission. Various clinical trials confirmed the effectiveness and tolerability of natural supplements in patients with IBD. Mounting evidence suggests that these natural compounds perform their protective and therapeutic effect on IBD through numerous molecular mechanisms, including anti-inflammatory and immunoregulatory, anti-oxidative stress, modulation of intracellular signaling transduction pathways, as well as improving gut microbiota. In conclusion, natural products can be considered as dietary supplements with therapeutic potential for IBD, provided that their safety and efficacy is confirmed in future well-designed clinical trials with adequate sample size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela
Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights: > Effects of plant polyphenols on inflammatory responses in human keratinocytes. > Inflammatory stimuli used: TGFalpha, TNFalpha+IFNgamma, UVA+UVB, and LPS. > Inflammatory pathways connected with NFB, ERK1/2, EGFR, and AhR were investigated. > Plant polyphenols, flavonoids, stilbenoids, and phenylpropanoids, were studied. > Modulation of inflammation depends on phenolic core structure and glycosylation.« less
GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji
How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, themore » silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism. - Highlights: • Agonizing GPR120 differentially regulates the pro-inflammatory adipocytokines. • Agonizing GPR120 in adipocytes attenuates NF-κB mediated IL-6 and CCL2 production. • Agonizing GPR120 concomitantly triggers a PKC mediated pro-inflammatory pathway. • However, the resulted effect in adipocytes remains anti-inflammatory. • Agonizing GPR120 in adipocytes reduces macrophage migration in a paracrine manner.« less
Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd
Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16more » weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.« less
Immunosuppression associated with chronic inflammation in the tumor microenvironment
Wang, Dingzhi; DuBois, Raymond N.
2015-01-01
Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways. PMID:26354776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenyao; Li, Xuezhong; Xu, Tong
Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies
Hardaway, Aimalie L; Podgorski, Izabela
2013-01-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.
Hardaway, Aimalie L; Podgorski, Izabela
2013-06-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Matsumoto, Cal S; Zasloff, Michael A; Fishbein, Thomas M
2014-06-01
The purpose of this review is to highlight the similarities between inflammatory bowel disease and the state of the intestine allograft after transplantation. The mutant nucleotide-binding oligomerization protein 2 (NOD2) gene, which encodes for an intracellular protein that serves as an innate immune system microbial sensor in macrophages, dendritic cells, and certain intestinal epithelial cells, has been recognized as a risk factor in Crohn's disease. Similarly, recent studies have also highlighted the contribution the NOD2 mutation may have on intestinal failure itself. More specifically, in intestinal transplant recipients with the NOD2 mutation, the discovery of the reduced ability to prevent bacterial clearance, increased enterocyte stress response, and failure of key downstream expression of important cytokines and growth factors have been implicated as major factors in intestinal transplant outcomes, namely graft loss and septic death. Treatment strategies with anti tumor necrosis factor (TNF) α, similar to inflammatory bowel disease, have been employed in intestinal transplantation with promising results. In intestinal transplantation, there is evidence that the classical alloimmunity pathways that lead toward graft dysfunction and eventual graft loss may, in fact, be working in concert with a disordered innate immune system to produce a state of chronic inflammation not unlike that seen in inflammatory bowel disease.
A review of the application of inflammatory biomarkers in epidemiologic cancer research
Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.
2014-01-01
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838
Anti-inflammatory effects of flavonoids in neurodegenerative disorders.
Spagnuolo, Carmela; Moccia, Stefania; Russo, Gian Luigi
2018-06-10
Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Intragraft Molecular Pathways Associated with Tolerance Induction in Renal Transplantation.
Gallon, Lorenzo; Mathew, James M; Bontha, Sai Vineela; Dumur, Catherine I; Dalal, Pranav; Nadimpalli, Lakshmi; Maluf, Daniel G; Shetty, Aneesha A; Ildstad, Suzanne T; Leventhal, Joseph R; Mas, Valeria R
2018-02-01
The modern immunosuppression regimen has greatly improved short-term allograft outcomes but not long-term allograft survival. Complications associated with immunosuppression, specifically nephrotoxicity and infection risk, significantly affect graft and patient survival. Inducing and understanding pathways underlying clinical tolerance after transplantation are, therefore, necessary. We previously showed full donor chimerism and immunosuppression withdrawal in highly mismatched allograft recipients using a bioengineered stem cell product (FCRx). Here, we evaluated the gene expression and microRNA expression profiles in renal biopsy samples from tolerance-induced FCRx recipients, paired donor organs before implant, and subjects under standard immunosuppression (SIS) without rejection and with acute rejection. Unlike allograft samples showing acute rejection, samples from FCRx recipients did not show upregulation of T cell- and B cell-mediated rejection pathways. Gene expression pathways differed slightly between FCRx samples and the paired preimplantation donor organ samples, but most of the functional gene networks overlapped. Notably, compared with SIS samples, FCRx samples showed upregulation of genes involved in pathways, like B cell receptor signaling. Additionally, prediction analysis showed inhibition of proinflammatory regulators and activation of anti-inflammatory pathways in FCRx samples. Furthermore, integrative analyses (microRNA and gene expression profiling from the same biopsy sample) identified the induction of regulators with demonstrated roles in the downregulation of inflammatory pathways and maintenance of tissue homeostasis in tolerance-induced FCRx samples compared with SIS samples. This pilot study highlights the utility of molecular intragraft evaluation of pathways related to FCRx-induced tolerance and the use of integrative analyses for identifying upstream regulators of the affected downstream molecular pathways. Copyright © 2018 by the American Society of Nephrology.
Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua
Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and themore » PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine release, increase NADPH oxidase activation and reduce activities of antioxidant enzymes. • Hydroxysafflor yellow A (HSYA) up regulate cAMP/PKA signal pathway in lung tissue induced by OA. • HSYA attenuate OA mediated lung injury via reducing inflammatory cytokine release and improving antioxidant capacity.« less
Davinelli, Sergio; Maes, Michael; Corbi, Graziamaria; Zarrelli, Armando; Willcox, Donald Craig; Scapagnini, Giovanni
2016-01-01
An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.
miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Wei, Guangkuan; Di, Zhiyong
Graphical abstract: - Highlights: • Alcohol upregulates miR-339-5p expression. • miR-339-5p inhibits the NF-kB pathway. • miR-339-5p interacts with and blocks activity of IKK-beat and IKK-epsilon. • miR-339-5p modulates IL-1β, IL-6 and TNF-α. - Abstract: Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitromore » techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity.« less
Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li
2018-04-17
Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Guerrero, Cristian, E-mail: cristian.gonzalez@fjd.es; Ocaña-Salceda, Carlos, E-mail: carlos.ocana@fjd.es; Berzal, Sergio, E-mail: sberzal@fjd.es
The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed thatmore » in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory events in mice and human.« less
Diabetic Retinopathy: Vascular and Inflammatory Disease
Semeraro, F.; Cancarini, A.; dell'Omo, R.; Rezzola, S.; Romano, M. R.; Costagliola, C.
2015-01-01
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted. PMID:26137497
Cardiovascular disease management through restrained inflammatory responses.
Jabir, Nasimudeen R; Tabrez, Shams
2016-01-01
Cardio vascular disease (CVD) is the end result of the accumulation of atheromatous plaques within the walls of the coronary arteries and remains the leading cause of death worldwide. Vascular inflammation and associated ongoing inflammatory responses have been considered as the critical culprits in the pathogenesis of CVD. Moreover, the activation of inflammatory pathways is not confined to coronary lesions only but involves the activation of neutrophils, monocytes and lymphocytes in peripheral blood. In view of high mortality rate associated with this devastated disease, it is essential that CVD and related complications should be taken care off at its earliest. To achieve that goal, some inflammatory mediators could be potentially targeted. In the current article, we will highlight targeting some inflammatory mediators viz. IL-1, IL-6, TNF-α etc for CVD management. As far as our knowledge goes, we are for the first time reporting the targeting inflammatory mediators especially IL-1, IL-6 and TNF-α together in a single article. Based on our review, we believe that scientific community will come up with certain anti-inflammatory agents against atherosclerosis in near future and hopefully that will be used for the successful management of CVD patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870
Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less
Matin, Nassim; Tabatabaie, Omidreza; Falsaperla, Raffaele; Lubrano, Riccardo; Pavone, Piero; Mahmood, Fahad; Gullotta, Melissa; Serra, Agostino; Di Mauro, Paola; Cocuzza, Salvatore; Vitaliti, Giovanna
2015-01-01
Recent experimental studies and pathological analyses of patient brain tissue samples with refractory epilepsy suggest that inflammatory processes and neuroinflammation plays a key-role in the etiopathology of epilepsy and convulsive disorders. These inflammatory processes lead to the secretion of pro-inflammatory cytokines responsible for blood-brain-barrier disruption and involvement of resident immune cells in the inflammation pathway, occurring within the Central Nervous System (CNS). These elements are produced through activation of Toll-Like Receptors (TLRs) by exogenous and endogenous ligands thereby increasing expression of cytokines and co-stimulatory molecules through the activation of TLRs 2, 3, 4, and 9 as reported in murine studies.It has been demonstrated that IL-1β intracellular signaling and cascade is able to alter the neuronal excitability without cell loss. The activation of the IL-1β/ IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88, which interacts with other cell surface receptors, such as TLR4 during pathogenic recognition. Furthermore, TLR-signaling pathways are able to recognize molecules released from damaged tissues, such as damage-associated molecular patterns/proteins (DAMPs). Among these molecules, High-mobility group box-1 (HMGB1) is a component of chromatin that is passively released from necrotic cells and actively released by cells that are subject to profound stress. Moreover, recent studies have described models of epilepsy induced by the administration of bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions, their intracellular signaling pathway as well as their role in ictiogenesis and epileptic recurrence.The aim of our review is to focus on different branches of innate immunity and their role in epilepsy, emphasizing the role of immune related molecules in epileptogenesis and highlighting the research implications for novel therapeutic strategies.
Li, Xinwei; Huang, Weikun; Gu, Jingmin; Du, Xiliang; Lei, Lin; Yuan, Xue; Sun, Guoquan; Wang, Zhe; Li, Xiaobing; Liu, Guowen
2015-10-01
Dairy cows with fatty liver are characterized by hepatic lipid accumulation and a severe inflammatory response. Sterol receptor element binding protein-1c (SREBP-1c) and nuclear factor κB (NF-κB) are components of the main pathways for controlling triglyceride (TG) accumulation and inflammatory levels, respectively. A previous study demonstrated that hepatic inflammatory levels are positively correlated with hepatic TG content. We therefore speculated that SREBP-1c might play an important role in the overactivation of the hepatic NF-κB inflammatory pathway in cows with fatty liver. Compared with healthy cows, cows with fatty liver exhibited severe hepatic injury and high blood concentrations of the inflammatory cytokines TNF-α, IL-6 and IL-1β. Hepatic SREBP-1c-mediated lipid synthesis and the NF-κB inflammatory pathway were both overinduced in cows with fatty liver. In vitro, treatment with non-esterified fatty acids (NEFA) further increased SREBP-1c expression and NF-κB pathway activation, which then promoted TG and inflammatory cytokine synthesis. SREBP-1c overexpression overactivated the NF-κB inflammatory pathway in hepatocytes by increasing ROS content and not through TLR4. Furthermore, SREBP-1c silencing decreased ROS content and further attenuated the activation of the NEFA-induced NF-κB pathway, thereby decreasing TNF-α, IL-6 and IL-1β synthesis. SREBP-1c-overexpressing mice exhibited hepatic steatosis and an overinduced hepatic NF-κB pathway. Taken together, these results indicate that SREBP-1c enhances the NEFA-induced overactivation of the NF-κB inflammatory pathway by increasing ROS in cow hepatocytes, thereby further increasing hepatic inflammatory injury in cows with fatty liver. Copyright © 2015. Published by Elsevier Inc.
Méplan, Catherine; Johnson, Ian T; Polley, Abigael C J; Cockell, Simon; Bradburn, David M; Commane, Daniel M; Arasaradnam, Ramesh P; Mulholland, Francis; Zupanic, Anze; Mathers, John C; Hesketh, John
2016-08-01
Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. © The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai
Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressionsmore » of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.« less
NF-κB-IKKβ pathway as a target for drug development: realities, challenges and perspectives.
Freitas, Rosana H C N; Fraga, Carlos A M
2018-02-19
Nuclear factor κB (NF-κB) comprises a family of proteins that act as transcription factors promoting the expression of many genes. Activation of NF-κB biochemical cascades is associated with the regulation of innate and adaptive immune responses and inflammation, among other physiological responses. However, genetic abnormalities and continuous stimulation of the NF-κB-IKKβ pathway are directly related to many types of inflammatory and autoimmune diseases, as well as to the genesis and survival of tumor cells. Inhibition of the NF-κB-IKKβ cascade can be considered an attractive therapeutic method for the genesis of new prototypes to combat these chronic multifactorial diseases. This review describes some prototypes and drugs that act to inhibit the NF-κB-IKKβ pathway, highlighting the realities, challenges and perspectives for therapeutic use. Although only proteasome inhibitors, such as bortezomib and carfilzomib, are a reality as therapeutically useful drugs among the known modulators of possible targets in the NF-κB-IKKβ pathway, some other prototypes described as IKKβ inhibitors have entered clinical stages as drug candidates for the control of inflammatory diseases. It is important to note that some classical drugs available on the pharmaceutical market, such as acetylsalicylic acid, were also described more recently as NF-κB pathway modulators as IKKβ inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mechanisms and function of autophagy in intestinal disease.
Lassen, Kara G; Xavier, Ramnik J
2018-01-01
The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.
Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhang,
LPS sensitized mice are usually considered as an experimental model of endotoxin shock. The present study aims to evaluate effects of cavidine on LPS-induced endotoxin shock. Mice were intraperitoneally administrated with cavidine (1, 3 and 10 mg/kg) or DEX (5 mg/kg) at 1 and 12 h before injecting LPS (30 mg/kg) intraperitoneally. Blood samples, liver, lung and kidney tissues were harvested after LPS injection. The study demonstrated that pretreatment with cavidine reduced the mortality of mice during 72 h after endotoxin injection. In addition, cavidine administration significantly attenuated histological pathophysiology features of LPS-induced injury in lung, liver and kidney. Furthermore,more » cavidine administration inhibited endotoxin-induced production of pro-inflammatory cytokines including TNF-α, IL-6 and HMGB1. Moreover, cavidine pretreatment attenuated the phosphorylation of mitogen-activated protein kinase primed by LPS. In summary, cavidine protects mice against LPS-induced endotoxic shock via inhibiting early pro-inflammatory cytokine TNF-α, IL-6 and late-phase cytokine HMGB1, and the modulation of HMGB1 may be related with MAPK signal pathway. - Highlights: • Cavidine significantly reduced mortality in mice during 72 h after LPS injection. • Cavidine attenuated histopathological changes in lung, liver and kidney. • Cavidine decreased the level of early inflammatory cytokine TNF-α, IL-6 in LPS- stimulated mice. • Cavidine inhibited late inflammatory cytokine HMGB1 through MAPK pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Young-Suk; Kim, Dae Hwan; Hwang, Jae Yeon
Although recent study has shown tricin 4′-O-(threo-β-guaiacylglyceryl) ether (TTGE), an isolated compound from Njavara rice, to have the most potent anti-inflammatory effects, the action mechanism has not been fully understood. Here, we examined the effect of TTGE on the inflammation and elucidated the potential mechanism. We demonstrated that TTGE significantly inhibited LPS-induced NO and ROS generation in RAW264.7 cells, which was correlated with the down-regulating effect of TTGE on the iNOS and COX-2 expression via NF-κB and STAT3. TPA-induced ear edema was also efficiently inhibited by the TTGE treatment. TTGE blocked the induction of iNOS and COX-2 through the regulationmore » of NF-κB and STAT3, which could explain the reduced TPA-induced edema symptoms. Moreover, the introduction of ERK inhibitor abrogated the anti-inflammatory effect of TTGE via the recovery of NF-κB and STAT3 signalings. Taken together, these results suggest that TTGE has anti-inflammatory properties through down-regulation of NF-κB and STAT3 pathways. - Highlights: • TTGE inhibited expression of iNOS and COX-2, NF-kB activity and ear edema through inhibition of ERK pathway.« less
Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Ae; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr
2012-09-07
Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), amore » key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-{alpha}. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.« less
The Role of Th17 in Neuroimmune Disorders: A Target for CAM Therapy. Part III.
Vojdani, Aristo; Lambert, Jama; Kellermann, Gottfried
2011-01-01
Abundant research has mapped the inflammatory pathways leading to autoimmunity and neuroinflammatory disorders. The latest T helper to be identified, Th17, through its proinflammatory cytokine IL-17, plays a pathogenic role in many inflammatory conditions. Today, healthcare providers have a wealth of anti-inflammatory agents from which to choose. On one hand, pharmaceutical companies market brand-name drugs direct to the public and physicians. Medical botanical knowledge, on the other hand, has been passed down from generation to generation. The demands for natural healing therapies have brought corresponding clinical and laboratory research studies to elucidate the medicinal properties of alternative practices. With a variety of options, it can be difficult to pinpoint the proper anti-inflammatory agent for each case presented. In this review, the authors highlight a vast array of anti-inflammatory medicaments ranging from drugs to vitamins and from botanicals to innate molecules. This compilation may serve as a guide for complimentary and alternative healthcare providers who need to target neuroinflammation driven by Th17 and its inflammatory cytokine IL-17. By understanding the mechanisms of anti-inflammatory agents, CAM practitioners can tailor therapeutic interventions to fit the needs of the patient, thereby providing faster relief from inflammatory complaints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiting; Tu, Qunfei; Yan, Wei
Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-inducedmore » HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.« less
Therapeutic applications of resveratrol and its derivatives on periodontitis.
Chin, Yu-Tang; Cheng, Guei-Yun; Shih, Ya-Jung; Lin, Chi-Yu; Lin, Shan-Jen; Lai, Hsuan-Yu; Whang-Peng, Jacqueline; Chiu, Hsien-Chung; Lee, Sheng-Yang; Fu, Earl; Tang, Heng-Yuan; Lin, Hung-Yun; Liu, Leroy F
2017-09-01
Periodontitis is an inflammatory disease of the supporting tissues of the teeth induced by periodontopathic bacteria that results in the progressive destruction of periodontal tissues. Treatment of periodontitis is painful and time-consuming. Recently, herbal medicines have been considered for use in treating inflammation-related diseases, including periodontitis. Resveratrol and its derivative 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, have anti-inflammatory properties and other medical benefits. Here, we highlight the importance of resveratrol and its glycosylated derivative as possible complementary treatments for periodontitis and their potential for development as innovative therapeutic strategies. In addition, we present evidence and discuss the mechanisms of action of resveratrol and THSG on periodontitis, focusing on Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. We also illuminate the signal transduction pathways and the cytokines involved. © 2017 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui
Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less
Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan
2013-03-22
Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
2013-01-01
Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865
Immunology of age-related macular degeneration
Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.
2014-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979
Immunology of age-related macular degeneration.
Ambati, Jayakrishna; Atkinson, John P; Gelfand, Bradley D
2013-06-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
Francisco, Vera; Costa, Gustavo; Figueirinha, Artur; Marques, Carla; Pereira, Paulo; Miguel Neves, Bruno; Celeste Lopes, Maria; García-Rodríguez, Carmen; Teresa Cruz, Maria; Teresa Batista, Maria
2013-06-21
Cymbopogon citratus (DC.) Stapf leaves infusion is used in traditional medicine for the treatment of inflammatory conditions, however little is known about their bioactive compounds. Investigate the compounds responsible for anti-inflammatory potential of Cymbopogon citratus (Cy) on cytokines production induced by lipopolysaccharide (LPS) in human and mouse macrophages, and the action mechanisms involved. An essential oil-free infusion of Cy was prepared and polyphenol-rich fractions (PFs) were obtained from it by column chromatography. Chlorogenic acid (CGA) was identified, by HPLC/PDA/ESI-MS(n). The expression of cytokines, namely TNF-α and CCL5, was analyzed by real-time RT-PCR, on LPS-stimulated human macrophages. Activation of nuclear factor (NF)-κB, a master regulator of inflammation, was investigated by western blot and gene reporter assay. Proteasome activity was assessed using a fluorogenic peptide. Cymbopogon citratus extract and its polyphenols inhibited the cytokine production on human macrophages. This supports the anti-inflammatory activity of Cy polyphenols in physiologically relevant cells. Concerning the effect on the activation of NF-κB pathway, the results pointed to an inhibition of LPS-induced NF-κB activation by Cy and PFs. CGA was identified, by HPLC/PDA/ESI-MS(n), as the main phenolic acid of the Cy infusion, and it demonstrated to be, at least in part, responsible by that effect. Additionally, it was verified for the first time that Cy and PFs inhibited the proteasome activity, a complex that controls NF-κB activation, having CGA a strong contribution. The results evidenced, for the first time, the anti-inflammatory properties of Cymbopogon citratus through proteasome inhibition and, consequently NF-κB pathway and cytokine expression. Additionally, Cy polyphenols, in particular chlorogenic acid, were highlighted as bioactive compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Intestinal Effector T Cells in Health and Disease
Maynard, Craig L.; Weaver, Casey T.
2011-01-01
Summary Crohn’s disease and ulcerative colitis are the two major forms of chronic relapsing inflammatory disorders of the human intestines collectively referred to as inflammatory bowel disease (IBD). Though a complex set of autoinflammatory disorders that can be precipitated by diverse genetic and environmental factors, a feature that appears common to IBD pathogenesis is a dysregulated effector T cell response to the commensal microbiota. Due to the heightened effector T cell activity in IBD, developmental and functional pathways that give rise to these cells are potential targets for therapeutic intervention. In this review, we highlight recent advances in our understanding of effector T cell biology in the context of intestinal immune regulation and speculate on their potential clinical significance. PMID:19766082
Toll-Like Receptors: New Players in Myocardial Ischemia/Reperfusion Injury
Ha, Tuanzhu; Liu, Li; Kelley, Jim; Kao, Race; Williams, David
2011-01-01
Abstract Innate immune and inflammatory responses have been implicated in myocardial ischemia/reperfusion (I/R) injury. However, the mechanisms by which innate immunity and inflammatory response are involved in myocardial I/R have not been elucidated completely. Recent studies highlight the role of Toll-like receptors (TLRs) in the induction of innate immune and inflammatory responses. Growing evidence has demonstrated that TLRs play a critical role in myocardial I/R injury. Specifically, deficiency of TLR4 protects the myocardium from ischemic injury, whereas modulation of TLR2 induces cardioprotection against ischemic insult. Importantly, cardioprotection induced by modulation of TLRs involves activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, suggesting that there is a crosstalk between TLRs and PI3K/Akt signaling pathways. In addition, TLRs also associate with other coreceptors, such as macrophage scavenger receptors in the recognition of their ligands. TLRs are also involved in the induction of angiogenesis, modulation of stem cell function, and expression of microRNA, which are currently important topic areas in myocardial I/R. Understanding how TLRs contribute to myocardial I/R injury could provide basic scientific knowledge for the development of new therapeutic approaches for the treatment and management of patients with heart attack. Antioxid. Redox Signal. 15, 1875–1893. PMID:21091074
Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline
2017-05-01
Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.
Peripheral artery disease, redox signaling, oxidative stress - Basic and clinical aspects.
Steven, Sebastian; Daiber, Andreas; Dopheide, Jörn F; Münzel, Thomas; Espinola-Klein, Christine
2017-08-01
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H 2 O 2 , nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Blankfield, Adele
2013-01-01
The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management. PMID:23922501
2014-01-01
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki-Nakano, Nozomi; Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505; Kotera, Jun
Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDAmore » suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.« less
Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease
Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.
2010-01-01
Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550
Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors
Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.
2015-01-01
Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862
Immune and regulatory functions of neutrophils in inflammatory bone loss
Hajishengallis, George; Moutsopoulos, Niki M.; Hajishengallis, Evlambia; Chavakis, Triantafyllos
2016-01-01
Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and – upon extravasation – with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology. PMID:26936034
Gupta, Subash C; Kim, Ji Hye; Kannappan, Ramaswamy; Reuter, Simone; Dougherty, Patrick M; Aggarwal, Bharat B
2011-01-01
Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)- κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients. PMID:21565893
Pan, Xiaohua; Yu, Xiaowei; Qin, Ling; Zhang, Peng
2010-12-01
Based on the newly discovered cholinergic anti-inflammatory pathway, on the anti-nociceptive pathway and on our preliminary research, we raise a new strategy for the treatment of rheumatoid arthritis (RA) which mainly focuses on the application of old drugs that can activate both of the above mentioned pathways. It has been reported that nicotinic receptor agonists used for the treatment of neurological diseases were expected to be applied to the therapy of inflammatory diseases (RA). Therefore, it is promising that old drugs available in clinics may exert new functions for the treatment of RA, which may greatly reduce the expense of such treatment, once applied. These currently-used old drugs should be considered as another new resource in exploring anti-rheumatic agents under the guidance of the newly discovered cholinergic anti-inflammatory pathway and the anti-nociceptive pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hye Young; Department of Pharmacy, Pusan National University, Busan 609-735; Kim, Nam Deuk
2012-07-15
Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) andmore » cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.« less
The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyi; Li, Qi; Zhou, Xiangdong, E-mail: zxd999@263.net
2013-11-01
Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5ACmore » in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression.« less
Globular adiponectin induces a pro-inflammatory response in human astrocytic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana
Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observedmore » link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.« less
The Role of Mitophagy in Innate Immunity
Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios
2018-01-01
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture
Chalouhi, Nohra; Ali, Muhammad S.; Starke, Robert M.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.
2012-01-01
Smoking is an established risk factor for subarachnoid hemorrhage yet the underlying mechanisms are largely unknown. Recent data has implicated a role of inflammation in the development of cerebral aneurysms. Inflammation accompanying cigarette smoke exposure may thus be a critical pathway underlying the development, progression, and rupture of cerebral aneurysms. Various constituents of the inflammatory response appear to be involved including adhesion molecules, cytokines, reactive oxygen species, leukocytes, matrix metalloproteinases, and vascular smooth muscle cells. Characterization of the molecular basis of the inflammatory response accompanying cigarette smoke exposure will provide a rational approach for future targeted therapy. In this paper, we review the current body of knowledge implicating cigarette smoke-induced inflammation in cerebral aneurysm formation/rupture and attempt to highlight important avenues for future investigation. PMID:23316103
The autoinflammatory diseases: a fashion with blurred boundaries!
Sarrabay, G; Barat-Houari, M; Annakib, S; Touitou, I
2015-07-01
Monogenic autoinflammatory diseases are defined as a group of conditions with a clinical and biological inflammatory syndrome but little or no evidence of autoimmunity. Over 17 years have passed since the discovery of the first autoinflammatory gene, MEFV, responsible for familial Mediterranean fever. Substantive progress has been made since then, highlighting the key role of the inflammasome in the maintenance of the cell homeostasis but also unravelling new pathophysiological pathways involved in these diseases. The history of autoinflammatory gene discovery demonstrates the powerfulness of next-generation sequencing approaches in linking inflammatory disorders with various overlapping phenotypes. It can be easily anticipated that new genes will be exponentially identified in the coming years. Integrating these new concepts should help to promote personalized patient care through novel therapeutic opportunities.
Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine
2014-01-01
Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247
Morris, Gerwyn; Anderson, George; Maes, Michael
2017-11-01
There is evidence that immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways play a role in the pathophysiology of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). There is also evidence that these neuroimmune diseases are accompanied by hypothalamic-pituitary-adrenal (HPA) axis hypoactivity as indicated by lowered baseline glucocorticoid levels. This paper aims to review the bidirectional communications between immune-inflammatory and O&NS pathways and HPA axis hypoactivity in ME/CFS, considering two possibilities: (a) Activation of immune-inflammatory pathways is secondary to HPA axis hypofunction via attenuated negative feedback mechanisms, or (b) chronic activated immune-inflammatory and O&NS pathways play a causative role in HPA axis hypoactivity. Electronic databases, i.e., PUBMED, Scopus, and Google Scholar, were used as sources for this narrative review by using keywords CFS, ME, cortisol, ACTH, CRH, HPA axis, glucocorticoid receptor, cytokines, immune, immunity, inflammation, and O&NS. Findings show that activation of immune-inflammatory and O&NS pathways in ME/CFS are probably not secondary to HPA axis hypoactivity and that activation of these pathways may underpin HPA axis hypofunction in ME/CFS. Mechanistic explanations comprise increased levels of tumor necrosis factor-α, T regulatory responses with elevated levels of interleukin-10 and transforming growth factor-β, elevated levels of nitric oxide, and viral/bacterial-mediated mechanisms. HPA axis hypoactivity in ME/CFS is most likely a consequence and not a cause of a wide variety of activated immune-inflammatory and O&NS pathways in that illness.
Novel anti-inflammatory therapies for the treatment of atherosclerosis.
Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L
2015-06-01
The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung
Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin Bmore » resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal.« less
Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response
Chung, Lawton K.; Bliska, James B.
2015-01-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030
Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin.
Hosseinzadeh, Azam; Javad-Moosavi, Seyed Ali; Reiter, Russel J; Hemati, Karim; Ghaznavi, Habib; Mehrzadi, Saeed
2018-05-15
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways. Copyright © 2018 Elsevier Inc. All rights reserved.
Selenium and inflammatory bowel disease.
Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep
2015-07-15
Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD. Copyright © 2015 the American Physiological Society.
Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis.
Omar, Hany A; Mohamed, Wafaa R; Arab, Hany H; Arafa, El-Shaimaa A
2016-01-01
Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Guang-Lin; Department of Pharmacology, University of Michigan, Ann Arbor; Du, Yi-Fang
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 wasmore » found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.« less
Ávila-Román, Javier; Talero, Elena; de Los Reyes, Carolina; García-Mauriño, Sofía; Motilva, Virginia
2018-02-01
Oxylipins (OXLs) are bioactive molecules generated by the oxidation of fatty acids that promote the resolution of acute inflammation and prevent chronic inflammatory processes through molecular mechanisms that are not well known. We have previously reported the anti-inflammatory activity of microalgae-derived OXLs and OXL-containing biomass in two inflammatory bowel disease (IBD) models: 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis and TNBS-induced recurrent colitis. In this study, we examined the in vitro anti-inflammatory mechanism of action of the most abundant OXLs isolated from Chlamydomonas debaryana (13S-HOTE and 13S-HODE) and Nannochloropsis gaditana (15S-HEPE). These OXLs decreased IL-1β and IL-6 pro-inflammatory cytokines production as well as iNOS and COX-2 expression levels in THP-1 macrophages. In addition, OXLs decreased IL-8 production in HT-29 colon cells, the major chemokine produced by these cells. The interaction of OXLs with NFκB and PPAR-γ signaling pathways was studied by confocal microscopy. In THP-1 macrophages and HT-29 colon cells, stimulated by LPS and TNFα respectively, a pre-treatment with 13S-HOTE, 13S-HODE and 15S-HEPE (100μM) resulted in a lower nuclear presence of NFκB in both cell lines. The study of the subcellular localization of PPAR-γ showed that the treatment of THP-1 and HT-29 cells with these OXLs caused the migration of PPAR-γ into the nucleus. Colocalization analysis of both transcription factors in LPS-stimulated THP-1 macrophages showed that the pre-treatment with 13S-HOTE, 13S-HODE or 15S-HEPE lowered nuclear colocalization similar to control value, and increased cytosolic localization above control level. These results indicate that these OXLs could act as agonist of PPAR-γ and consequently inhibit NFκB signaling pathway activation, thus lowering the production of inflammatory markers, highlighting the therapeutic potential of these OXLs in inflammatory diseases such as IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lei; Jinan Central Hospital Affiliated to Shandong University, Jinan 250012; Meng, Di
It is considered that the essence of acute lung injury (ALI) is an excessive and uncontrolled inflammatory response in lung, of which mainly is attributed to the release of inflammatory mediators. Recent studies demonstrated that irisin, which is a metabolism associated factor after physical exercise could suppression of inflammation by regulating cellular signaling pathways, however, the underlying molecular mechanism remains to be determined. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of irisin on LPS-induced acute lung injury in mice and in A549 cells. The results of histopathological changes showed that irisin ameliorated the lungmore » injury that was induced by LPS in time- and dose-dependent manner. QRT-PCR assays demonstrated that irisin suppressed the production of IL-1β, IL-6, MCP-1 and TNF-α, and western blot assays demonstrated that irisin suppressed apoptosis of ALI. The expression of caspase-3 and Bax were decreased and Bcl-2 was increased by irisin administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that irisin inhibited reduced LPS-induced activation of MAPK and NF-κB signaling. All results indicated that irisin has protective effect on LPS-induced ALI in mice and in A549 cells. Thus, irisn related with physical exercise may be a potential therapy for the treatment of pulmonary inflammation. - Highlights: • Irisin inhibited the inflammation reactivity of cells and pathological changes of LPS-induced lung injury in mice. • Irisin inhibited mRNA expression of inflammatory cytokines induced by LPS in A549 cells. • Irisin inhibited apoptosis induced by LPS in the injured lung. • Irisin reduced LPS-induced activation of MAPK and NF-κB signaling pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo
We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats.more » At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment with corticosteroids alone is insufficient to counteract acute lung injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es
A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) andmore » increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Wenjing; Wu, Yan; Xiong, Wei
Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brainmore » tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.« less
Borrelia burgdorferi infection induces lipid mediator production during Lyme arthritis.
Brown, Charles R; Dennis, Edward A
2017-10-01
Experimental Lyme arthritis provides a mouse model for exploring the development of pathology following infection of C3H mice with Borrelia burgdorferi. Infected mice develop a reliable inflammatory arthritis of the ankle joint with severity that typically peaks around two to three weeks post-infection and then undergoes spontaneous resolution. This makes experimental Lyme arthritis an excellent model for investigating the mechanisms that drive both the development and resolution phases of inflammatory disease. Eicosanoids are powerful lipid mediators of inflammation and are known to regulate multiple aspects of inflammatory processes. While much is known about the role of eicosanoids in regulating immune responses during autoimmune disease and cancer, relatively little is known about their role during bacterial infection. In this review, we discuss the role of eicosanoid biosynthetic pathways in mediating inflammatory responses during bacterial infection using experimental Lyme arthritis as a model system. We point out the critical role eicosanoids play in disease development and highlight surprising differences between sterile autoimmune responses and those occurring in response to bacterial infection. These differences should be kept in mind when designing therapies and treatments for inflammatory diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
2014-01-01
Background Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways. Results Using in situ hybridization, we determined that TRPC3 and TRPC1 constitute the major TRPC subunits expressed in adult rat DRG. TRPC3 was found localized exclusively in small and medium diameter sensory neurons. Heterologous overexpression of TRPC3 channel subunits in cultured primary DRG neurons evoked a significant increase of Gd3+-sensitive SOCE following thapsigargin-induced calcium store depletion. Conversely, using the same calcium add-back protocol, knockdown of endogenous TRPC3 with shRNA-mediated interference or pharmacological inhibition with the selective TRPC3 antagonist Pyr10 induced a substantial decrease of SOCE, indicating a significant role of TRPC3 in SOCE in DRG nociceptors. Activation of P2Y2 purinoceptors or PAR2 protease receptors triggered a strong increase in intracellular calcium in conditions of TRPC3 overexpression. Additionally, knockdown of native TRPC3 or its selective pharmacological blockade suppressed UTP- or PAR2 agonist-evoked calcium responses as well as sensitization of DRG neurons. These data show a robust link between activation of pro-inflammatory receptors and calcium homeostasis through TRPC3-containing channels operating both in receptor- and store-operated mode. Conclusions Our findings highlight a major contribution of TRPC3 to neuronal calcium homeostasis in somatosensory pathways based on the unique ability of these cation channels to engage in both SOCE and receptor-operated calcium influx. This is the first evidence for TRPC3 as a SOCE component in DRG neurons. The flexible role of TRPC3 in calcium signaling as well as its functional coupling to pro-inflammatory metabotropic receptors involved in peripheral sensitization makes it a potential target for therapeutic strategies in chronic pain conditions. PMID:24965271
Fox, J Craig; Fitzgerald, Mary F
2009-06-01
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that has been relatively under researched compared to other inflammatory diseases. Indeed, thus far there have been no anti-inflammatory therapies specifically approved for COPD and the available anti-inflammatory therapies were originally developed for asthma. The challenges facing research in COPD are multi-faceted; the mechanisms underlying the complex and heterogeneous pathology of this disease require unravelling; the role of inflammation in disease progression needs to be confirmed and new drugs with potential to successfully treat COPD need to be identified. Many of the compounds in the clinic today have been identified through the work performed in a range of animal models of COPD. These models have provided us with an understanding of disease pathology and potential mechanistic pathways and have given us the means to prioritise new chemical entities before entry into the clinic. This review will summarise currently available models of COPD and highlight how they have been used to take a first generation of anti-inflammatory therapies for COPD into clinical development. The predictive nature of these animal models will become clear as these therapies are clinically evaluated. The recurring challenge will be to take emerging pre-clinical and clinical data and use it to continually improve animal models so that they remain a valuable tool in the drug discovery process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Gunhyuk, E-mail: uranos5@kiom.re.kr
Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-likemore » skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.« less
Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.
Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N
2015-09-17
RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Oxidative and inflammatory signals in obesity-associated vascular abnormalities.
Reho, John J; Rahmouni, Kamal
2017-07-15
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*
Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin S.; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil G.; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.
2015-01-01
Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses (“pseudoimplantation”) that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. PMID:25931120
Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less
Tian, Yueli; Ma, Jingting; Wang, Wudong; Zhang, Lingjuan; Xu, Jia; Wang, Kai; Li, Dongfu
2016-11-01
Nonalcoholic fatty liver disease (NAFLD) is characterized by high levels of nonesterified fatty acids (NEFA), inflammation, and hepatic steatosis. Inflammation plays a crucial role in the development of fatty liver. Resveratrol (RSV) supplement could improve inflammatory response and hepatic steatosis, whereas the underlying mechanism was not well understood. In this study, mice fed with high-fat diet (HFD) exhibited severe hepatic injury and high blood concentrations of the inflammatory cytokines TNF-α, IL-6, and IL-1β. Hepatic NF-κB inflammatory pathway was over-induced in HFD mice. In vitro, NEFA treatment further increased NF-κB pathway activation in mice hepatocytes, which then promoted the synthesis of inflammatory cytokines. Interestingly, RSV treatment significantly inhibited overactivation of NF-κB pathway and improved hepatic steatosis. Furthermore, RSV further increased the AMP-activated protein kinaseα (AMPKα) phosphorylation and sirtuin1 (SIRT1) protein levels to inhibit overactivation of NF-κB pathway induced by HFD or high levels of NEFA. AMPKα or SIRT1 inhibition significantly decreased the improvement effect of RSV on the NF-κB pathway induced by high levels of NEFA. Taken together, these findings indicate that RSV supplement decreases the inflammatory level and improves hepatic steatosis through activating AMPKα-SIRT1 pathway. Therefore, these data suggested an important clinical application of RSV in preventing NAFLD in humans.
Protective and pathological immunity during CNS infections
Klein, Robyn S.; Hunter, Christopher A.
2017-01-01
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted the innate pathways that limit pathogen invasion of the CNS and that adaptive immunity mediates control of many neural infections. Because protective responses can result in bystander damage there are regulatory mechanisms that balance protective and pathological inflammation but which may also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. PMID:28636958
Yersinia versus host immunity: how a pathogen evades or triggers a protective response.
Chung, Lawton K; Bliska, James B
2016-02-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Timothy N.; Dentener, Mieke A.
Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less
Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.
Zila, I; Mokra, D; Kopincova, J; Kolomaznik, M; Javorka, M; Calkovska, A
2017-09-22
Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Solip; Nguyen, Van Thu; Tae, Nara
Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting themore » involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these triterpenes. • The triterpenes induce heme oxygenase-1 expression via the AKT-Nrf2 pathway. • The mechanism explains the anti-inflammatory effect of triterpenes from G. lucidum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi
HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrolmore » induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.« less
Bioprospecting the Bibleome: Adding Evidence to Support the Inflammatory Basis of Cancer.
Elkin, Peter L; Frankel, Andrew; Liebow-Liebling, Ester H; Elkin, Jared R; Tuttle, Mark S; Brown, Steven H
2012-05-05
BioProspecting is a novel approach that enabled our team to mine genetic marker related data from the New England Journal of Medicine (NEJM) utilizing Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) and the Human Gene Ontology (HUGO). Genes associated with disorders using the Multi-threaded Clinical Vocabulary Server (MCVS) Natural Language Processing (NLP) engine, whose output was represented as an ontology-network incorporating the semantic encodings of the literature. Metabolic functions were used to identify potentially novel relationships between (genes or proteins) and (diseases or drugs). In an effort to identify genes important to transformation of normal tissue into a malignancy, we went on to identify the genes linked to multiple cancers and then mapped those genes to metabolic and signaling pathways. Ten Genes were related to 30 or more cancers, 72 genes were related to 20 or more cancers and 191 genes were related to 10 or more cancers. The three pathways most often associated with the top 200 novel cancer markers were the Acute Phase Response Signaling, the Glucocorticoid Receptor Signaling and the Hepatic Fibrosis/Hepatic Stellate Cell Activation pathway. This association highlights the role of inflammation in the induction and perhaps transformation of mortal cells into cancers. BioProspecting can speed our identification and understanding of synergies between articles in the biomedical literature. In this case we found considerable synergy between the Oncology literature and the Sepsis literature. By mapping these associations to known metabolic, regulatory and signaling pathways we were able to identify further evidence for the inflammatory basis of cancer.
Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiao-Hua; Fu, Jia; Sun, Da-Qing, E-mail: daqingsuncd@163.com
2016-04-29
Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally,more » the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC. - Highlights: • Halofuginone (HF) increases the survival of suckling BALB/c mice infected with acute CVB3. • HF reduces the expression of Th17 cell markers (IL-17 and IL-23) and the number of CD4{sup +} IL17{sup +} cells. • Pro-inflammatory cytokines levels associated with myocarditis were reduced by HF in CVB3-treated suckling mice. • HF alleviates VMC via inhibition of TGF-β1-mediated NF-κB p65/TNF-α pathway.« less
Waetzig, G H; Schreiber, S
2003-07-01
Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Rae; Jin, Guo Hua; Lee, Sang-Myeong
Highlights: {yields} We synthesized SPA0537, a benzothiazole analog. {yields} SPA0537 is a potent NF-{kappa}B inhibitor. {yields} SPA0537 suppresses the production of proinflammatory mediators in human rheumatoid fibroblast-like synoviocytes. {yields} SPA0537 is effective at suppressing osteoclast differentiation. -- Abstract: The pathologic processes of rheumatoid arthritis are mediated by a number of cytokines, chemokines, and matrix metalloproteinases, the expressions of which are controlled by NF-{kappa}B. This study was performed to explore the effects of a benzothiazole analog, SPA0537, on the control of the NF-{kappa}B activation pathway. We also investigated whether SPA0537 had any anti-inflammatory effects in human rheumatoid fibroblast-like synoviocytes (FLS). SPA0537more » inhibited the nuclear translocation and the DNA binding of NF-{kappa}B subunits, which correlated with the inhibitory effects on IKK phosphorylation and I{kappa}B{alpha} degradation in TNF-{alpha}-stimulated rheumatoid FLS. These events further suppressed chemokine production, matrix metalloproteinase secretion, and TNF-{alpha}-induced cell proliferation. In addition, SPA0537 inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor (MCSF) and receptor activator of the NF-{kappa}B ligand (RANKL) in bone marrow macrophages. These findings suggest that SPA0537 exerts anti-inflammatory effects in rheumatoid FLS through the inhibition of the NF-{kappa}B pathway. Therefore, it may have therapeutic value for the treatment of rheumatoid arthritis.« less
P21-activated kinase in inflammatory and cardiovascular disease.
Taglieri, Domenico M; Ushio-Fukai, Masuko; Monasky, Michelle M
2014-09-01
P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Xinyang; Shen, Jun; Ran, Zhihua
2017-02-01
Inflammatory bowel disease (IBD) is an autoimmune disorder characterized by chronic, relapsing intestinal inflammation. Autoimmune liver disease (AILD) may be involved in IBD as an extra-intestinal manifestation (EIM). Epidemiologic and anatomic evidence have demonstrated an intimate crosstalk between the gut and the liver. In this review, we briefly introduced nine groups of susceptibility loci shared by inflammatory bowel and autoimmune liver disease for the first time. The genome-wide association studies (GWAS) evidence of pathways involving crosstalk between the gut and the liver is clarified and explained. It has been found that HNF4-α, GPR35, MST1R, CARD9, IL2/IL21/IL2R, BACH2, TNFRSF14, MAdCAM-1, and FUT2 are the genes involved in tight junction formation, macrophage function, T helper cell or T reg cell cycle and function, TNF secretion, lymphocyte homing or intestinal dysbiosis, respectively. The intimate crosstalk between the gut and liver in immunity is also highlighted and discussed in this review. Copyright © 2016 Elsevier Inc. All rights reserved.
Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto
2015-10-01
Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto
2015-01-01
Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543
Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?
Arboleda, John F.; Urcuqui-Inchima, Silvio
2016-01-01
Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies. PMID:27293435
The Process and Regulatory Components of Inflammation in Brain Oncogenesis
Mostofa, A.G.M.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Al-Obaide, Mohammad; Srivenugopal, Kalkunte S.
2017-01-01
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted. PMID:28346397
Recent advancement of molecular mechanisms of liver fibrosis.
Seki, Ekihiro; Brenner, David A
2015-07-01
Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Ginaldi, Lia; De Martinis, Massimo
2016-01-01
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity. PMID:27604089
Emerging targets for treating sulfur mustard-induced injuries.
Ahmad, Shama; Ahmad, Aftab
2016-06-01
Sulfur mustard (SM; bis-(2-chlororethyl) sulfide) is a highly reactive, potent warfare agent that has recently reemerged as a major threat to military and civilians. Exposure to SM is often fatal, primarily due to pulmonary injuries and complications caused by its inhalation. Profound inflammation, hypercoagulation, and oxidative stress are the hallmarks that define SM-induced pulmonary toxicities. Despite advances, effective therapies are still limited. This current review focuses on inflammatory and coagulation pathways that influence the airway pathophysiology of SM poisoning and highlights the complexity of developing an effective therapeutic target. © 2016 New York Academy of Sciences.
Progress in understanding the immunopathogenesis of psoriasis
Mak, R.K.H.; Hundhausen, C.; Nestle, F.O.
2010-01-01
This review emphasizes how translation from bench research to clinical knowledge and vice versa has resulted in considerable progress in understanding the immunopathogenesis of psoriasis. First, the journey in understanding the pathogenic mechanisms behind psoriasis is described. The roles of different components of the adaptive and innate immune systems involved in driving the inflammatory response are explained. Discovery of new immune pathways i.e. the IL23/Th17 axis and its subsequent impact on the development of novel biological therapies is highlighted. Identification of potential targets warranting further research for future therapeutic development are also discussed. PMID:20096156
Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilton, Susan C., E-mail: susan.tilton@pnnl.gov; Waters, Katrina M.; Karin, Norman J.
The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts,more » but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung. ► Toxicant-specific biomarkers predict exposure independent of systemic inflammation.« less
de Anda-Jáuregui, Guillermo; Guo, Kai; McGregor, Brett A.; Hur, Junguk
2018-01-01
The quintessential biological response to disease is inflammation. It is a driver and an important element in a wide range of pathological states. Pharmacological management of inflammation is therefore central in the clinical setting. Anti-inflammatory drugs modulate specific molecules involved in the inflammatory response; these drugs are traditionally classified as steroidal and non-steroidal drugs. However, the effects of these drugs are rarely limited to their canonical targets, affecting other molecules and altering biological functions with system-wide effects that can lead to the emergence of secondary therapeutic applications or adverse drug reactions (ADRs). In this study, relationships among anti-inflammatory drugs, functional pathways, and ADRs were explored through network models. We integrated structural drug information, experimental anti-inflammatory drug perturbation gene expression profiles obtained from the Connectivity Map and Library of Integrated Network-Based Cellular Signatures, functional pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases, as well as adverse reaction information from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). The network models comprise nodes representing anti-inflammatory drugs, functional pathways, and adverse effects. We identified structural and gene perturbation similarities linking anti-inflammatory drugs. Functional pathways were connected to drugs by implementing Gene Set Enrichment Analysis (GSEA). Drugs and adverse effects were connected based on the proportional reporting ratio (PRR) of an adverse effect in response to a given drug. Through these network models, relationships among anti-inflammatory drugs, their functional effects at the pathway level, and their adverse effects were explored. These networks comprise 70 different anti-inflammatory drugs, 462 functional pathways, and 1,175 ADRs. Network-based properties, such as degree, clustering coefficient, and node strength, were used to identify new therapeutic applications within and beyond the anti-inflammatory context, as well as ADR risk for these drugs, helping to select better repurposing candidates. Based on these parameters, we identified naproxen, meloxicam, etodolac, tenoxicam, flufenamic acid, fenoprofen, and nabumetone as candidates for drug repurposing with lower ADR risk. This network-based analysis pipeline provides a novel way to explore the effects of drugs in a therapeutic space. PMID:29545755
de Anda-Jáuregui, Guillermo; Guo, Kai; McGregor, Brett A; Hur, Junguk
2018-01-01
The quintessential biological response to disease is inflammation. It is a driver and an important element in a wide range of pathological states. Pharmacological management of inflammation is therefore central in the clinical setting. Anti-inflammatory drugs modulate specific molecules involved in the inflammatory response; these drugs are traditionally classified as steroidal and non-steroidal drugs. However, the effects of these drugs are rarely limited to their canonical targets, affecting other molecules and altering biological functions with system-wide effects that can lead to the emergence of secondary therapeutic applications or adverse drug reactions (ADRs). In this study, relationships among anti-inflammatory drugs, functional pathways, and ADRs were explored through network models. We integrated structural drug information, experimental anti-inflammatory drug perturbation gene expression profiles obtained from the Connectivity Map and Library of Integrated Network-Based Cellular Signatures, functional pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases, as well as adverse reaction information from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). The network models comprise nodes representing anti-inflammatory drugs, functional pathways, and adverse effects. We identified structural and gene perturbation similarities linking anti-inflammatory drugs. Functional pathways were connected to drugs by implementing Gene Set Enrichment Analysis (GSEA). Drugs and adverse effects were connected based on the proportional reporting ratio (PRR) of an adverse effect in response to a given drug. Through these network models, relationships among anti-inflammatory drugs, their functional effects at the pathway level, and their adverse effects were explored. These networks comprise 70 different anti-inflammatory drugs, 462 functional pathways, and 1,175 ADRs. Network-based properties, such as degree, clustering coefficient, and node strength, were used to identify new therapeutic applications within and beyond the anti-inflammatory context, as well as ADR risk for these drugs, helping to select better repurposing candidates. Based on these parameters, we identified naproxen, meloxicam, etodolac, tenoxicam, flufenamic acid, fenoprofen, and nabumetone as candidates for drug repurposing with lower ADR risk. This network-based analysis pipeline provides a novel way to explore the effects of drugs in a therapeutic space.
Salaffi, Fausto; Giacobazzi, Giovanni
2018-01-01
Chronic pain is nowadays considered not only the mainstay symptom of rheumatic diseases but also “a disease itself.” Pain is a multidimensional phenomenon, and in inflammatory arthritis, it derives from multiple mechanisms, involving both synovitis (release of a great number of cytokines) and peripheral and central pain-processing mechanisms (sensitization). In the last years, the JAK-STAT pathway has been recognized as a pivotal component both in the inflammatory process and in pain amplification in the central nervous system. This paper provides a summary on pain in inflammatory arthritis, from pathogenesis to clinimetric instruments and treatment, with a focus on the JAK-STAT pathway. PMID:29623147
Arnold, Kimberly M; Opdenaker, Lynn M; Flynn, Daniel; Sims-Mourtada, Jennifer
2015-01-01
The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth of CSCs and improve therapeutic outcomes. PMID:25674014
Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.
Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U
2016-11-30
The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.
MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.
Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl
2016-01-01
Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.
Silibinin attenuates allergic airway inflammation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu
Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less
Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil
2017-01-01
Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akram, Muhammad
Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC{sub 50} for NO inhibition in macrophages: 4.61 μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPDmore » 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. - Highlights: • An anti-inflammatory flavonoid CPD 14 was newly synthesized from macakurzin C. • CPD 14 potently inhibited inflammatory reaction in keratinocytes and macrophages. • Dermal toxicity by irritation or sensitization in rats was protected by CPD 14. • Attenuated NF-κB and activated Nrf2/HO-1 were main mechanisms of CPD 14 action.« less
Protective and Pathological Immunity during Central Nervous System Infections.
Klein, Robyn S; Hunter, Christopher A
2017-06-20
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.
Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan
2014-09-01
Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei
2018-01-01
Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows. PMID:29593725
Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei
2018-01-01
Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.
Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.
Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman
2018-06-05
The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Adipocytes properties and crosstalk with immune system in obesity-related inflammation.
Maurizi, Giulia; Della Guardia, Lucio; Maurizi, Angela; Poloni, Antonella
2018-01-01
Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation, and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders. © 2017 Wiley Periodicals, Inc.
Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus.
Cha, Jeeyeon; Burnum-Johnson, Kristin E; Bartos, Amanda; Li, Yingju; Baker, Erin S; Tilton, Susan C; Webb-Robertson, Bobbie-Jo M; Piehowski, Paul D; Monroe, Matthew E; Jegga, Anil G; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K
2015-06-12
Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Glossop, Paul; Whitlock, Gavin; Gibson, Karl
2015-07-01
Asthma is a chronic condition affecting 235 million people worldwide, with prevalence continuing to increase. A significant number of patients have poorly controlled asthma but despite this, a new mechanistic class of small-molecule asthma therapy has not emerged over the past 15 years. In this article, the authors review the published patent literature from 2013 to 2014 that describes the discovery of novel small-molecule anti-inflammatory agents for the treatment of asthma. This patent analysis was performed using multiple search engines including SciFinder and Free Patents Online. This review highlights that significant research is still directed towards the development of novel anti-inflammatory agents for the treatment of asthma. Current standard-of-care therapies are given topically to the lung via an inhaled dose, which the authors believe can offer significant advantages in terms of efficacy and therapeutic index, compared with an oral dose. Several of the patents reviewed disclose preferred compounds and data that suggest an inhaled approach is being specifically pursued. The patents reviewed target a wide range of inflammatory pathways, although none have yet delivered an approved novel medicine for asthma; this gives an indication of both the opportunity and challenge involved in such an endeavor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin
Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed thatmore » the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to produce pro-inflammatory mediators. • IL-24 activates STAT3 and MAPK signaling pathways in human keratinocytes.« less
Trio, Phoebe Zapanta; Kawahara, Atsuyoshi; Tanigawa, Shunsuke; Sakao, Kozue; Hou, De-Xing
2017-01-01
6-MSITC and 6-MTITC are sulforaphane (SFN) analogs found in Japanese Wasabi. As we reported previously, Wasabi isothiocyanates (ITCs) are activators of Nrf2-antioxidant response element pathway, and also inhibitors of pro-inflammatory cyclooxygenase-2. This study is the first to assess the global changes in transcript levels by Wasabi ITCs, comparing with SFN, in HepG2 cells. We performed comparative gene expression profiling by treating HepG2 cells with ITCs, followed by DNA microarray analyses using HG-U133 plus 2.0 oligonucleotide array. Partial array data on selected gene products were confirmed by RT-PCR and Western blotting. Ingenuity Pathway Analysis (IPA) was used to identify functional subsets of genes and biologically significant network pathways. 6-MTITC showed the highest number of differentially altered (≥2 folds) gene expression, of which 114 genes were upregulated and 75 were downregulated. IPA revealed that Nrf2-mediated pathway, together with glutamate metabolism, is the common significantly modulated pathway across treatments. Interestingly, 6-MSITC exhibited the most potent effect toward Nrf2-mediated pathway. Our data suggest that 6-MSITC could exert chemopreventive role against cancer through its underlying antioxidant activity via the activation of Nrf2-mediated subsequent induction of cytoprotective genes.
The PI3K/Akt pathway is required for LPS activation of microglial cells.
Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta
2012-10-01
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.
Zhang, Linjie; Yang, Li
2014-12-26
Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines-this represents the first step in the inflammatory response to atherosclerosis. Blocking blood flow in the brain leads to ischemic stroke, and deprives neurons of oxygen and energy. Damaged neurons release danger-associated molecular patterns, which promote the activation of innate immune cells and the release of inflammatory cytokines. The nuclear factor κ-light-chain-enhancer of activated B cells κB (NF-κB) pathway plays a key role in the pathogenesis of atherosclerosis and ischemic stroke. Vinpocetine is believed to be a potent anti-inflammatory agent and has been used to treat cerebrovascular disorders. Vinpocetine improves neuronal plasticity and reduces the release of inflammatory cytokines and chemokines from endothelial cells, vascular smooth muscle cells, macrophages, and microglia, by inhibiting the inhibitor of the NF-κB pathway. This review clarifies the anti-inflammatory role of vinpocetine in atherosclerosis and ischemic stroke.
Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain
Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.
2007-01-01
New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997
Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin
2013-01-01
Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.
Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.
2014-01-01
ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. PMID:24759787
Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L
2014-06-01
Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. © 2014 by the Society for the Study of Reproduction, Inc.
Toll-like receptors (TLRs) are largely responsible for inducing innate immune responses to infection. TLR4 binds lipopolysaccharide (LPS) from Gram-negative bacteria and initiates a signaling pathway to activate inflammatory responses. TLR4 plays a role in diseases such as sepsis and chronic inflammatory disorders. In tumor cells, TLR4 is involved in dampening immune
Liu, Na; Shi, Songtao; Deng, Manjing; Tang, Liang; Zhang, Guangjing; Liu, Ning; Ding, Bofu; Liu, Wenjia; Liu, Yali; Shi, Haigang; Liu, Luchuan; Jin, Yan
2011-09-01
Periodontal ligament stem cells (PDLSCs), a new population of mesenchymal stem cells (MSCs), have been isolated from the periodontal ligament (PDL). The capacity of multipotency and self-renewal makes them an excellent cell source for bone regeneration and repair. However, their bone-regeneration ability could be awakened in inflammatory microenvironments, which may be the result of changes in their differentiation potential. Recently, genetic evidences has shown that the Wnt pathway plays an important role in bone homeostasis. In this study we have determined the specific role of β-catenin in osteogenic differentiation of PDLSCs obtained from inflammatory microenvironments (P-PDLSCs). The inflammatory microenvironment, while inhibiting osteogenic differentiation potential, promotes proliferation of MSCs. A higher the level of β-catenin in P-PDLSCs than in H-PDLSCs (PDLSCs obtained from a healthy microenvironment) resulted in the same disparity in canonical Wnt signaling pathway activation between each cell type. Here we show that activation of β-catenin suppresses the noncanonical Wnt/Ca(2+) pathway, leading to increased proliferation but reduced osteogenic differentiation of P-PDLSCs. Downregulation of the levels of β-catenin by treatment with dickkopf-1 (DKK-1) leads to activation of the noncanonical Wnt/Ca(2+) pathway, which, in turn, results in the promotion of osteogenic differentiation in P-PDLSCs. Interestingly, β-catenin can affect both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/Ca(2+) pathway. Our data indicate that β-catenin plays a central role in regulating osteogenic differentiation of MSCs in inflammatory microenvironments. Given the important role of Wnt signaling in osteogenic differentiation, it is possible that agents that can modify this pathway may be of value in bone regeneration by MSCs in chronic inflammatory microenvironments. Copyright © 2011 American Society for Bone and Mineral Research.
Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang
2013-01-01
BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985
Kaneva, Magdalena K; Kerrigan, Mark JP; Grieco, Paolo; Curley, G Paul; Locke, Ian C; Getting, Stephen J
2012-01-01
BACKGROUND AND PURPOSE Melanocortin MC1 and MC3 receptors, mediate the anti-inflammatory effects of melanocortin peptides. Targeting these receptors could therefore lead to development of novel anti-inflammatory therapeutic agents. We investigated the expression of MC1 and MC3 receptors on chondrocytes and the role of α-melanocyte-stimulating hormone (α-MSH) and the selective MC3 receptor agonist, [DTRP8]-γ-MSH, in modulating production of inflammatory cytokines, tissue-destructive proteins and induction of apoptotic pathway(s) in the human chondrocytic C-20/A4 cells. EXPERIMENTAL APPROACH Effects of α-MSH, [DTRP8]-γ-MSH alone or in the presence of the MC3/4 receptor antagonist, SHU9119, on TNF-α induced release of pro-inflammatory cytokines, MMPs, apoptotic pathway(s) and cell death in C-20/A4 chondrocytes were investigated, along with their effect on the release of the anti-inflammatory cytokine IL-10. KEY RESULTS C-20/A4 chondrocytes expressed functionally active MC1,3 receptors. α-MSH and [DTRP8]-γ-MSH treatment, for 30 min before TNF-α stimulation, provided a time-and-bell-shaped concentration-dependent decrease in pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) release and increased release of the chondroprotective and anti-inflammatory cytokine, IL-10, whilst decreasing expression of MMP1, MMP3, MMP13 genes.α-MSH and [DTRP8]-γ-MSH treatment also inhibited TNF-α-induced caspase-3/7 activation and chondrocyte death. The effects of [DTRP8]-γ-MSH, but not α-MSH, were abolished by the MC3/4 receptor antagonist, SHU9119. CONCLUSION AND IMPLICATIONS Activation of MC1/MC3 receptors in C-20/A4 chondrocytes down-regulated production of pro-inflammatory cytokines and cartilage-destroying proteinases, inhibited initiation of apoptotic pathways and promoted release of chondroprotective and anti-inflammatory cytokines. Developing small molecule agonists to MC1/MC3 receptors could be a viable approach for developing chondroprotective and anti-inflammatory therapies in rheumatoid and osteoarthritis. PMID:22471953
Barth, Kenneth; Genco, Caroline Attardo
2016-01-01
The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456
Jeremiah, Nadia; Neven, Bénédicte; Gentili, Matteo; Callebaut, Isabelle; Maschalidi, Sophia; Stolzenberg, Marie-Claude; Goudin, Nicolas; Frémond, Marie-Louis; Nitschke, Patrick; Molina, Thierry J.; Blanche, Stéphane; Picard, Capucine; Rice, Gillian I.; Crow, Yanick J.; Manel, Nicolas; Fischer, Alain; Bader-Meunier, Brigitte; Rieux-Laucat, Frédéric
2014-01-01
Innate immunity to viral infection involves induction of the type I IFN response; however, dysfunctional regulation of this pathway leads to inappropriate inflammation. Here, we evaluated a nonconsanguineous family of mixed European descent, with 4 members affected by systemic inflammatory and autoimmune conditions, including lupus, with variable clinical expression. We identified a germline dominant gain-of-function mutation in TMEM173, which encodes stimulator of type I IFN gene (STING), in the affected individuals. STING is a key signaling molecule in cytosolic DNA-sensing pathways, and STING activation normally requires dimerization, which is induced by 2′3′ cyclic GMP-AMP (cGAMP) produced by the cGAMP synthase in response to cytosolic DNA. Structural modeling supported constitutive activation of the mutant STING protein based on stabilized dimerization. In agreement with the model predictions, we found that the STING mutant spontaneously localizes in the Golgi of patient fibroblasts and is constitutively active in the absence of exogenous 2′3′-cGAMP in vitro. Accordingly, we observed elevated serum IFN activity and a type I IFN signature in peripheral blood from affected family members. These findings highlight the key role of STING in activating both the innate and adaptive immune responses and implicate aberrant STING activation in features of human lupus. PMID:25401470
El Kasmi, Karim C; Smith, Amber M; Williams, Lynn; Neale, Geoffrey; Panopoulos, Athanasia D; Panopolous, Athanasia; Watowich, Stephanie S; Häcker, Hans; Foxwell, Brian M J; Murray, Peter J
2007-12-01
IL-10 regulates anti-inflammatory signaling via the activation of STAT3, which in turn controls the induction of a gene expression program whose products execute inhibitory effects on proinflammatory mediator production. In this study we show that IL-10 induces the expression of an ETS family transcriptional repressor, ETV3, and a helicase family corepressor, Strawberry notch homologue 2 (SBNO2), in mouse and human macrophages. IL-10-mediated induction of ETV3 and SBNO2 expression was dependent upon both STAT3 and a stimulus through the TLR pathway. We also observed that ETV3 expression was strongly induced by the STAT3 pathway regulated by IL-10 but not by STAT3 signaling activated by IL-6, which cannot activate the anti-inflammatory signaling pathway. ETV3 and SBNO2 repressed NF-kappaB- but not IFN regulatory factor 7 (IRF7)-activated transcriptional reporters. Collectively our data suggest that ETV3 and SBNO2 are components of the pathways that contribute to the downstream anti-inflammatory effects of IL-10.
Toll-like receptors (TLRs) are largely responsible for inducing innate immune responses to infection. TLR4 binds lipopolysaccharide (LPS) from Gram-negative bacteria and initiates a signaling pathway to activate inflammatory responses. TLR4 plays a role in diseases such as sepsis and chronic inflammatory disorders. In tumor cells, TLR4 is involved in dampening immune surveillance, and increasing proliferation, inflammatory cytokine production, and invasive migration. Determining how TLR4 expression and signaling is regulated may enable these adverse conditions to be better managed.
Johnson, Michael E.; Mahoney, J. Matthew; Taroni, Jaclyn; Sargent, Jennifer L.; Marmarelis, Eleni; Wu, Ming-Ru; Varga, John; Hinchcliff, Monique E.; Whitfield, Michael L.
2015-01-01
Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling. PMID:25607805
Messina, Sonia; Bitto, Alessandra; Aguennouz, M'hammed; Mazzeo, Anna; Migliorato, Alba; Polito, Francesca; Irrera, Natasha; Altavilla, Domenica; Vita, Gian Luca; Russo, Massimo; Naro, Antonino; De Pasquale, Maria Grazia; Rizzuto, Emanuele; Musarò, Antonio; Squadrito, Francesco; Vita, Giuseppe
2009-12-01
Muscle degeneration in dystrophic muscle is exacerbated by the endogenous inflammatory response and increased oxidative stress. A key role is played by nuclear factor(NF)-kappaB. We showed that NF-kappaB inhibition through compounds with also antioxidant properties has beneficial effects in mdx mice, the murine model of Duchenne muscular dystrophy (DMD), but these drugs are not available for clinical studies. We evaluated whether flavocoxid, a mixed flavonoid extract with anti-inflammatory, antioxidant and NF-kappaB inhibiting properties, has beneficial effects in mdx mice in comparison with methylprednisolone, the gold standard treatment for DMD patients. Five-week-old mdx mice were treated for 5 weeks with flavocoxid, methylprednisolone or vehicle. The evaluation of in vivo and ex vivo functional properties and morphological parameters was performed. Serum samples were assayed for oxidative stress markers, creatine-kinase (CK) and leukotriene B-4. Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), tumor necrosis factor-alpha, p-38, JNK1 expression was evaluated in muscle by western blot analysis. NF-kappaB binding activity was investigated by electrophoresis mobility shift assay. The administration of flavocoxid: (1) ameliorated functional properties in vivo and ex vivo; (2) reduced CK; (3) reduced the expression of oxidative stress markers and of inflammatory mediators; (4) inhibited NF-kappaB and mitogen-activated protein kinases (MAPKs) signal pathways; (5) reduced muscle necrosis and enhanced regeneration. Our results highlight the detrimental effects of oxidative stress and NF-kappaB, MAPKs and COX/5-LOX pathways in the dystrophic process and show that flavocoxid is more effective in mdx mice than methylprednisolone.
Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes.
Rajasekhar, Pradeep; Poole, Daniel P; Veldhuis, Nicholas A
2017-01-01
Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein. © 2017 Elsevier Inc. All rights reserved.
Medjeber, Oussama; Touri, Kahina; Rafa, Hayet; Djeraba, Zineb; Belkhelfa, Mourad; Boutaleb, Amira Fatima; Arroul-Lammali, Amina; Belguendouz, Houda; Touil-Boukoffa, Chafia
2018-03-07
Celiac Disease (CeD) is a chronic immune-mediated enteropathy, in which dietary gluten induces an inflammatory reaction, predominantly in the duodenum. Propolis is a resinous hive product, collected by honeybees from various plant sources. Propolis is well-known for its anti-inflammatory, anti-oxidant and immunomodulatory effects, due to its major compounds, polyphenols and flavonoids. The aim of our study was to assess the ex vivo effect of ethanolic extract of propolis (EEP) upon the activity and expression of iNOS, along with IFN-γ and IL-10 production in Algerian Celiac patients. In this context, PBMCs isolated from peripheral blood of Celiac patients and healthy controls were cultured with different concentrations of EEP. NO production was measured using the Griess method, whereas quantitation of IFN-γ and IL-10 levels was performed by ELISA. Inducible nitric oxide synthase (iNOS) expression, NFκB and pSTAT-3 activity were analyzed by immunofluorescence assay. Our results showed that PBMCs from Celiac patients produced high levels of NO and IFN-γ compared with healthy controls (HC). Interestingly, EEP reduced significantly, NO and IFN-γ levels and significantly increased IL-10 levels at a concentration of 50 µg/mL. Importantly, EEP downmodulated the iNOS expression as well as the activity of NFκB and pSTAT-3 transcription factors. Altogether, our results highlight the immunomodulatory effect of propolis on NO pathway and on pro-inflammatory cytokines. Therefore, we suggest that propolis may constitute a potential candidate to modulate inflammation during Celiac Disease and has a potential therapeutic value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi xi; Zhang, Man; Cai, Yuehua
Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppressionmore » of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.« less
hrHPV E5 oncoprotein: immune evasion and related immunotherapies.
de Freitas, Antonio Carlos; de Oliveira, Talita Helena Araújo; Barros, Marconi Rego; Venuti, Aldo
2017-05-25
The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.
The inextricable role of the kidney in hypertension
Crowley, Steven D.; Coffman, Thomas M.
2014-01-01
An essential link between the kidney and blood pressure control has long been known. Here, we review evidence supporting the premise that an impaired capacity of the kidney to excrete sodium in response to elevated blood pressure is a major contributor to hypertension, irrespective of the initiating cause. In this regard, recent work suggests that novel pathways controlling key sodium transporters in kidney epithelia have a critical impact on hypertension pathogenesis, supporting a model in which impaired renal sodium excretion is a final common pathway through which vascular, neural, and inflammatory responses raise blood pressure. We also address recent findings calling into question long-standing notions regarding the relationship between sodium intake and changes in body fluid volume. Expanded understanding of the role of the kidney as both a cause and target of hypertension highlights key aspects of pathophysiology and may lead to identification of new strategies for prevention and treatment. PMID:24892708
Maywald, Martina; Wessels, Inga; Rink, Lothar
2017-10-24
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity
Weitzman, Matthew D.; Weitzman, Jonathan B.
2014-01-01
Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335
Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong
2018-05-15
Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Levine, Yaakov A.; Koopman, Frieda A.; Faltys, Michael; Caravaca, April; Bendele, Alison; Zitnik, Ralph; Vervoordeldonk, Margriet J.; Tak, Paul Peter
2014-01-01
Introduction The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model. Methods Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed. Results Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02), a 57% reduction in ankle diameter (area under curve; p = 0.02) and 46% reduction overall histological arthritis score (p = 0.01) with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02), accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL) from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01). Conclusions The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders. PMID:25110981
Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin
2013-01-01
Objective Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Method and Results Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Conclusion Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis. PMID:24098801
Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi
2010-01-01
Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1β, interleukin-6, and interferon (IFN)β, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-κB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNβ-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways. PMID:19910459
Yang, Xiu-Li; Kim, Chi Kyung; Kim, Tae Jung; Sun, Jing; Rim, Doeun; Kim, Young-Ju; Ko, Sang-Bae; Jang, Hyunduk; Yoon, Byung-Woo
2016-02-01
The aim of this study was to investigate whether fimasartan, a novel angiotensin II receptor blocker, modulates hemolysate-induced inflammation in astrocytes. We stimulated astrocytes with hemolysate to induce hemorrhagic inflammation in vitro. Astrocytes were pretreated with fimasartan and then incubated with hemolysate at different durations. Anti-inflammatory cell signaling molecules including Akt, extracellular signal regulated kinase (ERK), NFκB and cyclooxygenase-2 (COX-2) were assessed by western blotting. Pro-inflammatory mediators were evaluated by real-time RT-PCR and ELISA. The stimulation by hemolysate generated a robust activation of inflammatory signaling pathways in astrocytes. Hemolysate increased the phosphorylation of Akt at 1 h, and ERK1/2 at 20 min compared with the control group and promoted the degradation of IκBα. Pretreated fimasartan significantly decreased hemolysate-induced phosphorylation of Akt and ERK1/2. In addition, fimasartan also suppressed NFκB-related inflammatory pathways induced by hemolysate, including reduction of the gene expression of NFκB, and decreased nuclear translocation of NFκB and degradation of IκB. This reduction of inflammatory upstream pathways decreased the expression of inflammatory end-products: COX-2 and interleukin-1 (IL-1β). Furthermore, the expression of COX-2 was attenuated by both Akt inhibitor (LY294002) and ERK inhibitor (U0126), and IκBα degradation was suppressed by LY294002. These results demonstrate that pretreatment with fimasartan to astrocytes suppresses the inflammatory responses induced by hemolysate. Akt, ERK and NFκB were associated with hemolysate-induced COX-2 and IL-1β expression. Based on these mechanisms, fimasartan could be a candidate anti-inflammatory regulator for the treatment of intracerebral hemorrhage.
Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan
2016-12-01
Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.
The importance of regulatory ubiquitination in cancer and metastasis
Gallo, L. H.; Ko, J.; Donoghue, D. J.
2017-01-01
ABSTRACT Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis. PMID:28166483
Adipokines and inflammation: is it a question of weight?
Francisco, Vera; Pino, Jesus; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste
2018-05-01
Obesity has reached epidemic proportions in the Western society and is increasing in the developing world. It is considered as one of the major contributors to the global burden of disability and chronic diseases, including autoimmune, inflammatory and degenerative diseases. Research conducted on obesity and its complications over the last two decades has transformed the outdated concept of white adipose tissue (WAT) merely serving as an energy depot. WAT is now recognized as an active and inflammatory organ capable of producing a wide variety of factors known as adipokines. These molecules participate through endocrine, paracrine, autocrine or juxtacrine crosstalk mechanisms in a great variety of physiological or pathophysiological processes, regulating food intake, insulin sensitivity, immunity and inflammation. Although initially restricted to metabolic activities (regulation of glucose and lipid metabolism), adipokines currently represent a new family of proteins that can be considered key players in the complex network of soluble mediators involved in the pathophysiology of immune/inflammatory diseases. However, the complexity of the adipokine network in the pathogenesis and progression of inflammatory diseases has posed, since the beginning, the important question of whether it may be possible to target the mechanism(s) by which adipokines contribute to disease selectively without suppressing their physiological functions. Here, we explore in depth the most recent findings concerning the involvement of adipokines in inflammation and immune responses, in particular in rheumatic, inflammatory and degenerative diseases. We also highlight several possible strategies for therapeutic development and propose that adipokines and their signalling pathways may represent innovative therapeutic strategies for inflammatory disorders. © 2018 The British Pharmacological Society.
Gao, Wei; Xiong, Ye; Li, Qiang; Yang, Hong
2017-01-01
The recognition of invading pathogens and endogenous molecules from damaged tissues by toll-like receptors (TLRs) triggers protective self-defense mechanisms. However, excessive TLR activation disrupts the immune homeostasis by sustained pro-inflammatory cytokines and chemokines production and consequently contributes to the development of many inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE), infection-associated sepsis, atherosclerosis, and asthma. Therefore, inhibitors/antagonists targeting TLR signals may be beneficial to treat these disorders. In this article, we first briefly summarize the pathophysiological role of TLRs in the inflammatory diseases. We then focus on reviewing the current knowledge in both preclinical and clinical studies of various TLR antagonists/inhibitors for the prevention and treatment of inflammatory diseases. These compounds range from conventional small molecules to therapeutic biologics and nanodevices. In particular, nanodevices are emerging as a new class of potent TLR inhibitors for their unique properties in desired bio-distribution, sustained circulation, and preferred pharmacodynamic and pharmacokinetic profiles. More interestingly, the inhibitory activity of these nanodevices can be regulated through precise nano-functionalization, making them the next generation therapeutics or “nano-drugs.” Although, significant efforts have been made in developing different kinds of new TLR inhibitors/antagonists, only limited numbers of them have undergone clinical trials, and none have been approved for clinical uses to date. Nevertheless, these findings and continuous studies of TLR inhibition highlight the pharmacological regulation of TLR signaling, especially on multiple TLR pathways, as future promising therapeutic strategy for various inflammatory and autoimmune diseases. PMID:28769820
Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke
Rodrigues, Maria Carolina O.; Glover, Loren E.; Weinbren, Nathan; Rizzi, Jessica A.; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Sanberg, Paul R.; Allickson, Julie G.; Kuzmin-Nichols, Nicole; Garbuzova-Davis, Svitlana; Voltarelli, Julio Cesar; Cruz, Eduardo; Borlongan, Cesar V.
2011-01-01
Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient. PMID:22162629
Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R
2017-12-16
Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory pathways for its treatment.
Jiang, Jun; Kang, Tae Bong; Shim, Do Wan; Oh, Na Hyun; Kim, Tack Joong; Lee, Kwang Ho
2013-07-01
Indole-3-carbinol (I3C), a natural hydrolysis product of glucobrassicin, is a member of the Brassica family of vegetables and is known to have various anti-cancer activities. In the present study, we assessed in vitro and in vivo anti-inflammatory effects of I3C and its molecular mechanisms. I3C attenuated the production of pro-inflammatory mediators such as NO, IL-6, and IL-1β in LPS-induced Raw264.7 cells and THP-1 cells through attenuation of the TRIF-dependent signaling pathway. Furthermore, I3C suppressed the infiltration of immune cells into the lung and pro-inflammatory cytokine production such as IL-6, TNF-α in broncho-alveolar lavage fluid (BALF) in the LPS-induced acute lung injury mouse model. I3C also suppressed IL-1β secretion in nigericin treated in vivo model. I3C has potent anti-inflammatory effects through regulating TRIF-dependent signaling pathways, suggesting that I3C may provide a valuable therapeutic strategy in treating various inflammatory diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chronic Inflammatory Diseases and Green Tea Polyphenols
Oz, Helieh S.
2017-01-01
Chronic inflammatory diseases affect millions of people globally and the incidence rate is on the rise. While inflammation contributes to the tissue healing process, chronic inflammation can lead to life-long debilitation and loss of tissue function and organ failure. Chronic inflammatory diseases include hepatic, gastrointestinal and neurodegenerative complications which can lead to malignancy. Despite the millennial advancements in diagnostic and therapeutic modalities, there remains no effective cure for patients who suffer from inflammatory diseases. Therefore, patients seek alternatives and complementary agents as adjunct therapies to relieve symptoms and possibly to prevent consequences of inflammation. It is well known that green tea polyphenols (GrTPs) are potent antioxidants with important roles in regulating vital signaling pathways. These comprise transcription nuclear factor-kappa B mediated I kappa B kinase complex pathways, programmed cell death pathways like caspases and B-cell lymphoma-2 and intervention with the surge of inflammatory markers like cytokines and production ofcyclooxygenase-2. This paper concisely reviews relevant investigations regarding protective effects of GrTPs and some reported adverse effects, as well as possible applications for GrTPs in the treatment of chronic and inflammatory complications. PMID:28587181
Functional macrophages and gastrointestinal disorders.
Liu, Yue-Hong; Ding, Yue; Gao, Chen-Chen; Li, Li-Sheng; Wang, Yue-Xiu; Xu, Jing-Dong
2018-03-21
Macrophages (MΦ) differentiate from blood monocytes and participate in innate and adaptive immunity. Because of their abilities to recognize pathogens and activate bactericidal activities, MΦ are always discovered at the site of immune defense. MΦ in the intestine are unique, such that in the healthy intestine, they possess complex mechanisms to protect the gut from inflammation. In these complex mechanisms, they produce anti-inflammatory cytokines, such as interleukin-10 and transforming growth factor-β, and inhibit the inflammatory pathways mediated by Toll-like receptors. It has been demonstrated that resident MΦ play a crucial role in maintaining intestinal homeostasis, and they can be recognized by their unique markers. Nonetheless, in the inflamed intestine, the function of MΦ will change because of environmental variation, which may be one of the mechanisms of inflammatory bowel disease (IBD). We provide further explanation about these mechanisms in our review. In addition, we review recent discoveries that MΦ may be involved in the development of gastrointestinal tumors. We will highlight the possible therapeutic targets for the management of IBD and gastrointestinal tumors, and we also discuss why more details are needed to fully understand all other effects of intestinal MΦ.
Jana, Malabendu; Pahan, Kalipada
2012-08-01
Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.
Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Soyoung; Ku, Sae-Kwang; Han, Min-Su
Inhibition of high mobility group box 1 (HMGB1) protein and restoration of endothelial integrity is emerging as an attractive therapeutic strategy in the management of sepsis. Here, three structurally related polyphenols found in the Chinese herb Huang Qui, baicalin (BCL), baicalein (BCN), and wogonin (WGN), were examined for their effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. According to our data, BCL, BCN, and WGN inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. BCL, BCN, and WGN also inhibited HMGB1-mediated hyperpermeability andmore » leukocyte migration in mice. In addition, treatment with BCL, BCN, and WGN reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that BCL, BCN, and WGN could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway. - Highlights: • HMGB1 is an inflammatory mediator for vascular inflammation. • Baicalin, baicalein and wogonin inhibited HMGB1-induced hyperpermeability in vitro and in vivo. • Baicalin, baicalein and wogonin inhibited HMGB1-mediated inflammatory responses. • Baicalin, baicalein and wogonin suppressed the activation of NF-κB and ERK1/2 and production of TNF-α and IL-6. • Baicalin, baicalein and wogonin prevent CLP-induced septic mortality.« less
Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J
2015-05-18
PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation.
Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain123
Daou, Ihab; Beaudry, Hélène; Ase, Ariel R.; Wieskopf, Jeffrey S.; Ribeiro-da-Silva, Alfredo; Mogil, Jeffrey S.
2016-01-01
Abstract We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8+ primary afferents using the Nav1.8-Cre driver line. Arch expression covered both peptidergic and nonpeptidergic nociceptors and yellow light stimulation reliably blocked electrically induced action potentials in DRG neurons. Acute transdermal illumination of the hindpaws of Nav1.8-Arch+ mice significantly reduced mechanical allodynia under inflammatory conditions, while basal mechanical sensitivity was not affected by the optical stimulation. Arch-driven hyperpolarization of nociceptive terminals was sufficient to prevent channelrhodopsin-2 (ChR2)-mediated mechanical and thermal hypersensitivity in double-transgenic Nav1.8-ChR2+-Arch+mice. Furthermore, prolonged optical silencing of peripheral afferents in anesthetized Nav1.8-Arch+ mice led to poststimulation analgesia with a significant decrease in mechanical and thermal hypersensitivity under inflammatory and neuropathic conditions. These findings highlight the role of peripheral neuronal inputs in the onset and maintenance of pain hypersensitivity, demonstrate the plasticity of pain pathways even after sensitization has occurred, and support the involvement of Nav1.8+ afferents in both inflammatory and neuropathic pain. Together, we present a selective analgesic approach in which genetically identified subsets of peripheral sensory fibers can be remotely and optically inhibited with high temporal resolution, overcoming the compensatory limitations of genetic ablations. PMID:27022626
Redox signaling in skeletal muscle: role of aging and exercise.
Ji, Li Li
2015-12-01
Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function. Copyright © 2015 The American Physiological Society.
Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation
Khan, Shahida A.; Khan, Sarah A.; Zahran, Solafa A.; Damanhouri, Ghazi
2014-01-01
Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators. PMID:25258478
Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.
Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B
2017-10-13
Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.
Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis
Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin
2016-01-01
Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142
c-Kit modifies the inflammatory status of smooth muscle cells
Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo
2017-01-01
Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608
c-Kit modifies the inflammatory status of smooth muscle cells.
Song, Lei; Martinez, Laisel; Zigmond, Zachary M; Hernandez, Diana R; Lassance-Soares, Roberta M; Selman, Guillermo; Vazquez-Padron, Roberto I
2017-01-01
c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (Kit W/W-v ) and control (Kit +/+ ) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Lu, Kung-Wen; Hsu, Chao-Kuei; Hsieh, Ching-Liang; Yang, Jun; Lin, Yi-Wen
2016-02-24
Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund's adjuvant (CFA), (2.14 ± 0.1, p < 0.05, n = 8) can be alleviated after EA treatment at either ipsilateral (3.91 ± 0.21, p < 0.05, n = 8) or contralateral acupoints (3.79 ± 0.25, p < 0.05, n = 8). EA may also reduce nociceptive Nav sodium currents in dorsal root ganglion (DRG) neurons. The expression of TRPV1 and associated signaling pathways notably increased after the CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain.
Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal
Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc
2010-01-01
Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843
Chen, Gang; Severo, Maiara S.; Sakhon, Olivia S.; Choy, Anthony; Herron, Michael J.; Felsheim, Roderick F.; Wiryawan, Hilda; Liao, Jiayu; Johns, Jennifer L.; Munderloh, Ulrike G.; Sutterwala, Fayyaz S.; Kotsyfakis, Michail
2012-01-01
Anaplasma phagocytophilum is a tick-borne rickettsial pathogen that provokes an acute inflammatory response during mammalian infection. The illness caused by A. phagocytophilum, human granulocytic anaplasmosis, occurs irrespective of pathogen load and results instead from host-derived immunopathology. Thus, characterizing A. phagocytophilum genes that affect the inflammatory process is critical for understanding disease etiology. By using an A. phagocytophilum Himar1 transposon mutant library, we showed that a single transposon insertion into the A. phagocytophilum dihydrolipoamide dehydrogenase 1 gene (lpda1 [APH_0065]) affects inflammation during infection. A. phagocytophilum lacking lpda1 revealed enlargement of the spleen, increased splenic extramedullary hematopoiesis, and altered clinicopathological abnormalities during mammalian colonization. Furthermore, LPDA1-derived immunopathology was independent of neutrophil infection and correlated with enhanced reactive oxygen species from NADPH oxidase and nuclear factor (NF)-κB signaling in macrophages. Taken together, these findings suggest the presence of different signaling pathways in neutrophils and macrophages during A. phagocytophilum invasion and highlight the importance of LPDA1 as an immunopathological molecule. PMID:22753375
Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi
2016-01-01
The interferon-inducible protein Z-DNA binding protein 1 (ZBP1, also known as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1) was identified as a dsDNA sensor, which instigates innate immune responses. However, this classification has been disputed and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. Herein, we demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the RIPK1–RIPK3–Caspase-8 axis. ZBP1 regulates NLRP3 inflammasome activation as well as induction of apoptosis, necroptosis and pyroptosis in IAV-infected cells. Importantly, ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection. PMID:27917412
Price, J Blair; Bronars, Carrie; Erhardt, Sophie; Cullen, Kathyrn R; Schwieler, Lilly; Berk, Michael; Walder, Ken; McGee, Sean L; Frye, Mark A; Tye, Susannah J
2018-04-12
Disruptions of bioenergetic signaling and neurogenesis are hallmarks of depression physiology and are often the product of dysregulation of the inflammatory, stress-response, and metabolic systems. These systems are extensively interrelated at the physiological level, yet the bulk of the literature to date addresses pathophysiological mechanisms in isolation. A more integrated understanding of the etiology, progression, and treatment response profiles of depression is possible through wider consideration of relevant preclinical and clinical studies that examine the result of disruptions in these systems. Here, we review recent data demonstrating the critical effects of bioenergetic disruption on neuroplasticity and the development and progression of depressive illness. We further highlight the interactive and dynamic nature of the inflammatory and stress response systems and how disruption of these systems influences bioenergetic signaling pathways critical to treatment outcomes. In so doing, we underscore the pressing need to reconsider the implications of treatment resistance and present a framework for developing novel, personalized treatment approaches for depression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hajishengallis, George; Hajishengallis, Evlambia; Kajikawa, Tetsuhiro; Wang, Baomei; Yancopoulou, Despina; Ricklin, Daniel; Lambris, John D
2016-06-01
Periodontitis is a dysbiotic inflammatory disease leading to the destruction of the tooth-supporting tissues. Current therapies are not always effective and this prevalent oral disease continues to be a significant health and economic burden. Early clinical studies have associated periodontitis with elevated complement activity. Consistently, subsequent genetic and pharmacological studies in rodents have implicated the central complement component C3 and downstream signaling pathways in periodontal host-microbe interactions that promote dysbiosis and inflammatory bone loss. This review discusses these mechanistic advances and moreover focuses on the compstatin family of C3 inhibitors as a novel approach to treat periodontitis. In this regard, local application of the current lead analog Cp40 was recently shown to block both inducible and naturally occurring periodontitis in non-human primates. These promising results from non-human primate studies and the parallel development of Cp40 for clinical use highlight the feasibility for developing an adjunctive, C3-targeted therapy for human periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drotrecogin alfa (activated): a novel therapeutic strategy for severe sepsis
Pastores, S
2003-01-01
Recent studies have highlighted the close link between activation of the coagulation system and the inflammatory response in the pathophysiology of severe sepsis. The protein C anticoagulant pathway plays an integral part in modulating the coagulation and inflammatory responses to infection. In patients with sepsis, endogenous protein C levels are decreased, shifting the balance toward greater systemic inflammation, coagulation, and cell death. On the basis of a single large randomised phase 3 trial, drotrecogin alfa (activated), a recombinant form of human activated protein C, was recently approved for the treatment of adult patients with severe sepsis and a high risk of death. Since its approval, several questions have been raised regarding the appropriate use of this agent. Given the increased risk of serious bleeding and the high cost of treatment, drotrecogin alfa (activated) should be reserved at this time for the most acutely ill patients with severe sepsis who meet the criteria that were used in the phase 3 trial. PMID:12566544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.
Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key source of inflammatory mediators in OSA.« less
Novel insights for systemic inflammation in sepsis and hemorrhage.
Cai, Bolin; Deitch, Edwin A; Ulloa, Luis
2010-01-01
The inflammatory responses in sepsis and hemorrhage remain a major cause of death. Clinically, it is generally accepted that shock in sepsis or hemorrhage differs in its mechanisms. However, the recognition of inflammatory cytokines as a common lethal pathway has become consent. Proinflammatory cytokines such as tumor necrosis factor (TNF) or high-mobility group box1 (HMGB1) are fanatically released and cause lethal multiorgan dysfunction. Inhibition of these cytokines can prevent the inflammatory responses and organ damage. In seeking potential anti-inflammatory strategies, we reported that ethyl pyruvate and alpha7 nicotinic acetylcholine receptor (alpha7nAChR) agonists effectively restrained cytokine production to provide therapeutic benefits in both experimental sepsis and hemorrhage. Here, we review the inflammatory responses and the anti-inflammatory strategies in experimental models of sepsis and hemorrhage, as they may have a consistent inflammatory pathway in spite of their different pathophysiological processes.
Influence of organophosphate poisoning on human dendritic cells.
Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine
2013-12-05
Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight novel aspects -apparently independent of AChE inhibition- of OPC poisoning with regard to lung toxicity. Our findings contribute to the basic understanding of pulmonary complications caused by OPC poisoning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo
Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates fibrosis after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates inflammation and fibrosis after hypoxia-and LPS-induced renal epithelial cells injury via TLR4/NF-κB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com
The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoatemore » (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level in ND-treated rats. • Taurine prevents ND-induced testicular toxicity and DNA damage. • Taurine shows antioxidant, anti-inflammatory, and anti-apoptotic effects.« less
Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes
Tuttolomondo, Antonino; Maida, Carlo; Pinto, Antonio
2015-01-01
Diabetic foot ulcerations have been extensively reported as vascular complications of diabetes mellitus associated with a high degree of morbidity and mortality. Diabetic foot syndrome (DFS), as defined by the World Health Organization, is an “ulceration of the foot (distally from the ankle and including the ankle) associated with neuropathy and different grades of ischemia and infection”. Pathogenic events able to cause diabetic foot ulcers are multifactorial. Among the commonest causes of this pathogenic pathway it’s possible to consider peripheral neuropathy, foot deformity, abnormal foot pressures, abnormal joint mobility, trauma, peripheral artery disease. Several studies reported how diabetic patients show a higher mortality rate compared to patients without diabetes and in particular these studies under filled how cardiovascular mortality and morbidity is 2-4 times higher among patients affected by type 2 diabetes mellitus. This higher degree of cardiovascular morbidity has been explained as due to the observed higher prevalence of major cardiovascular risk factor, of asymptomatic findings of cardiovascular diseases, and of prevalence and incidence of cardiovascular and cerebrovascular events in diabetic patients with foot complications. In diabetes a fundamental pathogenic pathway of most of vascular complications has been reported as linked to a complex interplay of inflammatory, metabolic and procoagulant variables. These pathogenetic aspects have a direct interplay with an insulin resistance, subsequent obesity, diabetes, hypertension, prothrombotic state and blood lipid disorder. Involvement of inflammatory markers such as IL-6 plasma levels and resistin in diabetic subjects as reported by Tuttolomondo et al confirmed the pathogenetic issue of the a “adipo-vascular” axis that may contribute to cardiovascular risk in patients with type 2 diabetes. This “adipo-vascular axis” in patients with type 2 diabetes has been reported as characterized by lower plasma levels of adiponectin and higher plasma levels of interleukin-6 thus linking foot ulcers pathogenesis to microvascular and inflammatory events. The purpose of this review is to highlight the immune inflammatory features of DFS and its possible role as a marker of cardiovascular risk in diabetes patients and to focus the management of major complications related to diabetes such as infections and peripheral arteriopathy. PMID:25621212
Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc
2012-08-01
Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study,more » we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of the JNK/c-Jun pathway in human T lymphocytes.« less
Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu
2017-01-01
Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases. PMID:29113305
Wu, Li-Rong; Liu, Liang; Xiong, Xiao-Yi; Zhang, Qin; Wang, Fa-Xiang; Gong, Chang-Xiong; Zhong, Qi; Yang, Yuan-Rui; Meng, Zhao-You; Yang, Qing-Wu
2017-10-06
Inflammatory responses play crucial roles in cerebral ischemia/reperfusion injury. Toll-like receptor 4 (TLR4) is an important mediator of the neuroinflammatory response to cerebral ischemia/reperfusion injury. Vinpocetine is a derivative of the alkaloid vincamine and exerts an anti-inflammatory effect by inhibiting NF-κB activation. However, the effects of vinpocetine on pathways upstream of NF-κB signaling, such as TLR4, have not been fully elucidated. Here, we used mouse middle cerebral artery occlusion (MCAO) and cell-based oxygen-glucose deprivation (OGD) models to evaluate the therapeutic effects and mechanisms of vinpocetine treatment. The vinpocetine treatment significantly reduced mice cerebral infarct volumes and neurological scores. Moreover, the numbers of TUNEL+ and Fluoro-Jade B+ cells were significantly decreased in the ischemic brain tissues after vinpocetine treatment. In the OGD model, the vinpocetine treatment also increased the viability of cultured cortical neurons. Interestingly, vinpocetine exerted a neuroprotective effect on the mouse MCAO model and cell-based OGD model by inhibiting TLR4-mediated inflammatory responses and decreasing proinflammatory cytokine release through the MyD88-dependent signaling pathway, independent of TRIF signaling pathway. In conclusion, vinpocetine exerts anti-inflammatory effects to ameliorate cerebral ischemia/reperfusion injury in vitro and in vivo. Vinpocetine may inhibit inflammatory responses through the TLR4/MyD88/NF-κB signaling pathway, independent of TRIF-mediated inflammatory responses. Thus, vinpocetine may be an attractive therapeutic candidate for the treatment of ischemic cerebral injury or other inflammatory diseases.
Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S
2018-01-01
Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.
NASA Astrophysics Data System (ADS)
Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin
2014-05-01
Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.
Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng
2014-12-01
Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.
Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan
2015-12-01
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling
2015-01-01
Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035
Nasef, Noha Ahmed; Mehta, Sunali; Murray, Pamela; Marlow, Gareth; Ferguson, Lynnette R.
2014-01-01
Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2) and 4 (TLR4) are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD). The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK)-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry) or hydrophilic fractions (such as red raspberry), or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases. PMID:25415606
Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J; Zawieja, David C; Muthuchamy, Mariappan
2011-01-01
The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. © 2010 John Wiley & Sons Ltd.
Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J.; Zawieja, David C.; Muthuchamy, Mariappan
2010-01-01
Objective The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. Methods A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP mediated signaling pathways in lymphatics. Results We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC20) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC20 after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. Conclusions These data provide the first evidence that SP mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. PMID:21166923
Lee, Haeyong; Bae, Sungmin; Choi, Byoung Whui; Yoon, Yoosik
2012-02-01
In the present study, we investigated the possibility that the WNT/β-catenin pathway plays a role in inflammatory responses both in an human inflammatory condition and in an in vitro inflammation model. First, we analyzed gene expression patterns of the peripheral blood cells from asthma patients compared with those from normal subjects using microarray analyses. We found that intracellular signaling molecules of the WNT/β-catenin pathway were significantly changed in asthma patients compared with the levels in the controls. Next, we determined whether major components of the WNT/β-catenin pathway were involved in the lipopolysaccharide (LPS)-induced inflammatory response of the RAW264.7 macrophage cell line. Among the members of WNT/β-catenin pathway, the protein levels of low-density lipoprotein receptor-related protein (LRP) 6, dishevelled (DVL) 2, and AXIN1, which were measured using western blotting, did not significantly change in the presence of LPS. In contrast, the LPS induced a rapid phosphorylation of glycogen synthase kinase (GSK) 3β and accumulation of β-catenin protein. It was found that β-catenin plays a significant role in the LPS-induced inflammatory response through the performance of small interfering RNA (siRNA) transfection experiments. The mRNA level of IL-6 was significantly elevated in β-catenin siRNA-transfected cells compared with that in control siRNA-transfected cells after LPS treatment. Furthermore, nuclear factor-κB (NF-κB) activity was also significantly increased in β-catenin siRNA-transfected cells compared with the level seen in control siRNA-transfected cells. Taken together, these results suggest that β-catenin plays a role as a negative regulator, preventing the overproduction of inflammatory cytokines such as IL-6 in LPS-induced inflammatory responses.
Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Pérez-Rial, Sandra; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo
2017-11-01
The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFβ reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFβ pathway in a non-invasive way. The activation of the TGFβ pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFβ activation in mice treated with LPS and TUDCA correlated with both an increase in TGFβ3 transcript in mouse brain and an increase in TGFβ3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFβ receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFβ3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFβ pathway in mouse brain and increased the expression of TGFβ3. Therefore, the induction of TGFβ3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFβ pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFβ contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.
Influence of Acute and Chronic Exercise on Glucose Uptake
Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten
2016-01-01
Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930
Lessons Learned From Trials Targeting Cytokine Pathways in Patients With Inflammatory Bowel Diseases
Abraham, Clara; Dulai, Parambir S.; Vermeire, Séverine; Sandborn, William J.
2016-01-01
Insights into the pathogenesis of inflammatory bowel diseases (IBD) have provided important information for the development of therapeutics. Levels of interleukin 23 (IL23) and T-helper (Th) 17 cell pathway molecules are elevated in inflamed intestinal tissues of patients with IBD. Loss of function variants of the interleukin 23 receptor gene (IL23R) protect against IBD, and in animals, blocking IL23 reduces severity of colitis. These findings indicated that the IL23 and Th17 cell pathways might be promising targets for treatment of IBD. Clinical trials have investigated the effects of agents designed to target distinct levels of the IL23 and Th17 cell pathways, and the results are providing insights into IBD pathogenesis and additional strategies for modulating these pathways. Strategies to reduce levels of proinflammatory cytokines more broadly and increase anti-inflammatory mechanisms are also emerging for treatment of IBD. The results from trials targeting these immune system pathways have provided important lessons for future trials. Findings indicate the importance of improving approaches to integrate patient features and biomarkers of response with selection of therapeutics. PMID:27780712
Inflammation, vitamin B6 and related pathways.
Ueland, Per Magne; McCann, Adrian; Midttun, Øivind; Ulvik, Arve
2017-02-01
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bermudez, Beatriz; Dahl, Tuva Borresdatter; Medina, Indira; Groeneweg, Mathijs; Holm, Sverre; Montserrat-de la Paz, Sergio; Rousch, Mat; Otten, Jeroen; Herias, Veronica; Varela, Lourdes M; Ranheim, Trine; Yndestad, Arne; Ortega-Gomez, Almudena; Abia, Rocio; Nagy, Laszlo; Aukrust, Pal; Muriana, Francisco J G; Halvorsen, Bente; Biessen, Erik Anna Leonardus
2017-06-01
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) mediates inflammatory and potentially proatherogenic effects, whereas the role of intracellular NAMPT (iNAMPT), the rate limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) + generation, in atherogenesis is largely unknown. Here we investigated the effects of iNAMPT overexpression in leukocytes on inflammation and atherosclerosis. Low-density lipoprotein receptor-deficient mice with hematopoietic overexpression of human iNAMPT (iNAMPT hi ), on a western type diet, showed attenuated plaque burden with features of lesion stabilization. This anti-atherogenic effect was caused by improved resistance of macrophages to apoptosis by attenuated chemokine (C-C motif) receptor 2-dependent monocyte chemotaxis and by skewing macrophage polarization toward an anti-inflammatory M2 phenotype. The iNAMPT hi phenotype was almost fully reversed by treatment with the NAMPT inhibitor FK866, indicating that iNAMPT catalytic activity is instrumental in the atheroprotection. Importantly, iNAMPT overexpression did not induce any increase in eNAMPT, and eNAMPT had no effect on chemokine (C-C motif) receptor 2 expression and promoted an inflammatory M1 phenotype in macrophages. The iNAMPT-mediated effects at least partly involved sirtuin 1-dependent molecular crosstalk of NAMPT and peroxisome proliferator-activated receptor γ. Finally, iNAMPT and peroxisome proliferator-activated receptor γ showed a strong correlation in human atherosclerotic, but not healthy arteries, hinting to a relevance of iNAMPT/peroxisome proliferator-activated receptor γ pathway also in human carotid atherosclerosis. This study highlights the functional dichotomy of intracellular versus extracellular NAMPT, and unveils a critical role for the iNAMPT-peroxisome proliferator-activated receptor γ axis in atherosclerosis. © 2017 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shan-Shan; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing; Jiang, Teng
2014-01-17
Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells tomore » investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.« less
Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda
Embryonic diapause (delayed implantation) is a reproductive strategy widespread in the animal kingdom. Under this condition, embryos at the blastocyst stage become dormant simultaneously with uterine quiescence until environmental or physiological conditions are favorable for the survival of the mother and newborn. Under favorable conditions, activation of the blastocyst and uterus ensues with implantation and progression of pregnancy. Although endocrine factors are known to participate in this process, the underlying molecular mechanism coordinating this phenomenon is not clearly understood. We recently found that uterine muscle segment homeobox (Msx) transcription factors are critical for the initiation and maintenance of delayed implantationmore » in mice. To better understand why Msx genes are critical for delayed implantation, we compared uterine proteomics profiles between littermate floxed (Msx1/Msx2f/f) mice and mice with uterine deletion of Msx genes (Msx1/Msx2d/d) under delayed conditions. In Msx1/Msx2d/d uteri, pathways including protein translation, ubiquitin-proteasome system, inflammation, chaperone-mediated protein folding, and endoplasmic reticulum (ER) stress were enriched, and computational modeling showed intersection of these pathways on inflammatory responses. Indeed, increases in the ubiquitin-proteasome system and inflammation conformed to proteotoxic and ER stress in Msx1/Msx2d/d uteri under delayed conditions. Interestingly, treatment with a proteasome inhibitor bortezomib further exacerbated ER stress in Msx1/Msx2d/d uteri with aggravated inflammatory response, deteriorating rate of blastocyst recovery and failure to sustain delayed implantation. This study highlights a previously unrecognized role for Msx in preventing proteotoxic stress and inflammatory responses to coordinate embryo dormancy and uterine quiescence during embryonic diapause.« less
Robertis, Mariangela De; Massi, Emanuela; Poeta, Maria Luana; Carotti, Simone; Morini, Sergio; Cecchetelli, Loredana; Signori, Emanuela; Fazio, Vito Michele
2011-01-01
Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci–adenoma–carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS–treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model. PMID:21483655
Li, Yan; Wang, Jinghui; Lin, Feng; Yang, Yinfeng; Chen, Su-Shing
2017-01-01
Breast cancer is the most common carcinoma in women. Comprehensive therapy on breast cancer including surgical operation, chemotherapy, radiotherapy, endocrinotherapy, etc. could help, but still has serious side effect and resistance against anticancer drugs. Complementary and alternative medicine (CAM) may avoid these problems, in which traditional Chinese medicine (TCM) has been highlighted. In this section, to analyze the mechanism through which TCM act on breast cancer, we have built a virtual model consisting of the construction of database, oral bioavailability prediction, drug-likeness evaluation, target prediction, network construction. The 20 commonly employed herbs for the treatment of breast cancer were used as a database to carry out research. As a result, 150 ingredient compounds were screened out as active molecules for the herbs, with 33 target proteins predicted. Our analysis indicates that these herbs 1) takes a 'Jun-Chen-Zuo-Shi" as rule of prescription, 2) which function mainly through perturbing three pathways involving the epidermal growth factor receptor, estrogen receptor, and inflammatory pathways, to 3) display the breast cancer-related anti-estrogen, anti-inflammatory, regulation of cell metabolism and proliferation activities. To sum it up, by providing a novel in silico strategy for investigation of the botanical drugs, this work may be of some help for understanding the action mechanisms of herbal medicines and for discovery of new drugs from plants.
A key requirement for CD300f in innate immune responses of eosinophils in colitis.
Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A
2017-01-01
Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry extract inhibits UVB-induced lipid peroxidation. • Blackberry extract inhibits UVB-induced myeloperoxidase activity. • Blackberry extract diminishes UVB-induced inflammatory responses. • Blackberry extract prevents skin from oxidative damage and inflammation by UVB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw; Liou, Saou-Hsing; Yeh, Szu-Ching
Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs inmore » the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause ICAM-1/IL‑8 expression in endothelial cells via TLRs. • Nickel induces the inflammatory responses via a TLR-4/NF-κB pathway. • Zinc causes the inflammatory responses via a broader TLRs/NF-κB signaling. • Nickel shows a significantly higher inflammatory effect than zinc. • NF-κB activation is the primary mechanism involved in the inflammatory responses.« less
Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease
Lukiw, Walter J.
2016-01-01
The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer’s disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain. PMID:27725817
Lu, Kung-Wen; Hsu, Chao-Kuei; Hsieh, Ching-Liang; Yang, Jun; Lin, Yi-Wen
2016-01-01
Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund’s adjuvant (CFA), (2.14 ± 0.1, p < 0.05, n = 8) can be alleviated after EA treatment at either ipsilateral (3.91 ± 0.21, p < 0.05, n = 8) or contralateral acupoints (3.79 ± 0.25, p < 0.05, n = 8). EA may also reduce nociceptive Nav sodium currents in dorsal root ganglion (DRG) neurons. The expression of TRPV1 and associated signaling pathways notably increased after the CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain. PMID:26906464
Medicinal properties of alpha-santalol, a naturally occurring constituent of sandalwood oil: review.
Bommareddy, Ajay; Brozena, Sarah; Steigerwalt, James; Landis, Terra; Hughes, Sarah; Mabry, Erica; Knopp, Aaron; VanWert, Adam L; Dwivedi, Chandradhar
2017-11-13
Alpha-santalol is a naturally occurring sesquiterpene that is derived from sandalwood oil. Its wide range of health benefits have been attributed to the modulation of various signalling pathways involved in the development of a particular disease. For example, the antitumour and cancer preventive properties of alpha-santalol have been shown to involve cell death induction through apoptosis and cell cycle arrest in various cancer models. A marked decrease in inflammatory markers have also been shown with alpha-santalol administration in skin tissue models. The current review is aimed at bringing the most recent advances of alpha-santalol against various disease-specific models and highlighting its associated mechanistic details.
Hiraki, Linda T; Silverman, Earl D
2017-08-01
Systemic lupus erythematosus (SLE) is a systemic, autoimmune, multisystem disease with a heterogeneous clinical phenotype. Genome-wide association studies have identified multiple susceptibility loci, but these explain a fraction of the estimated heritability. This is partly because within the broad spectrum of SLE are monogenic diseases that tend to cluster in patients with young age of onset, and in families. This article highlights insights into the pathogenesis of SLE provided by these monogenic diseases. It examines genetic causes of complement deficiency, abnormal interferon production, and abnormalities of tolerance, resulting in monogenic SLE with overlapping clinical features, autoantibodies, and shared inflammatory pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
PUFA diets alter the microRNA expression profiles in an inflammation rat model
ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI
2015-01-01
Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643
Activation and Resolution of Periodontal Inflammation and Its Systemic Impact
Hasturk, Hatice; Kantarci, Alpdogan
2015-01-01
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation resulting in a failure of healing and a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the affected tissues or organ system. Whilst mediators are similar, there is a tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathway to resolution of inflammation. We also discuss a new treatment concept where natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration. PMID:26252412
Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J
2015-01-01
The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.
Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Gu, Min-Jung; Ma, Jin Yeul
2014-01-01
Palmultang (PM) is an herbal decoction that has been used to treat anorexia, anemia, general prostration, and weakness due to chronic illness since medieval times in Korea, China, and Japan. The present study focused on the inhibitory effects of PM on the production of inflammatory factors and on the activation of mechanisms in murine macrophages. PM suppressed the expression of nitric oxide (NO), inflammatory cytokines and inflammatory proteins by inhibiting nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and by inducing heme oxygenase (HO)-1 expression. Collectively, our results explain the anti-inflammatory effect and inhibitory mechanism of PM in macrophages stimulated with lipopolysaccharide (LPS). PMID:24828204
Logan, Samantha M; Storey, Kenneth B
2018-01-01
Inflammation is generally suppressed during hibernation, but select tissues (e.g. lung) have been shown to activate both antioxidant and pro-inflammatory pathways, particularly during arousal from torpor when breathing rates increase and oxidative metabolism fueling the rewarming process produces more reactive oxygen species. Brown and white adipose tissues are now understood to be major hubs for the regulation of immune and inflammatory responses, yet how these potentially damaging processes are regulated by fat tissues during hibernation has hardly been studied. The advanced glycation end-product receptor (RAGE) can induce pro-inflammatory responses when bound by AGEs (which are glycated and oxidized proteins, lipids, or nucleic acids) or damage associated molecular pattern molecules (DAMPs, which are released from dying cells). Since gene expression and protein synthesis are largely suppressed during torpor, increases in AGE-RAGE pathway proteins relative to a euthermic control could suggest some role for these pro-inflammatory mediators during hibernation. This study determined how the pro-inflammatory AGE-RAGE signaling pathway is regulated at six major time points of the torpor-arousal cycle in brown and white adipose from a model hibernator, Ictidomys tridecemlineatus . Immunoblotting, RT-qPCR, and a competitive ELISA were used to assess the relative gene expression and protein levels of key regulators of the AGE-RAGE pathway during a hibernation bout. The results of this study revealed that RAGE is upregulated as animals arouse from torpor in both types of fat, but AGE and DAMP levels either remain unchanged or decrease. Downstream of the AGE-RAGE cascade, nfat5 was more highly expressed during arousal in brown adipose. An increase in RAGE protein levels and elevated mRNA levels of the downstream transcription factor nfat5 during arousal suggest the pro-inflammatory response is upregulated in adipose tissue of the hibernating ground squirrel. It is unlikely that this cascade is activated by AGEs or DAMPs. This research sheds light on how a fat-but-fit organism with highly regulated metabolism may control the pro-inflammatory AGE-RAGE pathway, a signaling cascade that is often dysregulated in other obese organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonhwa; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University; Kim, Tae Hoon
2012-07-01
Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cellmore » adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.« less
Developmental origins of inflammatory and immune diseases
Chen, Ting; Liu, Han-xiao; Yan, Hui-yi; Wu, Dong-mei; Ping, Jie
2016-01-01
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the ‘developmental programming’ and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic–pituitary–adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. PMID:27226490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less
Zhou, Jingran; Wu, Ruiqiong; High, Anthony A; Slaughter, Clive A; Finkelstein, David; Rehg, Jerold E; Redecke, Vanessa; Häcker, Hans
2011-11-01
Toll-like receptors (TLRs) are expressed on innate immune cells and trigger inflammation upon detection of pathogens and host tissue injury. TLR-mediated proinflammatory-signaling pathways are counteracted by partially characterized anti-inflammatory mechanisms that prevent exaggerated inflammation and host tissue damage as manifested in inflammatory diseases. We biochemically identified a component of TLR-signaling pathways, A20-binding inhibitor of NF-κB (ABIN1), which recently has been linked by genome-wide association studies to the inflammatory diseases systemic lupus erythematosus and psoriasis. We generated ABIN1-deficient mice to study the function of ABIN1 in vivo and during TLR activation. Here we show that ABIN1-deficient mice develop a progressive, lupus-like inflammatory disease characterized by expansion of myeloid cells, leukocyte infiltrations in different parenchymatous organs, activated T and B lymphocytes, elevated serum Ig levels, and the appearance of autoreactive antibodies. Kidneys develop glomerulonephritis and proteinuria, reflecting tissue injury. Surprisingly, ABIN1-deficient macrophages exhibit normal regulation of major proinflammatory signaling pathways and mediators but show selective deregulation of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) and its target genes, such as colony-stimulating factor 3 (Csf3), nitric oxide synthase, inducible (Nos2), and S100 calcium-binding protein A8 (S100a8). Their gene products, which are intimately linked to innate immune cell expansion (granulocyte colony-stimulating factor), cytotoxicity (inducible nitric oxide synthase), and host factor-derived inflammation (S100A8), may explain, at least in part, the inflammatory phenotype observed. Together, our data reveal ABIN1 as an essential anti-inflammatory component of TLR-signaling pathways that controls C/EBPβ activity.
Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun
2018-07-01
Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui
2017-07-01
Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (P<0.05). In addition, we observed that administration of the inhibitors of MAPK/Wnt/NF-κB pathways statistically further increased the levels of CDMP1 and SOX9 (P<0.05). Suppression of BMP-2 decreased the levels of CDMP1 and SOX9 and activated MAPK/Wnt/NF-κB pathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (P<0.05). The results showed that CT protects chondrocytes from LPS-induced apoptosis and inflammatory response by regulating BMP-2 and thus blocking MAPK/Wnt/NF-κB pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin
2016-10-10
The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.
Exercise-driven metabolic pathways in healthy cartilage.
Blazek, A D; Nam, J; Gupta, R; Pradhan, M; Perera, P; Weisleder, N L; Hewett, T E; Chaudhari, A M; Lee, B S; Leblebicioglu, B; Butterfield, T A; Agarwal, S
2016-07-01
Exercise is vital for maintaining cartilage integrity in healthy joints. Here we examined the exercise-driven transcriptional regulation of genes in healthy rat articular cartilage to dissect the metabolic pathways responsible for the potential benefits of exercise. Transcriptome-wide gene expression in the articular cartilage of healthy Sprague-Dawley female rats exercised daily (low intensity treadmill walking) for 2, 5, or 15 days was compared to that of non-exercised rats, using Affymetrix GeneChip arrays. Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO)-term enrichment and Functional Annotation analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway mapper was used to identify the metabolic pathways regulated by exercise. Microarray analysis revealed that exercise-induced 644 DEGs in healthy articular cartilage. The DAVID bioinformatics tool demonstrated high prevalence of functional annotation clusters with greater enrichment scores and GO-terms associated with extracellular matrix (ECM) biosynthesis/remodeling and inflammation/immune response. The KEGG database revealed that exercise regulates 147 metabolic pathways representing molecular interaction networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Diseases. These pathways collectively supported the complex regulation of the beneficial effects of exercise on the cartilage. Overall, the findings highlight that exercise is a robust transcriptional regulator of a wide array of metabolic pathways in healthy cartilage. The major actions of exercise involve ECM biosynthesis/cartilage strengthening and attenuation of inflammatory pathways to provide prophylaxis against onset of arthritic diseases in healthy cartilage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Innate sensors of pathogen and stress: linking inflammation to obesity.
Jin, Chengcheng; Flavell, Richard A
2013-08-01
Pathogen and nutrient response pathways are evolutionarily conserved and highly integrated to regulate metabolic and immune homeostasis. Excessive nutrients can be sensed by innate pattern recognition receptors as danger signals either directly or through production of endogenous ligands or modulation of intestinal microbiota. This triggers the activation of downstream inflammatory cascades involving nuclear factor κB and mitogen-activated protein kinase and ultimately induces the production of inflammatory cytokines and immune cell infiltration in various metabolic tissues. The chronic low-grade inflammation in the brain, islet, liver, muscle, and adipose tissue further promotes insulin resistance, energy imbalance, and impaired glucose/lipid metabolism, contributing to the metabolic complications of obesity, such as diabetes and atherosclerosis. In addition, innate pathogen receptors have now emerged as a critical link between the intestinal microbiota and host metabolism. In this review we summarize recent studies demonstrating the important roles of innate pathogen receptors, including Toll-like receptors, nucleotide oligomerization domain containing proteins, and inflammasomes in mediating the inflammatory response to metabolic stress in different tissues and highlight the interaction of innate pattern recognition receptors, gut microbiota, and nutrients during the development of obesity and related metabolic disorders. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Jana, Malabendu; Pahan, Kalipada
2012-01-01
Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and PPAR-γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and PPAR-γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases. PMID:22528839
Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R
2017-01-01
Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.
The future of uveitis treatment.
Lin, Phoebe; Suhler, Eric B; Rosenbaum, James T
2014-01-01
Uveitis is a heterogeneous collection of diseases with polygenic and environmental influences. This heterogeneity presents challenges in trial design and selection of end points. Despite the multitude of causes, therapeutics targeting common inflammatory pathways are effective in treating diverse forms of uveitis. These treatments, including corticosteroids and immunomodulatory agents, although often effective, can have untoward side effects, limiting their utility. The search for drugs with equal or improved efficacy that are safe is therefore paramount. A mechanism-based approach is most likely to yield the future breakthroughs in the treatment of uveitis. We review the literature and provide examples of the nuances of immune regulation and dysregulation that can be targeted for therapeutic benefit. As our understanding of the causes of uveitis grows we will learn how to better apply antibodies designed to block interaction between inflammatory cytokines and their receptors. T-lymphocyte activation can be targeted by blocking co-stimulatory pathways or inhibiting major histocompatibility complex protein interactions. Furthermore, intracellular downstream molecules from cytokine or other pathways can be inhibited using small molecule inhibitors, which have the benefit of being orally bioavailable. An emerging field is the lipid-mediated inflammatory and regulatory pathways. Alternatively, anti-inflammatory cytokines can be provided by administering recombinant protein, and intracellular "brakes" of inflammatory pathways can be introduced potentially by gene therapy. Novel approaches of delivering a therapeutic substance include, but are not limited to, the use of small interfering RNA, viral and nonviral gene therapy, and microparticle or viscous gel sustained-release drug-delivery platforms. Copyright © 2014. Published by Elsevier Inc.
Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi
2015-08-05
Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines
Rea, Irene Maeve; Gibson, David S.; McGilligan, Victoria; McNerlan, Susan E.; Alexander, H. Denis; Ross, Owen A.
2018-01-01
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called “inflamm-aging.” Despite research there is no clear understanding about the causes of “inflamm-aging” that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer’s disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with “inflammageing” or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis. PMID:29686666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Joydeep; Ghosh, Jyotirmoy; Roy, Anandita
Mangiferin, a xanthone glucoside, is well known to exhibit antioxidant, antiviral, antitumor, anti-inflammatory and gene-regulatory effects. In the present study, we isolated mangiferin from the bark of Mangifera indica and assessed its beneficial role in galactosamine (GAL) induced hepatic pathophysiology. GAL (400 mg/kg body weight) exposed hepatotoxic rats showed elevation in the activities of serum ALP, ALT, levels of triglycerides, total cholesterol, lipid-peroxidation and reduction in the levels of serum total proteins, albumin and cellular GSH. Besides, GAL exposure (5 mM) in hepatocytes induced apoptosis and necrosis, increased ROS and NO production. Signal transduction studies showed that GAL exposure significantlymore » increased the nuclear translocation of NFκB and elevated iNOS protein expression. The same exposure also elevated TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18 and decreased IL-10 mRNA expressions. Furthermore, GAL also decreased the protein expression of Nrf2, NADPH:quinine oxidoreductase-1, heme oxygenase-1 and GSTα. However, mangiferin administration in GAL intoxicated rats or coincubation of hepatocytes with mangiferin significantly altered all these GAL-induced adverse effects. In conclusion, the hepatoprotective role of mangiferin was due to induction of antioxidant defense via the Nrf2 pathway and reduction of inflammation via NFκB inhibition. Highlights: ►Galactosamine induces hepatocytes death via oxidative and nitrosative stress. ►Mangiferin exerts hepatoprotective effect/antioxidant defense via Nrf2 pathway. ►Mangiferin exerts anti-inflammatory responses by inhibiting NF-κB. ►Mangiferin suppresses galactosamine-induced repression of IL-10 mRNA.« less
Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis
Paolicelli, Giuseppe; De Luca, Antonella; Renga, Giorgia; Borghi, Monica; Pariano, Marilena; Stincardini, Claudia; Scaringi, Lucia; Ricci, Maurizio; Romani, Luigina
2018-01-01
Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis. PMID:29670460
Melo, Rossana C N; Weller, Peter F
2016-10-01
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Maywald, Martina; Wessels, Inga; Rink, Lothar
2017-01-01
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429
Rosenbach, F; Richter, M; Pförtner, T-K
2015-05-01
In light of the consistent SES gradient in cardiovascular diseases, current research is focusing on possible pathways through which the socioeconomic status (SES) may impact health. Inflammatory processes play a critical role in the development of cardiovascular diseases and are associated with stress. Therefore, they might be one psychobiological pathway explaining how the SES gets under the skin. Considering the different meanings of education, occupation and income, this article gives an overview of the association between inflammatory biomarkers and socioeconomic status. There is high evidence for associations between indicators of SES - education, occupation and income - and inflammatory biomarkers. Possible pathways are health status, health behavior and psychobiological processes as a result of increased exposure to psychosocial stress. The SES gradient in cardiovascular diseases reflects behavioral as well as physiological pathways and systemic inflammation seems to be involved. Low SES is associated with an increased exposure to adverse circumstances of life, which can trigger biological responses and result in an increased risk of cardiovascular diseases. Medical history taking in cardiology should focus on socio-structural exposures and thereby reflect the different meanings of education, occupation and income.
Satriano, J
2004-07-01
An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This 'anti-bacterial' phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a 'repair' phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.
Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix
Adefuye, Anthonio; Sales, Kurt
2012-01-01
Cervical cancer is one of the leading gynaecological malignancies worldwide. It is an infectious disease of the cervix, associated with human papillomavirus infection (HPV), infection with bacterial agents such as Chlamydia trachomatis and Neisseria gonorrhoea as well as human immunodeficiency virus (HIV). Furthermore, it is an AIDS-defining disease with an accelerated mortality in HIV-infected women with cervical cancer. With the introduction of robust vaccination strategies against HPV in the developed world, it is anticipated that the incidence of cervical cancer will decrease in the coming years. However, vaccination has limited benefit for women already infected with high-risk HPV, and alternative therapeutic intervention strategies are needed for these women. Many pathological disorders, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways which are considered to be regulated by infectious agents. In cervical cancer, hyperactivation of these inflammatory pathways and regulation of immune infiltrate into tissues can potentially play a role not only in tumorigenesis but also in HIV infection. In this paper we will discuss the contribution of inflammatory pathways to cervical cancer progression and HIV infection and the role of HIV in cervical cancer progression. PMID:24278714
Hypothalamic digoxin, hemispheric chemical dominance, and inflammatory bowel disease.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-09-01
The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. It was considered pertinent to assess the pathway in inflammatory bowel disease (ulcerative colitis and regional ileitis). Since endogenous digoxin can regulate neurotransmitter transport, the pathway and the related cascade were also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis. All the patients with inflammatory bowel disease were right-handed/left hemispheric dominant by the dichotic listening test. The following parameters were measured in patients with inflammatory bowel disease and in individuals with differing hemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free-radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition and RBC membrane Na+-K+ ATPase activity. Statistical analysis was done by ANOVA. In patients with inflammatory bowel disease there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these groups of patients. Inflammatory bowel disease is associated with an upregulated isoprenoid pathway and elevated digoxin secretion from the hypothalamus. This can contribute to immune activation, defective glycoprotein bowel antigen presentation, and autoimmunity and a schizophreniform psychosis important in its pathogenesis. The biochemical patterns obtained in inflammatory bowel disease is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Inflammatory bowel disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.
Kim, Ha Ryong; Shin, Da Young; Chung, Kyu Hyuck
2015-03-04
Polyhexamethylene guanidine (PHMG) phosphate is a competitive disinfectant with strong antibacterial activity. However, epidemiologists revealed that inhaled PHMG-phosphate may increase the risk of pulmonary fibrosis associated with inflammation, resulting in the deaths of many people, including infants and pregnant women. In addition, in vitro and in vivo studies reported the inflammatory effects of PHMG-phosphate. Therefore, the aim of the present study was to clarify the inflammatory effects and its mechanism induced by PHMG-phosphate in murine RAW264.7 macrophages. Cell viability, inflammatory cytokine secretion, nuclear factor kappa B (NF-κB) activation, and reactive oxygen species (ROS) generation were investigated in macrophages exposed to PHMG-phosphate. PHMG-phosphate induced dose-dependent cytotoxicity, with LC50 values of 11.15-0.99mg/ml at 6 and 24h, respectively. PHMG-phosphate induced pro-inflammatory cytokines including IL-1β, IL-6, and IL-8. In particular, IL-8 expression was completely inhibited by the NF-κB inhibitor BAY11-7082. In addition, PHMG-phosphate decreased IκB-α protein expression and increased NF-κB-mediated luciferase activity, which was diminished by N-acetyl-l-cystein. However, abundant amounts of ROS were generated in the presence of PHMG-phosphate at high concentrations with a cytotoxic effect. Our results demonstrated that PHMG-phosphate triggered the activation of NF-κB signaling pathway by modulating the degradation of IκB-α. Furthermore, the NF-κB signaling pathway plays a critical role in the inflammatory responses induced by PHMG-phosphate. We assumed that ROS generated by PHMG-phosphate were associated with inflammatory responses as secondary mechanism. In conclusion, we suggest that PHMG-phosphate induces inflammatory responses via NF-κB signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Liu, Shumei; Man, Yigang; Zhao, Li
2018-05-01
Recent studies have demonstrated that Sinomenine (SIN) exerted anti-inflammatory effect in various immune-related diseases. However, the effect of SIN on glucocorticoids dermatitis has not been investigated. In our study, we aimed to explore the effect of SIN on lipopolysaccharide (LPS)-induced inflammatory injury in HaCaT cells. We constructed an inflammatory injury model of LPS-induced HaCaT cells, then SIN was added to LPS-treated cells, cell viability, apoptosis, apoptosis-associated factors and inflammatory cytokines were detected by CCK-8, flow cytometry, western blot, qRT-PCR and ELISA. Subsequently, miR-101 mimic and mimic control were transfected into HaCaT cells to investigate the effect of SIN and miR-101 on LPS-induced cells injury. Furthermore, MKP-1 and JNK signal pathways were measured by qRT-PCR and western blot. Finally, the animal experiment was performed to further clarify the effect of SIN on inflammatoty injury. LPS suppressed cell viability, promoted apoptosis and increased IL-6, IL-8 and TNF-α expressions and secretions in HaCaT cells. SIN significantly alleviated LPS-induced HaCaT cells injury. Additionally, SIN down-regulated miR-101 expression, and the protective effect of SIN on LPS-induced inflammatory injury was abolished by miR-101 overexpression. Besides, SIN promoted MKP-1 expression by down-regulation of miR-101, and SIN inhibited JNK signal pathway by up-regulation of MKP-1 expression in LPS-treated HaCaT cells. Animal experiments revealed that SIN exhibited anti-inflammatory effects in vivo. The data indicated that SIN attenuated LPS-induced inflammatory injury by regulation of miR-101, MKP-1 and JNK pathway. These findings might provide a novel method for treatment of glucocorticoids dermatitis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina
2018-03-18
The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.
UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.
Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X
2015-01-01
Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.
Biological pathways involved in the development of inflammatory bowel disease.
Zemljic, Mateja; Pejkovic, Bozena; Krajnc, Ivan; Lipovsek, Saska
2014-10-01
Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.
Gasparrini, Massimiliano; Giampieri, Francesca; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Cianciosi, Danila; Reboredo-Rodriguez, Patricia; Varela-Lopez, Alfonso; Zhang, JiaoJiao; Quiles, Josè L; Mezzetti, Bruno; Bompadre, Stefano; Battino, Maurizio
2018-04-01
A protracted pro-inflammatory state is the common denominator in the development, progression and complication of the common chronic diseases. Dietary antioxidants represent an efficient tool to counteract this inflammatory state. The aim of the present work was to evaluate the effects of strawberry extracts on inflammation evoked by E. Coli lipopolysaccharide in Human Dermal Fibroblast, by measuring reactive oxygen species production, apoptosis rate, antioxidant enzymes activity, mitochondria functionality and also investigating the molecular pathway involved in inflammatory and antioxidant response. The results demonstrated that strawberry pre-treatment reduced intracellular reactive oxygen species levels, apoptotic rate, improved antioxidant defences and mitochondria functionality in lipopolysaccharide -treated cells. Strawberry exerted these protective activities through the inhibition of the NF-kB signalling pathway and the stimulation of the Nrf2 pathway, with a mechanism AMPK-dependent. These results confirm the health benefits of strawberry in the prevention of inflammation and oxidative stress condition in lipopolysaccharide-treated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Persisting eicosanoid pathways in rheumatic diseases.
Korotkova, Marina; Jakobsson, Per-Johan
2014-04-01
An unmet clinical need exists for early treatment of rheumatic diseases and improved treatment strategies that can better maintain remission with reduced ongoing subclinical inflammation and bone destruction. Eicosanoids form one of the most complex networks in the body controlling many physiological and pathophysiological processes, including inflammation, autoimmunity and cancer. Persisting eicosanoid pathways are thought to be involved in the development of rheumatic diseases, and targeting this pathway might enable improved treatment strategies. Several enzymes of the arachidonic acid cascade as well as eicosanoid receptors (all part of the eicosanoid pathway) are today well-recognized targets for anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases. In this Review, we outline the evidence supporting pivotal roles of eicosanoid signalling in the pathogenesis of rheumatic diseases and discuss findings from studies in animals and humans. We focus first on rheumatoid arthritis and discuss the upregulation of the cyclooxygenase and lipoxygenase pathways as most data are available in this condition. Research into the roles of eicosanoids in other rheumatic diseases (osteoarthritis, idiopathic inflammatory myopathies, systemic lupus erythematosus and gout) is also progressing rapidly and is discussed. Finally, we summarize the prospects of targeting eicosanoid pathways as anti-inflammatory treatment strategies for patients with rheumatic diseases.
Zhang, Hao; Sun, Jun; Ye, Jing; Ashraf, Usama; Chen, Zheng; Zhu, Bibo; He, Wen; Xu, Qiuping; Wei, Yanming; Chen, Huanchun; Fu, Zhen F; Liu, Rong; Cao, Shengbo
2015-12-04
West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.
D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G
2015-07-29
Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life. Copyright © 2015 the authors 0270-6474/15/3510822-10$15.00/0.
Jones, Simon P.; Franco, Nunzio F.; Varney, Bianca; Sundaram, Gayathri; Brown, David A.; de Bie, Josien; Lim, Chai K.; Guillemin, Gilles J.; Brew, Bruce J.
2015-01-01
The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426
Impact of negative cognitions about body image on inflammatory status in relation to health.
Černelič-Bizjak, Maša; Jenko-Pražnikar, Zala
2014-01-01
Evidence suggests that body dissatisfaction may relate to biological processes and that negative cognitions can influence physical health through the complex pathways linking psychological and biological factors. The present study investigates the relationships between body image satisfaction, inflammation (cytokine levels), aerobic fitness level and obesity in 96 middle-aged men and women (48 normal and 48 overweight). All participants underwent measurements of body satisfaction, body composition, serological measurements of inflammation and aerobic capabilities assessment. Body image dissatisfaction uniquely predicted inflammation biomarkers, C-reactive protein and tumour necrosis factor-α, even when controlled for obesity indicators. Thus, body image dissatisfaction is strongly linked to inflammation processes and may promote the increase in cytokines, representing a relative metabolic risk, independent of most traditional risk factors, such as gender, body mass index and intra-abdominal (waist to hip ratio) adiposity. Results highlight the fact that person's negative cognitions need to be considered in psychologically based interventions and strategies in treatment of obesity, including strategies for health promotion. Results contribute to the knowledge base of the complex pathways in the association between psychological factors and physical illness and some important attempts were made to explain the psychological pathways linking cognitions with inflammation.
Amino acid catabolism: a pivotal regulator of innate and adaptive immunity
McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.
2014-01-01
Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220
miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Wang, Chengxiao; Liu, Ying
2013-08-16
Highlights: •NOD2 is a target gene of miR-122. •miR-122 inhibits LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. •miR-122 reduces the expression of pro-inflammatory cytokines (TNF-α and IFN-γ). •miR-122 promotes the release of anti-inflammatory cytokines (IL-4 and IL-10). •NF-κB signaling pathway is involved in inflammatory response induced by LPS. -- Abstract: Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the genemore » nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor κB (NF-κB) and the stimulation of downstream pro-inflammatory events. The activation of NF-κB was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-α and IFN-γ was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-κB inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.« less
Robertson, Ruairi C.; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B.; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine
2015-01-01
Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases. PMID:26308008
Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei
2015-06-26
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Lactoferrin and oral diseases: current status and perspective in periodontitis
Berlutti, Francesca; Pilloni, Andrea; Pietropaoli, Miriam; Polimeni, Antonella; Valenti, Piera
2012-01-01
Summary Lactoferrin (Lf), an iron-binding glycoprotein able to chelate two ferric ions per molecule, is a component of human secretions synthesized by exocrine glands and neutrophils in infection/inflammation sites. Lactoferrin in saliva represents an important defence factor against bacterial injuries including those related to Streptococcus mutans and periodontopathic bacteria through its ability to decrease bacterial growth, biofilm development, iron overload, reactive oxygen formation and inflammatory processes. A growing body of research suggests that inflammatory periodontal disease involves a failure of resolution pathways to restore tissue homeostasis. There is an important distinction between anti-inflammation and resolution; anti-inflammation is pharmacologic intervention in inflammatory pathways, whereas resolution involves biologic pathways restoring inflammatory homeostasis. An appropriate regulation of pro-inflammatory cytokine synthesis might be useful in reducing periodontal tissue destruction. Recently, the multi-functional IL-6 is emerging as an important factor able to modulate bone, iron and inflammatory homeostasis. Here, we report an overview of Lf functions as well as for the first time Lf anti-inflammatory ability against periodontitis in in vitro model and observational clinical study. In in vitro model, represented by gingival fibroblasts infected with Prevotella intermedia, Lf exerted a potent anti-inflammatory activity. In the observational clinical trial performed through bovine Lf (bLf) topically administered to volunteers suffering from periodontitis, bLf decreased cytokines, including IL-6 in crevicular fluid, edema, bleeding, pocket depth, gingival and plaque index, thus improving clinical attachment levels. Even if other clinical trials are required, these results provide strong evidence for a instead of an therapeutic potential of this multifunctional natural protein. PMID:22545184
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38
Yi, Young-Su
2017-01-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.
Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl
2017-05-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.
Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan
2017-07-24
Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological functions after TBI. We further demonstrated that ω-3 PUFA supplementation inhibited HMGB1 nuclear translocation and secretion and decreased expression of HMGB1 in neurons and microglia in the lesioned areas. Moreover, ω-3 PUFA supplementation inhibited microglial activation and the subsequent inflammatory response by regulating HMGB1 and the TLR4/NF-κB signaling pathway. The results of this study suggest that microglial activation and the subsequent neuroinflammatory response as well as the related HMGB1/TLR4/NF-κB signaling pathway play essential roles in secondary injury after TBI. Furthermore, ω-3 PUFA supplementation inhibited TBI-induced microglial activation and the subsequent inflammatory response by regulating HMGB1 nuclear translocation and secretion and also HMGB1-mediated activation of the TLR4/NF-κB signaling pathway, leading to neuroprotective effects.
Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A
2014-02-01
Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.
Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho
2015-01-01
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation. PMID:26017270
Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho
2015-01-01
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF
Semple, Fiona; MacPherson, Heather; Webb, Sheila; Cox, Sarah L; Mallin, Lucy J; Tyrrell, Christine; Grimes, Graeme R; Semple, Colin A; Nix, Matthew A; Millhauser, Glenn L; Dorin, Julia R
2011-01-01
β-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human β-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes. PMID:21809339
Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes.
Gangadharan Komala, Muralikrishna; Gross, Simon; Zaky, Amgad; Pollock, Carol; Panchapakesan, Usha
2016-05-01
In addition to lowering blood glucose in patients with type 2 diabetes mellitus, dipeptidyl peptidase 4 (DPP4) inhibitors have been shown to be antifibrotic and anti-inflammatory. We have previously shown that DPP4 inhibition in human kidney proximal tubular cells exposed to high glucose reduced fibrotic and inflammatory markers. Hence, we wanted to demonstrate renoprotection in an in vivo model. We used a type 1 diabetic animal model to explore the renoprotective potential of saxagliptin independent of glucose lowering. We induced diabetes in enos -/- mice using streptozotocin and matched glucose levels using insulin. Diabetic mice were treated with saxagliptin and outcomes compared with untreated diabetic mice. We provide novel data that saxagliptin limits renal hypertrophy, transforming growth factor beta-related fibrosis and NF-κBp65-mediated macrophage infiltration. Overall, there was a reduction in histological markers of tubulointerstitial fibrosis. There was no reduction in albuminuria or glomerulosclerosis. Our findings highlight the potential of DPP4 inhibition as additional therapy in addressing the multiple pathways to achieve renoprotection in diabetic nephropathy. © 2015 Asian Pacific Society of Nephrology.
Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?
Barcia, Jorge M.; Portolés, Sandra; Portolés, Laura; Urdaneta, Alba C.; Ausina, Verónica; Pérez-Pastor, Gema M. A.; Romero, Francisco J.; Villar, Vincent M.
2017-01-01
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults. PMID:28179886
Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome?
Barcia, Jorge M; Portolés, Sandra; Portolés, Laura; Urdaneta, Alba C; Ausina, Verónica; Pérez-Pastor, Gema M A; Romero, Francisco J; Villar, Vincent M
2017-01-01
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets.
Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie
2014-04-22
Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion.
Liu, Wai M; Fowler, Daniel W; Dalgleish, Angus G
2010-11-01
Cannabinoids, the active components of the cannabis plant, have some clinical merit both as an anti-emetic and appetite stimulant in cachexic patients. Recently, interest in developing cannabinoids as therapies has increased following reports that they possess anti-tumour properties. Research into cannabinoids as anti-cancer agents is in its infancy, and has mainly focussed on the pro-apoptotic effects of this class of agent. Impressive anti-cancer activities have been reported; actions that are mediated in large part by disruptions to ubiquitous signalling pathways such as ERK and PI3-K. However, recent developments have highlighted a putative role for cannabinoids as anti-inflammatory agents. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds. This article reviews the ever-changing relationship between cannabinoids and cancer, and updates our understanding of this class of agent. Furthermore, the relationship between chronic inflammation and cancer, and how cannabinoids can impact this relationship will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hao
Recently, we reported that Ilexgenin A exhibits anti-cancer activities and induces cell arrest. Here, we investigated the effect of Ilexgenin A on the inflammation, angiogenesis and tumor growth of hepatocellular carcinoma (HCC). Our current study revealed that Ilexgenin A significantly inhibited the inflammatory cytokines TNF-α and IL-6 levels and downregulated pro-angiogenic factor VEGF production and transcription in HepG2 cells. The underlying mechanism for Ilexgenin A effects appears to be through inhibiting STAT3 and PI3K pathways. Furthermore, we found that not only Ilexgenin A inhibited STAT3 and PI3K pathways in HepG2 cells but also blocked these signaling pathways in HUVECs. Mostmore » importantly, by employing two HCC xenografts models - HepG2 and H22, we showed that Ilexgenin A reduced tumor growth and exhibited synergy effect with Sorafenib. ELISA assay, histological analysis and immunohistochemistry examination revealed that the expression of VEGF and MVD was significantly decreased after the treatment with Ilexgenin A and the combination. Moreover, Ilexgenin A could enhance caspase-3/7 activity in vitro and transmission electron microscope indicated that the combination induced evident apoptosis of tumor cells and caused the structural changes of mitochondria in vivo. Although no apparent adverse effects occurred during the treatment period, Sorafenib monotherapy elicited hepatotoxicity for specific expression in the increased level of AST and the ratio of AST/ALT. However, the combination could remedy this adverse effect. In conclusion, the results described in the present study identifies Ilexgenin A as a promising therapeutic candidate that modulates inflammation, angiogenesis, and HCC growth. - Highlights: • Ilexgenin A exerts anti-inflammatory and anti-angiogenesis effects in hepatoma. • Ilexgenin A may exert these effects through inhibition of STAT3 and PI3K pathways. • Ilexgenin A exhibits synergistic effects with Sorafenib on hepatoma growth. • Ilexgenin A can remedy the potential liver toxicity of Sorafenib.« less
LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN
2016-01-01
Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850
Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.
2017-01-01
Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vendramini-Costa, Débora Barbosa, E-mail: vendrami
Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTNmore » on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression. • GTN induces intrinsic apoptosis in HT-29 cells, involving ROS, MAPK and caspases. • These results highlight GTN as a potential chemopreventive agent for colon cancer.« less
Mechanisms of fibrosis: therapeutic translation for fibrotic disease
Wynn, Thomas A; Ramalingam, Thirumalai R
2012-01-01
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases. PMID:22772564
Chen, Dayong; Pan, Dan; Tang, Shaolong; Tan, Zhihong; Zhang, Yanan; Fu, Yunfeng; Lü, Guohua; Huang, Qinghua
2018-01-01
Chlorogenic acid, as a secondary metabolite of plants, exhibits a variety of effects including free radical scavenging, antiseptic, anti‑inflammatory and anti‑viral, in addition to its ability to reduce blood glucose, protect the liver and act as an anti‑hyperlipidemic agent and cholagogue. The present study demonstrated that administration of chlorogenic acid alleviated spinal cord injury (SCI) via anti‑inflammatory activity mediated by nuclear factor (NF)‑κB and p38 signaling pathways. Wistar rats were used to structure a SCI model rat to explore the effects of administration of chlorogenic acid on SCI. The Basso, Beattie and Bresnahan test was executed for assessment of neuronal functional recovery and then spinal cord tissue wet/dry weight ratio was recorded. The present study demonstrated that chlorogenic acid increased SCI‑inhibition of BBB scores and decreased SCI‑induction of spinal cord wet/dry weight ratio in rats. In addition, chlorogenic acid suppressed SCI‑induced inflammatory activity, inducible nitric oxide synthase activity and cyclooxygenase‑2 protein expression in the SCI rat. Furthermore, chlorogenic acid suppressed Toll like receptor (TLR)‑4/myeloid differentiation primary response 88 (MyD88)/NF‑κB/IκB signaling pathways and downregulated p38 mitogen activated protein kinase protein expression in SCI rats. The findings suggest that administration of chlorogenic acid alleviates SCI via anti‑inflammatory activity mediated by TLR4/MyD88/NF‑κB and p38 signaling pathways.
Rocha, Bárbara S; Nunes, Carla; Laranjinha, João
2016-12-01
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Diandian; Hu, Jun; Wang, Tao; Zhang, Xue; Liu, Lian; Wang, Hao; Wu, Yanqiu; Xu, Dan; Wen, Fuqiang
2016-11-22
Cigarette smoke (CS) is a major risk of chronic obstructive pulmonary disease (COPD), contributing to airway inflammation. Our previous study revealed that silymarin had an anti-inflammatory effect in CS-exposed mice. In this study, we attempt to further elucidate the molecular mechanisms of silymarin in CS extract (CSE)-induced inflammation using human bronchial epithelial cells. Silymarin significantly suppressed autophagy activation and the activity of ERK/p38 mitogen-activated protein kinase (MAPK) pathway in Beas-2B cells. We also observed that inhibiting the activity of ERK with specific inhibitor U0126 led to reduced autophagic level, while knockdown of autophagic gene Beclin-1 and Atg5 decreased the levels of ERK and p38 phosphorylation. Moreover, silymarin attenuated CSE-induced upregulation of inflammatory cytokines TNF-α, IL-6 and IL-8 which could also be dampened by ERK/p38 MAPK inhibitors and siRNAs for Beclin-1 and Atg5. Finally, we validated decreased levels of both autophagy and inflammatory cytokines (TNF-α and KC) in CS-exposed mice after silymarin treatment. The present research has demonstrated that CSE-induced autophagy in bronchial epithelia, in synergism with ERK MAPK pathway, may initiate and exaggerate airway inflammation. Silymarin could attenuate inflammatory responses through intervening in the crosstalk between autophagy and ERK MAPK pathway, and might be an ideal agent treating inflammatory pulmonary diseases.
Wang, Y; Yan, M; Fan, Z; Ma, L; Yu, Y; Yu, J
2014-10-01
This study was designed to investigate the effects of mineral trioxide aggregate (MTA) on the osteo/odontogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). inflammatory DPSCs were isolated from the inflammatory pulps of rat incisors and cocultured with MTA-conditioned medium. MTT assay and flow cytometry were performed to evaluate the proliferation of iDPSCs. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and Western blot assay were used to investigate the differentiation capacity as well as the involvement of NF-κB pathway in iDPSCs. Mineral trioxide aggregate-treated iDPSCs demonstrated the higher ALP activity and formed more mineralized nodules than the untreated group. The odonto/osteoblastic markers (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN, and Dspp/DSP, respectively) in MTA-treated iDPSCs were significantly upregulated as compared with untreated iDPSCs. Mechanistically, cytoplastic phos-P65 and nuclear P65 in MTA-treated iDPSCs were significantly increased in a time-dependent manner. Moreover, the inhibition of NF-κB pathway suppressed the MTA-induced odonto/osteoblastic differentiation of iDPSCs, as indicated by decreased ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic genes (Osx, Ocn, and Dspp). Mineral trioxide aggregate enhances the odonto/osteogenic capacity of DPSCs from inflammatory sites via activating the NF-κB pathway. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The systemic inflammatory response syndrome.
Robertson, Charles M; Coopersmith, Craig M
2006-04-01
The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.
PUFA diets alter the microRNA expression profiles in an inflammation rat model.
Zheng, Zheng; Ge, Yinlin; Zhang, Jinyu; Xue, Meilan; Li, Quan; Lin, Dongliang; Ma, Wenhui
2015-06-01
Omega‑3 and ‑6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA‑regulated inflammatory processes. Here, we established PUFA diet‑induced autoimmune‑prone (AP) and autoimmune‑averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno‑miR‑19b‑3p, ‑146b‑5p and ‑183‑5p expression were validated using stem‑loop reverse transcription‑quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA‑regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA‑regulated inflammatory pathways included the Toll‑like receptor (TLR), T cell receptor (TCR), NOD‑like receptor (NLR), RIG‑I‑like receptor (RLR), mitogen‑activated protein kinase (MAPK) and the transforming growth factor‑β (TGF‑β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet‑induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA‑regulated miRNAs in immune homeostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com; Wei, Cong-Cong; Shang, Ting-Ting
2012-10-26
Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B)more » p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.« less
The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation
Chen, Rong-Jane; Lee, Yu-Hsuan; Yeh, Ya-Ling; Wang, Ying-Jan; Wang, Bour-Jr
2016-01-01
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO2/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO2/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease. PMID:27941683
Nutritionally mediated programming of the developing immune system.
Palmer, Amanda C
2011-09-01
A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp; Umikawa, Asako; Asato, Tsuyoshi
Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces amore » drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.« less
Developmental origins of inflammatory and immune diseases.
Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie
2016-08-01
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas
2018-01-01
Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324
Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas
2018-01-01
The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.
van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.
2016-01-01
Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586
Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef
2011-07-08
The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.
Ravichandran, Srikanth; Michelucci, Alessandro; del Sol, Antonio
2018-01-01
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases. PMID:29551980
Ravichandran, Srikanth; Michelucci, Alessandro; Del Sol, Antonio
2018-01-01
Alzheimer's disease (AD) is a major neurodegenerative disease and is one of the most common cause of dementia in older adults. Among several factors, neuroinflammation is known to play a critical role in the pathogenesis of chronic neurodegenerative diseases. In particular, studies of brains affected by AD show a clear involvement of several inflammatory pathways. Furthermore, depending on the brain regions affected by the disease, the nature and the effect of inflammation can vary. Here, in order to shed more light on distinct and common features of inflammation in different brain regions affected by AD, we employed a computational approach to analyze gene expression data of six site-specific neuronal populations from AD patients. Our network based computational approach is driven by the concept that a sustained inflammatory environment could result in neurotoxicity leading to the disease. Thus, our method aims to infer intracellular signaling pathways/networks that are likely to be constantly activated or inhibited due to persistent inflammatory conditions. The computational analysis identified several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a)-associated pathway, as key upstream receptors/ligands that are likely to transmit sustained inflammatory signals. Further, the analysis revealed that several inflammatory mediators were mainly region specific with few commonalities across different brain regions. Taken together, our results show that our integrative approach aids identification of inflammation-related signaling pathways that could be responsible for the onset or the progression of AD and can be applied to study other neurodegenerative diseases. Furthermore, such computational approaches can enable the translation of clinical omics data toward the development of novel therapeutic strategies for neurodegenerative diseases.
Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming
2018-04-23
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
Inflammation and Cancer: How Friendly Is the Relationship For Cancer Patients?
Aggarwal, Bharat B.; Gehlot, Prashasnika
2009-01-01
Evidence has emerged in the last two decades that at the molecular level most chronic diseases, including cancer, are caused by a dysregulated inflammatory response. The identification of transcription factors such as NF-kB, AP-1 and STAT3 and their gene products such as tumor necrosis factor, interleukin-1, interleukin-6, chemokines, cyclooxygenase-2, 5 lipooxygenase, matrix metalloproteases, and vascular endothelial growth factor, adhesion molecules and others have provided the molecular basis for the role of inflammation in cancer. These inflammatory pathways are activated by tobacco, stress, dietary agents, obesity, alcohol, infectious agents, irradiation, and environmental stimuli, which together account for as much as 95% of all cancers. These pathways have been implicated in transformation, survival, proliferation, invasion, angiogenesis, metastasis, chemoresistance, and radioresistance of cancer, so much so that survival and proliferation of most types of cancer stem cells themselves appear to be dependent on the activation of these inflammatory pathways. Most of this evidence, however, is from preclinical studies. Whether these pathways have any role in prevention, progression, diagnosis, prognosis, recurrence or treatment of cancer in patients, is the topic of discussion of this review. We present evidence that inhibitors of inflammatory biomarkers may have a role in both prevention and treatment of cancer. PMID:19665429
Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan
2017-09-25
A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.
Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg
2017-07-01
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de
CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified themore » multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.« less
Leptin–cytokine crosstalk in breast cancer
Newman, Gale; Gonzalez-Perez, Ruben Rene
2013-01-01
Despite accumulating evidence suggesting a positive correlation between leptin levels, obesity, post-menopause and breast cancer incidence, our current knowledge on the mechanisms involved in these relationships is still incomplete. Since the cloning of leptin in 1994 and its receptor (OB-R) 1 year later by Friedman’s laboratory (Zhang et al., 1994) and Tartaglia et al. (Tartaglia et al., 1995), respectively, more than 22,000 papers related to leptin functions in several biological systems have been published (Pubmed, 2012). The ob gene product, leptin, is an important circulating signal for the regulation of body weight. Additionally, leptin plays critical roles in the regulation of glucose homeostasis, reproduction, growth and the immune response. Supporting evidence for leptin roles in cancer has been shown in more than 1000 published papers, with almost 300 papers related to breast cancer (Pubmed, 2012). Specific leptin-induced signaling pathways are involved in the increased levels of inflammatory, mitogenic and pro-angiogenic factors in breast cancer. In obesity, a mild inflammatory condition, deregulated secretion of proinflammatory cytokines and adipokines such as IL-1, IL-6, TNF-α and leptin from adipose tissue, inflammatory and cancer cells could contribute to the onset and progression of cancer. We used an in silico software program, Pathway Studio 9, and found 4587 references citing these various interactions. Functional crosstalk between leptin, IL-1 and Notch signaling (NILCO) found in breast cancer cells could represent the integration of developmental, proinflammatory and pro-angiogenic signals critical for leptin-induced breast cancer cell proliferation/migration, tumor angiogenesis and breast cancer stem cells (BCSCs). Remarkably, the inhibition of leptin signaling via leptin peptide receptor antagonists (LPrAs) significantly reduced the establishment and growth of syngeneic, xenograft and carcinogen-induced breast cancer and, simultaneously decreased the levels of VEGF/VEGFR2, IL-1 and Notch. Inhibition of leptin–cytokine crosstalk might serve as a preventative or adjuvant measure to target breast cancer, particularly in obese women. This review is intended to present an update analysis of leptin actions in breast cancer, highlighting its crosstalk to inflammatory cytokines and growth fact ors essential for tumor development, angiogenesis and potential role in BCSC. PMID:23562747
Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag
Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF-κB. • DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. • No tumor promotion was observed up to 24 weeks of topical application of DON. • Enhanced Peyer's patches and inflammatory cytokines suggested inflammation in skin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
A change in the expression of cytokines in human biological media indicates an inflammatory response to external stressors and reflects an early step along the adverse outcome pathway (AOP) for various health endpoints. To characterize and interpret this inflammatory response, m...
Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice
USDA-ARS?s Scientific Manuscript database
Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...
Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar
2014-04-01
The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Xu; Wang, Yanan; Xiao, Chong; Wei, Zhengkai; Wang, Jingjing; Yang, Zhengtao; Fu, Yunhe
2017-06-01
Resveratrol is a natural polyphenol extracted from mangy plants. It has been reported that resveratrol show multitudinous positive role in biology such as anti-oxidant, anti-nociception and anti-inflammatory effects. Therefore, the present study devotes to test the effect of resveratrol on LPS-induced mastitis in mice. Resveratrol was administered intraperitoneally 1 h before LPS treatment. And the anti-inflammatory effect of resveratrol was measured by histopathological examination, MPO assay, real-time PCR and western blotting analysis. The results showed that resveratrol significantly reduced the LPS-induced mammary histopathological changes. Meanwhile, it sharply attenuated the activity of MPO. The result also indicated that the resveratrol can decrease the expression of pro-inflammatory cytokines TNF-α and IL-1β. From the results of western blotting, resveratrol suppressed the expression of phosphorylation of p65 and IκB from NF-κB signal pathway and phosphorylation of p38 and ERK from MAPK signal pathway. These findings suggested that resveratrol may inhibit the inflammatory response in the mastitis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease.
Verstockt, Bram; Van Assche, Gert; Vermeire, Séverine; Ferrante, Marc
2017-01-01
As many inflammatory bowel disease (IBD) patients do not benefit from long-term anti-tumour necrosis factor treatment, new anti-inflammatories are urgently needed. After the discovery of the interleukin (IL) 23/17 axis being pivotal in IBD pathogenesis, many different compounds were developed, targeting different components within this pathway. Areas covered: A literature search to March 2016 was performed to identify the most relevant reports on the role of the IL-23/IL-17 axis in IBD and on the different molecules targeting this pathway. First, the authors briefly summarize the immunology of the IL-23/IL-17 pathway to elucidate the mode of action of all different agents. Second, they describe all different molecules targeting this pathway. Besides discussing efficacy and safety data, they also explore immunogenicity, exposure during pregnancy and pharmacokinetics. Expert opinion: A new era in IBD treatment has recently been initiated: besides immunomodulators and TNF-antagonists, anti-adhesion molecules and monoclonal antibodies targeting the IL-23/IL-17 pathway have been developed. Biomarkers for personalized medicine are urgently needed. This therapeutic (r)evolution will further improve disease-related and patient-reported outcome, though a lot of questions should still be addressed in future years.
Echizen, Kanae; Hirose, Osamu; Maeda, Yusuke; Oshima, Masanobu
2016-04-01
Cyclooxygenase-2 (COX-2) and its downstream product prostaglandin E2 (PGE2 ) play a key role in generation of the inflammatory microenvironment in tumor tissues. Gastric cancer is closely associated with Helicobacter pylori infection, which stimulates innate immune responses through Toll-like receptors (TLRs), inducing COX-2/PGE2 pathway through nuclear factor-κB activation. A pathway analysis of human gastric cancer shows that both the COX-2 pathway and Wnt/β-catenin signaling are significantly activated in tubular-type gastric cancer, and basal levels of these pathways are also increased in other types of gastric cancer. Expression of interleukin-11, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and CXCL5, which play tumor-promoting roles through a variety of mechanisms, is induced in a COX-2/PGE2 pathway-dependent manner in both human and mouse gastric tumors. Moreover, the COX-2/PGE2 pathway plays an important role in the maintenance of stemness with expression of stem cell markers, including CD44, Prom1, and Sox9, which are induced in both gastritis and gastric tumors through a COX-2/PGE2 -dependent mechanism. In contrast, disruption of Myd88 results in suppression of the inflammatory microenvironment in gastric tumors even when the COX-2/PGE2 pathway is activated, indicating that the interplay of the COX-2/PGE2 and TLR/MyD88 pathways is needed for inflammatory response in tumor tissues. Furthermore, TLR2/MyD88 signaling plays a role in maintenance of stemness in normal stem cells as well as gastric tumor cells. Accordingly, these results suggest that targeting the COX-2/PGE2 pathway together with TLR/MyD88 signaling, which would suppress the inflammatory microenvironment and maintenance of stemness, could be an effective preventive or therapeutic strategy for gastric cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Kynurenines in CNS disease: regulation by inflammatory cytokines
Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas
2014-01-01
The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701
Understanding Resolvin Signaling Pathways to Improve Oral Health
Keinan, David; Leigh, Noel J.; Nelson, Joel W.; De Oleo, Laura; Baker, Olga J.
2013-01-01
The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity. PMID:23528855
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee
Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element bindingmore » protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.« less
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.
Semple, Fiona; MacPherson, Heather; Webb, Sheila; Cox, Sarah L; Mallin, Lucy J; Tyrrell, Christine; Grimes, Graeme R; Semple, Colin A; Nix, Matthew A; Millhauser, Glenn L; Dorin, Julia R
2011-11-01
β-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human β-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Brian Chi Yan; Yu, Hua; Su, Tao; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Cao, Hui-Hui; Tse, Anfernee Kai-Wing; Kwan, Hiu-Yee; Yu, Zhi-Ling
2015-11-04
As documented in the Chinese Materia Medica Grand Dictionary (), a herbal formula (RL) consisting of Rosae Multiflorae Fructus (multiflora rose hips) and Lonicerae Japonicae Flos (Japanese honeysuckle flowers) has traditionally been used in treating inflammatory disorders. RL was previously reported to inhibit the expression of various inflammatory mediators regulated by NF-κB and MAPKs that are components of the TLR4 signalling pathways. This study aims to provide further justification for clinical application of RL in treating inflammatory disorders by further delineating the involvement of the TLR4 signalling cascades in the effects of RL on inflammatory mediators. RL consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos (in 5:3 ratio) was extracted using absolute ethanol. We investigated the effect of RL on the production of cytokines and chemokines that are regulated by three key transcription factors of the TLR4 signalling pathways AP-1, NF-κB and IRF3 in LPS-stimulated RAW264.7 cells using the multiplex biometric immunoassay. Phosphorylation of AP-1, NF-κB, IRF3, IκB-α, IKKα/β, Akt, TAK1, TBK1, IRAK-1 and IRAK-4 were examined in LPS-stimulated RAW264.7 cells and THP-1 cells using Western blotting. Nuclear localizations of AP-1, NF-κB and IRF3 were also examined using Western blotting. RL reduced the secretion of various pro-inflammatory cytokines and chemokines regulated by transcription factors AP-1, NF-κB and IRF3. Phosphorylation and nuclear protein levels of these transcription factors were decreased by RL treatment. Moreover, RL inhibited the activation/phosphorylation of IκB-α, IKKα/β, TAK1, TBK1 and IRAK-1. Suppression of the IRAK-1/TAK1 and TBK1/IRF3 signalling pathways was associated with the effect of RL on inflammatory mediators in LPS-stimulated RAW264.7 and THP-1 cells. This provides further pharmacological basis for the clinical application of RL in the treatment of inflammatory disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aho, Vilma; Ollila, Hanna M; Kronholm, Erkki; Bondia-Pons, Isabel; Soininen, Pasi; Kangas, Antti J; Hilvo, Mika; Seppälä, Ilkka; Kettunen, Johannes; Oikonen, Mervi; Raitoharju, Emma; Hyötyläinen, Tuulia; Kähönen, Mika; Viikari, Jorma S A; Härmä, Mikko; Sallinen, Mikael; Olkkonen, Vesa M; Alenius, Harri; Jauhiainen, Matti; Paunio, Tiina; Lehtimäki, Terho; Salomaa, Veikko; Orešič, Matej; Raitakari, Olli T; Ala-Korpela, Mika; Porkka-Heiskanen, Tarja
2016-04-22
Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases.
Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.
Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun
2009-02-28
Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Do-Wan; Shin, Hee Jae; Han, Ji-Won
Melatonin is substantially reported to possess anti-inflammatory properties. In the present study, we synthesized a novel melatonin derivative, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), which displayed superior anti-inflammatory properties to its parent compound. Further, we explored its underlying mechanisms in cellular and experimental animal models. Lipopolysaccharide was used to induce in vitro inflammatory responses in RAW 264.7 macrophages. LPS-primed macrophages were pulsed with biologically unrelated toxic molecules to evaluate the role of HIS on inflammasome activation. In vivo verifications were carried out using acute lung injury (ALI) and Escherichia coli-induced septic shock mouse models. HIS inhibited the production of proinflammatory mediators and cytokines suchmore » as nitric oxide, cyclooxygenase 2, IL-1β, IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophages. HIS suppressed the infiltration of immune cells into the lung and the production of pro-inflammatory cytokines such as IL-6 and TNF-α in broncho-alveolar lavage fluid in the ALI mouse model. Mechanistic studies revealed that the inhibitory effects of HIS were mediated through the regulation of the TIR domain-containing, adaptor-inducing, interferon-β (TRIF)-dependent signaling pathway from toll-like receptors. Further, HIS attenuated IL-1β secretion via the inhibition of NLRP3 inflammasome activation independent of mitochondrial ROS production. Furthermore, HIS suppressed IL-1β, IL-6 and interferon-β production in peritoneal lavage in the Escherichia coli-induced sepsis mouse model. In conclusion, HIS exerted potent anti-inflammatory effects via the regulation of TRIF-dependent signaling and inflammasome activation. Notably, the superior anti-inflammatory properties of this derivative compared with its parent compound could be a promising lead for treating various inflammatory-mediated diseases. - Highlights: • Νovel compound, 5-hydroxy-2′-isobutyl-streptochlorin (HIS) was synthesized. • HIS inhibited TRIF-dependent signaling induced by LPS stimulation. • HIS inhibited NLRP3 inflammasome activation. • HIS inhibited acute lung injury and Escherichia coli-induced septic shock.« less
The emerging roles of β-arrestins in fibrotic diseases
Gu, Yuan-jing; Sun, Wu-yi; Zhang, Sen; Wu, Jing-jing; Wei, Wei
2015-01-01
β-Arrestins and β-arrestin2 are important adaptor proteins and signal transduction proteins that are mainly involved in the desensitization and internalization of G-protein-coupled receptors. Fibrosis is characterized by accumulation of excess extracellular matrix (ECM) molecules caused by chronic tissue injury. If highly progressive, the fibrotic process leads to organ malfunction and, eventually, death. The incurable lung fibrosis, renal fibrosis and liver fibrosis are among the most common fibrotic diseases. Recent studies show that β-arrestins can activate signaling cascades independent of G-protein activation and scaffold many intracellular signaling networks by diverse types of signaling pathways, including the Hedgehog, Wnt, Notch and transforming growth factor-β pathways, as well as downstream kinases such as MAPK and PI3K. These signaling pathways are involved in the pathological process of fibrosis and fibrotic diseases. This β-arrestin-mediated regulation not only affects cell growth and apoptosis, but also the deposition of ECM, activation of inflammatory response and development of fibrotic diseases. In this review, we survey the involvement of β-arrestins in various signaling pathways and highlight different aspects of their regulation of fibrosis. We also discuss the important roles of β-arrestins in the process of fibrotic diseases by regulating the inflammation and deposit of ECM. It is becoming more evident that targeting β-arrestins may offer therapeutic potential for the treatment of fibrotic diseases. PMID:26388156
Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat
2012-01-06
Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmiummore » promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.« less
Breast cancer stem cells, EMT and therapeutic targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in
Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they aremore » also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.« less
Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders
Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S
2014-01-01
The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446
Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi
The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.
MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinchun; Kong, Delian; Wang, Jun
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less
Inflammatory pathways in children with insufficient or disordered sleep.
Kim, Jinkwan; Hakim, Fahed; Kheirandish-Gozal, Leila; Gozal, David
2011-09-30
Sleep is not only an essential physiological function, but also serves important roles in promoting growth, maturation, and overall health of children and adolescents. There is increasing interest regarding the impact of sleep and its disorders on the regulation of inflammatory processes and end-organ morbidities, particularly in the context of metabolic and cardiovascular diseases (CVD) and their complications. Obstructive sleep apnea syndrome (OSAS) is an increasingly common health problem in children, and in the last decade, the emergence of increasing obesity rates has further led to remarkable increases in the prevalence of OSAS, along with more prominent neurocognitive, behavioral, cardiovascular and metabolic morbidities. Although the underlying mechanisms leading to OSAS-induced morbidities are likely multi-factorial, and remain to be fully elucidated, activation of inflammatory pathways by OSAS has emerged as an important pathophysiological component of the end-organ injury associated with this disorder. To this effect, it would appear that OSAS could be viewed as a chronic, low-grade inflammatory disorder. Furthermore, the concurrent presence of obesity and OSAS poses a theoretically increased risk of OSAS-related complications. In this review, we will critically review the current state of research regarding the impact of insufficient and disrupted sleep and OSAS on the immune processes and inflammatory pathways that underlie childhood OSAS as a distinctive systemic inflammatory condition in children, and will explore potential interactions between OSAS and obesity. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Hongjian; Gu, Junfei; Hou, Xuefeng; Chen, Juan; Yang, Nan; Liu, Ying; Wang, Gang; Du, Mei; Qiu, Huihui; Luo, Yi; Jiang, Ziyu; Feng, Liang
2017-01-01
Inflammatory bowel disease (IBD) is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. This study was conducted to evaluate the anti-inflammation effect of miltirone against IBD in vitro and in vivo, and try to explore the underlying mechanisms. Miltirone could extenuate the loss of colon length and weight caused by TNBS. Additionally, macroscopic scores and DAI were reduced significantly compared with the TNBS group. The levels of TNF-α, IL-1β, IL-6 and IL-8 were increased significantly with the induction by TNBS (100mg/kg) or LPS (0.5mg/mL). Interestingly, miltirone could down-regulate the levels of these increased pro-inflammatory factors in a dose-dependent manner both in vivo and in vitro. The protein and mRNA expressions of TLR4, MyD88, NF-κB p65 were up-regulated by TNBS or LPS stimulation. CRX-526, the TLR4 inhibitor, as well as miltirone could significantly suppress the increased protein and mRNA expressions. Miltirone could up-regulate the descreased IQGAP2 expression induced by LPS. All these revealed that the anti-inflammatory effect of miltirone on IBD may be via regulating TLR4/NF-κB/IQGAP2 signaling pathway. The findings might supply beneficial hints for the drug research to cure the IBD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The kynurenine pathway in schizophrenia and bipolar disorder.
Erhardt, Sophie; Schwieler, Lilly; Imbeault, Sophie; Engberg, Göran
2017-01-01
The kynurenine pathway of tryptophan degradation generates several neuroactive compounds. Of those, kynurenic acid is an N-methyl-d-aspartate (NMDA) and alpha7 nicotinic receptor antagonist. The kynurenic acid hypothesis of schizophrenia is built upon the fact that kynurenic acid blocks glutamate receptors and is elevated in schizophrenia. Kynurenic acid tightly controls glutamatergic and dopaminergic neurotransmission and elevated brain levels appear related to psychotic symptoms and cognitive impairments. Contributing to enhanced production of kynurenic acid, the expression and enzyme activity of kynurenine 3-monooxygenase (KMO) are reduced in schizophrenia and in bipolar patients with a history of psychosis. The kynurenine pathway is also critically regulated by cytokines, and, indeed, the pro-inflammatory cytokines interleukin (IL)-1β and IL-6 are elevated in schizophrenia and bipolar disorder and stimulate the production of kynurenic acid. One physiological mechanism controlling the activity of the kynurenine pathway originates from the protein sorting nexin 7 (SNX7). This glial signaling pathway initiates a caspase-8-driven activation of IL-1β that induces tryptophan-2,3-dioxygenase 2 (TDO2), an enzyme in the kynurenine pathway. A recent study shows that a genetic variation resulting in decreased expression of SNX7 is linked to increased central levels of kynurenic acid and ultimately to psychosis and cognitive dysfunction in bipolar disorder. Experimental studies highlight the detrimental effects of increased synthesis of kynurenic acid during sensitive periods of early brain development. Furthermore, experimental studies strongly support inhibition of kynurenine aminotransferase (KAT) II as a novel target and a valuable pharmacological strategy in the treatment of psychosis and for improving cognitive performance relevant for schizophrenia. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages
Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.
2015-01-01
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr
Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jiangchun; Wang, Ruobing; Ye, Zhouheng
As the commonest complication of diabetes mellitus (DM), diabetic retinopathy (DR) is a neuro-vascular disease with chronic inflammatory. Methane could exert potential therapeutic interest in inflammatory pathologies in previous studies. Our study aims to evaluate the protective effects of methane-rich saline on DR and investigate the potential role of related MicroRNA (miRNA) in diabetic rats. Streptozotocin-induced diabetic Sprague–Dawley rats were injected intraperitoneally with methane-rich or normal saline (5 ml/kg) daily for eight weeks. Morphology changes and blood-retinal barrier (BRB) permeability were assessed by hematoxylin eosin staining and Evans blue leakage. Retinal inflammatory cytokines levels of tumor necrosis factor-α (TNF-α) and interleukin-1βmore » (IL1-β) were evaluated by immunohistochemistry. Retinal protein expressions of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined by western blotting. Retinal miRNA expressions were examined by miRNA-specific microarray, verified by quantitative RT-PCR and predicted by GO enrichment and KEGG pathway analysis. There was no significant changes in blood glucose level and body weight of diabetic rats with methane-rich or normal saline treatment, but the decreased retinal thickness, retinal ganglial cell loss and BRB breakdown were all significantly suppressed by methane treatment. DM-induced retinal overexpressions of TNF-α, IL-1β, GFAP and VEGF were also significantly ameliorated. Moreover, the methane treatment significantly up-regulated retinal levels of miR-192-5p (related to apoptosis and tyrosine kinase signaling pathway) and miR-335 (related to proliferation, oxidative stress and leukocyte). Methane exerts protective effect on DR via anti-inflammation, which may be related to the regulatory mechanism of miRNAs. - Highlights: • Methane exerts protective effect on diabetic retinopathy via anti-inflammation. • Therapeutic effect of methane is related to the regulatory mechanism of miRNAs. • As a therapeutic gas, methane will be a bright future.« less
Can bipolar disorder be viewed as a multi-system inflammatory disease?
Leboyer, Marion; Soreca, Isabella; Scott, Jan; Frye, Mark; Henry, Chantal; Tamouza, Ryad; Kupfer, David J.
2012-01-01
Background Patients with bipolar disorder are known to be at high risk of premature death. Comorbid cardio-vascular diseases are a leading cause of excess mortality, well above the risk associated with suicide. In this review, we explore comorbid medical disorders, highlighting evidence that bipolar disorder can be effectively conceptualized as a multi-systemic inflammatory disease. Methods We conducted a systematic PubMed search of all English-language articles recently published with bipolar disorder cross-referenced with the following terms: mortality and morbidity, cardio-vascular, diabetes, obesity, metabolic syndrome, inflammation, auto-antibody, retro-virus, stress, sleep and circadian rhythm. Results Evidence gathered so far suggests that the multi-system involvement is present from the early stages, and therefore requires proactive screening and diagnostic procedures, as well as comprehensive treatment to reduce progression and premature mortality. Exploring the biological pathways that could account for the observed link show that dysregulated inflammatory background could be a common factor underlying cardio-vascular and bipolar disorders. Viewing bipolar disorder as a multi-system disorder should help us to re-conceptualize disorders of the mind as “disorders of the brain and the body”. Limitations The current literature substantially lacks longitudinal and mechanistic studies, as well as comparison studies to explore the magnitude of the medical burden in bipolar disorder compared to major mood disorders as well as psychotic disorders. It is also necessary to look for subgroups of bipolar disorder based on their rates of comorbid disorders. Conclusions Comorbid medical illnesses in bipolar disorder might be viewed not only as the consequence of health behaviors and of psychotropic medications, but rather as an early manifestation of a multi-systemic disorder. Medical monitoring is thus a critical component of case assessment. Exploring common biological pathways of inflammation should help biomarkers discovery, ultimately leading to innovative diagnostic tools, new methods of prevention and personalized treatments. PMID:22497876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shan-Chi; Lee, Hsiang-Ping; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC),more » inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.« less
Lee, Sang-Soo; Sharma, Ashish R; Choi, Byung-Soo; Jung, Jun-Sub; Chang, Jun-Dong; Park, Seonghun; Salvati, Eduardo A; Purdue, Edward P; Song, Dong-Keun; Nam, Ju-Suk
2012-06-01
Wear particles are the major cause of osteolysis associated with failure of implant following total joint replacement. During this pathologic process, activated macrophages mediate inflammatory responses to increase osteoclastogenesis, leading to enhanced bone resorption. In osteolysis caused by wear particles, osteoprogenitors present along with macrophages at the implant interface may play significant roles in bone regeneration and implant osteointegration. Although the direct effects of wear particles on osteoblasts have been addressed recently, the role of activated macrophages in regulation of osteogenic activity of osteoblasts has scarcely been studied. In the present study, we examined the molecular communication between macrophages and osteoprogenitor cells that may explain the effect of wear particles on impaired bone forming activity in inflammatory bone diseases. It has been demonstrated that conditioned medium of macrophages challenged with titanium particles (Ti CM) suppresses early and late differentiation markers of osteoprogenitors, including alkaline phosphatase (ALP) activity, collagen synthesis, matrix mineralization and expression of osteocalcin and Runx2. Moreover, bone forming signals such as WNT and BMP signaling pathways were inhibited by Ti CM. Interestingly, TNFα was identified as a predominant factor in Ti CM to suppress osteogenic activity as well as WNT and BMP signaling activity. Furthermore, Ti CM or TNFα induces the expression of sclerostin (SOST) which is able to inhibit WNT and BMP signaling pathways. It was determined that over-expression of SOST suppressed ALP activity, whereas the inhibition of SOST by siRNA partially restored the effect of Ti CM on ALP activity. This study highlights the role of activated macrophages in regulation of impaired osteogenic activity seen in inflammatory conditions and provides a potential mechanism for autocrine regulation of WNT and BMP signaling mediated by TNFα via induction of SOST in osteprogenitor cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bor-Ren; Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Tsai, Cheng-Fang
We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK,more » and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.« less
Hypothalamic inflammation in obesity and metabolic disease.
Jais, Alexander; Brüning, Jens C
2017-01-03
Over the last years, hypothalamic inflammation has been linked to the development and progression of obesity and its sequelae. There is accumulating evidence that this inflammation not only impairs energy balance but also contributes to obesity-associated insulin resistance. Elevated activation of key inflammatory mediators such as JNK and IκB kinase (IKK) occurs rapidly upon consumption of a high-fat diet, even prior to significant weight gain. This activation of hypothalamic inflammatory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeating and further weight gain. In addition, these inflammatory processes contribute to obesity-associated insulin resistance and deterioration of glucose metabolism via altered neurocircuit functions. An understanding of the contributions of different neuronal and non-neuronal cell types to hypothalamic inflammatory processes, and delineation of the differences and similarities between acute and chronic activation of these inflammatory pathways, will be critical for the development of novel therapeutic strategies for the treatment of obesity and metabolic syndrome.
Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng
2018-02-01
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury.
Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng
2018-01-01
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury. PMID:29403554
Mechanisms underlying caloric restriction and life span regulation: implications for vascular aging
Ungvari, Zoltan; Parrado-Fernandez, Cristina; Csiszar, Anna; de Cabo, Rafael
2008-01-01
This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species (ROS) and inhibition of inflammatory pathways play a central role in the anti-aging cardiovascular effects of caloric restriction (CR). Particular emphasis is placed on the potential role of the plasma membrane redox system in CR-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that CR increases bioavailability of NO, decreases vascular ROS generation, activates the Nrf2/ARE pathway inducing ROS detoxification systems, exerts anti-inflammatory effects and, thereby, suppresses initiation/progression of vascular disease that accompany aging. PMID:18340017
Physiology and immunology of the cholinergic antiinflammatory pathway
Tracey, Kevin J.
2007-01-01
Cytokine production by the immune system contributes importantly to both health and disease. The nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine release and thereby prevent tissue injury and death. The efferent neural signaling pathway is termed the cholinergic antiinflammatory pathway. Cholinergic agonists inhibit cytokine synthesis and protect against cytokine-mediated diseases. Stimulation of the vagus nerve prevents the damaging effects of cytokine release in experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, arthritis, and other inflammatory syndromes. Herein is a review of this physiological, functional anatomical mechanism for neurological regulation of cytokine-dependent disease that begins to define an immunological homunculus. PMID:17273548
Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh
2014-01-01
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations, and alterations in signaling pathways eventually leading to skin cancer. In the present study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ/cm2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1- EP4), and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT, and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. PMID:25169110
Manteiga, Sara; Lee, Kyongbum
2016-01-01
Background: A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals’ effects on adult adipose tissue. Objectives: Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. Methods: We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Results: Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor’s activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Conclusions: Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ. Citation: Manteiga S, Lee K. 2017. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect 125:615–622; http://dx.doi.org/10.1289/EHP464 PMID:27384973
Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen
2016-01-01
Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650
Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie
2016-01-01
Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316
Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles
2017-02-01
Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.
Borrell-Pages, Maria; Carolina Romero, July; Badimon, Lina
2015-08-01
Inflammation is triggered after invasion or injury to restore homeostasis. Although the activation of Wnt/β-catenin signaling is one of the first molecular responses to cellular damage, its role in inflammation is still unclear. It was our hypothesis that the low-density lipoprotein (LDL) receptor-related protein 5 (LRP5) and the canonical Wnt signaling pathway are modulators of inflammatory mechanisms. Wild-type (WT) and LRP5(-/-) mice were fed a hypercholesterolemic (HC) diet to trigger dislipidemia and chronic inflammation. Diets were supplemented with plant sterol esters (PSEs) to induce LDL cholesterol lowering and the reduction of inflammation. HC WT mice showed increased serum cholesterol levels that correlated with increased Lrp5 and Wnt/β-catenin gene expression while in the HC LRP5(-/-) mice Wnt/β-catenin pathway was shut down. Functionally, HC induced pro-inflammatory gene expression in LRP5(-/-) mice, suggesting an inhibitory role of the Wnt pathway in inflammation. Dietary PSE administration downregulated serum cholesterol levels in WT and LRP5(-/-) mice. Furthermore, in WT mice PSE increased anti-inflammatory genes expression and inhibited Wnt/β-catenin activation. Hepatic gene expression of Vldlr, Lrp2 and Lrp6 was increased after HC feeding in WT mice but not in LRP5(-/-) mice, suggesting a role for these receptors in the clearance of plasmatic lipoproteins. Finally, an antiatherogenic role for LRP5 was demonstrated as HC LRP5(-/-) mice developed larger aortic atherosclerotic lesions than WT mice. Our results show an anti-inflammatory, pro-survival role for LRP5 and the Wnt signaling pathway in peripheral blood leukocytes.
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.
Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando
2018-06-01
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
The multitasking organ: recent insights into skin immune function.
Di Meglio, Paola; Perera, Gayathri K; Nestle, Frank O
2011-12-23
The skin provides the first line defense of the human body against injury and infection. By integrating recent findings in cutaneous immunology with fundamental concepts of skin biology, we portray the skin as a multitasking organ ensuring body homeostasis. Crosstalk between the skin and its microbial environment is also highlighted as influencing the response to injury, infection, and autoimmunity. The importance of the skin immune network is emphasized by the identification of several skin-resident cell subsets, each with its unique functions. Lessons learned from targeted therapy in inflammatory skin conditions, such as psoriasis, provide further insights into skin immune function. Finally, we look at the skin as an interacting network of immune signaling pathways exemplified by the development of a disease interactome for psoriasis. Copyright © 2011 Elsevier Inc. All rights reserved.
Fever and the thermal regulation of immunity: the immune system feels the heat
Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.
2016-01-01
Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513
Emanuele, Sonia; Lauricella, Marianna; Calvaruso, Giuseppe; D'Anneo, Antonella; Giuliano, Michela
2017-09-08
Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.
Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark
2013-01-01
This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens–related discomfort. While there is limited evidence for the mechanisms involved in contact lens–related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea. PMID:24058137
Therapeutic Potential of Targeting the Ghrelin Pathway.
Colldén, Gustav; Tschöp, Matthias H; Müller, Timo D
2017-04-11
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems' metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Therapeutic Potential of Targeting the Ghrelin Pathway
Colldén, Gustav; Tschöp, Matthias H.; Müller, Timo D.
2017-01-01
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome. PMID:28398233
Peifer, Christian; Wagner, Gerd; Laufer, Stefan
2006-01-01
The therapy of chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) has recently been enriched by the successful launch of the anti-cytokine biologicals Etanercept (tumor necrosis factor (TNF) receptor-p75 Fc fusion protein), Infliximab (chimeric anti-human TNF-alpha monoclonal antibody), Adalimumab (recombinant human anti-human TNF-alpha monoclonal antibody) and Anakinra (recombinant form of human interleukin 1beta (IL-1) receptor antagonist). The success of these novel treatments has impressively demonstrated the clinical benefit that can be gained from therapeutic intervention in cytokine signalling, highlighting the central role of proinflammatory cytokine systems like IL-1alpha and TNF-alpha to be validated targets. However, all of the anti-cytokine biologicals available to date are proteins, and therefore suffering to a varying degree from the general disadvantages associated with protein drugs. Therefore, small molecular, orally active anti-cytokine agents, which target specific pathways of proinflammatory cytokines, would offer an attractive alternative to anti-cytokine biologicals. A number of molecular targets have been identified for the development of such small molecular agents but p38 mitogen-activated protein (MAP) kinase occupies a central role in the regulation of IL-1beta and TNF-alpha signalling network at both the transcriptional and translational level. Since the mid-1990s, an immense number of inhibitors of p38 MAP kinase has been characterised in vitro, and to date several compounds have been advanced into clinical trials. This review will highlight the correlation between effective inhibition of p38 MAP kinase at the molecular target and cellular activity in functional assays of cytokine, particularly TNF-alpha and IL-1beta production. SAR will be discussed regarding activity at the enzyme target, but also with regard to properties required for efficient in vitro and in vivo activity.
Negative regulators of the RIG-I-like receptor signaling pathway
Quicke, Kendra M.; Diamond, Michael S.; Suthar, Mehul S.
2017-01-01
SUMMARY Upon recognition of specific molecular patterns on viruses, bacteria and fungi, host cells trigger an innate immune response, which culminates in the production of type I interferons (IFN), pro-inflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of the immune response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An over-exuberant innate immune response can lead to the destruction of cells and tissues, and the development of spontaneous autoimmunity. The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to a family of cytosolic host RNA helicases that recognize distinct non-self RNA signatures and trigger innate immune responses against several RNA virus infections. The RLR signaling pathway is tightly regulated to achieve a well-orchestrated response aimed at maximizing antiviral immunity and minimizing immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS function. PMID:28295214
Integrating microRNAs into a system biology approach to acute lung injury.
Zhou, Tong; Garcia, Joe G N; Zhang, Wei
2011-04-01
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.
Li, Dequan; Pan, Xuebo; Zhao, Jing; Chi, Chuang; Wu, Guangyu; Wang, Yuanyuan; Liao, Shiyao; Wang, Cong; Ma, Jihong; Pan, Jingye
2016-06-01
Multiple trauma normally leads to acute lung injury (ALI) and other multiple organ dysfunction syndrome (MODS). Finding effective treatments for ALI remains a medical as well as socioeconomic challenge. Several studies show that bone marrow mesenchymal stem cells (BMSCs) have the potent anti-inflammation activity and transfusion of BMSCs can effectively inhibit inflammatory and autoimmune diseases. In this study, we investigated the TLR2, 4/NF-κB signaling pathway to determine the therapeutic value of BMSCs on lipopolysaccharide (LPS)-induced ALI. To investigate the immunosuppression effects of BMSCs, rats subjected to multiple trauma were administrated with LPS to induce ALI and then treated with BMSCs. The histology of the lung was examined. Serum levels of the pro-inflammatory factors TNFα, interleukin (IL)-6, and IL-1β, as well as anti-inflammatory factor IL-10 were measured at 3, 6, 12, and 24 h after the treatment. Moreover, expressions of TLR2 and TLR4 at the mRNA and protein levels, as well as phosphorylation of p65 in the lungs, were assessed at these time points. We found that BMSCs reduced inflammatory injury, inhibited LPS-induced upregulation of TLR2 and TLR4 expression at the mRNA and protein levels, and compromised p65 phosphorylation. In addition, infusion of BMSCs also downregulated the abundance of pro-inflammatory TNFα, IL-6, and IL-1β and upregulated the abundance of anti-inflammatory IL-10 levels in the serum. Our results suggest that BMSCs suppress the inflammatory reactions through inhibition of the TLR2, 4 mediated NF-κB signal pathway, which hints that BMSCs can potentially be used to treat ALI in multiple trauma.
Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung
2008-04-30
A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.
Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong
2010-02-15
Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.
Dendritic cell reprogramming by endogenously produced lactic acid.
Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence
2013-09-15
The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.
The cholinergic anti-inflammatory pathway revisited.
Murray, K; Reardon, C
2018-03-01
Inflammatory bowel disease negatively affects the quality of life of millions of patients around the world. Although the precise etiology of the disease remains elusive, aberrant immune system activation is an underlying cause. As such, therapies that selectively inhibit immune cell activation without broad immunosuppression are desired. Inhibition of immune cell activation preventing pro-inflammatory cytokine production through neural stimulation has emerged as one such treatment. These therapeutics are based on the discovery of the cholinergic anti-inflammatory pathway, a reflex arc that induces efferent vagal nerve signaling to reduce immune cell activation and consequently mortality during septic shock. Despite the success of preclinical and clinical trials, the neural circuitry and mechanisms of action of these immune-regulatory circuits are controversial. At the heart of this controversy is the protective effect of vagal nerve stimulation despite an apparent lack of neuroanatomical connections between the vagus and target organs. Additional studies have further emphasized the importance of sympathetic innervation of these organs, and that alternative neural circuits could be involved in neural regulation of the immune system. Such controversies also extend to the regulation of intestinal inflammation, with the importance of efferent vagus nerve signals in question. Experiments that better characterize these pathways have now been performed by Willemze et al. in this issue of Neurogastroenterology & Motility. These continued efforts will be critical to the development of better neurostimulator based therapeutics for inflammatory bowel disease. © 2018 John Wiley & Sons Ltd.
Xu, Yiming; Liu, Ling
2017-09-01
Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Roulis, Manolis; Nikolaou, Christoforos; Kotsaki, Elena; Kaffe, Eleanna; Karagianni, Niki; Koliaraki, Vasiliki; Salpea, Klelia; Ragoussis, Jiannis; Aidinis, Vassilis; Martini, Eva; Becker, Christoph; Herschman, Harvey R.; Vetrano, Stefania; Danese, Silvio; Kollias, George
2014-01-01
Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans. PMID:25316791
Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases
Chan, Francis Ka-Ming
2012-01-01
Programmed necrosis or necroptosis is an inflammatory form of cell death driven by TNF-like death cytokines, toll-like receptors, and antigen receptors. Unlike necrosis induced by physical trauma, a dedicated pathway is involved in programmed necrosis. In particular, a kinase complex composed of the receptor interacting protein kinase 1 (RIPK1) and RIPK3 is a central step in necrotic cell death. Assembly and activation of this RIPK1–RIPK3 “necrosome” is critically controlled by protein ubiquitination, phosphorylation, and caspase-mediated cleavage events. The molecular signals cumulate in formation of intracellular vacuoles, organelle swelling, internal membrane leakage, and eventually plasma membrane rupture. These morphological changes can result in spillage of intracellular adjuvants to promote inflammation and further exacerbate tissue injury. Because of the inflammatory nature of necrosis, it is an attractive pathway for therapeutic intervention in acute inflammatory diseases. PMID:23125016
Zhou, Zhong'e; Tang, Yong; Chen, Chengjun; Lu, Yi; Liu, Liang
2016-01-01
Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. PMID:27761470
Kane, D; Lockhart, J; Balint, P; Mann, C; Ferrell, W; McInnes, I
2005-01-01
Case report: The patient developed arthritis mutilans in all digits of both hands with the exception of the left 4th finger, which had prior sensory denervation following traumatic nerve dissection. Plain radiography, ultrasonography and nerve conduction studies of the hands confirmed the absence of articular disease and sensory innervation in the left 4th digit. Methods: This relationship between joint innervation and joint inflammation was investigated experimentally by prior surgical sensory denervation of the medial aspect of the knee in six Wistar rats in which carrageenan induced arthritis was subsequently induced. Prior sensory denervation—with preservation of muscle function—prevented the development of inflammatory arthritis in the denervated knee. Discussion: Observations in human and animal inflammatory arthritis suggest that regulatory neuroimmune pathways in the joint are an important mechanism that modulates the clinical expression of inflammatory arthritis. PMID:15155371
Chao, Honglu; Liu, Yinlong; Lin, Chao; Xu, Xiupeng; Li, Zheng; Bao, Zhongyuan; Fan, Liang; Tao, Chao; Zhao, Lin; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing
2018-06-09
Phospholipase A 2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A 2 (cPLA 2 )-related inflammatory responses after TBI. We found that cPLA 2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA 2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA 2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA 2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA 2 -related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA 2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA 2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA 2 -related inflammatory response from the PKC pathway. Copyright © 2018. Published by Elsevier B.V.
Vogel, Christoph F A; Haarmann-Stemmann, Thomas
2017-02-01
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Gang-Feng
Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Furthermore » tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.« less
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents. PMID:28811745
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
Mathew, Esha; Collins, Meredith A; Fernandez-Barrena, Maite G; Holtz, Alexander M; Yan, Wei; Hogan, James O; Tata, Zachary; Allen, Benjamin L; Fernandez-Zapico, Martin E; di Magliano, Marina Pasca
2014-10-03
Pancreatic cancer, one of the deadliest human malignancies, is almost uniformly associated with a mutant, constitutively active form of the oncogene Kras. Studies in genetically engineered mouse models have defined a requirement for oncogenic KRAS in both the formation of pancreatic intraepithelial neoplasias, the most common precursor lesions to pancreatic cancer, and in the maintenance and progression of these lesions. Previous work using an inducible model allowing tissue-specific and reversible expression of oncogenic Kras in the pancreas indicates that inactivation of this GTPase at the pancreatic intraepithelial neoplasia stage promotes pancreatic tissue repair. Here, we extend these findings to identify GLI1, a transcriptional effector of the Hedgehog pathway, as a central player in pancreatic tissue repair upon Kras inactivation. Deletion of a single allele of Gli1 results in improper stromal remodeling and perdurance of the inflammatory infiltrate characteristic of pancreatic tumorigenesis. Strikingly, this partial loss of Gli1 affects activated fibroblasts in the pancreas and the recruitment of immune cells that are vital for tissue recovery. Analysis of the mechanism using expression and chromatin immunoprecipitation assays identified a subset of cytokines, including IL-6, mIL-8, Mcp-1, and M-csf (Csf1), as direct GLI1 target genes potentially mediating this phenomenon. Finally, we demonstrate that canonical Hedgehog signaling, a known regulator of Gli1 activity, is required for pancreas recovery. Collectively, these data delineate a new pathway controlling tissue repair and highlight the importance of GLI1 in regulation of the pancreatic microenvironment during this cellular process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Are Systemic Manifestations Ascribable to COPD in Smokers? A Structural Equation Modeling Approach.
Boyer, Laurent; Bastuji-Garin, Sylvie; Chouaid, Christos; Housset, Bruno; Le Corvoisier, Philippe; Derumeaux, Geneviève; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge; Audureau, Etienne
2018-06-05
Whether the systemic manifestations observed in Chronic Obstructive Pulmonary Disease (COPD) are ascribable to lung dysfunction or direct effects of smoking is in debate. Structural Equations Modeling (SEM), a causal-oriented statistical approach, could help unraveling the pathways involved, by enabling estimation of direct and indirect associations between variables. The objectives of the study was to investigate the relative impact of smoking and COPD on systemic manifestations, inflammation and telomere length. In 292 individuals (103 women; 97 smokers with COPD, 96 smokers without COPD, 99 non-smokers), we used SEM to explore the pathways between smoking (pack-years), lung disease (FEV 1 , K CO ), and the following parameters: arterial stiffness (aortic pulse wave velocity, PWV), bone mineral density (BMD), appendicular skeletal muscle mass (ASMM), grip strength, insulin resistance (HOMA-IR), creatinine clearance (eGFR), blood leukocyte telomere length and inflammatory markers (Luminex assay). All models were adjusted on age and gender. Latent variables were created for systemic inflammation (inflammatory markers) and musculoskeletal parameters (ASMM, grip strength, BMD). SEM showed that most effects of smoking were indirectly mediated by lung dysfunction: e.g. via FEV 1 on musculoskeletal factor, eGFR, HOMA-IR, PWV, telomere length, CRP, white blood cells count (WBC) and inflammation factor, and via K CO on musculoskeletal factor, eGFR and PWV. Direct effects of smoking were limited to CRP and WBC. Models had excellent fit. In conclusion, SEM highlighted the major role of COPD in the occurrence of systemic manifestations while smoking effects were mostly mediated by lung function.
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage
Mastellos, Dimitrios C.; Reis, Edimara S.; Yancopoulou, Despina; Hajishengallis, George; Ricklin, Daniel; Lambris, John D.
2016-01-01
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors. PMID:27353192
Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panta, Sushil; Yamakuchi, Munekazu; Kagoshima University Hospital, Kagoshima
In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclearmore » localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β{sub 3}-integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β{sub 3}-integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β{sub 3}-integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β{sub 3}-integrin pathway in endothelial cells.« less
Nutritionally Mediated Programming of the Developing Immune System12
Palmer, Amanda C.
2011-01-01
A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080
Wu, M; Xu, T; Zhou, Y; Lu, H; Gu, Z
2013-10-01
The goal of the study was to investigate the expression of cadherin-11 in synovial fibroblasts (SFs) under mechanical or inflammatory stimuli, and its potential relationship with PI3K/Akt signaling pathway. SFs separated from rat temporomandibular joint (TMJ) were treated with hydrostatic pressures (HP) of 30, 60, 90, and 120 kPa, as well as tumor necrosis factor-α (TNF-α) for 12, 24, 48, and 72 h. The location of cadherin-11 was observed by immunofluorescence microscopy, and its expression was detected by real-time PCR and Western blot. We also studied the activation of PI3K/Akt signaling pathway in SFs with HP or TNF-α stimulation. The results showed that increased expression of cadherin-11 could be found in the cell-cell contact site of SFs in response to HP and inflammatory stimulation. The mRNA and protein expression of cadherin-11 was positively correlated with the intensity of HP and the duration time of TNF-α treatment. Increased expression of vascular endothelial growth factor-D (VEGF-D) and activation of Akt were also found. Treatment with PI3K inhibitor LY294002 attenuated the pressure or inflammatory cytokine induction increases of cadherin-11, VEGF-D, and FGF-2 both in mRNA and protein levels. These findings suggest that cadherin-11 may play important roles in SFs following exposure to mechanical loading and inflammatory stimulation. In addition, PI3K/Akt pathway was associated with pressure or inflammation-induced cadherin-11 expression, which may involve in the pathogenesis of temporomandibular diseases. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.
2016-01-01
Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053
Li, Mei-yi; Fong, Peter; Zhang, Ji-guo; Zhang, Can-wen; Gong, Ke-rui; Yang, Ming-feng; Niu, Jing-zhong; Ji, Xun-ming; Lv, Guo-wei
2015-01-01
Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and extracellular signal-regulated kinase1/2 (ERK1/2) in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6–S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling pathway. Thus, our results suggest a novel mechanism of gabapentin-mediated analgesia for visceral inflammatory pain through a PKC-ERK1/2 signaling pathway that may be a future therapeutic target for the treatment of visceral inflammatory pain. PMID:26512901
Chen, Xiangrong; Chen, Chunnuan; Fan, Sining; Wu, Shukai; Yang, Fuxing; Fang, Zhongning; Fu, Huangde; Li, Yasong
2018-04-20
Microglial polarization and the subsequent neuroinflammatory response are contributing factors for traumatic brain injury (TBI)-induced secondary injury. High mobile group box 1 (HMGB1) mediates the activation of the NF-κB pathway, and it is considered to be pivotal in the late neuroinflammatory response. Activation of the HMGB1/NF-κB pathway is closely related to HMGB1 acetylation, which is regulated by the sirtuin (SIRT) family of proteins. Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA inhibited TBI-induced microglial activation and the subsequent neuroinflammatory response by regulating the HMGB1/NF-κB signaling pathway. However, no studies have elucidated if ω-3 PUFA affects the HMGB1/NF-κB pathway in a HMGB1 deacetylation of dependent SIRT1 manner, thus regulating microglial polarization and the subsequent neuroinflammatory response. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and HMGB1, were used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1/NF-κB signaling pathway activation to evaluate the effects of ω-3 PUFA supplementation. The impact of SIRT1 deacetylase activity on HMGB1 acetylation and the interaction between HMGB1 and SIRT1 were assessed to evaluate anti-inflammation effects of ω-3 PUFAs, and also, whether these effects were dependent on a SIRT1-HMGB1/NF-κB axis to gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. The results of our study showed that ω-3 PUFA supplementation promoted a shift from the M1 microglial phenotype to the M2 microglial phenotype and inhibited microglial activation, thus reducing TBI-induced inflammatory factors. In addition, ω-3 PUFA-mediated downregulation of HMGB1 acetylation and its extracellular secretion was found to be likely due to increased SIRT1 activity. We also found that treatment with ω-3 PUFA inhibited HMGB1 acetylation and induced direct interactions between SIRT1 and HMGB1 by elevating SIRT1 activity following TBI. These events lead to inhibition of HMGB1 nucleocytoplasmic translocation/extracellular secretion and alleviated HMGB1-mediated activation of the NF-κB pathway following TBI-induced microglial activation, thus inhibiting the subsequent inflammatory response. The results of this study suggest that ω-3 PUFA supplementation attenuates the inflammatory response by modulating microglial polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway, leading to neuroprotective effects following experimental traumatic brain injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Mainul, E-mail: mainul.husain@hc-sc.gc.ca; Kyjovska, Zdenka O., E-mail: zky@nrcwe.dk; Bourdon-Lacombe, Julie, E-mail: julie.bourdon-lacombe@hc-sc.gc.ca
Inhalation of carbon black nanoparticles (CBNPs) causes pulmonary inflammation; however, time course data to evaluate the detailed evolution of lung inflammatory responses are lacking. Here we establish a time-series of lung inflammatory response to CBNPs. Female C57BL/6 mice were intratracheally instilled with 162 μg CBNPs alongside vehicle controls. Lung tissues were examined 3 h, and 1, 2, 3, 4, 5, 14, and 42 days (d) post-exposure. Global gene expression and pulmonary inflammation were assessed. DNA damage was evaluated in bronchoalveolar lavage (BAL) cells and lung tissue using the comet assay. Increased neutrophil influx was observed at all time-points. DNA strandmore » breaks were increased in BAL cells 3 h post-exposure, and in lung tissues 2–5 d post-exposure. Approximately 2600 genes were differentially expressed (± 1.5 fold; p ≤ 0.05) across all time-points in the lungs of exposed mice. Altered transcript levels were associated with immune-inflammatory response and acute phase response pathways, consistent with the BAL profiles and expression changes found in common respiratory infectious diseases. Genes involved in DNA repair, apoptosis, cell cycle regulation, and muscle contraction were also differentially expressed. Gene expression changes associated with inflammatory response followed a biphasic pattern, with initial changes at 3 h post-exposure declining to base-levels by 3 d, increasing again at 14 d, and then persisting to 42 d post-exposure. Thus, this single CBNP exposure that was equivalent to nine 8-h working days at the current Danish occupational exposure limit induced biphasic inflammatory response in gene expression that lasted until 42 d post-exposure, raising concern over the chronic effects of CBNP exposure. - Highlights: • A single exposure to CBNPs induced expression changes in over 2600 genes in mouse lungs. • Altered genes were associated with immune-inflammatory and acute phase responses. • Several genes were involved in DNA repair, apoptosis, and muscle contraction. • Effects of a single exposure to CBNPs lasted until 42 d post-exposure. • A single exposure to CBNPs induced a biphasic inflammatory response in gene expression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Abdalrahman, Akram
2014-02-21
Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promisesmore » in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.« less
The resolution of inflammation: Principles and challenges.
Headland, Sarah E; Norling, Lucy V
2015-05-01
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists. Copyright © 2015 Elsevier Ltd. All rights reserved.
Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets
2014-01-01
Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, 2 and 9 and the pro-inflammatory mediators SDF-1, VEGF and sCD40L, from platelets and to subsequently pharmacologically address the release mechanism (s). S.sanguinis stimulated the release of MMP-1, SDF-1, VEGF and sCD40L from platelets and inhibitors of cyclooxygenase and phosphatidylinositol 3-kinase, and antagonists of the αIIbβ3 integrin and glycoprotein Ib, each inhibited the secretion of all factors. Conclusions Therefore the release of MMP-1, SDF-1, VEGF and sCD40L occurs late in the platelet response to S.sanguinis and highlights the complex intracellular signalling pathways stimulated in response to S.sanguinis which lead to haemostasis, MMP and pro-inflammatory mediator secretion. PMID:24755160
Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough
Usunier, Benoît; Benderitter, Marc; Tamarat, Radia; Chapel, Alain
2014-01-01
Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. PMID:25132856
Porras, David; Nistal, Esther; Martínez-Flórez, Susana; Pisonero-Vaquero, Sandra; Olcoz, José Luis; Jover, Ramiro; González-Gallego, Javier; García-Mediavilla, María Victoria; Sánchez-Campos, Sonia
2017-01-01
Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia-mediated TLR-4 pathway induction, with subsequent inhibition of inflammasome response and reticulum stress pathway activation, leading to the blockage of lipid metabolism gene expression deregulation. Our results support the suitability of quercetin as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative response. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Shu-Ju
2015-09-01
This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.
Osteoarthritis year in review 2015: biology.
Malfait, A M
2016-01-01
This review highlights a selection of recently published literature in the area of osteoarthritis biology. Major themes transpiring from a PubMed search covering the year between the 2014 and the 2015 Osteoarthritis Research Society International (OARSI) World Congress are explored. Inflammation emerged as a significant theme, revealing complex pathways that drive dramatic changes in cartilage homeostasis and in the synovium. Highlights include a homeostatic role for CXC chemokines in cartilage, identification of the zinc-ZIP8-MTF1 axis as an essential regulator of cartilage catabolism, and the discovery that a small aggrecan fragment can have catabolic and pro-inflammatory effects through Toll-like receptor 2. Synovitis can promote joint damage, partly through alarmins such as S100A8. Synovitis and synovial expression of the pro-algesic neurotrophin, Nerve Growth Factor, are associated with pain. Increasingly, researchers are considering specific pathogenic pathways that may operate in distinct subsets of osteoarthritis associated with distinct risk factors, including obesity, age, and joint injury. In obesity, the contribution of metabolic factors and diet is under intense investigation. The role of autophagy and oxidative stress in age-related osteoarthritis has been further explored. This approach may open avenues for targeted treatment of distinct phenotypes of osteoarthritis. Finally, a small selection of novel analgesic targets in the periphery is briefly discussed, including calcitonin gene-related peptide and the neuronal sodium voltage-gated channels, Nav1.7 and Nav1.8. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Zhao, Liandong; Zhao, Qitao; Zhou, Yong; Zhao, Ying; Wan, Qi
2016-01-01
Dyslipidemia is a risk factor for the pathogenesis of Alzheimer's disease. Although, atorvastatin is a well-accepted lipid-lowering agent, the benefits of atorvastatin treatment through an anti-inflammatory mechanism are still unclear. The present study was designed to examine changes in inflammatory markers following administration of atorvastatin in dyslipidemic patients with a parental history of Alzheimer's disease. Dyslipidemic adults with a parental history of Alzheimer's disease were administered either 40 mg of atorvastatin or placebo for 18 months. Before and after the study, lpid levels, blood pressure, body weight and body mass index, and the inflammatory markers hs-Creactive protein, serum monocyte chemoattractant protien-1, interleukin-1β, interleukin-6, and tumor necrosis factor-α were tested. Baseline levels of lipids, body mass index, hs-Creactive protein, monocyte chemoattractant protien-1, interleukin- 1β, interleukin-6 and tumor necrosis factor-α did not show any difference between the two groups. However, after 18 months of atorvastatin treatment, all inflammatory markers significantly decreased in association with a reduction of lipid profiles, body mass index, bodyweight, and blood pressure, compared with those patients treated with placebo. Administration of atorvastatin corrected dyslipidemia in association with a reduction in inflammatory markers. Our results suggest that the therapeutic benefits of atorvastatin possibly involve an anti-inflammatory pathway.
Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage
Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa
2017-01-01
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases. PMID:28587282
Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.
Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa
2017-06-06
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Pain management in rheumatology research, training, and practice.
Borenstein, David G; Hassett, Afton L; Pisetsky, David
2017-01-01
The Pain Management Task Force of the American College of Rheumatology published a report in 2010 highlighting pain management as a fundamental aspect of clinical practice, training and research. In the interim, the consideration of pain as a focus of attention of rheumatologists and rheumatology health professionals has become even more challenging than in 2010 because of the epidemic of opiate addiction and overdose death. The characterisation of categories of pain by mechanism (e.g., inflammation, joint degeneration, abnormalities of central pain processing) can help guide treatment. However, such categorisation can overlook the overlap of these processes and their interaction to create mixed pain states. Further complicating the assessment of pain, outcome measures in rheumatic disease often assess the degree of pain indirectly while concentrating on the quantification of inflammation. Non-inflammatory pain often persists despite treatment, highlighting the need for alternative analgesic therapies. Recommended therapies include acetaminophen, nonsteroidal anti-inflammatory drugs, and stimulators of the pain inhibitory pathway. Each of these non-opioid therapies has incomplete efficacy and potential toxicities that can limit their utility. Non-pharmacologic therapies can show efficacy that rivals or surpasses pharmacologic therapies in the control of pain and improving function in a variety of rheumatic disorders including chronic low back pain and fibromyalgia. A limitation of the use of these therapies is inadequate training and appreciation of their benefits. Furthermore, the supply of trained practitioners to provide non-pharmacological care and support patient efforts for self-management is often limited. Together, these considerations suggest the importance of a renewed effort to implement task force recommendations.
Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development
Cytokines, low-molecular-weight messenger proteins that act as intercellular immunomodulatory signals, have become a mainstream preclinical marker for assessing the systemic inflammatory response to external stressors. The challenge is to quantitate from healthy subjects cytokine...
Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.
2013-01-01
Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value. PMID:23613998
IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells.
Cianciulli, Antonia; Dragone, Teresa; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Lofrumento, Dario Domenico; Panaro, Maria Antonietta
2015-02-01
The development of agents that can modulate microglial activation has been suggested as one potential strategy for the treatment or prevention of neurodegenerative diseases. Among these agents, resveratrol, with its anti-inflammatory action, has been described to have neuroprotective effects. In this paper we demonstrate that in LPS-stimulated microglia resveratrol pretreatment reduced, in a dose-dependent manner, pro-inflammatory cytokines IL-1β, TNF-α and IL-6 mRNA expression and increased the release of anti-inflammatory interleukin (IL)-10. Moreover, resveratrol pretreatment up-regulated the phosphorylated forms of JAK1 and STAT3, as well as suppressor of cytokine signaling (SOCS)3 protein expression in LPS activated cells, demonstrating that the JAK-STAT signaling pathway is involved in the anti-inflammatory effect exerted by resveratrol. By supplementing the cultures with an IL-10 neutralizing antibody (IL-10NA) we obtained the opposite effect. Taken together, these data allow us to conclude that the LPS-induced pro-inflammatory response in microglial cells can be markedly reduced by resveratrol, through IL-10 dependent up-regulation of SOCS3, requiring the JAK-STAT signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Inflammatory targets of therapy in sickle cell disease
Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.
2015-01-01
Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206
Yang, Qian; Nanayakkara, Gayani K.; Drummer, Charles; Sun, Yu; Johnson, Candice; Cueto, Ramon; Fu, Hangfei; Shao, Ying; Wang, Luqiao; Yang, William Y.; Tang, Peng; Liu, Li-Wen; Ge, Shuping; Zhou, Xiao-Dong; Khan, Mohsin; Wang, Hong; Yang, Xiaofeng
2017-01-01
Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair. PMID:29109687
Inflammatory response and extracorporeal circulation.
Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander
2015-06-01
Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Velard, Frédéric; Schlaubitz, Silke; Fricain, Jean-Christophe; Guillaume, Christine; Laurent-Maquin, Dominique; Möller-Siegert, Janina; Vidal, Loïc; Jallot, Edouard; Sayen, Stéphanie; Raissle, Olivier; Nedelec, Jean-Marie; Vix-Guterl, Cathie; Anselme, Karine; Amédée, Joëlle; Laquerrière, Patrice
2015-01-01
To discriminate the most important physicochemical parameters for bone reconstruction, the inflammatory potential of seven nanoporous hydroxyapatite powders synthesized by hard or soft templating was evaluated both in vitro and in vivo. After physical and chemical characterization of the powders, we studied the production of inflammatory mediators by human primary monocytes after 4 and 24 h in contact with powders, and the host response after 2 weeks implantation in a mouse critical size defect model. In vitro results highlighted increases in the secretion of TNF-α, IL-1, -8, -10 and proMMP-2 and -9 and decreases in the secretion of IL-6 only for powders prepared by hard templating. In vivo observations confirmed an extensive inflammatory tissue reaction and a strong resorption for the most inflammatory powder in vitro. These findings highlight that the most critical physicochemical parameters for these nanoporous hydroxyapatite are, the crystallinity that controls dissolution potential, the specific surface area and the size and shape of crystallites.
Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study
Durrenberger, Pascal. F.; Grünblatt, Edna; Fernando, Francesca S.; Monoranu, Camelia Maria; Evans, Jordan; Riederer, Peter; Reynolds, Richard; Dexter, David T.
2012-01-01
The aetiology of Parkinson's disease (PD) is yet to be fully understood but it is becoming more and more evident that neuronal cell death may be multifactorial in essence. The main focus of PD research is to better understand substantia nigra homeostasis disruption, particularly in relation to the wide-spread deposition of the aberrant protein α-synuclein. Microarray technology contributed towards PD research with several studies to date and one gene, ALDH1A1 (Aldehyde dehydrogenase 1 family, member A1), consistently reappeared across studies including the present study, highlighting dopamine (DA) metabolism dysfunction resulting in oxidative stress and most probably leading to neuronal cell death. Neuronal cell death leads to increased inflammation through the activation of astrocytes and microglia. Using our dataset, we aimed to isolate some of these pathways so to offer potential novel neuroprotective therapeutic avenues. To that effect our study has focused on the upregulation of P2X7 (purinergic receptor P2X, ligand-gated ion channel, 7) receptor pathway (microglial activation) and on the NOS3 (nitric oxide synthase 3) pathway (angiogenesis). In summary, although the exact initiator of striatal DA neuronal cell death remains to be determined, based on our analysis, this event does not remain without consequence. Extracellular ATP and reactive astrocytes appear to be responsible for the activation of microglia which in turn release proinflammatory cytokines contributing further to the parkinsonian condition. In addition to tackling oxidative stress pathways we also suggest to reduce microglial and endothelial activation to support neuronal outgrowth. PMID:22548201
Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing
2017-10-01
Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.
Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C
2010-03-25
Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.
Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.
2013-01-01
We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537
Zhang, Ru; Han, Shufen; Zhang, Zheng; Zhang, Weiguo; Yang, Jing; Wan, Zhongxiao; Qin, Liqiang
2018-05-16
Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE -/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE -/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.
Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; Guan, Xu; Chen, Jingwen; Wang, Chengbin
2016-11-01
Hypobaric hypoxia, frequently encountered at high altitude, may lead to lung and cerebrum injury. Our study aimed to investigate whether puerarin could exert ameliorative effects on rats exposed to hypobaric hypoxia via regulation of aquaporin (AQP) and NF-κB signaling pathway in lung and cerebrum. 40 Sprague Dawley rats were divided into four groups (normal control group, hypobaric hypoxia group, puerarin group and dexamethasone group). Wet/dry ratio, blood gas, pathological changes of lung and cerebrum and spatial memory were observed in each group. Inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were determined with ELISA and expression of AQP1, AQP4, NF-κB signaling pathway in lung and cerebrum with western blot RESULTS: Puerarin showed significant preventative effects on tissue injury and behavioral changes, as evidenced by histopathological findings and Morris water maze. In addition, levels of inflammatory cytokines in BALF decreased in the two preventative groups compared with those of hypobaric hypoxia group. AQP in lung and cerebrum increased under the condition of hypobaric hypoxia while was down regulated in both two preventative groups. NF-κB and IκB was also inhibited by puerarin. Our study suggested that lung and cerebrum injury, increased inflammatory cytokines in BALF and increased AQP1, AQP4 and NF-κB signaling pathway occurred under the condition of hypobaric hypoxia. Moreover, puerarin could prevent lung and cerebrum injury of rats exposed to hypobaric hypoxia via down-regulation of inflammatory cytokines, AQP1 and AQP4 expression and NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yunlong; Zhang, Aihua; Lu, Shulai; Pan, Xinting; Jia, Dongmei; Yu, Wenjuan; Jiang, Yanxia; Li, Xinde; Wang, Xuefeng; Zhang, Jidong; Hou, Lin; Sun, Yunbo
2014-11-01
Many studies have shown that LPS mainly activates four signal transduction pathways to induce inflammation, namely the p38, ERK1/2, JNK and IKK/NF-κB pathways. Studies have demonstrated that 5'-AMP-induced hypothermia (AIH) exhibits high anti-inflammatory capabilities. In this study, we explore that how AIH inhibits the inflammatory response. Wistar rats were divided into five groups: a control group, an LPS group, a 5'-AMP pre-treatment group, a 5'-AMP post-treatment group and a 5'-AMP group. For each group, plasma and lung were collected from the rats at 6h and 12h after LPS injection. ELISA assays were used to detect plasma levels of CD14, CRP and MCP-1. Inflammatory pathway activation and TLR4 expression were assayed separately by Western blot analysis and immunohistochemistry. Our results showed that rats treated with AIH either before or after an LPS-challenge had a significant decrease in plasma levels of CD14, CRP and TLR4 compared with rats that received LPS only. Western blot analysis showed that AIH inhibited the activation of extracellular signal-regulated kinases (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) and NF-κB in inflammatory rats. Our study concluded that AIH attenuated LPS-induced inflammation mainly by inhibiting activation on the ERK1/2, p38, JNK and NF-κB signaling pathways. Copyright © 2014 Elsevier B.V. All rights reserved.
Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh
2015-01-01
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. © 2014 The American Society of Photobiology.
Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang
2017-09-01
Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.
2016-01-01
ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo. Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections. PMID:27535052
Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi
2017-01-05
A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.
Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan
2008-04-01
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.
Liu, Hong-Mei; Liu, Yi-Tong; Zhang, Jing; Ma, Li-Jun
2017-08-01
The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.
Zhai, Xiao-Ting; Chen, Jia-Quan; Jiang, Cui-Hua; Song, Jie; Li, Dong-Yu; Zhang, Hao; Jia, Xiao-Bin; Tan, Wei; Wang, Shu-Xia; Yang, Yi; Zhu, Fen-Xia
2016-12-24
Corydalis bungeana Turcz. (C. bungeana) is one of traditionally used medicines in China and possesses various biological effects, such as anti-inflammatory, antibacterial activity and inhibition of the immune function of the host. we studied the anti-inflammatory effect and molecular mechanism involved of C. bungeana both in vitro and in vivo model system in which the inflammatory response was induced by LPS treatment. Anti-inflammatory activity of C. bungeana was investigated by LPS-induced RAW 264.7 macrophages and BALB/c mice. The production and expression of pro-inflammatory cytokines were evaluated by Griess reagent, ELISA kits and RT-qPCR, respectively. Phosphorylation status of IκBα and p65 was illustrated by western blot assay. C. bungeana reduced the secretion of NO, TNF-α, IL-6 and IL-1β through inhibiting the protein expression of iNOS, TNF-α, IL-6 and IL-1β in vitro and in vivo. Western blot analysis suggested that C. bungeana supressed NF-κB activation via regulating the phosphorylation of IκBα and p65. Immunohistochemical assay also demostrated the histological inflammatory change in liver tissue. The results indicate that C. bungeana supresses the activation of NF-κB signaling pathway through inhibiting phosphorylation of IκBα and p65, which results in good anti-inflammatory effect. In addition, C. bungeana attenuates inflammatory reaction by supressing the expression of various inflammatory cytokines both in vivo and in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tian, Lin; Li, Weimin; Wang, Tan
2017-07-01
Silibinin, a natural product extracted from Silybum marianum (milk thistle), has been reported to have anti-inflammatory effect. The aim of this study was to explore the therapeutic effects and potential mechanisms of silibinin on lipopolysaccharide (LPS)-stimulated inflammatory responses in acute lung injury (ALI). Male BALB/c mice were conditioned with silibinin 1 h after intranasal instillation of LPS. After 12 h, the myeloperoxidase (MPO) level in lung tissues, the wet/dry (W/D) ratio, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), and histopathological examination of lung were detected. Our results showed that silibinin inhibited LPS-induced histopathological changes and MPO activity, as well as the wet/dry (W/D) ratio in the lung tissues. Furthermore, silibinin significantly inhibited LPS-induced inflammatory cytokines production in the BALF. In addition, silibinin suppressed LPS-induced NF-κB activation and the expression of NLRP3 inflammasome. These results indicate that silibinin exerts its anti-inflammatory effect by inhibiting NF-κB and NLRP3 signaling pathways. Copyright © 2017. Published by Elsevier Ltd.
Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response
Karmarkar, Dipti; Rock, Kenneth L
2013-01-01
In the present study, we have found that intestinal flora strongly influence peritoneal neutrophilic inflammatory responses to diverse stimuli, including pathogen-derived particles like zymosan and sterile irritant particles like crystals. When germ-free and flora-deficient (antibiotic-treated) mice are challenged with zymosan intraperitoneally, neutrophils are markedly impaired in their ability to extravasate from blood into the peritoneum. In contrast, in these animals, neutrophils can extravasate in response to an intraperitoneal injection of the chemokine, macrophage inflammatory protein 2. Neutrophil recruitment upon inflammatory challenge requires stimulation by microbiota through a myeloid differentiation primary response gene (88) (MyD88) -dependent pathway. MyD88 signalling is crucial during the development of the immune system but depending upon the ligand it may be dispensable at the time of the actual inflammatory challenge. Furthermore, pre-treatment of flora-deficient mice with a purified MyD88-pathway agonist is sufficient to restore neutrophil migration. In summary, this study provides insight into the role of gut microbiota in influencing acute inflammation at sites outside the gastrointestinal tract. PMID:23909393
Inflamma-miRs in Aging and Breast Cancer: Are They Reliable Players?
Cătană, Cristina Sorina; Calin, George A; Berindan-Neagoe, Ioana
2015-01-01
Human aging is characterized by chronic low-grade inflammation known as "inflammaging." Persistent low-level inflammation also plays a key role in all stages of breast cancer since "inflammaging" is the potential link between cancer and aging through NF-kB pathways highly influenced by specific miRs. Micro-RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at a posttranscriptional level. Inflamma-miRs have been implicated in the regulation of immune and inflammatory responses. Their abnormal expression contributes to the chronic pro-inflammatory status documented in normal aging and major age-related diseases (ARDs), inflammaging being a significant mortality risk factor in both cases. Nevertheless, the correct diagnosis of inflammaging is difficult to make and its hidden contribution to negative health outcomes remains unknown. This methodological work flow was aimed at defining crucial unanswered questions about inflammaging that can be used to clarify aging-related miRNAs in serum and cell lines as well as their targets, thus confirming their role in aging and breast cancer tumorigenesis. Moreover, we aim to highlight the links between the pro-inflammatory mechanism underlying the cancer and aging processes and the precise function of certain miRNAs in cellular senescence (CS). In addition, miRNAs and cancer genes represent the basis for new therapeutic findings indicating that both cancer and ARDs genes are possible candidates involved in CS and vice versa. Our goal is to obtain a focused review that could facilitate future approaches in the investigation of the mechanisms by which miRNAs control the aging process by acting as efficient ARDs inflammatory biomarkers. An understanding of the sources and modulation of inflamma-miRs along with the identification of their specific target genes could enhance their therapeutic potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com
2014-05-09
Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have amore » therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun
Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecularmore » basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.« less
Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells.
Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhong, Caiyun
2018-01-01
To examine whether curcumin has protective effect on insulin resistance induced by bisphenol A (BPA) in LO2 cells and whether this effect was mediated by inhibiting the inflammatory mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways. LO2 cells were stimulated with BPA in the presence or absence of curcumin for 5 days. Glucose consumption, activation of insulin signaling, MAPKs and NF-κB pathways, levels of inflammatory cytokines and MDA production were analyzed. Curcumin prevented BPA-induced reduction of glucose consumption and suppression of insulin signaling pathway, indicating curcumin alleviated BPA-triggered insulin resistance in LO2 cells. mRNA and proteins levels of TNF-α and IL-6, as well as MDA level in LO2 cells treated with BPA were decreased by curcumin. Furthermore, curcumin downregulated the activation of p38, JNK, and NF-κB pathways upon stimulation with BPA. Inhibition of JNK pathway, but not p38 nor NF-κB pathway, improved glucose consumption and insulin signaling in BPA-treated LO2 cells. Curcumin inhibits BPA-induced insulin resistance by suppressing JNK pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients
Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim
2013-01-01
Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909
SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages
Rocher, Crystal; Singla, Dinender K.
2013-01-01
Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781
2016-10-01
inflammatory mediators. Pro-inflammatory mediators including TNF-α, TNF-β, IL-8, ICAM-1, Tie2, CRP, and SAA were elevated in patients with chronic residual limb...IL-12, TNF-β, PIGF, Tie2, SAA and ICAM-1), and inversely with concentrations of the anti-inflammatory mediator IL-13, as well as IL-2 and Eotaxin-3...catastrophizing and residual limb pain intensity were partially mediated by TNF-α, TNF- β, SAA , and ICAM-1 levels. Results suggest that chronic post
Tiedje, Christopher; Diaz-Muñoz, Manuel D.; Trulley, Philipp; Ahlfors, Helena; Laaß, Kathrin; Blackshear, Perry J.; Turner, Martin; Gaestel, Matthias
2016-01-01
RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1 h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptomes of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2, whereas retained RNA-binding capacity of TTP-AA to 3′UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3′UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role of TTP as a suppressor of feedback inhibitors of inflammation and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control the pro-inflammatory response. PMID:27220464
Inflammation Effects on Motivation and Motor Activity: Role of Dopamine
Felger, Jennifer C; Treadway, Michael T
2017-01-01
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation. PMID:27480574
Tisato, Veronica; Zauli, Giorgio; Rimondi, Erika; Gianesini, Sergio; Brunelli, Laura; Menegatti, Erica; Zamboni, Paolo; Secchiero, Paola
2013-01-01
Large vein endothelium plays important roles in clinical diseases such as chronic venous disease (CVD) and thrombosis; thus to characterize CVD vein endothelial cells (VEC) has a strategic role in identifying specific therapeutic targets. On these bases we evaluated the effect of the natural anti-inflammatory compounds α-Lipoic acid and Ginkgoselect phytosome on cytokines/chemokines released by CVD patient-derived VEC. For this purpose, we characterized the levels of a panel of cytokines/chemokines (n = 31) in CVD patients' plasma compared to healthy controls and their release by VEC purified from the same patients, in unstimulated and TNF-α stimulated conditions. Among the cytokines/chemokines released by VEC, which recapitulated the systemic profile (IL-8, TNF-α, GM-CSF, INF-α2, G-CSF, MIP-1β, VEGF, EGF, Eotaxin, MCP-1, CXCL10, PDGF, and RANTES), we identified those targeted by ex vivo treatment with α-Lipoic acid and/or Ginkgoselect phytosome (GM-CSF, G-CSF, CXCL10, PDGF, and RANTES). Finally, by investigating the intracellular pathways involved in promoting the VEC release of cytokines/chemokines, which are targeted by natural anti-inflammatory compounds, we documented that α-Lipoic acid significantly counteracted TNF-α-induced NF-κB and p38/MAPK activation while the effects of Ginkgo biloba appeared to be predominantly mediated by Akt. Our data provide new insights into the molecular mechanisms of CVD pathogenesis, highlighting new potential therapeutic targets. PMID:24489443
Acute Phase Proteins and Their Role in Periodontitis: A Review
Moogala, Srinivas; Boggarapu, Shalini; Pesala, Divya Sai; Palagi, Firoz Babu
2015-01-01
Acute phase proteins are a class of proteins whose plasma concentration increase (positive acute phase proteins) or decrease (negative acute phase proteins) in response to inflammation. This response is called as the acute phase reaction, also called as acute phase response, which occurs approximately 90 minutes after the onset of a systemic inflammatory reaction. In Periodontitis endotoxins released from gram negative organisms present in the sub gingival plaque samples interact with Toll- like receptors (TLR) that are expressed on the surface of Polymorphonuclear leucocytes (PMNs) and monocytes which are in abundance in periodontal inflammation. The complex formed due to interaction of Endotoxins and TLR activates the Signal transduction pathway in both innate and adaptive immunity resulting in production of Cytokines that co- ordinate the local and systemic inflammatory response. The pro inflammatory cytokines originating at the diseased site activates the liver cells to produce acute phase proteins as a part of non specific response. The production of Acute phase proteins is regulated to a great extent by Cytokines such as IL-1, IL-6, IL-8, TNF-α and to a lesser extent by Glucocorticoid hormones. These proteins bind to bacteria leading to activation of complement proteins that destroys pathogenic organisms. Studies have shown that levels of acute phase proteins are increased in otherwise healthy adults with poor periodontal status. This article highlights about the synthesis, structure, types and function of acute phase proteins and the associated relation of acute phase proteins in Periodontitis. PMID:26674303
Hou, Yuanyuan; Nie, Yan; Cheng, Binfeng; Tao, Jin; Ma, Xiaoyao; Jiang, Min; Gao, Jie; Bai, Gang
2016-01-01
Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively. PMID:27175332
USDA-ARS?s Scientific Manuscript database
Recent studies have shown that some flavonoids are modulators for pro-inflammatory cytokine production. In this study, velutin, an unique flavone isolated from the pulp of acai fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced pro-inflammatory cytoki...
Di Lorenzo, Chiara; Sangiovanni, Enrico; Fumagalli, Marco; Colombo, Elisa; Frigerio, Gianfranco; Colombo, Francesca; Peres de Sousa, Luis; Altindişli, Ahmet; Restani, Patrizia; Dell’Agli, Mario
2016-01-01
Raisins (Vitis vinifera L.) are dried grapes largely consumed as important source of nutrients and polyphenols. Several studies report health benefits of raisins, including anti-inflammatory and antioxidant properties, whereas the anti-inflammatory activity at gastric level of the hydro-alcoholic extracts, which are mostly used for food supplements preparation, was not reported until now. The aim of this study was to compare the anti-inflammatory activity of five raisin extracts focusing on Interleukin (IL)-8 and Nuclear Factor (NF)-κB pathway. Raisin extracts were characterized by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) analysis and screened for their ability to inhibit Tumor necrosis factor (TNF)α-induced IL-8 release and promoter activity in human gastric epithelial cells. Turkish variety significantly inhibited TNFα-induced IL-8 release, and the effect was due to the impairment of the corresponding promoter activity. Macroscopic evaluation showed the presence of seeds, absent in the other varieties; thus, hydro-alcoholic extracts from fruits and seeds were individually tested on IL-8 and NF-κB pathway. Seed extract inhibited IL-8 and NF-κB pathway, showing higher potency with respect to the fruit. Although the main effect was due to the presence of seeds, the fruit showed significant activity as well. Our data suggest that consumption of selected varieties of raisins could confer a beneficial effect against gastric inflammatory diseases. PMID:27447609
Anto Michel, Nathaly; Colberg, Christian; Buscher, Konrad; Sommer, Björn; Pramod, Akula Bala; Ehinger, Erik; Dufner, Bianca; Hoppe, Natalie; Pfeiffer, Katharina; Marchini, Timoteo; Willecke, Florian; Stachon, Peter; Hilgendorf, Ingo; Heidt, Timo; von Zur Muhlen, Constantin; von Elverfeldt, Dominik; Pfeifer, Dietmar; Schüle, Roland; Kintscher, Ulrich; Brachs, Sebastian; Ley, Klaus; Bode, Christoph; Zirlik, Andreas; Wolf, Dennis
2018-03-02
The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1β, and TLRs (toll-like receptors). Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1 -/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by β3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism. © 2018 American Heart Association, Inc.
Mustfa, Salman Ahmad; Singh, Mukesh; Suhail, Aamir; Mohapatra, Gayatree; Verma, Smriti; Chakravorty, Debangana; Rana, Sarika; Rampal, Ritika; Dhar, Atika; Saha, Sudipto; Ahuja, Vineet
2017-01-01
Post-translational modification pathways such as SUMOylation are integral to all cellular processes and tissue homeostasis. We investigated the possible involvement of SUMOylation in the epithelial signalling in Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD). Initially in a murine model of IBD, induced by dextran–sulfate–sodium (DSS mice), we observed inflammation accompanied by a lowering of global SUMOylation of colonic epithelium. The observed SUMOylation alteration was due to a decrease in the sole SUMO E2 enzyme (Ubc9). Mass-spectrometric analysis revealed the existence of a distinct SUMOylome (SUMO-conjugated proteome) in DSS mice with alteration of key cellular regulators, including master kinase Akt1. Knocking-down of Ubc9 in epithelial cells resulted in dramatic activation of inflammatory gene expression, a phenomenon that acted via reduction in Akt1 and its SUMOylated form. Importantly, a strong decrease in Ubc9 and Akt1 was also seen in endoscopic biopsy samples (N = 66) of human CD and UC patients. Furthermore, patients with maximum disease indices were always accompanied by severely lowered Ubc9 or SUMOylated-Akt1. Mucosal tissues with severely compromised Ubc9 function displayed higher levels of pro-inflammatory cytokines and compromised wound-healing markers. Thus, our results reveal an important and previously undescribed role for the SUMOylation pathway involving Ubc9 and Akt1 in modulation of epithelial inflammatory signalling in IBD. PMID:28659381
Ye, Chun; Li, Sali; Yao, Wenxu; Xu, Lei; Qiu, Yinsheng; Liu, Yu; Wu, Zhongyuan; Hou, Yongqing
2016-04-01
In this study, the anti-inflammatory effects and mechanisms of baicalin on LPS-induced NLRP3 inflammatory pathway were investigated in piglet mononuclear phagocytes (control, LPS stimulation, LPS stimulation + 12.5 µg/ml baicalin, LPS stimulation + 25 µg/ml baicalin, LPS stimulation + 50 µg/ml baicalin and LPS stimulation + 100 µg/ml baicalin). The levels of reactive oxygen species (ROS), the secretion levels of IL-1β, IL-18 and TNF-α, mRNA expression levels of IL-1β, IL-18, TNF-α and NLRP3, as well as the protein levels of cleaved caspase-1 p20 were significantly increased after LPS-challengein vitro However, LPS stimulation did not influence apoptosis-associated speck-like protein and caspase-1 mRNA levels, which are also components of the NLRP3 inflammasome. Baicalin at 50 µg/ml and 100 µg/ml could inhibit the production of ROS, TNF-α, IL-1β and IL-18, and down-regulate mRNA expression of IL-1β, IL-18, TNF-α and NLRP3, as well as expression of cleaved caspase-1 p20. These results showed that the anti-inflammatory effects of baicalin occurred via the regulation of the release of ROS and mRNA expression of NLRP3. The anti-inflammatory activity of baicalin could be related to the suppression of NLRP3 inflammasome pathway under LPS stimulation. © The Author(s) 2016.
The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases
Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin
2016-01-01
Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076
Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
2012-01-01
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers. PMID:22747645
Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer
Birtolo, Chiara; Go, Vay Liang W.; Ptasznik, Andrzej; Eibl, Guido; Pandol, Stephen J.
2016-01-01
Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer micro-environment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs and tumor infiltrating inflammatory cells to promote cancer growth. Pro-inflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross-talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options. PMID:26658038
Temperature and Drug Treatments in Mevalonate Kinase Deficiency: An Ex Vivo Study
Tricarico, Paola Maura; Piscianz, Elisa; Crovella, Sergio
2013-01-01
Mevalonate Kinase Deficiency (MKD) is a rare autosomal recessive inborn disorder of cholesterol biosynthesis caused by mutations in the mevalonate kinase (MK) gene, leading to MK enzyme decreased activity. The consequent shortage of mevalonate-derived isoprenoid compounds results in an inflammatory phenotype, caused by the activation of the NALP3 inflammasome that determines an increased caspase-1 activation and IL-1β release. In MKD, febrile temperature can further decrease the residual MK activity, leading to mevalonate pathway modulation and to possible disease worsening. We previously demonstrated that the administration of exogenous isoprenoids such as geraniol or the modulation of the enzymatic pathway with drugs, such as Tipifarnib, partially rescues the inflammatory phenotype associated with the defective mevalonic pathway. However, it has not been investigated yet how temperature can affect the success of these treatments. Thus, we investigated the effect of temperature on primary human monocytes from MKD patients. Furthermore the ability of geraniol and Tipifarnib to reduce the abnormal inflammatory response, already described at physiological temperature in MKD, was studied in a febrile condition. We evidenced the role of temperature in the modulation of the inflammatory events and suggested strongly considering this variable in future researches aimed at finding a treatment for MKD. PMID:24073415
Qin, Sisi; Yang, Canhong; Huang, Weihua; Du, Shuhua; Mai, Hantao; Xiao, Jijie; Lü, Tianming
2018-01-31
Sulforaphane (SFN), a natural dietary isothiocyanate in cruciferous vegetables such as broccoli and cabbage, has very strong anti-inflammatory activity. Activation of microglia leads to overexpression of a series of pro-inflammatory mediators, which play a vital role in neuronal damage. SFN may have neuroprotective effects in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying SFN's protection of neurons against microglia-mediated neuronal damage are not fully understood. Here, we investigated how SFN attenuated microglia-mediated neuronal damage. Our results showed that SFN could not directly protect the viability of neurons following pro-inflammatory mediators, but increased the viability of BV-2 microglia and down-regulated the mRNA and protein levels of pro-inflammatory mediators including TNF-α, IL-1β, IL-6 and iNOS in a concentration-dependent manner in BV-2 cells. SFN also significantly blocked the phosphorylation of MAPKs (p38, JNK, and ERK1/2) and NF-κB p65, both by itself and with MAPK inhibitors (SB203580, SP 600125, and U0126) or an NF-κB inhibitor (PDTC). The expression of pro-inflammatory proteins was also blocked by SFN with or without inhibitors. Further, SFN indirectly increased the viability and maintained the morphology of neurons, and the protein expression of RIPK3 and MLKL was significantly suppressed by SFN in neuronal necroptosis through p38, JNK, and NF-κB p65 but not ERK1/2 signaling pathways. Together, our results demonstrate that SFN attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathway in BV-2 microglia and thus indirectly suppresses microglia-mediated neuronal damage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zou, Wei; Xiao, Zuoqi; Wen, Xiaoke; Luo, Jieying; Chen, Shuqiong; Cheng, Zeneng; Xiang, Daxiong; Hu, Jian; He, Jingyu
2016-11-25
Andrographis paniculata (Burm. f.) Nees (APN), a principal constituent of a famous traditional Chinese medicine Fukeqianjin tablet which is used for the treatment of pelvic inflammatory disease (PID), has been reported to have anti-inflammatory effect in vitro. However, whether it has pharmacological effect on PID in vivo is unclear. Therefore, the aim of this study is to test the anti-inflammatory effect of APN and illuminate a potential mechanism. Thirty-six female specific pathogen-free SD rats were randomly divided into control group, PID group, APN1 group, APN2 group, APN3 group and prednisone group. Pathogen-induced PID rats were constructed. The APN1, APN2 and APN3 group rats were orally administrated with APN extract at different levels. The prednisone group rats were administrated with prednisone. Eight days after the first infection, the histological examination of upper genital tract was carried out, and enzyme-linked immunosorbent assay (ELISA) was carried out using homogenate of the uterus and fallopian tube. Furthermore, immunohistochemical evaluations of NF-κB p65 and IκB-α in uterus was conducted. APN obviously suppressed the infiltrations of neutrophils and lymphocytes, and it could significantly reduce the excessive production of cytokines and chemokines including IL-1β, IL-6, CXCL-1, MCP-1 and RANTES in a dose-dependent manner. Furthermore, APN could block the pathogen-induced activation of NF-κB pathway. APN showed potent anti-inflammatory effect on pathogen-induced PID in rats, with a potential mechanism of inhibiting the NF-κB signal pathway.
Park, Sun Young; Jin, Mei Ling; Yi, Eun Hye; Kim, Yoon; Park, Geuntae
2018-06-08
Acute and chronic inflammatory diseases are associated with excessive inflammation due to the accumulation of pro-inflammatory mediators and cytokines produced by macrophages. In the present study, we investigated the anti-inflammatory properties of neochlorogenic acid (nCGA) from Lonicera japonica on lipopolysaccharide (LPS)-activated inflammation in macrophages and participation of the AMPK/Nrf2 pathway. nCGA pretreatment significantly reduced the production of nitric oxide, prostaglandin E 2 , TNF-α, reactive oxygen species, IL-1β, and IL-6 by LPS-activated macrophages. Moreover, both transcript and protein levels of inducible nitric oxide synthase and cyclooxygenase-2 were reduced by nCGA in LPS-activated macrophages. nCGA inhibited NF-κB activation by attenuating IKKα/β and IκBα phosphorylation in LPS-stimulated macrophages. Moreover, nCGA attenuated LPS-elevated JAK-1, STAT-1, and MAPK phosphorylation. We further evaluated the possible role of nCGA in the induction of AMPK/Nrf2 signal pathways required for the protein expression of HO-1 and NQO-1. nCGA induced AMPK activation via phosphorylation of LKB1 and CaMKII and by the inhibitory phosphorylation of GSK3β. It stimulated the overexpression of Nrf2/ARE-regulated downstream proteins, such as NQO-1 and HO-1. Furthermore, the anti-inflammatory effects of nCGA were attenuated in macrophages subjected to siRNAs specific for HO-1, NQO-1, Nrf2, and AMPK. Accordingly, these results indicate that nCGA, as an AMPK/Nrf2 signal activator, prevents excessive macrophage-mediated responses associated with acute and chronic inflammatory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.
2010-01-01
Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259
Wun, Zih-Yi; Lin, Chwan-Fwu; Huang, Wen-Chung; Huang, Yu-Ling; Xu, Pei-Yin; Chang, Wei-Tien; Wu, Shu-Ju; Liou, Chian-Jiun
2013-12-01
Sophoraflavanone G (SG; 5,7,D, 2',4'-tetrahydroxy-8-lavandulylflavanone) has been isolated from Sophora flavescens and found to be effective against bacteria and to decrease cyclooxygenase (COX)-2 expression in RAW 264.7 macrophage. However, the anti-inflammatory mechanisms of SG are not well understood. RAW 264.7 cells were pretreated with various concentrations of SG (2.5-20 μM) and inflammatory responses were induced with lipopolysaccharide. Using enzyme-linked immunosorbent assay, the levels of pro-inflammatory cytokines and prostaglandin E2 (PGE2) were determined. Western blot was used to examine the protein expression of inducible nitric oxide synthase (iNOS), COX-2, and heme oxygenase-1 (HO-1). To investigate the molecular mechanism, we analyzed inflammatory-associated signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK). SG inhibited the levels of nitric oxide and PGE2 and decreased the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α. The expression of iNOS and COX-2 was also suppressed. However, SG increased HO-1 production in a concentration-dependent manner and significantly decreased MAPK activation and inhibited NF-κB subunit p65 proteins to translocate into the nucleus. These results suggest that SG has an anti-inflammatory effect, inhibiting pro-inflammatory cytokines and mediators production via interruption of the NF-κB and MAPK signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel Evasion Mechanisms of the Classical Complement Pathway
Garcia, Brandon L.; Zwarthoff, Seline A.; Rooijakkers, Suzan H. M.; Geisbrecht, Brian V.
2016-01-01
Complement is a network of soluble and cell surface-associated proteins which gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of ‘non-self’ cells by one of three initiating mechanisms known as the classical, lectin, or alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. While many complement inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review we focus on several recent investigations which have revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336
Novel Evasion Mechanisms of the Classical Complement Pathway.
Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V
2016-09-15
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. Copyright © 2016 by The American Association of Immunologists, Inc.
Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.
Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena
2018-03-23
The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.
Bao, Yan; Wu, Xuewei; Chen, Jinjing; Hu, Xiangming; Zeng, Fuxing; Cheng, Jianjun; Jin, Hong; Lin, Xin; Chen, Lin-Feng
2017-05-16
Bromodomain-containing factor Brd4 has emerged as an important transcriptional regulator of NF-κB-dependent inflammatory gene expression. However, the in vivo physiological function of Brd4 in the inflammatory response remains poorly defined. We now demonstrate that mice deficient for Brd4 in myeloid-lineage cells are resistant to LPS-induced sepsis but are more susceptible to bacterial infection. Gene-expression microarray analysis of bone marrow-derived macrophages (BMDMs) reveals that deletion of Brd4 decreases the expression of a significant amount of LPS-induced inflammatory genes while reversing the expression of a small subset of LPS-suppressed genes, including MAP kinase-interacting serine/threonine-protein kinase 2 ( Mknk2 ). Brd4 -deficient BMDMs display enhanced Mnk2 expression and the corresponding eukaryotic translation initiation factor 4E (eIF4E) activation after LPS stimulation, leading to an increased translation of IκBα mRNA in polysomes. The enhanced newly synthesized IκBα reduced the binding of NF-κB to the promoters of inflammatory genes, resulting in reduced inflammatory gene expression and cytokine production. By modulating the translation of IκBα via the Mnk2-eIF4E pathway, Brd4 provides an additional layer of control for NF-κB-dependent inflammatory gene expression and inflammatory response.
Ge, Jing; Han, Tao; Li, Xiaoqiu; Shan, Lili; Zhang, Jinhuan; Hong, Yan; Xia, Yanqiu; Wang, Jun; Hou, Mingxiao
2018-01-01
The aim of the present study was to investigate the effects of S-adenosyl methionine (SAMe) on infectious premature inflammatory factors and uterine contraction, and to further explore its mechanism of action via the transient receptor protein 3 (TRPC3)/protein kinase Cβ (PKCβ)/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) signaling pathway, following intervention by a TRPC3 inhibitor. A rat model of premature delivery induced by lipopolysaccharide (LPS) was established. Following treatment with SAMe and inhibiting TRPC3 expression, rat serum and uterus were isolated. Hematoxylin and eosin staining was used to observe the histopathological changes in the uterus. Uterine muscle strips in vitro were selected to measure the changes in muscle tension. ELISA was utilized to measure the changes in serum inflammatory factor and oxidative stress indexes. Immunohistochemistry, western blot assay and reverse transcription-quantitative polymerase chain reaction were applied to detect calcium channel protein expression in the uterus. Western blot analysis was employed to measure the expression of TRPC3/PKCβ/CPI-17 signaling pathway-related proteins. TRPC3 was highly expressed in the uterus of rat models of premature delivery induced by LPS. Following treatment with SAMe, inflammatory cell infiltration markedly reduced in the uterus and the tension of in vitro uterine muscle strips significantly decreased. SAMe treatment suppressed inflammatory reaction and oxidative stress, and diminished L-type and T-type calcium channel protein expression. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression was also reduced. When TRPC3 expression was suppressed, the effects of SAMe against inflammation and oxidative stress were diminished. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression significantly increased. SAMe was able to reduce inflammatory reaction and oxidative stress in the uterus of rat model of infectious premature delivery induced by LPS, prolong delivery time, reduce the mortality rate of offspring rats, and serve a therapeutic role. This effect is likely achieved via the regulation of uterine contractions and childbirth through the TRPC3/PKCβ/CPI-17 signaling pathway. PMID:29896230
Inflammatory Cell signaling following Exposures to Particulate Matter and Ozone
This review mainly focuses on major inflammatory cell signaling pathways triggered byexposure to PM and 03. The receptors covered in this review include the EGF receptor, toll like receptor,and NOD-like receptor. Intracellular signaling protein kinases depicted in this review are...
Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben
2015-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.
Boll, Erik J.; Struve, Carsten; Sander, Anja; Demma, Zachary; Krogfelt, Karen A.; McCormick, Beth A.
2014-01-01
Summary Enteroaggregative Escherichia coli (EAEC) induces release of pro-inflammatory markers and disruption of intestinal epithelial barriers in vitro suggesting an inflammatory aspect to EAEC infection. However, the mechanisms underlying EAEC-induced mucosal inflammatory responses and the extent to which these events contribute to pathogenesis is not well characterized. Employing an established in vitro model we demonstrated that EAEC prototype strain 042 induces migration of polymorphonuclear neutrophils (PMNs) across polarized T84 cell monolayers. This event was mediated through a conserved host cell signaling cascade involving the 12/15-LOX pathway and led to apical secretion of an arachidonic acid-derived lipid PMN chemoattractant, guiding PMNs across the epithelia to the site of infection. Moreover, supporting the hypothesis that inflammatory responses may contribute to EAEC pathogenesis, we found that PMN transepithelial migration promoted enhanced attachment of EAEC 042 to T84 cells. These findings suggest that EAEC-induced PMN infiltration may favor colonization and thus pathogenesis of EAEC. PMID:21951973
Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome.
Kattah, Michael G; Malynn, Barbara A; Ma, Averil
2017-11-10
Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome. Copyright © 2017 Elsevier Ltd. All rights reserved.
The anti-inflammatory effect of tramadol in the temporomandibular joint of rats.
Lamana, Simone Monaliza S; Napimoga, Marcelo H; Nascimento, Ana Paula Camatta; Freitas, Fabiana F; de Araujo, Daniele R; Quinteiro, Mariana S; Macedo, Cristina G; Fogaça, Carlos L; Clemente-Napimoga, Juliana T
2017-07-15
Tramadol is a centrally acting analgesic drug able to prevent nociceptor sensitization when administered into the temporomandibular joint (TMJ) of rats. The mechanism underlying the peripheral anti-inflammatory effect of tramadol remains unknown. This study demonstrated that intra-TMJ injection of tramadol (500µg/TMJ) was able to inhibit the nociceptive response induced by 1.5% formalin or 1.5% capsaicin, suggesting that tramadol has an antinociceptive effect, acting directly on the primary nociceptive neurons activating the nitric oxide/cyclic guanosine monophosphate signaling pathway. Tramadol also inhibited the nociceptive response induced by carrageenan (100µg/TMJ) or 5-hydroxytryptamine (225µg/TMJ) along with inhibition of inflammatory cytokines levels, leukocytes migration and plasma extravasation. In conclusion, the results demonstrate that peripheral administration of tramadol has a potential antinociceptive and anti-inflammatory effect. The antinociceptive effect is mediated by activation of the intracellular nitric oxide/cyclic guanosine monophosphate pathway, at least in part, independently from the opioid system. Copyright © 2017 Elsevier B.V. All rights reserved.
SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway
Yang, Suxia; Zhang, Junwei; Wang, Shiying; Zhao, Xinxin; Shi, Jun
2017-01-01
Suppressor of cytokine signaling 2 (SOCS2) was reported to be involved in the development of Diabetic Nephropathy (DN). However, its underlying mechanism remains undefined. Western blot was carried out to determine the expressions of SOCS2, Toll-like receptors 4 (TLR4) and nuclear factor kappa B (NF-κB) pathway-related proteins in DN patients, streptozotocin (STZ)-induced DN rats and high glucose (HG)-stimulated podocytes. The effects of SOCS2 overexpression on renal injury, the inflammatory cytokines production, renal pathological changes, apoptosis and the TLR4/NF-κB pathway in DN rats or HG-stimulated podocytes were investigated. TLR4 antagonist TAK-242 and NF-κB inhibitor PDTC were used to confirm the functional mechanism of SOCS2 overexpression in HG-stimulated podocytes. SOCS2 was down-regulated, while TLR4 and NF-κB were up-regulated in renal tissues of DN patients and DN rats. Ad-SOCS2 infection alleviated STZ-induced renal injury and pathological changes and inhibited STZ-induced IL-6, IL-1β and MCP-1 generation and activation of the TLR4/NF-κB pathway in DN rats. SOCS2 overexpression attenuated apoptosis, suppressed the inflammatory cytokines expression, and inactivated the TLR4/NF-κB pathway in HG-stimulated podocytes. Suppression of the TLR4/NF-κB pathway enhanced the inhibitory effect of SOCS2 overexpression on apoptosis and inflammatory cytokines expressions in HG-stimulated podocytes. SOCS2 overexpression alleviated the development of DN by inhibiting the TLR4/NF-κB pathway, contributing to developing new therapeutic strategies against DN. PMID:29207635
Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation
Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.
2016-01-01
Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876
Inflammation and epigenetic regulation in osteoarthritis
Shen, Jie; Abu-Amer, Yousef; O'Keefe, Regis J.; McAlinden, Audrey
2017-01-01
Osteoarthritis (OA) was once defined as a non-inflammatory arthropathy, but it is now well-recognized that there is a major inflammatory component to this disease. In addition to synovial cells, articular chondrocytes and other cells of diarthrodial joints are also known to express inflammatory mediators. It has been proposed that targeting inflammation pathways could be a promising strategy to treat OA. There have been many reports of cross-talk between inflammation and epigenetic factors in cartilage. Specifically, inflammatory mediators have been shown to regulate levels of enzymes that catalyze changes in DNA methylation and histone structure, as well as alter levels of non-coding RNAs. In addition, expression levels of a number of these epigenetic factors have been shown to be altered in OA, thereby suggesting potential interplay between inflammation and epigenetics in this disease. This review provides information on inflammatory pathways in arthritis and summarizes published research on how epigenetic regulators are affected by inflammation in chondrocytes. Furthermore, we discuss data showing how altered expression of some of these epigenetic factors can induce either catabolic or anti-catabolic effects in response to inflammatory signals. A better understanding of how inflammation affects epigenetic factors in OA may provide us with novel therapeutic strategies to treat this condition. PMID:27389927
Li, Haihua; Zhang, Lei; Chen, Longbin; Zhu, Qi; Wang, Wenjie; Qiao, Jiayun
2016-11-10
A newly isolated L. acidophilus strain has been reported to have potential anti-inflammatory activities against lipopolysaccharide (LPS) challenge in piglet, while the details of the related inflammatory responses are limited. Here we aimed to analysis the ability of L. acidophilus to regulate inflammatory responses and to elucidate the mechanisms involved in its anti-inflammatory activity. The ETEC (enterotoxigenic Escherichia coli) K88-induced up-regulations of IL-1β, IL-8 and TNF-α were obviously inhibited by L. acidophilus while IL-10 was significantly increased. Moreover, L. acidophilus down-regulated pattern recognition receptors TLR (Toll-like receptor) 2 and TLR4 expression in both spleen and mesenteric lymph nodes of ETEC-challenged piglets, in accompanied with the reduced phosphorylation levels of nuclear factor kappa B (NF-κB) p65 and mitogen-activated protein kinase (MAPK) p38 as well in spleen of ETEC-infected piglets. Furthermore, L.acidophilus significantly increased the expression of the negative regulators of TLRs signaling, including Tollip, IRAK-M, A20 and Bcl-3 in spleen of ETEC-challenged piglets. Our findings suggested that L. acidophilus regulated inflammatory response to ETEC via impairing both NF-κB and MAPK signaling pathways in piglets.
Fine chalk dust induces inflammatory response via p38 and ERK MAPK pathway in rat lung.
Zhang, Yuexia; Yang, Zhenhua; Chen, Yunzhu; Li, Ruijin; Geng, Hong; Dong, Wenjuan; Cai, Zongwei; Dong, Chuan
2018-01-01
Chalk teaching is widely used in the world due to low cost, especially in some developing countries. During teaching with chalks, a large amount of fine chalk dust is produced. Although exposure to chalk dust is associated with respiratory diseases, the mechanism underlying the correlation between chalk dust exposure and adverse effects has not fully been elucidated. In this study, inflammation and its signal pathway in rat lungs exposed to fine chalk dust were examined through histopathology analyses; pro-inflammatory gene transcription; and protein levels measured by HE staining, RT-PCR, and western blot analysis. The results demonstrated that fine chalk dust increased neutrophils and up-regulated inflammatory gene mRNA levels (TNF-α, IL-6, TGF-β1, iNOS, and ICAM-1), and oxidative stress marker (HO-1) level, leading to the increase of inflammatory cell infiltration and inflammatory injury on the lungs. These inflammation responses were mediated, at least in part, via p38 and extracellular regulated proteinase (ERK) mitogen-activated protein kinase (MAPK) signaling mechanisms. In contrast, N-acetyl-L-cysteine (NAC) supplement significantly ameliorated these changes in inflammatory responses. Our results support the hypothesis that fine chalk dust can damage rat lungs and the NAC supplement may attenuate fine chalk dust-associated lung inflammation.
Cao, Weina; Huang, Hongtao; Xia, Tianyu; Liu, Chenlong; Muhammad, Saeed; Sun, Chao
2018-01-01
Lipopolysaccharide (LPS) induces rapid increase in systemic inflammatory factors. As adipose tissue is a key contributor to the inflammatory response to numerous metabolic stimuli, it is important to understand the mechanism behind the LPS-induced inflammation in white adipose tissue (WAT). Homeobox a5 (Hoxa5) is an important transcription factor, which is highly expressed in adipose tissue, and its mRNA expression is increased at cold exposure in mice. So far, the function of Hoxa5 in adipose tissue browning has been poorly understood. So, the objective of this study was conducted to determine the role of Hoxa5 in adipose inflammatory response and white adipose browning in mice. LPS-induced inflammatory and cold-induced browning model were conducted. We compared the coordinated role of Hoxa5 in inflammation and thermogenesis of mice adipose. Transcriptional and methylation regulation was determined by luciferase assay, electrophoretic mobility shift assay, and bisulfite conversion experiment. Hoxa5 and tenascin C (TNC) were involved in WAT inflammation and browning in mice with LPS injection. Furthermore, Hoxa5 inhibited the TNC-involved activation of Toll-like receptor (TLR) 4/nuclear factor kappa B (NF-κB) signal pathway and promoted WAT browning. Moreover, we found that a BMP4/Smad1 signal, closely related to browning, was activated by Hoxa5. Hoxa5 relieved adipocyte inflammation by decreasing TNC-mediated TLR4 transducer and activator of the NF-κB pathway. Interestingly, descended methylation level increased Hoxa5 expression in cold exposure. Our findings demonstrated that Hoxa5 alleviated inflammation and enhanced browning of adipose tissue via negative control of TNC/TLR4/NF-κB inflammatory signaling and activating BMP4/Smad1 pathway. These findings indicated a novel potential means for the regulation of inflammation in adipocytes to prevent obesity and other inflammatory diseases.
Nam, Ju-Suk; Jagga, Supriya; Sharma, Ashish Ranjan; Lee, Joon-Hee; Park, Jong Bong; Jung, Jun-Sub; Lee, Sang-Soo
2017-08-01
Korean oriental medicine prescription is widely used for the treatment of gouty diseases. In the present study, we investigated anti-inflammatory effects of modified Korean herbal formulation, mixed extract of medicinal herbs (MEMH), and its modulatory effects on inflammatory mediators associated with gouty arthritis. Both in vitro and in vivo studies were carried out to assess the anti-inflammatory efficacy of MEMH on monosodium urate (MSU) crystals-induced gouty inflammation. MSU crystals stimulated human chondrosarcoma cell line, SW1353, and human primary chondrocytes were treated with MEMH in vitro. The expression levels of pro-inflammatory mediators and metalloproteases were analyzed. The effect of MEMH on NFκB signaling pathway in SW1353 cells was examined. Effect of MEMH on the mRNA expression level of pro-inflammatory mediators and chemotactic factor from human monocytic cell line, THP-1, was also analyzed. The probable role of MEMH in the differentiation process of osteoblast like cells, SaOS-2, after MSU treatment was also observed. To investigate the effects of MEMH in vivo, MSU crystals-induced ankle arthritic model was established. Histopathological changes in affected joints and plasma levels of pro-inflammatory mediators (IL-1β and TNFα) were recorded. MEMH inhibited NFκB signaling pathway and COX-2 protein expression in chondrocytes. MSU-induced mRNA expressions of pro-inflammatory mediators and chemotactic cytokines were suppressed by MEMH. In MSU crystals-induced ankle arthritic mouse model, administration of MEMH relieved inflammatory symptoms and decreased the plasma levels of IL-1β and TNFα. The results indicated that MEMH can effectively inhibit the expression of inflammatory mediators in gouty arthritis, demonstrating its potential for treating gouty arthritis. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Tan, Huabing; He, Qin; Li, Rugui; Lei, Feifei; Lei, Xu
2016-07-01
Trillin is an active ingredient isolated from Dioscorea nipponica Makino. This study investigated the anti-inflammatory and anti-fibrosis effects of trillin on CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation and fibrosis were induced by intraperitoneal administration of CCl4 0.5 μL/g of body weight twice a week for 6 weeks. Trillin (50 mg/kg, 100 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Aspartate amino-transferase (AST) and glutamic-pyruvic transaminase (ALT) in serum were determined by AST and ALT kits. Superoxidase dismutase (SOD) activity and malondialdehyde (MDA) levels in serum were assayed by SOD and MDA kits. Meanwhile, the levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in serum were detected by enzyme-linked immunosorbent assay (ELISA) method. Pathological changes were observed by hematoxylin-eosin (HE) staining. The proteins of the NF-κB pathway and the TGF-β/Smad pathway were measured by western blot. The trillin-treated group exhibited reduced AST, ALT, MDA, IL-6, TNF-α, and IL-1β, and increased SOD. Histological analyses of the trillin-treated group exhibited reduced inflammatory process and prevented liver fibrosis. Western blot analyses of the trillin-treated group showed reduced NF-κB pathway and TGF-β/Smad pathway. Based on the results of the present study, trillin can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.
Metabolic signals and innate immune activation in obesity and exercise.
Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten
2015-01-01
The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.
De novo tetrahydrobiopterin biosynthesis is impaired in the inflammed striatum of parkin(-/-) mice.
de Paula Martins, Roberta; Glaser, Viviane; Aguiar, Aderbal S; de Paula Ferreira, Priscila Maximiliano; Ghisoni, Karina; da Luz Scheffer, Débora; Lanfumey, Laurence; Raisman-Vozari, Rita; Corti, Olga; De Paul, Ana Lucia; da Silva, Rodrigo Augusto; Latini, Alexandra
2018-06-01
Parkinson's disease (PD), the second-most prevalent neurodegenerative disease, is primarily characterized by neurodegeneration in the substantia nigra pars compacta, resulting in motor impairment. Loss-of-function mutations in parkin are the major cause of the early onset familial form of the disease. Although rodents deficient in parkin (parkin (-/-) ) have some dopaminergic system dysfunction associated with central oxidative stress and energy metabolism deficiencies, these animals only display nigrostriatal pathway degeneration under inflammatory conditions. This study investigated the impact of the inflammatory stimulus induced by lypopolisaccharide (LPS) on tetrahydrobiopterin (BH4) synthesizing enzymes (de novo and salvage pathways), since this cofactor is essential for dopamine synthesis. The mitochondrial content and architecture was investigated in the striatum of LPS-exposed parkin (-/-) mice. As expected, the LPS (0.33 mg/kg; i.p.) challenge compromised spontaneous locomotion and social interaction with juvenile parkin (-/-) and WT mice. Moreover, the genotype impacted the kinetics of the investigation of the juvenile. The inflammatory scenario did not induce apparent changes in mitochondrial ultrastructure; however, it increased the quantity of mitochondria, which were of smaller size, and provoked the perinuclear distribution of the organelle. Furthermore, the BH4 de novo biosynthetic pathway failed to be up-regulated in the LPS challenge, a well-known stimulus for its activation. The LPS treatment increased sepiapterin reductase (SPR) expression, suggesting compensation by the salvage pathway. This might indicate that dopamine synthesis is compromised in parkin (-/-) mice under inflammatory conditions. Finally, this scenario impaired the striatal expression of the transcription factor BDNF, possibly favoring cell death. © 2018 International Federation for Cell Biology.
Tran, Phi-Long; Tran, Phuong Thao; Tran, Huynh Nguyen Khanh; Lee, Suhyun; Kim, Okwha; Min, Buyng-Sun; Lee, Jeong-Hyung
2018-02-01
Prenylated flavonoids are a unique class of naturally occurring flavonoids that have various pharmacological activities. In the present study, we investigated the anti-inflammatory effect in murine macrophages of a prenylated flavonoid, 10-oxomornigrol F (OMF), which was isolated from the twigs of Morus alba (Moraceae). OMF inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 in RAW264.7 cells, as well as in mouse bone marrow-derived macrophages (BMMs). OMF also rescued LPS-induced septic mortality in ICR mice. LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was also significantly suppressed by OMF treatment in RAW264.7 cells. Treatment of RAW264.7 cells with OMF induced heme oxygenase (HO)-1 mRNA and protein expression and increased the nuclear translocation of the nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1). Treatment of RAW264.7 cells with OMF increased the intracellular level of reactive oxygen species (ROS) and the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK); co-treatment with the antioxidant N-acetyl-cysteine (NAC) blocked this OMF-induced p38 MAPK phosphorylation. Moreover, NAC, or SB203580 (a p38 MAPK inhibitor), blocked the OMF-induced nuclear translocation of Nrf2 and HO-1 expression, suggesting that OMF induces HO-1 expression by activating Nrf2 through the p38 MAPK pathway. Consistent with the notion that the Nrf2/HO-1 pathway has anti-inflammatory properties, inhibiting HO-1 significantly abrogated the anti-inflammatory effects of OMF in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that OMF exerts its anti-inflammatory effect by activating the Nrf2/HO-1 pathway, and may be a potential Nrf2 activator to prevent or treat inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry
The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towardsmore » pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS. - Highlights: • GILZ attenuates apoptotic cell death induced by ER stress conditions. • GILZ promotes pro-survival signaling of the UPR. • GILZ overexpression sustains high mitochondrial activity under ER stress. • Mitochondrial OXPHOX is required for GILZ protective effects against ER stress-mediated apoptosis.« less
MANIU, ALMA; CATANA, IULIU V.; HARABAGIU, OANA; PETRI, MARIA; COSGAREA, MARCEL
2013-01-01
Aim The aim of this article is to review the anatomy of middle ear compartments and folds and to demonstrate through anatomical evidence their presence at birth. Additionally, their role in the obstructions of middle ear ventilatory pathway is highlighted. Methods Ninety-eight adult temporal bones, with no history of auricular disease and fifteen newborn temporal bones were studied by micro dissection. Documentation was done by color photography using the operation microscope Results Our micro-dissections have showed that mucosal folds from the middle ear are steadily present since birth, given that they were found in all newborn temporal bones. The mucosal folds in our normal adult material, showed some variations including membrane defects but they were constantly present. Our micro dissections showed that the epitympanic diaphragm consisted, in addition to malleal ligamental folds and ossicles, of only two constantly present folds: the tensor tympani fold and the incudomalleal fold. When the tensor fold is complete the only ventilation pathway to the anterior epitympanic space is through the isthmus, whereas its absence creates an efficient additional aeration route from the Eustachian tube to the epitympanum. Conclusions The goal of surgery in the chronic pathology of the middle ear should be restoration of normal ventilation of the attical-mastoid area. This is possible by removing the tensor fold and restoring the functionality of the isthmus tympani. PMID:26527977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela
Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less
Neuroinflammatory targets and treatments for epilepsy validated in experimental models.
Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M
2017-07-01
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Manteiga, Sara; Lee, Kyongbum
2017-04-01
A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.
Kuhlman, Kate Ryan; Chiang, Jessica J; Horn, Sarah; Bower, Julienne E
2017-09-01
Childhood adversity has been repeatedly and robustly linked to physical and mental illness across the lifespan. Yet, the biological pathways through which this occurs remain unclear. Functioning of the inflammatory arm of the immune system and the hypothalamic-pituitary-adrenal (HPA)-axis are both hypothesized pathways through which childhood adversity leads to disease. This review provides a novel developmental framework for examining the role of adversity type and timing in inflammatory and HPA-axis functioning. In particular, we identify elements of childhood adversity that are salient to the developing organism: physical threat, disrupted caregiving, and unpredictable environmental conditions. We propose that existing, well-characterized animal models may be useful in differentiating the effects of these adversity elements and review both the animal and human literature that supports these ideas. To support these hypotheses, we also provide a detailed description of the development and structure of both the HPA-axis and the inflammatory arm of the immune system, as well as recent methodological advances in their measurement. Recommendations for future basic, developmental, translational, and clinical research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sayers, Brian C.
Exposure to multiwalled carbon nanotubes (MWCNT) has been demonstrated to exacerbate airway inflammation and fibrosis in allergen-challenged mouse model. These data have led to concern that individuals with asthma could represent a susceptible population to adverse health effects following exposure to MWCNT, and possibly other engineered nanoparticles. Asthma pathogenesis is caused by the interaction of a complex genetic predisposition and environmental exposures. Because chronic airway inflammation is common to all asthma phenotypes, it is logical to investigate genes that are involved in inflammatory pathways in order to understand the genetic basis of asthma. The metabolism of arachidonic acid by cyclooxygenase (COX) enzymes is the rate-determining step in the synthesis of prostanoids, which are biologically active lipids that are important modulators of inflammation. Based on the role of COX enzymes in inflammatory pathways, we sought to investigate how COX enzymes are involved in the inflammatory response following MWCNT exposure in asthmatic airways. We report that MWCNT significantly exacerbated allergen-induced airway inflammation and mucus cell metaplasia in COX-2 deficient mice compared to wild type mice. In addition, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13, IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2 deficient mice but not in WT mice. We conclude that exacerbation of allergen-induced airway inflammation and mucus cell metaplasia by MWCNTs is enhanced by deficiency in COX-2 and associated with activation of a mixed Th1/Th2/Th17 immune response. Based on our observation that COX-2 deficient mice developed a mixed Th immune response following MWCNT exposure, we sought to evaluate how cytokines associated with different Th immune responses alter COX expression following MWCNT exposure. For this study, a mouse macrophage cell line (RAW264.7) was used because MWCNT were largely sequestered within alveolar macrophages with 24 hours after aspiration in mice. We report that the Th1 cytokine interferon gamma (IFNgamma) causes decreased COX-1 expression but increased prostaglandin E2 (PGE 2) production in mouse macrophages exposed to nickel nanoparticles (NiNP), a residual impurity found in MWCNT from the catalytic synthesis process. NiNP exposure alone increased COX-2 and decreased COX-1 in the absence of exogenous cytokines. IFNgamma further reduced COX-1 levels suppressed by NiNP. IL-4, IL-13, or IL-17 did not reduce COX-1 expression alone or in combination with NiNP. Exogenous PGE2 enhanced NiNP- or IFN-gamma-mediated COX-1 suppression. Pharmacologic inhibition of ERK1,2 or JAK/STAT-1 cell signaling pathways inhibited PGE2 production in all dose groups and restored COX-1 expression in cells treated with IFNgamma and NiNP. These data show that PGE2 production is induced in macrophages exposed to IFNgamma and NiNP and suggest that macrophages could be an important source of the anti-inflammatory mediator PGE2 following nanoparticle exposure in a Th1 immune microenvironment. In summary, these studies highlight an important role for COX enzymes in regulating inflammation in response to engineered nanoparticles and show that prostanoid production in response to nanoparticle exposure could be determined in part by the Th immune microenvironment.