Science.gov

Sample records for highly charged stored

  1. Highly confined ions store charge more efficiently in supercapacitors.

    PubMed

    Merlet, C; Péan, C; Rotenberg, B; Madden, P A; Daffos, B; Taberna, P-L; Simon, P; Salanne, M

    2013-01-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  2. Highly confined ions store charge more efficiently in supercapacitors

    NASA Astrophysics Data System (ADS)

    Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Daffos, B.; Taberna, P.-L.; Simon, P.; Salanne, M.

    2013-10-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  3. Nuclear astrophysics experiments with stored, highly-charged ions at FRS-ESR at GSI

    SciTech Connect

    Scheidenberger, Christoph

    2010-08-12

    At the FRS-ESR complex of GSI a nuclear physics program with exotic nuclei has been established in last 18 years, which also addresses key questions and nuclear properties relevant in nuclear astrophysics. The paper summarizes production of exotic nuclei, lifetime studies of highly-charged ions, direct mass measurements and reactions at internal targets. A few comments on the analysis of two-body weak decays are given.

  4. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  5. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  6. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

    PubMed

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  7. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  8. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  9. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  10. High stored energy of metallic glasses induced by high pressure

    NASA Astrophysics Data System (ADS)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  11. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. High Performance Experiment Data Archiving with gStore

    NASA Astrophysics Data System (ADS)

    Goeringer, H.; Feyerabend, M.; Sedykh, S.

    2012-12-01

    GSI in Darmstadt (Germany) is a center for heavy ion research. It hosts an Alice Tier2 center and is the home of the future FAIR facility. The planned data rates of the largest FAIR experiments, CBM and Panda, will be similar to those of the current LHC experiments at Cern. gStore is a hierarchical storage system with unique name space and successfully in operation since more than fifteen years. Its core consists of several tape libraries and currently ~20 data mover nodes connected within a SAN network. The gStore clients transfer data via fast socket connections from/to the disk cache of the data movers (~200 TByte currently). Each data mover has also a high speed connection to the GSI lustre file system (~3 PByte data capacity currently). The overall bandwidth between gStore (disk cache or tape) and lustre amounts to 5 GByte/s and will be duplicated in 2012. In the near future the lustre HSM functionality will be implemented with gStore. Each tape drive is accessible from any data mover, fully transparent to the users. The tapes and libraries are managed by commercial software (IBM Tivoli Storage Manager TSM), whereas the disk cache management and the TSM and user interfaces are provided by GSI software. This provides the flexibility needed to tailor gStore according to the always developing requirements of the GSI and FAIR user communities. For Alice users all gStore data are worldwide accessible via Alice grid software. Data streams from running experiments at GSI (up to 500 MByte/s) are written via sockets from the event builders to gStore write cache for migration to tape. In parallel the data are also copied to lustre for online evaluation and monitoring. As all features related to tapes and libraries are handled by TSM gStore is practically completely hardware independent. Additionally, according to the design principles gStore is fully scalable in data capacity and I/O bandwidth. Therefore we are optimistic to fulfill also the dramatically increased mass

  13. High performance lithium-sulfur batteries for storing pulsed energy generated by triboelectric nanogenerators.

    PubMed

    Song, Weixing; Wang, Chao; Gan, Baoheng; Liu, Mengmeng; Zhu, Jianxiong; Nan, Xihui; Chen, Ning; Sun, Chunwen; Chen, Jitao

    2017-03-27

    Storing pulsed energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is an important technology for obtaining sustainable, low-cost, and green power. Here, we introduce high-energy-density Li-S batteries with excellent performance for storing pulsed output from TENGs. The sandwich-structured sulfur composites with multi-walled carbon nanotubes and polypyrrole serve as cathode materials that suppress the shuttle effect of polysulfides and thus preserve the structural stability of the cathode during Li-ion insertion and extraction. The charging time and energy storage efficiency of the Li-S batteries are directly affected by the rotation rates of the TENGs. The average storage efficiency of the batteries for pulsed output from TENGs can exceed 80% and even reach 93% at low discharge currents. The Li-S batteries also show excellent rate performance for storing pulsed energy at a high discharge current rate of 5 C. The high storage efficiency and excellent rate capability and cyclability demonstrate the feasibility of storing and exploiting pulsed energy provided by TENGs and the potential of Li-S batteries with high energy storage efficiency for storing pulsed energy harvested by TENGs.

  14. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  15. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  16. High resolution printing of charge

    SciTech Connect

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  17. High dynamic range charge measurements

    DOEpatents

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  18. Capacitive charging system for high power battery charging

    SciTech Connect

    1998-12-31

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  19. Charge transfer between fullerenes and highly charged noble gas ions

    NASA Astrophysics Data System (ADS)

    Narits, A. A.

    2008-07-01

    A semiclassical model for the description of charge-exchange processes in collisions between fullerenes and multiply charged ions is developed. It is based on the decay model combined with the impact-parameter representation for the heavy particles' relative motion. The charge-transfer process in our model is treated as a transition of the active electron over and under the quasistatic potential barrier formed by the electric fields of the target and projectile. Due to the high electron delocalization on the surface of fullerene we represent it as a perfectly conducting hard sphere, whose radius is determined by the dipole polarizability of C60. The energies of the active electrons are assumed to be equal to the corresponding ionization potentials including the Stark-shift effect. We have developed an efficient technique for the evaluation of the electron transmission coefficient through the asymmetric potential barrier. It is shown that our model provides a good agreement with the available experimental data on single-electron charge-exchange processes. Moreover, it allows us to get an adequate description of multi-electron transfer processes. The first theoretical results on charge exchange between the fullerene ions and highly charged ions have been obtained.

  20. Hydration of highly charged ions.

    PubMed

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  1. Stabilization of weakly charged microparticles using highly charged nanoparticles.

    PubMed

    Herman, David; Walz, John Y

    2013-05-21

    An experimental study was performed to understand the ability of highly charged nanoparticles to stabilize a dispersion of weakly charged microspheres. The experiments involved adding either anionic (sulfate) or cationic (amidine) latex nanoparticles to dispersions of micrometer-sized silica particles near the silica isoelectric point (IEP). Although both types of nanoparticles increased the zeta potential of the silica microspheres above the value at which dispersions containing only silica spheres remained stable, only with the amidine nanoparticles was stability obtained. Adsorption tests with flat silica slides showed that the amidine nanoparticles deposited in much greater numbers onto the silica, producing multilayer coverage with adsorbed particle densities that were roughly three times that obtained with the sulfate nanoparticles. A model calculating the DLVO interaction between the silica spheres in which the adsorbed nanoparticle layers were treated as a continuous film with dielectric properties between those of polystyrene and water predicted stability for both systems. It is hypothesized that the relatively low adsorption of the sulfate nanoparticles (fractional surface coverages ≤ 25%) led to patches of bare silica on the microspheres that could align during interaction due to Brownian motion. These results indicate that highly charged nanoparticles can be effective stabilizers provided the level of adsorption is sufficiently high. It was also found that the zeta potential alone is not a sufficient parameter for predicting stability of these binary systems.

  2. Surface nanostructures by single highly charged ions.

    PubMed

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  3. Transportation Safety of Lithium Iron Phosphate Batteries - A Feasibility Study of Storing at Very Low States of Charge.

    PubMed

    Barai, Anup; Uddin, Kotub; Chevalier, Julie; Chouchelamane, Gael H; McGordon, Andrew; Low, John; Jennings, Paul

    2017-07-11

    In freight classification, lithium-ion batteries are classed as dangerous goods and are therefore subject to stringent regulations and guidelines for certification for safe transport. One such guideline is the requirement for batteries to be at a state of charge of 30%. Under such conditions, a significant amount of the battery's energy is stored; in the event of mismanagement, or indeed an airside incident, this energy can lead to ignition and a fire. In this work, we investigate the effect on the battery of removing 99.1% of the total stored energy. The performance of 8Ah C6/LiFePO4 pouch cells were measured following periods of calendar ageing at low voltages, at and well below the manufacturer's recommended value. Battery degradation was monitored using impedance spectroscopy and capacity tests; the results show that the cells stored at 2.3 V exhibited no change in cell capacity after 90 days; resistance rise was negligible. Energy-dispersive X-ray spectroscopy results indicate that there was no significant copper dissolution. To test the safety of the batteries at low voltages, external short-circuit tests were performed on the cells. While the cells discharged to 2.3 V only exhibited a surface temperature rise of 6 °C, cells at higher voltages exhibited sparks, fumes and fire.

  4. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  5. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    NASA Astrophysics Data System (ADS)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  6. Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Kim, Yeong-A.; Yun, Jin-Mun; Khim, Dongyoon; Kim, Jihong; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2014-10-01

    In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and low temperature (<150 °C) process. In the developed OFET memory devices, electrons could be trapped/detrapped in the MoS2 nano-floating gates by modulating the charge carrier density in the active channel through gate bias control. Optimal memory characteristics were achieved by controlling the thickness and concentration of few-layered MoS2 nanoflakes, and the best device showed reliable non-volatile memory properties: a sufficient memory window of ~23 V, programming-reading-erasing cycling endurance of >102 times, and most importantly, quasi-permanent charge-storing characteristics, i.e., a very long retention time (longer than the technological requirement of commercial memory devices (>10 years)). In addition, we successfully developed multilevel memory cells (2 bits per cell) by controlling the gate bias magnitude.In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and

  7. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  8. Polyvinylidene fluoride/nickel composite materials for charge storing, electromagnetic interference absorption, and shielding applications

    NASA Astrophysics Data System (ADS)

    Gargama, H.; Thakur, A. K.; Chaturvedi, S. K.

    2015-06-01

    In this paper, the composites of polyvinylidene fluoride (PVDF)/nickel (Ni) prepared through simple blending and hot-molding process have been investigated for dielectric, electromagnetic shielding, and radar absorbing properties. In order to study complex permittivity of the composites in 40 Hz-20 MHz frequency range, impedance spectroscopy (IS) technique is used. Besides, the complex permittivity and permeability in addition to shielding effectiveness (SE), reflection coefficient (backed by air), and loss factor are calculated using scattering parameters measured in X-band (8.2-12.4 GHz) by waveguide method. Further, in X-band, a theoretical analysis of single layer absorbing structure backed by perfect electrical conductor is then performed. A flanged coaxial holder has also been designed, fabricated, calibrated, and tested for electromagnetic interference SE measurement in the broad frequency range (50 MHz-18 GHz). The IS results indicate large enhancement in dielectric constant as a function of Ni loading in the polymer-metal composite (PMC) phase. This result has been explained using interfacial polarization and percolation theory. The frequency dependent response of ac conductivity has been analyzed by fitting the experimental data to the "Johnscher's universal dielectric response law" model. The results obtained for SE (in X-band over broad frequency range) and reflection coefficient indicate that PVDF/Ni composites give better electromagnetic interference shielding and radar absorption properties at filler concentration (fcon) ≥ fc in the PMC, whereas at fc < fcon, the charge storage mechanism dominates in the insulator regime of the composite phase. Therefore, the range of PMC compositions below and above percolation threshold has been observed to have different variety of applications.

  9. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE PAGES

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-09-17

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  10. High-sensitivity bunch charge monitor

    NASA Astrophysics Data System (ADS)

    Lebedev, N. I.; Fateev, A. A.

    2008-12-01

    The conceptual design for a high-sensitivity bunch charge monitor is presented. The device operates with short, spaced bunches. For optimal performance, the bunch duration should be less than 10 ns and bunch spacing should be more than 100 ns. Sensitivity of the monitor is close to 10 V per nanocoulomb. The equivalent scheme and the output signal shape are also presented. Such a monitor seems to be promising for the bunch charge measurements of beams like those in TESLA or ILC projects.

  11. Highly charged Arq+ ions interacting with metals

    NASA Astrophysics Data System (ADS)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  12. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  13. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. |

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  14. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  15. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  16. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  17. Formation of organo-highly charged mica.

    PubMed

    Alba, María D; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Pazos, M Carolina; Valencia Rios, Jesús S

    2011-08-16

    The interlayer space of the highly charged synthetic Na-Mica-4 can be modified by ion-exchange reactions involving the exchange of inorganic Na(+) cations by surfactant molecules, which results in the formation of an organophilic interlayer space. The swelling and structural properties of this highly charged mica upon intercalation with n-alkylammonium (RNH(3))(+) cations with varying alkyl chain lengths (R = C12, C14, C16, and C18) have been reported. The stability, fine structure, and evolution of gaseous species from alkylammonium Mica-4 are investigated in detail by conventional thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), in situ X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (MAS NMR) techniques. The results clearly show the total adsorption of n-alkylammonium cations in the interlayer space which expands as needed to accommodate intercalated surfactants. The surfactant packing is quite ordered at room temperature, mainly involving a paraffin-type bilayer with an all-trans conformation, in agreement with the high density of the organic compounds in the interlayer space. At temperatures above 160 °C, the surfactant molecules undergo a transformation that leads to a liquid-like conformation, which results in a more disordered phase and expansion of the interlayer space.

  18. Coulomb crystallization of highly charged ions.

    PubMed

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  19. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  20. High permeability explains the vulnerability of the carbon store in drained tropical peatlands

    NASA Astrophysics Data System (ADS)

    Baird, Andy J.; Low, Robert; Young, Dylan; Swindles, Graeme T.; Lopez, Omar R.; Page, Susan

    2017-02-01

    Tropical peatlands are an important global carbon (C) store but are threatened by drainage for palm oil and wood pulp production. The store's stability depends on the dynamics of the peatland water table, which in turn depend on peat permeability. We found that an example of the most abundant type of tropical peatland—ombrotrophic domes—has an unexpectedly high permeability similar to that of gravel. Using computer simulations of a natural peat dome (NPD) and a ditch-drained peat dome (DPD) we explored how such high permeability affects water tables and peat decay. High permeability has little effect on NPD water tables because of low hydraulic gradients from the center to the margin of the peatland. In contrast, DPD water tables are consistently deep, leaving the upper meter of peat exposed to rapid decay. Our results reveal why ditch drainage precipitates a rapid destabilization of the tropical peatland C store.

  1. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  2. The role of effective charges in the electrophoresis of highly charged colloids.

    PubMed

    Chatterji, Apratim; Horbach, Jürgen

    2010-12-15

    We study the variation of electrophoretic mobility μ of highly charged spherical colloidal macroions for varying surface charge density σ on the colloid using computer simulations of the primitive model for charged colloids. Hydrodynamic interactions between ions are incorporated by coupling the primitive model of charged colloids to the lattice Boltzmann model (LB) of the fluid. In the highly charged regime, the mobility μ of the colloid is known to decrease with the increase of bare charge Q of the colloid; the aim of this paper is to investigate the cause of this. We have identified that the two main factors contributing to the decrease of μ are counterion charge condensation on the highly charged colloid and an increase in effective friction of the macroion-counterion complex due to the condensed counterions. Thus the established O'Brien and White theory, which identified the dipolar force originating from distortion of the electric double layer as the cause of decreasing μ, seems to break down for the case of highly charged colloids with σ in the range of 30-400 µC cm (- 2). To arrive at our conclusions, we counted the number of counterions q0 moving along with the spherical macroion. We observe in our simulations that q0 increases with the increase of bare charge Q, such that the effective charge Qeff = Q - q0 remains approximately constant. Interestingly for our nanometer-sized charged colloid, we observe that, if surface charge density σ of the colloid is increased by decreasing the radius RM of the colloid but fixed bare charge Q, the effective charge Q - q0 decreases with the increase of σ. This behavior is qualitatively different when σ is increased by increasing Q keeping RM fixed. Our observations address a controversy about the effective charge of a strongly charged macroion: some studies claim that effective charge is independent of the bare charge (Alexander et al 1984 J. Chem. Phys. 80 5776; Trizac et al 2003 Langmuir 19 4027) whereas

  3. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    SciTech Connect

    Seidl, P.A.; Vay, J-L.

    2011-03-01

    High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is {approx}10{sup -3}, and the electrical current of the beam pulse is {approx}1 A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

  4. (The physics of highly charged ions)

    SciTech Connect

    Phaneuf, R.A.

    1990-10-12

    The Fifth International Conference on the Physics of Highly Charged Ions drew more than 200 participants, providing an excellent overview of this growing field. Important technical developments and experimental results in electron-ion collisions were reported. The merging of fast ion beams from accelerators or storage rings with advanced high-intensity electron-beam targets has yielded data of unprecedented quality on radiative and dielectronic recombination, providing stringent tests of theory. Long-awaited technical innovations in electron-impact excitation measurements were also reported. The level of activity in multicharged ion-surface interactions has increased. More sophisticated experimental studies of the neutralization process have shown the inadequacy of previously accepted mechanisms, and theoretical activity in this area is just being initiated. The IAEA meetings addressed atomic and molecular data needs for fusion research, with ITER providing a key focus. Such data are especially critical to modeling and diagnostics of the edge plasma. The ALADDIN data base system has been universally accepted and has streamlined the exchange of numerical data among data centers and the fusion community. The IAEA continues to play a pivotal role in the identification of data needs, and in the coordination of data compilation and research activities for fusion applications.

  5. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  6. High-speed electret charging using vacuum UV photoionization

    SciTech Connect

    Honzumi, Makoto; Suzuki, Yuji; Hagiwara, Kei; Iguchi, Yoshinori

    2011-01-31

    We propose a high-speed charging method of electrets using vacuum ultraviolet irradiation. Due to a large amount of the ionization current at reduced pressure, it takes only a few seconds to charge 15-{mu}m-thick polymer electret film to the surface potential of -900 V. This charging rate is two orders of magnitudes larger than corona/soft-x-ray charging methods. The purity of N{sub 2} gas depends on the charging rate since the O{sub 2} quenching mechanisms of exited N{sub 2} molecule would exist. No charge decay is observed for 3000 h, which indicates charged electrets are as stable as those by other charging methods.

  7. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Ritter, Robert; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2014-04-18

    Experimental charge exchange and energy loss data for the transmission of slow highly charged Xe ions through ultrathin polymeric carbon membranes are presented. Surprisingly, two distinct exit charge state distributions accompanied by charge exchange dependent energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state indicating that equilibrium stopping force values do not apply in this case. Additional angle resolved transmission measurements point on a significant contribution of elastic energy loss. The observations show that regimes of different impact parameters can be separated and thus a particle's energy deposition in an ultrathin solid target may not be described in terms of an averaged energy loss per unit length.

  8. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  9. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    PubMed

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  10. Emaciated mannequins: a study of mannequin body size in high street fashion stores.

    PubMed

    Robinson, Eric; Aveyard, Paul

    2017-01-01

    There is concern that the body size of fashion store mannequins are too thin and promote unrealistic body ideals. To date there has been no systematic examination of the size of high street fashion store mannequins. We surveyed national fashion retailers located on the high street of two English cities. The body size of 'male' and 'female' mannequins was assessed by two blinded research assistants using visual rating scales. The average female mannequin body size was representative of a very underweight woman and 100% of female mannequins represented an underweight body size. The average male mannequin body size was significantly larger than the average female mannequin body size. Only 8% of male mannequins represented an underweight body size. The body size of mannequins used to advertise female fashion is unrealistic and would be considered medically unhealthy in humans.

  11. Electroweak Decay Studies of Highly Charged Radioactive Ions with TITAN at TRIUMF

    NASA Astrophysics Data System (ADS)

    Leach, Kyle; Dillmann, Iris; Klawitter, Renee; Leistenschneider, Erich; Lennarz, Annika; Brunner, Thomas; Frekers, Dieter; Andreoiu, Corina; Kwiatkowski, Anna; Dilling, Jens

    2017-03-01

    Several modes of electroweak radioactive decay require an interaction between the nucleus and bound electrons within the constituent atom. Thus, the probabilities of the respective decays are not only influenced by the structure of the initial and final states in the nucleus, but can also depend strongly on the atomic charge. Conditions suitable for the partial or complete ionization of these rare isotopes occur naturally in hot, dense astrophysical environments, but can also be artificially generated in the laboratory to selectively block certain radioactive decay modes. Direct experimental studies on such scenarios are extremely difficult due to the laboratory conditions required to generate and store radioactive ions at high charge states. A new electron-beam ion trap (EBIT) decay setup with the TITAN experiment at TRIUMF has successfully demonstrated such techniques for performing spectroscopy on the radioactive decay of highly charged ions.

  12. Penning traps with unitary architecture for storage of highly charged ions.

    PubMed

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  13. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  14. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  15. Holographic transmission gratings stored with high spatial frequency in PVA/AA photopolymers

    NASA Astrophysics Data System (ADS)

    Fernández, E.; Fuentes, R.; Ortuño, M.; Beléndez, A.; Pascual, I.

    2014-05-01

    High spatial frequencies in holographic gratings are difficult to obtain by limitations of the recording material. In this work, the results obtained after storing holographic transmission gratings with a spatial frequency of 2656 lines/mm in a material based on PVA/AA are presented. A chain transfer agent, the 4,4 '-azobis (4-cyanopentanoic acid) (ACPA) has been incorporated in the material composition to improve the spatial resolution. The concentration of the ACPA in the different compositions of the material has been modified in order to find the optimal concentration which gets obtain the maximum diffraction efficiency for high spatial frequencies.

  16. Parallel sort with a ranged, partitioned key-value store in a high perfomance computing environment

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron; Poole, Stephen W.

    2016-01-26

    Improved sorting techniques are provided that perform a parallel sort using a ranged, partitioned key-value store in a high performance computing (HPC) environment. A plurality of input data files comprising unsorted key-value data in a partitioned key-value store are sorted. The partitioned key-value store comprises a range server for each of a plurality of ranges. Each input data file has an associated reader thread. Each reader thread reads the unsorted key-value data in the corresponding input data file and performs a local sort of the unsorted key-value data to generate sorted key-value data. A plurality of sorted, ranged subsets of each of the sorted key-value data are generated based on the plurality of ranges. Each sorted, ranged subset corresponds to a given one of the ranges and is provided to one of the range servers corresponding to the range of the sorted, ranged subset. Each range server sorts the received sorted, ranged subsets and provides a sorted range. A plurality of the sorted ranges are concatenated to obtain a globally sorted result.

  17. Cooling of highly charged ions in a Penning trap

    SciTech Connect

    Gruber, Lukas

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be+ ions. The Be+ ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be+ plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  18. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  19. Collision phenomena involving highly-charged ions in astronomical objects

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    2001-01-01

    A description of the role of highly charged ions in various astronomical objects; includes the use of critical quantities such as cross sections for excitation, charge-exchange, X-ray emission, radiative recombination (RR) and dielectronic recombination (DR); and lifetimes, branching ratios, and A-values.

  20. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Astrophysics Data System (ADS)

    Schaffer, L.; Burns, J. A.

    1994-09-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Finally, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  1. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year.

    PubMed

    Khalil, M I; Sulaiman, S A; Gan, S H

    2010-01-01

    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Inactivation of human immunodeficiency virus type 1 in blood samples stored as high-salt lysates.

    PubMed

    Zolg, J W; Lanciotti, R S; Wendlinger, M; Meyer, W A

    1990-09-01

    Blood samples to be tested for the presence of parasite DNA by using specific DNA probes are routinely stored in our laboratory as high-salt lysates (HSL). To safeguard against the risk of accidental infection with etiological agents such as the human immunodeficiency virus type 1 (HIV-1) while manipulating large numbers of blood samples in preparation for DNA probing, we determined the residual infectivity of HIV-1 after exposure to HSL components. Both high-titer virus stocks or provirus-carrying cells, suspended either in tissue culture medium or freshly drawn blood, were completely inactivated upon contact with the HSL components. This was verified by the absence of any detectable HIV-1-specific antigen in the supernatants of long-term cultures and the absence of virus-specific DNA fragments after amplification by polymerase chain reaction with DNA from such cultures as target DNA. These results support the conclusion that the virus is in fact completely inactivated by contact with the HSL components, rendering blood specimens stored as HSL noninfectious in regard to HIV-1.

  3. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  4. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State

    PubMed Central

    Frey, Brian L.; Krusemark, Casey J.; Ledvina, Aaron R.; Coon, Joshua J.; Belshaw, Peter J.

    2008-01-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively “parked” within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate—a technique termed “ion parking”. The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state. PMID:19802328

  5. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State.

    PubMed

    Frey, Brian L; Krusemark, Casey J; Ledvina, Aaron R; Coon, Joshua J; Belshaw, Peter J; Smith, Lloyd M

    2008-10-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively "parked" within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate-a technique termed "ion parking". The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state.

  6. Highly-Charged Ions in Traps - Progress and Opportunities

    NASA Astrophysics Data System (ADS)

    Church, D. A.; Schneider, D.; Steiger, J.; Beck, B. R.; Holder, J. P.; Weinberg, G.; Gruber, L.; Moehs, D. P.; McDonald, J.

    Penning and Kingdon ion traps have been used to study low-energy multiply-charged ions with charge states up to 80+ during the last few years. The ions have been captured into the traps from beams of external multiply-charged ion sources, or have been produced inside the trap. Measurements of cross sections for electron capture from neutrals to ions and studies of relative double electron capture rates have been completed. The lifetimes of metastable levels of ions, precision spectroscopy on multiply-charged ions in traps, and cooling of trapped ions using lasers, ion-ion elastic collisions, and parallel-tuned circuits, are briefly reviewed. Prospects for the future of highly-charged ions in traps are also discussed.

  7. Fragmentation of biomolecules using slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Ruehlicke, Christiane; Schneider, Dieter; DuBois, Robert; Balhorn, Rodney

    1997-02-01

    We present first results of biomolecular fragmentation studies with slow highly charged ions (HCI). A thin layer of the tripeptide RVA was deposited on gold targets and irradiated with slow (few 100 keV) ions, e.g. Xe50+ and Xe15+, extracted from the LLNL EBIT (electron beam ion trap). The secondary ions released upon ion impact were mass analyzed via Time-Of-Flight Secondary-Ion-Mass-Spectrometry (TOF-SIMS). The results show a strong dependence of the positive and negative ion yields on the charge state of the incident ion. We also found that incident ions with high charge states cause the ejection of fragments with a wide mass range as well as the intact molecule (345 amu). The underlying mechanisms are not yet understood but electron depletion of the target due to the high incident charge is likely to cause a variety of fragmentation processes.

  8. Crystal cookery – using high-throughput technologies and the grocery store as a teaching tool

    PubMed Central

    Luft, Joseph R.; Furlani, Nicholas M.; NeMoyer, Rachel E.; Penna, Elliott J.; Wolfley, Jennifer R.; Snell, M. Elizabeth; Potter, Stephen A.; Snell, Edward H.

    2010-01-01

    Crystallography is a multidisciplinary field that links divergent areas of mathematics, science and engineering to provide knowledge of life on an atomic scale. Crystal growth, a key component of the field, is an ideal vehicle for education. Crystallization has been used with a ‘grocery store chemistry’ approach and linked to high-throughput remote-access screening technologies. This approach provides an educational opportunity that can effectively teach the scientific method, readily accommodate different levels of educational experience, and reach any student with access to a grocery store, a post office and the internet. This paper describes the formation of the program through the students who helped develop and prototype the procedures. A summary is presented of the analysis and preliminary results and a description given of how the program could be linked with other aspects of crystallography. This approach has the potential to bridge the gap between students in remote locations and with limited funding, and access to scientific resources, providing students with an international-level research experience. PMID:22184476

  9. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  10. Toward exceeding the Shockley-Queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state.

    PubMed

    Hoertz, Paul G; Staniszewski, Aaron; Marton, Andras; Higgins, Gerard T; Incarvito, Christopher D; Rheingold, Arnold L; Meyer, Gerald J

    2006-06-28

    Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with

  11. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions.

    PubMed

    El-Said, A S; Heller, R; Meissl, W; Ritter, R; Facsko, S; Lemell, C; Solleder, B; Gebeshuber, I C; Betz, G; Toulemonde, M; Möller, W; Burgdörfer, J; Aumayr, F

    2008-06-13

    Upon impact on a solid surface, the potential energy stored in slow highly charged ions is primarily deposited into the electronic system of the target. By decelerating the projectile ions to kinetic energies as low as 150 x q eV, we find first unambiguous experimental evidence that potential energy alone is sufficient to cause permanent nanosized hillocks on the (111) surface of a CaF(2) single crystal. Our investigations reveal a surprisingly sharp and well-defined threshold of potential energy for hillock formation which can be linked to a solid-liquid phase transition.

  12. Probing the vacuum with highly charged ions

    SciTech Connect

    Bottcher, C.; Strayer, M.R.

    1987-01-01

    The physics of the Fermion vacuum is briefly described, and applied to pair production in heavy ion collisions. We consider in turn low energies (<50 MeV/nucleon), intermediate energies (<5 GeV/nucleon), and ultrahigh energies such as would be produced in a ring collider. At high energies, interesting questions of Lorentz and gauge invariance arise. Finally, some applications to the structure of high Z atoms are examined. 14 refs., 11 figs.

  13. Anomalous mobility of highly charged particles in pores

    DOE PAGES

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; ...

    2015-07-16

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less

  14. Anomalous mobility of highly charged particles in pores

    SciTech Connect

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; Vlassiouk, Ivan V.; Siwy, Zuzanna S.

    2015-07-16

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments also indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.

  15. Location of food stores near schools does not predict the weight status of Maine high school students.

    PubMed

    Harris, David E; Blum, Janet Whatley; Bampton, Matthew; O'Brien, Liam M; Beaudoin, Christina M; Polacsek, Michele; O'Rourke, Karen A

    2011-01-01

    To examine the relationship between stores selling calorie-dense food near schools and student obesity risk, with the hypothesis that high availability predicts increased risk. Mail surveys determined height, weight, and calorie-dense food consumption for 552 students at 11 Maine high schools. Driving distance from all food stores within 2 km (1.24 miles) of schools (or the closest store) was computed, and the impact of food store density and proximity to schools on student body mass index was determined by logistic regression. Ten schools had ≥ 1 store selling soda, and 8 schools had ≥1 fast-food restaurant within 1 km (0.62 miles). There were no significant relationships between the proximity or density of food stores around schools and student obesity risk. Students obtained sugar-sweetened beverages in many locations including at school. Unhealthful food choices are ubiquitous. Consequently, stores selling these food items near schools have no significant affect on student obesity. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  16. The spectral lines of highly charged gold ions

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Yang, Jiamin; Zhang, Jiyan; Jiang, Gang

    2015-02-01

    Extreme ultraviolet spectra of highly charged gold were produced with an electron beam ion trap at the University of Electro-Communications, Tokyo. The X-ray spectra (3240-3360 eV) of Au with well-defined maximum charge states ranging from Cu- to Se-like ions were recorded. Guided by configuration interaction calculations, the strongest 3d-5f transitions have been well defined.

  17. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  18. Cloud object store for checkpoints of high performance computing applications using decoupling middleware

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2016-04-19

    Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  19. Cloud object store for archive storage of high performance computing data using decoupling middleware

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-06-30

    Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  20. HybridStore: A Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2011-01-01

    Unlike the use of DRAM for caching or buffering, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into existing systems non-trivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given these trade-offs between HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the high-performance storage hierarchy. We design and evaluate such a hybrid system called HybridStore to provide: (a) HybridPlan: improved capacity planning technique to administrators with the overall goal of operating within cost-budgets and (b) HybridDyn: improved performance/lifetime guarantees during episodes of deviations from expected workloads through two novel mechanisms: write-regulation and fragmentation busting. As an illustrative example of HybridStore s ef cacy, HybridPlan is able to nd the most cost-effective storage con guration for a large scale workload of Microsoft Research and suggest one MLC SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM HDDs only. HybridDyn is able to reduce the average response time for an enterprise scale random-write dominant workload by about 71% as compared to a HDD-based system.

  1. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    SciTech Connect

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V{sub fd}), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V{sub fd}*, which is the full depletion voltage traditionally determined by the extrapolation of the fast comopnent amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V{sub fd}) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V{sub fd} for highly irradiated detectors.

  2. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  3. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.; McCammon, D.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  4. Charged particle beam scanning using deformed high gradient insulator

    SciTech Connect

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  5. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  6. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  7. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  8. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  9. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  10. Cooling of highly charged ions—the HITRAP facility and Cooler trap

    NASA Astrophysics Data System (ADS)

    Fedotova, S.; Boulton, E.; Brantjes, N. P. M.; Herfurth, F.; Kotovskiy, N.; Krantz, C.; Neidherr, D.; Steinmann, J.; Vorobjev, G.; HITRAP Collaboration

    2013-09-01

    HITRAP is a facility at GSI in Darmstadt for decelerating, cooling and storing heavy, highly charged ions. It is designed to decelerate a beam of A/q < 3 particles with an energy of 4 MeV per nucleon as provided by the heavy ion storage ring ESR. HITRAP's decelerating linear accelerator (linac) will decelerate ions down to 6 keV per nucleon and then inject them into a Penning trap for cooling. The trap will capture bunches of up to 105 ions as heavy as U92+ in flight, cool and store them. After extraction from the cooler trap, the vertical beam line (VBL) transports the cold ions to the experiments. The linac has shown to decelerate ions down to 500 keV per nucleon on-line and to 6 keV per nucleon off-line. Recent tests with electrons and ions injected into the trap showed the necessity of a more careful electric and magnetic field alignment. An installed test ion source as well as a system of apertures and position sensitive diagnostics will be used to align the fields. A highly charged ion beam from a small room temperature electron beam ion trap was used for commissioning the VBL.

  11. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  12. Temperature dependence of Vortex Charges in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Ting, C. S.; Chen, Yan; Wang, Z. D.

    2003-03-01

    By considering of competition between antiferromagnetic (AF) and d-wave superconductivity orders, the temperature dependence of the vortex charge in high Tc superconductors is investigated by solving self-consistently the Bogoliubov-de Gennes equations. The magnitude of induced antiferromagnetic order inside the vortex core is temperature dependent. The vortex charge is always negative when a sufficient strength of AF order presents at low temperature while the AF order may be suppressed at higher temperature and there the vortex charge becomes positive. A first order like transition from negative to the positive vortex charges occurs at certain temperature TN which is very close to the temperature for the disappearence of the local AF order. The vortex charges at various doping levels will also going to be examined. We show that the temperature dependence of the vortex core radius with induced AF order exhibits a weak Kramer-Pesch effect. The local density of states spectrum has a broad peak pattern at higher temperature while it exhibits two splitting peak at lower temperature. This temperature evolution may be detected by the future scanning-tunnel-microscope experiment. In addition, the effect of the vortex charge on the mixed state Hall effect will be discussed.

  13. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Storing Spent Nuclear Fuel and High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission... Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than...-based security regulations for Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW)...

  14. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  15. Laser ion sources for highly charged ions (invited)

    NASA Astrophysics Data System (ADS)

    Sherwood, T. R.

    1992-04-01

    The development of laser ion sources is reviewed in the light of possible future requirement for highly charged ions at CERN. After the advent of high power Q-switched pulsed lasers in the 1960's, there were a number of proposals to use the laser produced plasma as sources of ions. Such ion sources have been constructed for a number of uses, and in particular, for injection of ions into particle accelerators. At CERN, a new test facility has recently started operation. Initial results indicate ion currents in excess of 5 mA for lead ions with charge state about 20.

  16. Visual long-term memory stores high-fidelity representations of observed actions.

    PubMed

    Urgolites, Zhisen Jiang; Wood, Justin N

    2013-04-01

    The ability to remember others' actions is fundamental to social cognition, but the precision of action memories remains unknown. To probe the fidelity of the action representations stored in visual long-term memory, we asked observers to view a large number of computer-animated actions. Afterward, observers were shown pairs of actions and indicated which of the two actions they had seen for each pair. On some trials, the previously viewed action was paired with an action from a different action category, and on other trials, it was paired with an action from the same category. Accuracy on both types of trials was remarkably high (81% and 82%, respectively). Further, results from a second experiment showed that the action representations maintained in visual long-term memory can be nearly as precise as the action representations maintained in visual working memory. Together, these findings provide evidence for a mechanism in visual long-term memory that maintains high-fidelity representations of observed actions.

  17. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry

    PubMed Central

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography–full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7′-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g−1 of dry weight and a limit of quantification of 0.74 ng g−1 dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated. PMID:26504563

  18. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry.

    PubMed

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography-full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7'-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g(-1) of dry weight and a limit of quantification of 0.74 ng g(-1) dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated.

  19. More than charged base loss--revisiting the fragmentation of highly charged oligonucleotides.

    PubMed

    Nyakas, Adrien; Eberle, Rahel P; Stucki, Silvan R; Schürch, Stefan

    2014-07-01

    Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO(-)), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO(-) ion by MS(3) revealed a so far unreported consecutive excision of a metaphosphate (PO3 (-))-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 (-) loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO(-) and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.

  20. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

    SciTech Connect

    Crespo, J R; Simon, M; Beilmann, C; Rudolph, J; Steinbruegge, R; Eberle, S; Schwarz, M; Baumann, T; Schmitt, B; Brunner, F; Ginzel, R; Klawitter, R; Kubicek, K; Epp, S; Mokler, P; Maeckel, V; Ullrich, J; Brown, G V; Graf, A; Leutenegger, M; Beiersdorfer, P; Behar, E; Follath, R; Reichardt, G; Schwarzkopf, O

    2011-09-12

    Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

  1. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  2. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  3. Charge Trapping Flash Memory With High-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Eun, Dong Seog

    2011-12-01

    High capacity and affordable price of flash memory make portable electronic devices popular, which in turn stimulates the further scaling down effort of the flash memory cells. Indeed the flash memory cells have been scaling down aggressively and face several crucial challenges. As a result, the technology trend is shifting from the floating-gate cell to the charge-trap cell in order to overcome fatal interference problems between cells. There are critical problems in the charge-trap memory cell which will become main-stream in the near future. The first potential problem is related to the memory retention which is degraded by the charge leakage through thin tunnel dielectrics. The second is the reduction of charge-storage capacity in the scaled down SiN trapping layer. The third is the low operation-efficiency resulting from the methods used to solve the first two problems. Using high-k tunnel dielectrics can solve the first problem. The second problem can be overcome by adopting a high-k trapping dielectric. The dielectric constant of the blocking layer must be higher than those of the tunnel dielectric and the trapping dielectric in order to maintain operation efficiency. This dissertation study is focused on adopting high-k dielectrics in all three of the aforementioned layers for figure generations of flash memory technology. For the high-k tunnel dielectric, the MAD Si3N4 and the MAD Al2O3 are used to fabricate the MANNS structure and the MANAS structure. The MANNS structure has the advantage of reducing the erase voltage due to its low barrier height for holes. In addition, the retention characteristic of the MANAS structure is not sensitive to temperature. The reason is that the carrier transport in MAD Al2O3 is dominated by F-N tunneling, which is nearly independent of temperature. Adopting TiOx as the trapping dielectric forms the MATAS structure. Although the charge capacity of TiOx is not very high, the operating voltage can be reduced to less than 10V

  4. Store-operated channels in the pulmonary circulation of high- and low-altitude neonatal lambs.

    PubMed

    Parrau, Daniela; Ebensperger, Germán; Herrera, Emilio A; Moraga, Fernando; Riquelme, Raquel A; Ulloa, César E; Rojas, Rodrigo T; Silva, Pablo; Hernandez, Ismael; Ferrada, Javiera; Diaz, Marcela; Parer, Julian T; Cabello, Gertrudis; Llanos, Aníbal J; Reyes, Roberto V

    2013-04-15

    We determined whether store-operated channels (SOC) are involved in neonatal pulmonary artery function under conditions of acute and chronic hypoxia, using newborn sheep gestated and born either at high altitude (HA, 3,600 m) or low altitude (LA, 520 m). Cardiopulmonary variables were recorded in vivo, with and without SOC blockade by 2-aminoethyldiphenylborinate (2-APB), during basal or acute hypoxic conditions. 2-APB did not have effects on basal mean pulmonary arterial pressure (mPAP), cardiac output, systemic arterial blood pressure, or systemic vascular resistance in both groups of neonates. During acute hypoxia 2-APB reduced mPAP and pulmonary vascular resistance in LA and HA, but this reduction was greater in HA. In addition, isolated pulmonary arteries mounted in a wire myograph were assessed for vascular reactivity. HA arteries showed a greater relaxation and sensitivity to SOC blockers than LA arteries. The pulmonary expression of two SOC-forming subunits, TRPC4 and STIM1, was upregulated in HA. Taken together, our results show that SOC contribute to hypoxic pulmonary vasoconstriction in newborn sheep and that SOC are upregulated by chronic hypoxia. Therefore, SOC may contribute to the development of neonatal pulmonary hypertension. We propose SOC channels could be potential targets to treat neonatal pulmonary hypertension.

  5. Survival of Aspergillus flavus and Fusarium moniliforme in High-Moisture Corn Stored Under Modified Atmospheres

    PubMed Central

    Wilson, David M.; Huang, L. H.; Jay, Edward

    1975-01-01

    Freshly harvested high-moisture corn with 29.4% moisture and corn remoistened to 19.6% moisture were inoculated with Aspergillus flavus Link ex Fr. and stored for 4 weeks at about 27 C in air (0.03% CO2, 21% O2, and 78% N2) and three modified atmospheres: (i) 99.7% N2 and 0.3% O2; (ii) 61.7% CO2, 8.7% O2, and 29.6% N2; and (iii) 13.5% CO2, 0.5% O2, and 84.8% N2. Kernel infections by A. flavus, Fusarium moniliforme (Sheld.) Snyd. et Hans., and other fungi were monitored weekly. The modified-atmosphere treatments delayed deterioration by A. flavus and F. moniliforme, but their growth was not completely stopped. A. flavus survived better in the remoistened than in the freshly harvested corn. F. moniliforme survived in both. A. flavus and F. moniliforme were the dominant fungi in corn removed from the modified atmospheres and exposed to normal air for 1 week. PMID:811165

  6. High Energy Charged Particles in Space at One Astronomical Unit

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  7. High Energy Charged Particles in Space at One Astronomical Unit

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  8. X-Ray Diagnostics of CUEBIT Highly Charged Ion Plasma

    NASA Astrophysics Data System (ADS)

    Silwal, Roshani; Gall, Amy; Sosolik, Chad; Harriss, James; Takacs, Endre

    2015-05-01

    Clemson University Electron Beam Ion Trap (CUEBIT) is one of the few EBIT facilities around the globe that produces highly charged ions by successive electron impact ionization. Ions are confined in the machine by the space-charge of the electron beam, a 6 T magnetic field generated by a superconducting magnet, and the voltages applied to axial electrodes. The device is a small laboratory scale instrument for the study of the structure and emission of highly charged ions and the collisions of these ions with external targets. Along with the introduction of the facility including its structure and capabilities, we present an overview of various spectroscopic and imaging tools that allow the diagnosis of the high temperature ion cloud of the CUEBIT. Instruments include a crystal spectrometer, solid-state detectors, and pin-hole imaging setup equipped with an x-ray CCD camera. Measurements of x-ray radiation from CUEBIT are used to investigate the fundamental properties of the highly charged ions and their interaction with the energetic electron beam.

  9. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  10. Production of highly charged ion beams with SECRAL

    SciTech Connect

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-02-15

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e {mu}A of Xe{sup 37+}, 1 e {mu}A of Xe{sup 43+}, and 0.16 e {mu}A of Ne-like Xe{sup 44+}. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi{sup 31+} beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e {mu}A of Bi{sup 31+}, 22 e {mu}A of Bi{sup 41+}, and 1.5 e {mu}A of Bi{sup 50+} have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  11. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION....51 Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent...

  12. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION....51 Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent...

  13. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  14. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  15. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  16. Location of Food Stores Near Schools Does Not Predict the Weight Status of Maine High School Students

    ERIC Educational Resources Information Center

    Harris, David E.; Blum, Janet Whatley; Bampton, Matthew; O'Brien, Liam M.; Beaudoin, Christina M.; Polacsek, Michele; O'Rourke, Karen A.

    2011-01-01

    Objective: To examine the relationship between stores selling calorie-dense food near schools and student obesity risk, with the hypothesis that high availability predicts increased risk. Methods: Mail surveys determined height, weight, and calorie-dense food consumption for 552 students at 11 Maine high schools. Driving distance from all food…

  17. Location of Food Stores Near Schools Does Not Predict the Weight Status of Maine High School Students

    ERIC Educational Resources Information Center

    Harris, David E.; Blum, Janet Whatley; Bampton, Matthew; O'Brien, Liam M.; Beaudoin, Christina M.; Polacsek, Michele; O'Rourke, Karen A.

    2011-01-01

    Objective: To examine the relationship between stores selling calorie-dense food near schools and student obesity risk, with the hypothesis that high availability predicts increased risk. Methods: Mail surveys determined height, weight, and calorie-dense food consumption for 552 students at 11 Maine high schools. Driving distance from all food…

  18. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  19. Ternary cadmium zinc sulphide films with high charge mobilities

    NASA Astrophysics Data System (ADS)

    Ampong, Francis K.; Awudza, Johannes A. M.; Nkum, R. K.; Boakye, F.; Thomas, P. John; O'Brien, Paul

    2015-02-01

    Cadmium zinc sulphide thin films with high charge mobilities are obtained from acidic chemical baths employing the corresponding metal chlorides, urea and thioacetamide. The films are characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, inductively coupled plasma mass spectrometry, absorption spectroscopy and charge transport measurements. The compositional control afforded by the technique and the resultant changes in the structural, optical and electronic properties of the films are critically examined. We find good correlation between structure and properties at extremes of the composition range.

  20. High energy cosmic ray charge and energy spectra measurements

    NASA Technical Reports Server (NTRS)

    Chappell, J. H.; Webber, W. R.

    1981-01-01

    In 1976, 1977, and 1978, a series of three balloon flights was conducted to measure the energy spectra of cosmic ray nuclei. A gas Cerenkov detector with different gas thresholds of 8.97, 13.12, and 17.94 GeV/n was employed to extend these measurements to high energies. The total collection factor for these flights is more than 20 sq m ster-hr. Individual charge resolution was achieved over the charge range Z equals 4-26, and overlapping differential spectra were obtained from the three flights up to approximately 100.0 GeV/n.

  1. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  2. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  3. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  4. Genesis of charge orders in high temperature superconductors

    PubMed Central

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076

  5. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  6. Highly charged Ar{sup q+} ions interacting with metals

    SciTech Connect

    Wang Jijin; Zhang Jian; Gu Jiangang; Luo Xianwen; Hu Bitao

    2009-12-15

    Using computer simulation, alternative methods of the interaction of highly charged ions Ar{sup q+} with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Ar{sup q+}. Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KL{sup x} x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  7. The g-factor of highly charged ions

    NASA Astrophysics Data System (ADS)

    Sturm, Sven; Köhler, Florian; Werth, Günter

    2015-04-01

    Highly charged ions provide a unique opportunity to test our understanding of atomic properties under extreme conditions: The electric field strength seen by an electron bound to a nucleus at the distance of the Bohr radius ranges from 1010 V/cm in hydrogen to1016 V/cm in hydrogenlike uranium. The theory of quantum electrodynamics (QED) allows for calculation e.g. of binding energies, transition probabilities or magnetic moments. While at low fields QED is tested to very high precision, new, hypothetical nonlinear effects like photon- photon interaction or a violation of Lorentz symmetry may occur in strong fields which then would lead to an extension of the Standard Model. The ultra-high precision determination of the magnetic moment of a bound electron in a highly charged ion provides a unique possibility to probe the validity of the current Standard Model in extreme conditions.

  8. X-ray And EUV Spectroscopy Of Highly Charged Tungsten Ions

    SciTech Connect

    Biedermann, Christoph; Radtke, Rainer

    2009-09-10

    The Berlin EBIT has been established by the Max-Planck-Institut fuer Plasmaphysik to generate atomic physics data in support of research in the field of controlled nuclear fusion, by measuring the radiation from highly charged ions in the x-ray, extreme ultraviolet and visible spectral ranges and providing valuable diagnostics for high temperature plasmas. In future fusion devices, for example ITER, currently being constructed at Cadarache, France, the plasma facing components will be armored with high-Z materials, most likely tungsten, due to the favorable properties of this element. At the same time the tremendous radiation cooling of these high-Z materials represents a threat to fusion and obliges one to monitor carefully the radiation. With EBIT a selected ensemble of ions in specific charge states can be produced, stored and excited for spectroscopic investigations. Employing this technique, we have for example resolved the wide structure observed around 5 nm at the ASDEX Upgrade tokamak as originating from E1-transitions into the open 4d shell of tungsten ions in charge states 25+ to 37+ producing a band-like emission pattern. Further, these ions emit well-separated M1 lines in the EUV range around 65 nm suitable for plasma diagnostics. Kr-like to Cr-like tungsten ions (38+ to 50+) show strong soft-x-ray lines in the range 0.5 to 2 and 5 to 15 nm. Lines of even higher charged tungsten ions, up to Ne-like W{sup 64+}, abundant in the core plasma of present and future fusion test devices, have been investigated with high resolution Bragg-crystal spectroscopy at 0.13 nm. Recently, x-ray spectroscopic measurements of the dielectronic recombination LMn resonances of W{sup 60+} to W{sup 67+} ions have been preformed and compare well with atomic structure calculations.

  9. Highly Charged Protein Ions: The Strongest Organic Acids to Date.

    PubMed

    Zenaidee, Muhammad A; Leeming, Michael G; Zhang, Fangtong; Funston, Toby T; Donald, William A

    2017-07-10

    The basicity of highly protonated cytochrome c (cyt c) and myoglobin (myo) ions were investigated using tandem mass spectrometry, ion-molecule reactions (IMRs), and theoretical calculations as a function of charge state. Surprisingly, highly charged protein ions (HCPI) can readily protonate non-polar molecules and inert gases, including Ar, O2 , and N2 in thermal IMRs. The most HCPIs that can be observed are over 130 kJ mol(-1) less basic than the least basic neutral organic molecules known (tetrafluoromethane and methane). Based on theoretical calculations, it is predicted that protonated cyt c and myo ions should spontaneously lose a proton to vacuum for charge states in which every third residue is protonated. In this study, HCPIs are formed where every fourth residue on average is protonated. These results indicate that protein ions in higher charge states can be formed using a low-pressure ion source to reduce proton-transfer reactions between protein ions and gases from the atmosphere. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Charge transport in highly aligned conjugated polymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    O'Connor, Brendan; Xue, Xiao; Sun, Tianlei

    2015-10-01

    Charge transport in conjugated polymers has a complex dependence on film morphology. Aligning the polymer chains in the plane of the film simplifies the morphology of the system allowing for insight into the morphological dependence of charge transport. Highly aligned conjugated polymers have also been shown to lead to among the highest reported field effect mobilities in these materials to date. In this talk, a comparison will be made between aligned polymer films processed using two primary methods, nanostructured substrate assisted growth and mechanical strain. A number of polymer systems including P3HT, pBTTT, N2200, and PCDTPT are considered, and the processed films are analyzed in detail with optical spectroscopy, AFM, TEM, and X-ray scattering providing insight into the molecular features that allow for effective alignment. By contrasting the morphology of these films, several insights into underlying charge transport limitations can be made. A number of key morphological features that lead to high field effect mobility and charge transport anisotropy in these films will be discussed. In addition, several unique features of organic thin film transistor device behavior in these systems will be examined including the commonly observed gate voltage dependence of saturated field effect mobility.

  11. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  12. Cryogenic linear Paul trap for cold highly charged ion experiments.

    PubMed

    Schwarz, M; Versolato, O O; Windberger, A; Brunner, F R; Ballance, T; Eberle, S N; Ullrich, J; Schmidt, P O; Hansen, A K; Gingell, A D; Drewsen, M; López-Urrutia, J R Crespo

    2012-08-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H(2) partial pressure of about 10(-15) mbar (at 4 K) is obtained from this. External ion injection is possible and optimized optical access for lasers is provided, while exposure to black body radiation is minimized. First results of its operation with atomic and molecular ions are presented. An all-solid state laser system at 313 nm has been set up to provide cold Be(+) ions for sympathetic cooling of highly charged ions.

  13. Laser spectroscopy on forbidden transitions in trapped highly charged Ar(13+) ions.

    PubMed

    Mäckel, V; Klawitter, R; Brenner, G; Crespo López-Urrutia, J R; Ullrich, J

    2011-09-30

    We demonstrate resonant fluorescence laser spectroscopy in highly charged ions (HCI) stored in an electron beam ion trap by investigating the dipole-forbidden 1s(2)2s(2)2p (2)P(3/2)-(2)P(1/2) transition in boronlike Ar(13+) ions. Forced evaporative cooling yielded a high resolving power, resulting in an accurate wavelength determination to λ=441.255 68(26)  nm. By applying stronger cooling and two-photon excitation, new optical frequency standards based upon ultrastable transitions in such HCI could be realized in the future, e.g., for the search of time variations of the fine-structure constant.

  14. Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci

    USDA-ARS?s Scientific Manuscript database

    Penicillium is a large genus of common molds with over 400 described species; however, identification of individual species is difficult, including for those species that cause postharvest rots. In this study, blue rot fungi from stored apples and pears were isolated from a variety of hosts, locatio...

  15. Study on High Efficient Electric Vehicle Wireless Charging System

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  16. Design of a charge sensitive preamplifier on high resistivity silicon

    SciTech Connect

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3..mu..m for silicon drift detectors. 6 refs., 9 figs.

  17. Electrostatic energy analyzers for high energy charged particle beams

    NASA Astrophysics Data System (ADS)

    Ilyin, A. M.; Ilyina, I. A.

    2016-02-01

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics.

  18. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  19. High basal melt rates observed on Store Glacier, West Greenland, using phase-sensitive FMCW radar

    NASA Astrophysics Data System (ADS)

    Young, T. J.; Christoffersen, P.; Nicholls, K. W.; Lok, L. B.; Doyle, S. H.; Hubbard, B. P.; Stewart, C.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Brennan, P. V.; Hubbard, A.

    2016-12-01

    The Greenland ice sheet is losing mass, and is currently contributing 1 mm/year to global sea level rise. The large majority of these changes can be attributed to the recent acceleration in flow of marine-terminating outlet glaciers within the last several decades. Such fast ice flow is characterised by ice deformation, as well as basal motion. However, there are few direct observations of either of these contributing mechanisms due to the difficulty of accessing the subglacial environment. In particular, although basal melt rates have been measured on ice shelves for decades, there exist almost no equivalent observations for grounded ice sheets. We present the first time series of directly-measured rates of basal melting at the bed of Store Glacier, a major outlet glacier flowing into Uummannaq Fjord in West Greenland. The measurements were obtained using a phase-sensitive, frequency modulated continuous wave (FMCW) radar system installed 30 km upflow of the calving terminus at a location where the surface velocity of the glacier is 700 m/year. Radar data were recorded every 4 hours from 26 July to 11 December 2014. The same site was used to instrument 610-m-deep boreholes drilled to the bed as part of the Subglacial Access and Fast Ice research Experiment (SAFIRE). With internal and basal reflector ranges captured at high spatial (millimetre) and temporal (hourly) resolutions, we obtained a unique, 6-month-long time series of ice deformation and basal melting coincident with englacial and subglacial borehole measurements. Here, we report sustained basal melting of 3 m/year during winter, and maxima of 20 m/year during summer when basal motion is enhanced by surface water delivered to the bed. The lower, but more constant rate of winter basal melting is likely to be driven by frictional heat generated from basal sliding. These discoveries indicate that basal melting beneath Greenland's fast flowing outlet glaciers is considerably higher than basal melting reported

  20. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  1. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees

    PubMed Central

    Uscola, Mercedes; Villar-Salvador, Pedro; Gross, Patrick; Maillard, Pascale

    2015-01-01

    Background and Aims The carbon (C) and nitrogen (N) needed for plant growth can come either from soil N and current photosynthesis or through remobilization of stored resources. The contribution of remobilization to new organ growth on a whole-plant basis is quite well known in deciduous woody plants and evergreen conifers, but this information is very limited in broadleaf evergreen trees. This study compares the contribution of remobilized C and N to the construction of new organs in spring, and assesses the importance of different organs as C and N sources in 1-year-old potted seedlings of four ecologically distinct evergreen Mediterranean trees, namely Quercus ilex, Q. coccifera, Olea europaea and Pinus hapelensis. Methods Dual 13C and 15N isotope labelling was used to unravel the contribution of currently taken up and stored C and N to new growth. Stored C was labelled under simulated winter conditions. Soil N was labelled with the fertilization during the spring growth. Key results Oaks allocated most C assimilated under simulated winter conditions to coarse roots, while O. europaea and P. halepensis allocated it to the leaves. Remobilization was the main N source (>74 %) for new fine-root growth in early spring, but by mid-spring soil supplied most of the N required for new growth (>64 %). Current photosynthesis supplied >60 % of the C in new fine roots by mid-spring in most species. Across species, the proportion of remobilized C and N in new shoots increased with the relative growth rate. Quercus species, the slowest growing trees, primarily used currently acquired resources, while P. halepensis, the fastest growing species, mainly used reserves. Increases in the amount of stored N increased N remobilization, which fostered absolute growth both within and across species. Old leaves were major sources of remobilized C and N, but stems and roots also supplied considerable amounts of both in all species except in P. halepensis, which mainly relied on foliage

  2. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  3. High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart

    PubMed Central

    Aston, Daniel; Capel, Rebecca A.; Ford, Kerrie L.; Christian, Helen C.; Mirams, Gary R.; Rog-Zielinska, Eva A.; Kohl, Peter; Galione, Antony; Burton, Rebecca A. B.; Terrar, Derek A.

    2017-01-01

    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart. PMID:28094777

  4. Storing acorns

    Treesearch

    Kristina. Connor

    2004-01-01

    We examined changes that occurred in acorns during storage at different temperatures and moisture contents over a period of 3 y. In general, we found that to achieve optimum viability, acorns must be stored fully hydrated. Acorns also survived longer and sprouted less while in storage if stored at –2 °C (28 °F) instead of the usual 4 °C (39 °F). However, we suspect...

  5. Generation and interferometric analysis of high charge optical vortices

    NASA Astrophysics Data System (ADS)

    Shen, Yong; Campbell, Geoff T.; Hage, Boris; Zou, Hongxin; Buchler, Benjamin C.; Lam, Ping Koy

    2013-04-01

    We report on the generation of optical vortex beams using spatial phase modulation with spiral phase mirrors. The spiral phase mirrors are manufactured by direct machining with an ultra-precision single point diamond turning lathe. The imperfection of the machined phase mirrors and its impact on the generated vortex beams are analyzed with interferometric measurements. Our phase mirror has a surface roughness of 3 nm and a maximum peak-valley deviation of λ/30. The vortex charges of our light beams are directly verified by counting the fringes of their corresponding interferograms. We directly observed the successful generation of an optical vortex beam with a charge as high as 5050. We study the Fourier images of the vortex beams to characterize the quality of the beams. We obtained a conversion efficiency of 92.8% from a TEM00 beam to a vortex beam with charge 1020. This technique of generating optical singularities can potentially be used to produce more complex optical wavefronts, such as optical knots.

  6. Availability of healthy snack foods and beverages in stores near high-income urban, low-income urban, and rural elementary and middle schools in Oregon.

    PubMed

    Findholt, Nancy E; Izumi, Betty T; Nguyen, Thuan; Pickus, Hayley; Chen, Zunqiu

    2014-08-01

    Food stores near schools are an important source of snacks for children. However, few studies have assessed availability of healthy snacks in these settings. The aim of this study was to assess availability of healthy snack foods and beverages in stores near schools and examine how availability of healthy items varied by poverty level of the school and rural-urban location. Food stores were selected based on their proximity to elementary/middle schools in three categories: high-income urban, low-income urban, and rural. Audits were conducted within the stores to assess the presence or absence of 48 items in single-serving sizes, including healthy beverages, healthy snacks, fresh fruits, and fresh vegetables. Overall, availability of healthy snack foods and beverages was low in all stores. However, there was significant cross-site variability in availability of several snack and fruit items, with stores near high-income urban schools having higher availability, compared to stores near low-income urban and/or rural schools. Stores near rural schools generally had the lowest availability, although several fruits were found more often in rural stores than in urban stores. There were no significant differences in availability of healthy beverages and fresh vegetables across sites. Availability of healthy snack foods and beverages was limited in stores near schools, but these limitations were more severe in stores proximal to rural and low-income schools. Given that children frequent these stores to purchase snacks, efforts to increase the availability of healthy products, especially in stores near rural and low-income schools, should be a priority.

  7. Modelling surface restructuring by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wachter, G.; Tőkési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.

    2013-12-01

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF2 (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  8. Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores

    PubMed Central

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Summary Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5 years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic “lipolytic machinery”. Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the “lipolysome”. This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. PMID:21087632

  9. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.

    PubMed

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Canine distemper outbreak in pet store puppies linked to a high-volume dog breeder.

    PubMed

    Schumaker, Brant A; Miller, Myrna M; Grosdidier, Paul; Cavender, Jacqueline L; Montgomery, Donald L; Cornish, Todd E; Farr, Robert M; Driscoll, Michael; Maness, Lori J; Gray, Tangney; Petersen, Dana; Brown, William L; Logan, Jim; O'Toole, Donal

    2012-11-01

    Canine distemper is uncommon in the pet trade in the United States, in large part due to effective vaccines against Canine distemper virus (CDV). This is a report of CDV affecting 24 young dogs of multiple breeds shortly after sale by 2 pet stores in Wyoming during August-October 2010. Cases were diagnosed over 37 days. Diagnosis was established by a combination of fluorescent antibody staining, reverse transcription polymerase chain reaction, negative stain electron microscopy, and necropsy with histopathology. Viral hemagglutinin gene sequences were analyzed from 2 affected dogs and were identical (GenBank accession no. JF283477). Sequences were distinct from those in a contemporaneous unrelated case of CDV in a Wyoming dog (JF283476) that had no contact with the pet store dogs. The breeding property from which the puppies originated was quarantined by the Kansas Animal Health Department. Puppies intended for sale were tested for CDV. Canine distemper was diagnosed on site in November 2010. At that point 1,466 dogs were euthanized to eliminate dispersal of the disease through commercial channels. The investigation underscores the risks inherent in large-scale dog breeding when vaccination and biosecurity practices are suboptimal.

  11. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  12. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-03

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  13. Aircraft measurements of high average charges on cloud drops in layer clouds

    NASA Astrophysics Data System (ADS)

    Beard, Kenneth V.; Ochs, Harry T.; Twohy, Cynthia H.

    2004-07-01

    The first reliable aircraft measurements of characteristic cloud drop charges were obtained by utilizing a counterflow virtual impactor to substantially increase charge sensitivity and eliminate spurious contact charging that contaminated previous aircraft measurements. We find average drop charges more than an order of magnitude larger than expected from mountain surface measurements in similar clouds. Our evaluation of the data indicates that the high average charges on cloud drops originate in charge layers at the cloud boundaries and are carried into the cloud layer by vertical motions. These initial aircraft results demonstrate that cloud drop charges in layer clouds may be high enough to influence microphysical processes that promote precipitation.

  14. SCATHA survey of high-level spacecraft charging in sunlight

    NASA Technical Reports Server (NTRS)

    Mullen, E. G.; Gussenhoven, M. S.; Hardy, D. A.; Aggson, T. A.; Ledley, B. G.

    1986-01-01

    The statistical occurrence of spacecraft charging at near-geosynchronous orbit in daylight is studied with reference to results of an experiment conducted on the SCATHA satellite. In particular, it is found that: (1) the external current that creates high negative satellite frame potentials is the high-energy electron current from the electron population with energies greater than about 30 keV; (2) the electron current to the satellite from particles with energies less than about 30 keV neither drives the frame potential nor provides the current to balance the high-energy populations; and (3) the ion current provided from the entire range of measured ions is also not the primary source of the balancing current.

  15. Unique charge distribution in surface loops confers high velocity on the fast motor protein Chara myosin.

    PubMed

    Ito, Kohji; Yamaguchi, Yukie; Yanase, Kenji; Ichikawa, Yousuke; Yamamoto, Keiichi

    2009-12-22

    Most myosins have a positively charged loop 2 with a cluster of lysine residues that bind to the negatively charged N-terminal segment of actin. However, the net charge of loop 2 of very fast Chara myosin is zero and there is no lysine cluster in it. In contrast, Chara myosin has a highly positively charged loop 3. To elucidate the role of these unique surface loops of Chara myosin in its high velocity and high actin-activated ATPase activity, we have undertaken mutational analysis using recombinant Chara myosin motor domain. It was found that net positive charge in loop 3 affected V(max) and K(app) of actin activated ATPase activity, while it affected the velocity only slightly. The net positive charge in loop 2 affected K(app) and the velocity, although it did not affect V(max). Our results suggested that Chara myosin has evolved to have highly positively charged loop 3 for its high ATPase activity and have less positively charged loop 2 for its high velocity. Since high positive charge in loop 3 and low positive charge in loop 2 seem to be one of the reasons for Chara myosin's high velocity, we manipulated charge contents in loops 2 and 3 of Dictyostelium myosin (class II). Removing positive charge from loop 2 and adding positive charge to loop 3 of Dictyostelium myosin made its velocity higher than that of the wild type, suggesting that the charge strategy in loops 2 and 3 is widely applicable.

  16. Diffraction efficiency improvement in high spatial frequency holographic gratings stored in PVA/AA photopolymers: several ACPA concentrations

    NASA Astrophysics Data System (ADS)

    Fernandez, Elena; Fuentes, Rosa; Ortuño, Manuel; Beléndez, Augusto; Pascual, Inmaculada

    2015-01-01

    High spatial frequency in holographic gratings is difficult to obtain due to limitations of the recording material. In this paper, the results obtained after storing holographic transmission gratings with a spatial frequency of 2656 lines/mm in a material based on polyvinyl alcohol and acrylamide (PVA/AA) are presented. A chain transfer agent, 4, 4‧-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the composition of the material to improve the response of the material at a high spatial frequency. Different concentrations of ACPA were used in order to find the optimal concentration giving maximum diffraction efficiency for high spatial frequencies.

  17. Functions and requirements document for interim store solidified high-level and transuranic waste

    SciTech Connect

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

  18. High-throughput charge exchange recombination spectroscopy system on MAST

    SciTech Connect

    Conway, N. J.; Carolan, P. G.; McCone, J.; Walsh, M. J.; Wisse, M.

    2006-10-15

    A major upgrade to the charge exchange recombination spectroscopy system on MAST has recently been implemented. The new system consists of a high-throughput spectrometer coupled to a total of 224 spatial channels, including toroidal and poloidal views of both neutral heating beams on MAST. Radial resolution is {approx}1 cm, comparable to the ion Larmor radius. The toroidal views are configured with 64 channels per beam, while the poloidal views have 32 channels per beam. Background channels for both poloidal and toroidal views are also provided. A large transmission grating is at the heart of the new spectrometer, with high quality single lens reflex lenses providing excellent imaging performance and permitting the full exploitation of the available etendue of the camera sensor. The charge-coupled device camera chosen has four-tap readout at a maximum aggregate speed of 8.8 MHz, and it is capable of reading out the full set of 224 channels in less than 4 ms. The system normally operates at 529 nm, viewing the C{sup 5+} emission line, but can operate at any wavelength in the range of 400-700 nm. Results from operating the system on MAST are shown, including impurity ion temperature and velocity profiles. The system's excellent spatial resolution is ideal for the study of transport barrier phenomena on MAST, an activity which has already been advanced significantly by data from the new diagnostic.

  19. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  20. X-ray Measurements of Highly Charged Europium

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Brown, G. V.; Hell, N.; Magee, E. W.; Träbert, E.

    2015-01-01

    We present spectroscopic measurements of the M-shell emission of highly charged europium performed at the Livermore SuperEBIT electron beam ion trap facility using the EBIT Calorimeter Spectrometer (ECS). There is significant blending among the emission lines from the different charge states but despite the complexity of the observed spectra we have successfully identified the ten brightest n = 4 → 3 transitions from sodium-like Eu52+ utilizing the Flexible Atomic Code (FAC). We find that the difference between the calculated and measured transition energies for these ten Eu52+ lines does not exceed 3 eV. In fact, for four of the identified lines we find agreement within the measured uncertainties. Additional comparison with semi-empirical transition-energy predictions for sodium-like ions from laser-generated plasmas is included and shows that overall the semi-empirical predicted values for the transition energies are slightly higher than the measured values, while the FAC values that didnt agree with the measured transition energies are almost 1 eV lower than the measured values.

  1. Applied Electric Fields and the Aggregation of Highly Charged Proteins

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Flanders, Bret; Sorensen, Christopher

    2011-03-01

    The abnormal aggregation of misfolded proteins is associated with the onset of Alzheimer's disease, along with other neurodegenerative disorders, and there is increasing evidence that prefibrillar clusters, rather than fully-formed amyloid plaques, are primarily responsible. Therefore, weakly invasive methods, such as dynamic light scattering, which can probe the size distribution and structure factor of early nuclei and proto-aggregate clusters, can serve an important role in understanding this process, and may lead to insights regarding future therapeutic interventions. Here we study a highly charged model protein, lysozyme, under the influence of applied AC and DC fields in an effort to evaluate general models of protein aggregation, including the coarse-grained ``patchy protein'' method of visualizing charge heterogeneity. This anisotropy in the interprotein interaction can lead to frustrated crystalline order, resulting in low density phases. Dynamic measurements of the size distribution and structure factor can reveal local ordering, hierarchical clustering, and fractal properties of the aggregates. Early results show that applied fields affect early cluster growth by modulating local protein and counterion concentrations, in addition to their influence on protein alignment.

  2. Highly Twisted Triarylamines for Photoinduced Intramoleculer ChargeTransfer

    SciTech Connect

    Chudomel, J. M.; Yang, B. Q.; Barnes, M. D.; Achermann, M.; Mague, J. T.; Lahti, P. M.

    2011-08-04

    9-(N,N-Dianisylamino)anthracene (9DAAA), 9-(N,N-dianisylamino)dinaphth([1,2-a:2'-1'-j]-anthracene (9DAAH), and 9,10-bis(N,N-dianisylamino)anthracene (910BAA) were synthesized as highly twisted triarylamines with potential for photoexcited internal charge transfer. Crystallography of 9DAAA shows its dianisylamino group to be twisted nearly perpendicular to its anthracene unit, similar to a report for 910BAA. The solution fluorescence spectra show strong bathochromic shifts for each of the three molecular systems with strongly decreased quantum efficiency in higher polarity solvents. Solution-phase (ensemble) time-resolved photoluminescence measurements show up to 4-fold decreases in fluorescence lifetime in acetonitrile compared to hexane. The combined results are consistent with photoinduced, transient intramolecular charge-transfer from the bis-anisylamine unit to the polycyclic aromatic unit. Computational modeling is in accord with intramolecular transfer of electron density from the bis-anisylamino unit to the anthracene, based on in comparisons of HOMO and LUMO.

  3. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  4. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  5. Novel charge/discharge method for lead acid battery by high-pressure crystallization

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoko; Maeda, Kouji; Moritoki, Masato; Fukui, Keisuke; Kuramochi, Hidetoshi; Miki, Hideo

    2013-06-01

    The electrical charging and discharging of a battery involves the crystallization of electrolytes or metal oxides on both electrodes. Crystallization technology that can control nucleation, growth, and distribution of solute crystals might be effective for improving battery properties. We performed charge/discharge cycling of a lead acid battery under high pressure. The charging efficiency at high pressure was compared with that at atmospheric pressure. Charging efficiency at high pressure was found to be higher than that at atmospheric pressure under a high charging current. Observation of the positive electrode by scanning electron microscopy revealed that high pressure caused the crystals on the electrode to become extremely fine.

  6. X-ray radiography with highly charged ions

    DOEpatents

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  7. Special issue on the spectroscopy of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Ralchenko, Yuri; Stöhlker, Thomas

    2014-07-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on the spectroscopy of highly-charged ions, to appear in the early summer of 2015, and invites you to submit a paper. From fusion to astrophysics to EUV lithography, highly-charged ions (HCI) are used to diagnose plasma properties, create new powerful sources of light and even verify the most fundamental theories. Since the mere creation of such multiply-stripped atoms requires extreme temperature or energies, their radiation is frequently the only physical data available to researchers. Even so, the HCI spectra provide a variety of rich and detailed information on ion properties and environment conditions. Over the last couple of decades, spectroscopy of HCI has been given a strong impetus through the development of both compact (e.g. electron beam ion traps) and large-scale (e.g. tokamaks, stellarators, storage rings) machines capable of efficiently producing atoms that are ionized fifty, sixty, or even ninety times. This, in turn, triggered the development of new experimental and theoretical techniques to measure and analyze HCI spectra and to use this radiation for plasma diagnostics. The purpose of this special issue will be to provide an extensive account of the state of the art in this thriving area of atomic physics. The covered topics, in particular, will include (but not be limited to): New experimental methods for the production and recording of HCI spectra Identification of HCI spectra Measurement of transition lifetimes Relativistic, QED and nuclear effects in HCI spectra Polarization and angular distribution of radiation Effects of external fields on HCI spectra Tests of fundamental theories Plasma spectroscopy and spectra modeling with HCI Please submit your article by 1 December 2014 using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be

  8. Effect of Intramolecular High-Frequency Vibrational Mode Excitation on Ultrafast Photoinduced Charge Transfer and Charge Recombination Kinetics.

    PubMed

    Nazarov, Alexey E; Barykov, Vadim Yu; Ivanov, Anatoly I

    2016-03-31

    A model of photoinduced ultrafast charge separation and ensuing charge recombination into the ground state has been developed. The model includes explicit description of the formation and evolution of nonequilibrium state of both the intramolecular vibrations and the surrounding medium. An effect of the high-frequency intramolecular vibrational mode excitation by a pumping pulse on ultrafast charge separation and charge recombination kinetics has been investigated. Simulations, in accord with experiment, have shown that the effect may be both positive (the vibrational mode excitation increases the charge-transfer rate constant) and negative (opposite trend). The effect on charge separation kinetics is predicted to be bigger than that on the charge recombination rate but nevertheless the last is large enough to be observable. The amplitude of both effects falls with decreasing vibrational relaxation time constant, but the effects are expected to be observable up to the time constants as short as 200 fs. Physical interpretation of the effects has been presented. Comparisons with the experimental data have shown that the simulations, in whole, provide results close to that obtained in the experiment. The reasons of the deviations have been discussed.

  9. Charge and spin correlations in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hayden, Stephen

    2013-03-01

    The cuprate high temperatures superconductors are characterised by numerous competing, and in some cases, co-existing broken symmetries. A important question is to what extent such additional ordered states exist for compositions with high superconducting transition temperatures. I will discuss high-energy X-ray diffraction measurements which show that a charge density wave state (CDW) develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). This material has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. We find that the CDW and superconductivity are competing orders with similar energy scales, and the high-Tc superconductivity forms from a pre-existing CDW environment. Our results provide a mechanism for the formation of small Fermi surface pockets which can explain the negative Hall and Seebeck effects and the Tc plateau in this material. Work performed in collaboration with J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann and E. M. Forgan.

  10. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    SciTech Connect

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  11. Thick Dielectric Charging on High-Altitude Spacecraft,

    DTIC Science & Technology

    1986-07-25

    Spacecraft Charging by Magnetospheric Plasmas , AIAA Progress in Astro- nautics and Aeronautics, Vol. 47 A. Rosen, ed., 1976. 3...Satellite Program, in Spacecraft Charging by Magnetospheric Plasmas , AIAA Progress Series, Vol. 47, A. Rosen, ed., 1976, pp. 15-30. 7. Journal of...Discharge Mechanism for Dielec- trics in a Plasma , in Spacecraft Charging by Magnetosphertc Plasmas , AIAA Progress Series, Vol. 47, A. Rosen,

  12. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  13. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  14. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  15. Electron-ion plasma dynamics in the presence of highly charged dust-clusters

    SciTech Connect

    Djebli, Mourad Benkhelifa, El-Amine

    2015-05-15

    Electron-ion plasma expansion is studied in the presence of positively (negatively) highly charged uniformly distributed dust particles, considered as impurities. For that purpose, a multi-fluid model is used, where the charged impurities characteristics are included in Poisson's equation. We found that ion acceleration is enhanced by the presence of positively charged dust. The latter leads to spiky structures in the ion front which have a higher amplitude as the charge increases. The charged impurities have a significant effect when the combination of their charge and density is greater than a critical value which depends on ion to electron temperature ratio.

  16. High resolution field effect sensing of ferroelectric charges.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D.-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-03-04

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  17. High-Resolution Field Effect Sensing of Ferroelectric Charges

    SciTech Connect

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  18. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  19. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  20. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  1. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  2. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, José R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  4. Creating, Storing, and Dumping Low and High Resolution Graphics on the Apple IIe Microcomputer System.

    ERIC Educational Resources Information Center

    Fletcher, Richard K., Jr.

    This description of procedures for dumping high and low resolution graphics using the Apple IIe microcomputer system focuses on two special hardware configurations that are commonly used in schools--the Apple Dot Matrix Printer with the Apple Parallel Interface Card, and the Imagewriter Printer with the Apple Super Serial Interface Card. Special…

  5. Creating, Storing, and Dumping Low and High Resolution Graphics on the Apple IIe Microcomputer System.

    ERIC Educational Resources Information Center

    Fletcher, Richard K., Jr.

    This description of procedures for dumping high and low resolution graphics using the Apple IIe microcomputer system focuses on two special hardware configurations that are commonly used in schools--the Apple Dot Matrix Printer with the Apple Parallel Interface Card, and the Imagewriter Printer with the Apple Super Serial Interface Card. Special…

  6. Spectroscopic Measurements of Photo Pumped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Graf, A.; Beiersdorfer, P.; Brown, G. V.; Crespo Lopez Urrutia, J. R.

    2011-11-01

    We report on recent x-ray laser spectroscopic measurements of line emission from photo-excited highly charged ions. The ion cloud of the HI-LIGHT portable electron beam ion trap (EBIT) was used as a target for the Linac Coherent Light Source (LCLS) free electron laser in the Soft X-Ray (SXR) end station. The SXR monochromator allowed a precision investigation of transition energies and oscillator strength ratios of emission lines from Na-like Fe^15+ and Ne-like Fe^16+ important for astrophysical diagnostics. We have demonstrated a technique for calibration of the SXR monochromator photon energy scale using photo-excited resonant fluorescence spectra of very well known lines from H-like and He-like F and O. Numerous instruments were used to diagnose the fluorescent and autoionizing decay channels of the trapped plasma including an Iglet-X broadband germanium detector, a variable line spacing reflection grating soft x-ray/VUV spectrometer and a Wien filter based ion extraction system. An overview of the experiment as well as preliminary results will be presented.

  7. Particle Simulation Schemes for High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward; Qin, Hong; Davidson, Ronald C.

    2003-10-01

    Numerical schemes for the electromagnetic particle simulations of high intensity charged particle beams have been developed. The purpose of devising these schemes is to avoid the numerical difficulties associated with the direct calculation of the time derivatives of the vector potential, partial A / partial t, in the Darwin model, for which the transverse induction current in Ampere's law is neglected. The first scheme requires the calculations of higher order velocity moments of the distribution function to obtain the time derivatives for both the scalar potential Φ and A, similar to the method used for shear-Alfven waves.[1] The second uses the canonical momentum P = p + q A/c in the equations of motion as a means to eliminate the troublesome time derivatives.[2] The use of these schemes for physics problems in heavy ion fusion systems will be reported. [1] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z. Lin, Phys. Plasmas 8, 4435 (2001). [2] W. W. Lee, E. Startsev, H. Qin and R. C. Davidson, Proceedings of 2001 Particle Accelerator Conference 1906 (2001).

  8. High resolution charge spectroscopy of heavy ions with FNTD technology

    NASA Astrophysics Data System (ADS)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  9. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Simonin, A.; Grand, C.

    2015-04-01

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm2 electrodes have been performed at an electrode distance d=11 mm under vacuum (P˜5×10-6 mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ˜10000 seconds of high-voltage (HV) on-time, having accumulated ˜1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (˜100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  10. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    SciTech Connect

    Esch, H. P. L. de Simonin, A.; Grand, C.

    2015-04-08

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm{sup 2} electrodes have been performed at an electrode distance d=11 mm under vacuum (P∼5×10{sup −6} mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ∼10000 seconds of high-voltage (HV) on-time, having accumulated ∼1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (∼100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  11. The study towards high intensity high charge state laser ion sources

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  12. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  13. Storing single photons emitted by a quantum memory on a highly excited Rydberg state.

    PubMed

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-19

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.

  14. Storing single photons emitted by a quantum memory on a highly excited Rydberg state

    PubMed Central

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-01

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon–photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories. PMID:28102203

  15. NanoStore: a concept for logistical improvements of compound handling in high-throughput screening.

    PubMed

    Benson, Neil; Boyd, Helen F; Everett, Jeremy R; Fries, Joachim; Gribbon, Philip; Haque, Nuzrul; Henco, Karsten; Jessen, Timm; Martin, William H; Mathewson, Travis J; Sharp, R Eryl; Spencer, Robin W; Stuhmeier, Frank; Wallace, Mark S; Winkler, Dirk

    2005-09-01

    Small molecule screening, the systematic encounter of biology space with chemical space, has provoked the emergence of a whole industry that recreates itself by constant iterative improvements to this process. The authors describe an approach to tackle the problem for one of the most time-consuming steps in the execution of a screening campaign, namely, the reformatting of high-throughput screening test compounds from master plates to daughter assay plates used in the execution of the screen. Through an engineered storage procedure, they prepare plates ahead of the screening process with the respective compounds in a ready-to-use format. They show the biological inertness of the method and how it facilitates efficient recovery of compound activity. This uncoupling of normally interconnected processes provides time and compound savings, avoids repeated freeze-thaw cycles of compound solutions, and removes the problems associated with the DMSO sensitivity of certain assays types.

  16. Storing single photons emitted by a quantum memory on a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues

    2017-01-01

    Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.

  17. TIME BEHAVIOR OF CHARGED PARTICLES INJECTED BY 1962 HIGH ALTITUDE RUSSIAN NUCLEAR TESTS.

    DTIC Science & Technology

    CHARGED PARTICLES, FALLOUT, GEOPHYSICS, HIGH ALTITUDE , USSR, NUCLEAR RADIATION SPECTROMETERS, RADIATION MEASURING INSTRUMENTS, SCIENTIFIC SATELLITES, GEOMAGNETISM, BETA PARTICLES, RADIOACTIVE DECAY, SCINTILLATION COUNTERS.

  18. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  19. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  20. Dynamics of charged current sheets at high-latitude magnetopause

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  1. An Acoustic Charge Transport Imager for High Definition Television

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  2. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  3. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  4. Shapes and Fissility of Highly Charged and Rapidly Rotating Levitated Liquid Drops

    NASA Astrophysics Data System (ADS)

    Liao, L.; Hill, R. J. A.

    2017-09-01

    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ˜1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh's limit.

  5. A Comparison of the Nutritional Quality of Food Products Advertised in Grocery Store Circulars of High- versus Low-Income New York City Zip Codes

    PubMed Central

    Ethan, Danna; Basch, Corey H.; Rajan, Sonali; Samuel, Lalitha; Hammond, Rodney N.

    2013-01-01

    Grocery stores can be an important resource for health and nutrition with the variety and economic value of foods offered. Weekly circulars are a means of promoting foods at a sale price. To date, little is known about the extent that nutritious foods are advertised and prominently placed in circulars. This study’s aim was to compare the nutritional quality of products advertised on the front page of online circulars from grocery stores in high- versus low-income neighborhoods in New York City (NYC). Circulars from grocery stores in the five highest and five lowest median household income NYC zip codes were analyzed. Nutrition information for food products was collected over a two-month period with a total of 805 products coded. The study found no significant difference between the nutritional quality of products advertised on the front page of online circulars from grocery stores in high- versus low-income neighborhoods in New York City (NYC). In both groups, almost two-thirds of the products advertised were processed, one-quarter were high in carbohydrates, and few to no products were low-sodium, high-fiber, or reduced-, low- or zero fat. Through innovative partnerships with health professionals, grocery stores are increasingly implementing in-store and online health promotion strategies. Weekly circulars can be used as a means to regularly advertise and prominently place more healthful and seasonal foods at an affordable price, particularly for populations at higher risk for nutrition-related chronic disease. PMID:24384775

  6. A comparison of the nutritional quality of food products advertised in grocery store circulars of high- versus low-income New York City zip codes.

    PubMed

    Ethan, Danna; Basch, Corey H; Rajan, Sonali; Samuel, Lalitha; Hammond, Rodney N

    2013-12-31

    Grocery stores can be an important resource for health and nutrition with the variety and economic value of foods offered. Weekly circulars are a means of promoting foods at a sale price. To date, little is known about the extent that nutritious foods are advertised and prominently placed in circulars. This study's aim was to compare the nutritional quality of products advertised on the front page of online circulars from grocery stores in high- versus low-income neighborhoods in New York City (NYC). Circulars from grocery stores in the five highest and five lowest median household income NYC zip codes were analyzed. Nutrition information for food products was collected over a two-month period with a total of 805 products coded. The study found no significant difference between the nutritional quality of products advertised on the front page of online circulars from grocery stores in high- versus low-income neighborhoods in New York City (NYC). In both groups, almost two-thirds of the products advertised were processed, one-quarter were high in carbohydrates, and few to no products were low-sodium, high-fiber, or reduced-, low- or zero fat. Through innovative partnerships with health professionals, grocery stores are increasingly implementing in-store and online health promotion strategies. Weekly circulars can be used as a means to regularly advertise and prominently place more healthful and seasonal foods at an affordable price, particularly for populations at higher risk for nutrition-related chronic disease.

  7. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  8. Traveling Charge Gun Firings Using Very High Burning Rate Propellants

    DTIC Science & Technology

    1988-12-01

    21.5 grams. This gave a charge-to-mass ratio of approximately 1.6. Data acquisition is done on analog tape, which is later digitized and reduced by...fashion. Pressure historias indica e a decreasing mass generation rate as a function of burn time. As a consequence of these two observations and in order...Station, Indian Head, MD, December 1980. 11. Gough, P.S., "Extensions of BRLTC. A Code for the Digital Simulation of the Traveling Charge," Contract Report

  9. Space-charge compensation in high-intensity proton rings

    SciTech Connect

    A. Burov, G.W. Foster and V.D. Shiltsev

    2000-09-21

    Recently, it was proposed to use negatively charged electron beams for compensation of beam-beam effects due to protons in the Tevatron collider. The authors show that a similar compensation is possible in space-charge dominated low energy proton beams. The idea has a potential of several-fold increase of the FNAL Booster beam brightness. Best results will be obtained using three electron lenses around the machine circumference, using co-moving electron beam with time structure and profile approximately matched to the proton beam. This technique, if feasible, will be more cost effective than the straightforward alternative of increasing the energy of the injection linac.

  10. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    Gravel, Roland; Maronde, Carl; Gehrke, Chris; Fiveland, Scott

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  11. High Repetition Rate Charging a Marx Type Generator

    DTIC Science & Technology

    2001-06-01

    Resistive ladder networks are commonly used as the charging and isolation means for Marx type generators. The efficiency is limited to 50% and the...elements are actually increased by a factor (1+k). The Marx switches cause a re-arrangement of the coupled inductors from parallel during the

  12. A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay

    NASA Astrophysics Data System (ADS)

    Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.

    2016-05-01

    For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.

  13. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  14. The interactions of high-energy, highly-charged ions with fullerenes

    SciTech Connect

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  15. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  16. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  17. Water hydrogen bond structure near highly charged interfaces is not like ice.

    PubMed

    Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2010-05-26

    Imaginary chi(2) spectra of HOD at air/charged surfactant/aqueous interfaces highly resemble the IR spectrum of the bulk liquid HOD, showing no indication of the "ice-like" structure. Clearly, the hydrogen bond structures at highly charged interfaces are not like ice but very similar to the structure in the bulk.

  18. Model for Charge Injection with Electron Beams into Highly Disordered Insulating Materials

    NASA Astrophysics Data System (ADS)

    Dennison, John; Sim, Alec; Wilson, Greg

    2015-03-01

    The Walden-Wintle model for charge injection and transport through highly disordered insulating materials has been extended to include charge injection with a charged particle beam. The original model is applicable to charge injection in a dielectric material from a pair of electrodes in a parallel-plate geometry. It provides a versatile approach to predict the time-dependent current at a rear grounded electrode and the incident surface voltage, as the injection current density evolves over time with the development of a space charge barrier near the injection electrode. The Walden-Wintle model has been applied to many standard cases including Fowler-Nordheim injection, Schottky injection, space charge limited injection, and various tunneling mechanisms. The present model modifies the approach to include electrode-less charge injection via a charged particle beam, along with concomitant effects for the injection current, surface voltage, and electron emission as a charge is built up in the insulator. The approach is equally valid for near-surface injection and for bulk injection of both non-penetrating and penetrating radiation. The results are based on our dynamic emission model for electron emission yields dependent on accumulating charge in both the positive and negative charging regimes. Supported through funds from NASA GSFC and a Senior Fellowship from the National Research Council and AFRL

  19. Electron, photons, and molecules: Storing energy from light

    SciTech Connect

    Miller, J.R.

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  20. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  1. Charge delocalization characteristics of regioregular high mobility polymers

    SciTech Connect

    Coughlin, J. E.; Zhugayevych, A.; Wang, M.; Bazan, G. C.; Tretiak, S.

    2017-01-01

    Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while the reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.

  2. Ionization of highly charged iodine ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV Iq+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ1,3,4 and Lβ2,15 to Lα1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons.

  3. Charge delocalization characteristics of regioregular high mobility polymers

    DOE PAGES

    Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...

    2017-01-01

    Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less

  4. Solar cell with charged quantum dots: optimization for high efficiency

    NASA Astrophysics Data System (ADS)

    Sablon, K.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2013-05-01

    Most of investigations of quantum dot photovoltaic devices are aimed at the development of the intermediate band solar cell. To form the intermediate band by quantum dot electron levels, the dots should be placed close to one to another. This leads to strain accumulation and defects, which increase the photocarrier recombination, and recombination losses. To avoid the nanostructuring-induced recombination, we proposed and studied an alternative approach, which is based on the separation of quantum dots (QDs) or QD clusters from the conducting channels by potential barriers created by quantum dots with built-in charge (Q-BIC). Charging of QDs improves the performance of QD solar cells due to the following factors: Negative dot charging increases electron coupling to sub-bandgap photons and provides effective harvesting of IR energy. Because of the strong difference in effective masses of electrons and holes, an electron level spacing in QDs substantially exceeds a level spacing for holes. Therefore, QDs act as deep traps for electrons, but they are shallow traps for holes. Thus, the holes trapped in QDs may be excited by thermal phonons, while excitation of localized QDs electrons requires IR radiation or the interaction with hot electrons. Therefore, n-doping of QD structures is strongly preferable for photovoltaic applications. Charging of QDs is also an effective tool for managing the potential profile at micro- and nanoscales. Filling QDs predominantly from dopants in the QD medium allows one to maintain the macroscale profile analogous to that in the best conventional single-junction solar cells.

  5. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  6. Peltier effect in multilayered nanopillars under high density charge current

    NASA Astrophysics Data System (ADS)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  7. Production of highly charged ions with an ECRIS using high temperature super-conducting coils

    NASA Astrophysics Data System (ADS)

    Bieth, C.; Kantas, S.; Sortais, P.; Kanjilal, D.; Rodrigues, G.; Milward, S.; Harrison, S.; Mc Mahon, R.

    2005-07-01

    Highly charged ions are widely used in atomic physics, nuclear physics and material science. One requirement to produce highly charged ions for an ECRIS [P. Sortais et al., ECRIS development at GANIL, in: Proceedings of the 12th Int. Conf. on Cyclotrons, Berlin, 1989; P. Sortais et al., in: Proceedings of the Int. Conf. on Ion sources, Berkley 1989, p. 288] is a high resonance frequency, hence a high resonance magnetic field. With electromagnets, we can produce limited magnetic fields, generally, in the range of 2 T. Also, electromagnets require a significant amount of electrical power, powerful DC power supplies and large cooling systems. As a consequence, producing highly charged ions with a source setup, at ground, is rather difficult and becomes a serious technical and financial challenge if the source is on a high voltage terminal. The use of low temperature superconducting coils 'LTC' has a real advantage when it comes to electrical power. A reduction factor of 10-20 in the total AC power is obtained. However, the handling of cryogenic liquids generates difficulties and extra costs. An elegant solution consists in using high temperature superconducting wire 'HTS' [Y.L. Tang et al., Super Cond. Sci. Technol. 15 (2002); L. Masure et al., 2002, in: ISS2002 Conf. Proc. (Yokohama, Japan, November 2002) in press]. Indeed, the superconductivity of the HTS wire starts at 77 K. Cryogenic generators with sufficient cooling power at 20 K are commercially available and need only few kW of AC power. In addition to that, the coils are very compact and easy to handle. The following paper presents PKDELIS [ECR HTS source using superconducting coils, French Patent No. FR98 06579]. The first ECRIS in the world using HTS wires, jointly designed and constructed by PANTECHNIK and NSC New Delhi, India.

  8. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.

    PubMed

    Chun, Honggu; Chung, Taek Dong; Ramsey, J Michael

    2010-07-15

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

  9. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  10. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    SciTech Connect

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  11. Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes.

    PubMed

    Liebe, Sebastian; Wibberg, Daniel; Winkler, Anika; Pühler, Alfred; Schlüter, Andreas; Varrelmann, Mark

    2016-02-01

    Post-harvest colonization of sugar beets accompanied by rot development is a serious problem due to sugar losses and negative impact on processing quality. Studies on the microbial community associated with rot development and factors shaping their structure are missing. Therefore, high-throughput sequencing was applied to describe the influence of environment, plant genotype and storage temperature (8°C and 20°C) on three different communities in stored sugar beets, namely fungi (internal transcribed spacers 1 and 2), Fusarium spp. (elongation factor-1α gene fragment) and oomycetes (internal transcribed spacers 1). The composition of the fungal community changed during storage mostly influenced by the storage temperature followed by a weak environmental effect. Botrytis cinerea was the prevalent species at 8°C whereas members of the fungal genera Fusarium and Penicillium became dominant at 20°C. This shift was independent of the plant genotype. Species richness within the genus Fusarium also increased during storage at both temperatures whereas the oomycetes community did not change. Moreover, oomycetes species were absent after storage at 20°C. The results of the present study clearly show that rot development during sugar beet storage is associated with pathogens well known as causal agents of post-harvest diseases in many other crops. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    PubMed

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  13. Trypanosoma cruzi Epimastigotes Are Able to Store and Mobilize High Amounts of Cholesterol in Reservosome Lipid Inclusions

    PubMed Central

    Pereira, Miria G.; Nakayasu, Ernesto S.; Sant'Anna, Celso; De Cicco, Nuccia N. T.; Atella, Georgia C.; de Souza, Wanderley; Almeida, Igor C.; Cunha-e-Silva, Narcisa

    2011-01-01

    Background Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells. Methodology/Principal Findings Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones. Conclusions/Significance Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation. PMID:21818313

  14. Detonation performance of high-dense BTF charges

    NASA Astrophysics Data System (ADS)

    Dolgoborodov, A.; Brazhnikov, M.; Makhov, M.; Gubin, S.; Maklashova, I.

    2014-05-01

    New experimental data on detonation wave parameters and explosive performance for benzotrifuroxan are presented. Optical pyrometry was applied in order to measure the temperature and pressure of BTF detonation products. Chapman-Jouguet temperature was obtained as 3990 - 4170 K (charge densities 1.82 - 1.84 g/cc). The heat of explosion and the acceleration ability were measured also. It is also considered the hypothesis of formation of nanodiamond particles in detonation products directly behind the detonation front and influence of these processes on the temperature-time history in detonation products.

  15. Numerical calculations of high-altitude differential charging: Preliminary results

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.

    1979-01-01

    A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.

  16. Numerical calculations of high-altitude differential charging: Preliminary results

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.

    1979-01-01

    A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.

  17. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    NASA Astrophysics Data System (ADS)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  18. Theory and modeling of a relativistic klystron amplifier with high space charge for microsecond applications

    SciTech Connect

    Carlsten, B.E.; Fazio, M.V.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.

    1992-01-01

    We discuss basic Relativistic Klystron Amplifier physics. We show that in the intense space-charge regime the maximum power extraction does not coincide with the maximum harmonic bunching. In addition, we show that as the beam is bunched, the additional power stored in the Coulomb fields does not add significantly to the overall power extraction. Because of these effects, the power extraction at 1.3 GHz for a 500 kV, 5 kA beam with reasonable beam-to-wall spacing is limited to around 35%. 3 refs., 17 figs.

  19. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, A.

    2008-06-19

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ~;; 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 ?s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states.

  20. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  1. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    PubMed

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  2. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  3. Electrode shapes for high-power diodes with non-space-charge-limited flow

    NASA Astrophysics Data System (ADS)

    Peter, William

    1992-04-01

    Electrode shapes appropriate to diodes with non-space-charge-limited flow (e.g., laser-irradiated photocathodes) and high-power (eV0 ≳ mc2) are derived. The electrode shapes are designed to keep the electron beam rectilinear, and generalize the shapes derived by Pierce for space-charge-limited cathodes in low-power diodes.

  4. Measurements of Lifetimes and f-Values In Highly-Charged Ions

    NASA Astrophysics Data System (ADS)

    Smith, Steven; Chutjian, Ara; Hossain, Sabbir

    2006-05-01

    Measurements have been made of lifetimes of metastable levels of highly-charged ions (HCI). These contribute to the optical absorption, emission and energy balance in the ISM, stellar and solar atmospheres, etc. The experimental lifetime measurements are carried out using the 14.0 GHz electron cyclotron ion source at the JPL facility.[l] Ions are injected into a Kingdon ion trap and stored for times longer than the metastable lifetimes. Decay channels include inter-combination, E2, M1 and 2E transitions. The UV photons are filtered by an interference filter and detected by a UV grade photomultiplier tube using a UV grade optical system. The Kingdon trap was constructed in collaboration with Texas A and M University [2]. We previously have reported lifetimes for transitions of C^+ [1]and 0^2+ [4]. Additional metastable lifetimes have been measured for M^6+, Fe^9+, Fe^10+ and Fe^13+ metastable states [5]. New results for Fe^11+ will be presented. Sabbir Hossain acknowledges support through NASA-NRC program. This work was carried out at the Jet Propulsion Laboratory/Caltech and was supported by the NASA [1] Steven J. Smith, A. Chutjian, J.B. Greenwood, Phys. Rev. A 60, 3569 (1999). [2] L.Yang and D.A. Church, Phys. Rev. Lett. 70, 3860 (1993).[3] S.J. Smith, I. Cadez, A. Chutjian, and M. Niimura, Ap. J. 602, 1075 (2004).[5] S.J. Smith , A. Chutjian, J. Lozano, Phys Rev. A 72, 062504 (2005).

  5. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  6. Emission Spectroscopy of Highly Charged Ions in Plasma of an Electron Beam Ion Trap

    SciTech Connect

    Draganic, I.; Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J.; DuBois, R.; Shevelko, V.; Fritzsche, S.; Zou, Y.

    2004-12-01

    The results of experimental study of magnetic dipole (M1) transitions in highly charged ions of argon (Ar9+, Ar10+, Ar13+ and Ar14+) and krypton (Kr18+ and Kr22+) are presented. The forbidden transitions of the highly charged ions in the visible and near UV range of the photon emission spectra have been measured with accuracy better than 1 ppm. Our measurements for the 'coronal lines' are the most accurate yet reported using an EBIT as a spectroscopic source of highly charged ions. These precise wavelength determinations provide a useful test and challenge for atomic structure calculations of many-electron systems.

  7. Detection of charge storage on molecular thin films of tris(8-hydroxyquinoline) aluminum (Alq3) by Kelvin force microscopy: a candidate system for high storage capacity memory cells.

    PubMed

    Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir

    2012-03-14

    Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells.

  8. Inclusive photoproduction of single charged particles at high p T

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Atkinson, M.; Baake, M.; Bagdasarian, L. S.; Barberis, D.; Brodbeck, T. J.; Brook, N.; Charity, T.; Clegg, A. B.; Coyle, P.; Danaher, S.; Danagulian, S.; Davenport, M.; Dickinson, B.; Diekmann, B.; Donnachie, A.; Doyle, A. T.; Eades, J.; Ellison, R. J.; Flower, P. S.; Foster, J. M.; Galbraith, W.; Galumian, P. I.; Gapp, C.; Gebert, F.; Hallewell, G.; Heinloth, K.; Henderson, R. C. W.; Hickman, M. T.; Hoeger, C.; Holzkamp, S.; Hughes-Jones, R. E.; Ibbotson, M.; Jakob, H. P.; Joseph, D.; Keemer, N. R.; Kingler, J.; Koersgen, G.; Kolya, S. D.; Lafferty, G. D.; McCann, H.; McClatchey, R.; McManus, C.; Mercer, D.; Morris, J. A. G.; Morris, J. V.; Newton, D.; O'Connor, A.; Oedingen, R.; Oganesian, A. G.; Ottewell, P. J.; Paterson, C. N.; Paul, E.; Reid, D.; Rotscheidt, H.; Sharp, P. H.; Soeldner-Rembold, S.; Thacker, N. A.; Thompson, L.; Thompson, R. J.; Voigtlaender-Tetzner, A.; Waterhouse, J.; Weigend, A. S.; Wilson, G. W.

    1989-03-01

    Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions of p T and x F . Data cover the range 0.0< p T <5.0 GeV/c and 0.0< x F <1.0 at incident momenta from 70 to 170 GeV/c. The comparison between photon- and hadron-induced data indicates a relative excess of particles with p T >1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.

  9. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.

    1993-01-01

    This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.

  10. High-resolution electroencephalogram (EEG) mapping: scalp charge layer

    NASA Astrophysics Data System (ADS)

    Yao, Dezhong; Yin, Zhong Ke; Tang, Xiang Hong; Arendt-Nielsen, Lars; Chen, Andrew C. N.

    2004-11-01

    The neural electrical signal related to the human brain function is one of the tracks to understanding ourselves. Various electroencephalogram imaging techniques have been developed to reveal spatial information on neural activities in the brain from scalp recordings, such as Laplacian, equivalent source layer and potential. Physically, these methods may be classified into two categories: scalp surface or cortical surface based techniques. In this work, the focus is on the scalp surface based equivalent charge layer (ECL), with a comparison to the scalp potential with different references and scalp Laplacian (SL). The contents include theoretical analysis and numeric evaluation of simulated data and real alpha (8-12 Hz) data. The results confirm the fact that SL and ECL are of higher spatial resolution than various scalp potential maps, and for SL and ECL, SL is of higher resolution but more sensitive to noise.

  11. An acoustic charge transport imager for high definition television applications

    NASA Astrophysics Data System (ADS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.

    1993-09-01

    This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.

  12. High-precision metrology of highly charged ions via relativistic resonance fluorescence.

    PubMed

    Postavaru, O; Harman, Z; Keitel, C H

    2011-01-21

    Resonance fluorescence of laser-driven highly charged ions is investigated with regard to precisely measuring atomic properties. For this purpose an ab initio approach based on the Dirac equation is employed that allows for studying relativistic ions. These systems provide a sensitive means to test correlated relativistic dynamics, quantum electrodynamic phenomena and nuclear effects by applying x-ray lasers. We show how the narrowing of sidebands in the x-ray fluorescence spectrum by interference due to an additional optical driving can be exploited to determine atomic dipole or multipole moments to unprecedented accuracy.

  13. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Schadler, Linda S.

    2016-08-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  14. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    SciTech Connect

    Huang, Yanhui Schadler, Linda S.

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  15. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    SciTech Connect

    Lu, W. Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L.; Fang, X.; Guo, J. W.; Yang, Y.; Xiong, B.; Ruan, L.; Xie, D.

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  16. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    NASA Astrophysics Data System (ADS)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  17. A high-charge-state plasma neutralizer for an energetic H/sup -/ beam

    SciTech Connect

    Schlachter, A.S.; Leung, K.N.; Stearns, J.W.; Olson, R.E.

    1986-10-01

    A high-charge-state plasma neutralizer for a beam of energetic H/sup -/ ions offers the potential of high optimum neutralization efficiency (approx.85%) relative to a gas target (50 to 60%), and considerably reduced target thickness. We have calculated cross sections for charge-changing interactions of fast H/sup -/ and H/sup 0/ in collision with highly charged ions using a semiclassical model for H/sup -/, and the Classical-Trajectory Monte Carlo method plus Born calculations, to obtain correct asymptotic cross sections in the high-energy limit. Charge-state fractions as a function of plasma line density, and f/sub 0//sup max/, the maximum H/sup 0/ fraction, are calculated using these cross sections; we find that f/sub 0//sup mx/ approx. = 85% for ion charge states in the range 1+ to 10+, and that target ion line density for f/sub 0//sup max/ decreases approximately as the square of the plasma ion charge state. The maximum neutral fraction is also high for a partially ionized plasma. We have built a small multicusp plasma generator to use a a plasma neutralizer; preliminary results show that the plasma contains argon ions with an average charge state between 2+ and 3+ for a steady-state discharge.

  18. Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores.

    PubMed

    Nicodemo, D; De Jong, D; Couto, R H N; Malheiros, E B

    2013-12-19

    Honey bees use propolis to defend against invaders and disease organisms. As some colonies produce much more propolis than others, we investigated whether propolis collecting is associated with disease resistance traits, including hygienic behavior and resistance to the parasitic bee mite, Varroa destructor. The three highest (HP) and three lowest propolis-producing (LP) colonies among 36 Africanized honey bee colonies were initially selected. Queens and drones from these colonies were crossed through artificial insemination to produce five colonies of each of the following crosses: HP♀ X HP♂, LP♀ X HP♂, HP♀ X LP♂, and LP♀ X LP♂. Colonies headed by HP♀ X HP♂ queens produced significantly more propolis than those with HP♀ X LP♂ and LP♀ X HP♂ queens and these in turn produced significantly more propolis than those headed by LP♀ X LP♂ queens. The brood cell uncapping rate of the high-propolis-producing colonies in the hygienic behavior test was significantly superior to that of the other groups. The LP X LP group was significantly less hygienic than the two HP X LP crosses, based on the evaluation of the rate of removal of pin-killed pupae. The HP X HP colonies were significantly more hygienic than the other crosses. No significant differences were found in mite infestation rates among the groups of colonies; although overall, colony infestation rates were quite low (1.0 to 3.2 mites per 100 brood cells), which could have masked such effects. Honey and pollen stores were significantly and positively correlated with propolis production.

  19. Dissociation and multiply charged silicon ejection in high abundance from hexamethyldisilane.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-11-11

    Quadruply charged, neon-like silicon and helium-like carbon were generated by the exposure of hexamethyldisilane to intense femtosecond laser pulses. Dissociation of the silicon-silicon bond, the formation of highly charged silicons, as well as the saturation intensity of their formation were studied by mass spectroscopy. The production of these ions in high abundance, but also with lower laser intensity than theoretically expected for the element, was accomplished by using organosilicon compounds. Multiply charged silicon was generated at low laser intensity because stripping electrons from organosilicon compounds is much easier than from pure silicon due to the loose binding of electrons belonging to molecular orbitals. Femtosecond laser ionization is a valuable methodology for producing highly charged ions in high abundance and is useful in many fields of interest.

  20. High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Liang, Margaret I.

    2005-01-01

    The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.

  1. Disadvantaged and Non-Disadvantaged Urban High School Students Perceptions of Work Within General Merchandise Retail Department Stores.

    ERIC Educational Resources Information Center

    Bennett, James Gordon

    In three Ohio cities, a perception scale of 55 statements was administered to: (1) 350 black students in schools serving disadvantaged youth, (2) 600 white students in schools serving non-disadvantaged youth, (3) 27 white students in a school serving disadvantaged youth, and (4) 154 department store workers. Among extensive findings were the…

  2. Scaling rule for target ionization by highly charged ions at low-to-intermediate velocities

    NASA Astrophysics Data System (ADS)

    Wu, W.; Deveney, E. F.; Datz, S.; Desai, D. D.; Krause, H. F.; Sanders, J. M.; Vane, C. R.; Cocke, C. L.; Giese, J. P.

    1996-04-01

    Cross sections for ionization of He by highly charged Clq+, Cuq+, and Iq+ (q=6-10) impact at velocities from 1.6 to 3.1 a.u. were measured. These results are compared with other experimental and theoretical results available over a wide velocity range. A universal scaling rule for target ionization by nearly bare, highly charged ions at low to intermediate velocities (0.2-3.5 a.u.) is reported.

  3. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines.

    PubMed

    Jayaratne, E R; Ling, X; Morawska, L

    2015-09-01

    Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    SciTech Connect

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  5. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  6. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.

    PubMed

    Bora, Debajeet K; Braun, Artur; Erni, Rolf; Müller, Ulrich; Döbeli, Max; Constable, Edwin C

    2013-08-14

    Control of the water splitting reaction in the context of natural photosynthesis is considered as a Holy Grail of chemistry, particularly with respect to artificial photosynthesis for a sustainable energy economy. The underlying objective is to build a solar fuel generator which is economically viable and environmentally benign. Hydrogen generation by solar water splitting in photoelectrochemical cells (PEC) is currently experiencing a renaissance, and the search for high performance but low-cost photoelectrode materials is an on-going quest. We present here a photoanode heterostructure of hematite and NiO/α-Ni(OH)2, which is very efficient. We prepared the heterostructure by a "two reactor" hydrothermal modification of a pristine hematite film. The system shows promising current density of 16 mA cm(-2), several times higher than that of the pristine hematite film. In addition, the system shows charge storing capacity once exposed to AM 1.5 simulated sunlight, along with electrochromic behaviour. Interestingly, the water splitting proceeds as a dark reaction after several hours of light exposure. The abrupt increase in current density originates from the oxidized Ni(OH)2 layer which is absent in the case of pn-junction-like devices made by mere deposition of NiO on hematite by thermal annealing. Hematite alone shows no such behaviour. This kind of new PEC electrode offers a low-cost and simple way for the dual purpose applications of water splitting and charge storage.

  7. Re-creation of aerosol charge state found near HV power lines using a high voltage corona charger

    NASA Astrophysics Data System (ADS)

    Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Underwood, R.; Usmani, O. S.; Shallcross, D. E.; Henshaw, D. L.

    2015-10-01

    Corona ionisation from AC HV power lines (HVPL) can release ions into the environment, which have the potential to electrically charge pollutant aerosol in the atmosphere. It has been hypothesised that these charged particles have an enhanced probability of being deposited in human airways upon inhalation due to electrostatic attraction by image charge within the lung, with implications for human health. Carbonaceous aerosol particles from a Technegas generator were artificially charge-enhanced using a corona charger. Once generated, particles were passed through the charger, which was either on or off, and stored in a 15 litre conducting bag for ∼20 minutes to observe size and charge distribution changes over time. Charge states were estimated using two Sequential Mobility Particle Sizers measuring the size and mobility distributions. Charge-neutral particles were measured 7 times and positive particles 9 times, the average charge-neutral value of x was 1.00 (sd = 0.06) while the average positive value was 4.60 (0.72). The system will be used to generate positive or charge neutral particles for delivery to human volunteers in an inhalation study to assess the impact of charge on ultrafine (size < 100 nm) particle deposition.

  8. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions.

    PubMed

    El-Said, Ayman S; Wilhelm, Richard A; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-16

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  9. Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1990-01-01

    The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.

  10. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    El-Said, Ayman S.; Wilhelm, Richard A.; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-01

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (129Xe Q+ ) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q =15 to Q =36 , the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  11. Modification of atmospheric DC fields by space charge from high-voltage power lines

    NASA Astrophysics Data System (ADS)

    Fews, A. P.; Wilding, R. J.; Keitch, P. A.; Holden, N. K.; Henshaw, D. L.

    Corona ion discharge is responsible for a flux of small ions emanating from an overhead power line capable of modifying the ambient electrical environment. The ensuing space charge can be detected as a change in magnitude of the earth's natural DC electric field at ground level. DC field mill meters were used to measure the vertical component of electric fields upwind and downwind of 132 and 400 kV power lines. Evidence of space charge blowing downwind of power lines was observed in 21 out of 22 cases. Time series measurements recorded in the downwind direction were highly variable with fields of higher magnitude compared to those recorded upwind. Model DC field profiles were used to estimate a lower limit to the space charge density at body height arising from power lines. The average lower limit was ˜3000 cm -3 excess unipolar charges. The result suggests that between 10% and 60% of outdoor aerosols gain excess charge by the attachment of corona ions. Downwind of a 400 kV line in Somerset that was prone to excessive corona discharge, the estimated mean lower limit excess unipolar space charge density was ˜6000 cm -3, suggesting that up to 100% of aerosols gain excess charge by the attachment of corona ions. Investigations into the time variation of DC electric fields around motorways and the natural diurnal variation of the earth's DC field were also undertaken and compared to the power line data. The results show that the power line time series are clearly distinguishable from typical examples of both types of field variation, demonstrating the relatively highly charged atmospheres that generally exist around high-voltage power lines. The results are of potential public health concern, because they suggest a degree of aerosol charging that may result in a non-trivial increase in lung deposition of inhaled pollutant aerosols.

  12. Charge exchange processes of high energy heavy ions channeled in crystals

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Chevallier, M.; Cohen, C.; Dural, J.; Genre, R.; Girard, Y.; Groeneveld, K. O.; Kemmler, J.; Kirsch, R.; L'Hoir, A.; Maier, R.; Poizat, J. C.; Quéré, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REC), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC).

  13. Potential and kinetic sputtering of alkanethiol self-assembled monolayers by impact of highly charged ions

    NASA Astrophysics Data System (ADS)

    Flores, M.; O'Rourke, B. E.; Yamazaki, Y.; Esaulov, V. A.

    2009-02-01

    Highly charged ions have been used to study the sputtering of positive molecular fragments from mercaptoundecanoic acid and dodecanethiol self-assembled monolayers on gold surfaces. The samples were bombarded with Arq+ (4⩽q⩽10) ions with kinetic energies from 2to18keV . The main fragments detected were H+ , CnH2n+ , and Cn+1O2H2n+1+ from mercaptoundecanoic and H+ , CnH2n+ , and Cn+1H2n+3+ from dodecanethiol. The proton yields were increased with larger charge state q of the highly charged ion (HCI) in both samples, scaling as qγ , with γ˜5 . The charge state dependence is discussed in terms of electron transfer to the HCI. The final yield of protons depends on molecular functional group characteristics, orientation on the surface, and reneutralization phenomena.

  14. Threshold and efficiency for perforation of 1 nm thick carbon nanomembranes with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Ritter, Robert; Heller, René; Beyer, André; Turchanin, Andrey; Klingner, Nico; Hübner, René; Stöger-Pollach, Michael; Vieker, Henning; Hlawacek, Gregor; Gölzhäuser, Armin; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Cross-linking of a self-assembled monolayer of 1,1‧-biphenyl-4-thiol by low energy electron irradiation leads to the formation of a carbon nanomembrane, that is only 1 nm thick. Here we study the perforation of these freestanding membranes by slow highly charged ion irradiation with respect to the pore formation yield. It is found that a threshold in potential energy of the highly charged ions of about 10 keV must be exceeded in order to form round pores with tunable diameters in the range of 5-15 nm. Above this energy threshold, the efficiency for a single ion to form a pore increases from 70% to nearly 100% with increasing charge. These findings are verified by two independent methods, namely the analysis of individual membranes stacked together during irradiation and the detailed analysis of exit charge state spectra utilizing an electrostatic analyzer.

  15. Slow highly charged ion induced nanopit formation on the KCl(001) surface

    NASA Astrophysics Data System (ADS)

    Wilhelm, R. A.; Heller, R.; Facsko, S.

    2016-08-01

    We report on nanostructuring of the KCl(001) surface induced by the individual impact of slow highly charged ions. Samples were irradiated with Xe ions with charge states of Q = 15 to 40 at kinetic energies from 1.7 to 160 keV. The formation of nanopits at the virgin surface is observed and attributed to a defect-mediated desorption process involving the removal of up to 2000 surface atoms per incident ion. The depth of the produced pits is shallow, but not limited to the first monolayer. From the variation of the ion parameters (charge state and kinetic energy) we derive a phase diagram for the structuring of the KCl(001) surface with highly charged ions.

  16. Charge transport in high mobility molecular semiconductors: classical models and new theories.

    PubMed

    Troisi, Alessandro

    2011-05-01

    The theories developed since the fifties to describe charge transport in molecular crystals proved to be inadequate for the most promising classes of high mobility molecular semiconductors identified in the recent years, including for example pentacene and rubrene. After reviewing at an elementary level the classical theories, which still provide the language for the understanding of charge transport in these systems, this tutorial review outlines the recent experimental and computational evidence that prompted the development of new theories of charge transport in molecular crystals. A critical discussion will illustrate how very rarely it is possible to assume a charge hopping mechanism for high mobility organic crystals at any temperature. Recent models based on the effect of non-local electron-phonon coupling, dynamic disorder, coexistence of localized and delocalized states are reviewed. Additionally, a few more recent avenues of theoretical investigation, including the study of defect states, are discussed.

  17. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    SciTech Connect

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  18. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    SciTech Connect

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q/sub 0/)/(q/q/sub 0/), where (q/q/sub 0/) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory.

  19. GaAs series connected photovoltaic converters for high voltage capacitor charging applications

    SciTech Connect

    Rose, B.H.

    1997-09-01

    This report describes the design features of series connected photovoltaic arrays which will be required to charge capacitors to relatively high (400V) voltages in time periods on the order of 1 microsecond. The factors which determine the array voltage and the capacitor charge time are given. Individual element junction designs, along with an interconnect scheme, and a semiconductor process to realize them are presented. Finally, the input laser optical required to meet the requirements is determined.

  20. CHARGED PARTICLE PRODUCTION AT HIGH RAPIDITY IN p+p COLLISIONS AT RHIC.

    SciTech Connect

    DEBBE,R.

    2006-05-30

    This report describes the recent analysis of identified charged particle production at high rapidity performed on data collected from p+p collisions at RHIC ({radical}s = 200 GeV). The extracted invariant cross-sections compare well to NLO pQCD calculations. However, a puzzling high yield of protons at high rapidity and p{sub T} has been found.

  1. Achieving high-pressure and high-temperature within a TEM: Crystallographic defects as hosts for concentrating and storing carbon deep within Earth

    NASA Astrophysics Data System (ADS)

    Wu, J.; Buseck, P. R.

    2013-12-01

    Transmission electron microscopy in combination with in-situ high-pressure and high-temperature measurements is uniquely able to provide high-resolution data about materials under conditions resembling those in Earth's interior. By using nanocontainers of graphitized carbon, it is possible to achieve pressures and temperatures up to 40 GPa and 1200 °C, respectively. A wide range of relatively simple minerals and mineral analogs have been examined using this approach. By studying alpha-PbO2-type titanium dioxide (TiO2) and perovskite-structured nickel-doped lanthanum chromate (LaCr0.5Ni0.5O3), we show the influence of crystallographic defects in concentrating and storing carbon within these analogs to minerals occurring deep inside Earth. Such in-situ observations are impossible by using existing conventional high-pressure techniques. Figure 1. Temporal compression sequence of an anatase nanocrystal with two visible fault planes inside a multi-walled graphitic cage. (a)-(g) The times indicated in each panel are from the start of irradiation. Pressure was generated by shrinkage of the cage resulting from displacement damage by electrons (30 A/cm2) at 770 C. The disappearance of anatase (101) planes and emergence of alpha-PbO2-type TiO2 (110) planes indicates a phase transition between (e) and (f) (see insets).

  2. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Patil, Avinash A.; Chou, Szu-Wei; Chang, Pei-Yu; Lee, Chen-Wei; Cheng, Chun-Yen; Chu, Ming-Lee; Peng, Wen-Ping

    2016-12-01

    Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions (m/z 150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge (m/z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap.

  3. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Patil, Avinash A.; Chou, Szu-Wei; Chang, Pei-Yu; Lee, Chen-Wei; Cheng, Chun-Yen; Chu, Ming-Lee; Peng, Wen-Ping

    2017-06-01

    Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions ( m/ z 150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge ( m/ z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap. [Figure not available: see fulltext.

  4. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    SciTech Connect

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  5. Atomistic and molecular effects in electric double layers at high surface charges

    SciTech Connect

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities provided by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.

  6. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  7. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    NASA Astrophysics Data System (ADS)

    Jeon, Dong-O.

    2016-01-01

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4 σ =360 ° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of high intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4 σ =360 ° resonance and the 2 σx (y )-2 σz=0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Measured beam profiles agree well with the characteristics of the space charge driven 4 σ =360 ° resonance and the 2 σx (y )-2 σz=0 resonance that are predicted by the simulation.

  8. Capture and isolation of highly charged ions in a unitary Penning trap

    NASA Astrophysics Data System (ADS)

    Brewer, Samuel M.; Guise, Nicholas D.; Tan, Joseph N.

    2013-12-01

    We recently used a compact Penning trap to capture and isolate highly charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology. Isolated charge states of highly stripped argon and neon ions with total charge Q≥10, extracted at energies of up to 4×103Q eV, are captured in a trap with well depths of ≈(4-12)Q eV. Here we discuss in detail the process to optimize velocity tuning, capture, and storage of highly charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is ≈60 times narrower than typically found in an EBIT. This reduction in thermal energy is obtained passively, without the application of any active cooling scheme in the ion-capture trap.

  9. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    PubMed

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  10. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    PubMed Central

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-01-01

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. PMID:24763213

  11. High-Energy Charged Particles in the Innermost Jovian Magnetosphere

    PubMed

    Fischer; Pehlke; Wibberenz; Lanzerotti; Mihalov

    1996-05-10

    The energetic particles investigation carried by the Galileo probe measured the energy and angular distributions of the high-energy particles from near the orbit of Io to probe entry into the jovian atmosphere. Jupiter's inner radiation region had extremely large fluxes of energetic electrons and protons; intensities peaked at approximately2.2RJ (where RJ is the radius of Jupiter). Absorption of the measured particles was found near the outer edge of the bright dust ring. The instrument measured intense fluxes of high-energy helium ions (approximately62 megaelectron volts per nucleon) that peaked at approximately1.5RJ inside the bright dust ring. The abundances of all particle species decreased sharply at approximately1.35RJ; this decrease defines the innermost edge of the equatorial jovian radiation.

  12. Breakdown and space charge formation in polyimide film under DC high stress at various temperatures

    NASA Astrophysics Data System (ADS)

    Kishi, Y.; Hashimoto, T.; Miyake, H.; Tanaka, Y.; Takada, T.

    2009-08-01

    Relationship between breakdown strength and space charge formation in polyimide film under dc high stress at various temperatures is investigated using pulsed electro-acoustic (PEA) method. Some typical results of the space charge observations show that hetero space charges are always found before breakdown. The amount of the hetero charges increase with increase of temperature or increase of applied electric field. Since the enhancement of the internal electric field in the sample by the accumulation of the hetero charges is not so large, the accumulation doesn't seem to be an immediate cause of breakdown. However since it is always observed before breakdown, it may be predictive information for breakdown. In a certain case, the breakdown occurs after voltage application for few hours. However, while we give an interval of short circuit condition after observing the hetero space charge under dc stress, the total voltage application time to breakdown is almost the same to the case without the interval. It means that the hetero space charge generation may show a kind of degradation of the material.

  13. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    PubMed

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  14. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  15. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    PubMed

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  16. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  17. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    SciTech Connect

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  18. High-speed MCP anodes for high time resolution low-energy charged particle spectrometers

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda

    2017-02-01

    The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.

  19. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-01

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ˜1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  20. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  1. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    NASA Astrophysics Data System (ADS)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  2. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    DOE PAGES

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less

  3. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.

    PubMed

    Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei

    2011-09-01

    Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.

  4. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    PubMed

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index.

  5. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization.

    PubMed

    Konermann, Lars; Rodriguez, Antony D; Liu, Jiangjiang

    2012-08-07

    Electrospray ionization (ESI) of native proteins results in a narrow distribution of low protonation states. ESI for these folded species proceeds via the charged residue mechanism. In contrast, ESI of unfolded proteins yields a wide distribution of much higher charge states. The current work develops a model that can account for this effect. Recent molecular dynamics simulations revealed that ESI for unfolded polypeptide chains involves protein ejection from nanodroplets, representing a type of ion evaporation mechanism (IEM). We point out the analogies between this IEM, and the dissociation of gaseous protein complexes after collisional activation. The latter process commences with unraveling of a single subunit, in concert with Coulombically driven proton transfer. The subunit then separates from the residual complex as a highly charged ion. We propose that similar charge equilibration events accompany the IEM of unfolded proteins, thereby causing the formation of high ESI charge states. A bead chain model is used for examining how charge is partitioned as protein and droplet separate. It is shown that protein ejection from differently sized ESI droplets generates a range of protonation states. The predicted behavior agrees well with experimental data.

  6. Multiple electron capture from isolated protein poly-anions in collision with slow highly charged ions.

    PubMed

    Milosavljević, A R; Rousseau, P; Domaracka, A; Huber, B A; Giuliani, A

    2017-08-02

    Collisions of 375 keV Xe(25+) ions with trapped mass/charge selected poly-anions of the cytochrome C protein (∼12.5 kDa) were studied by coupling a linear quadrupole ion trap with low-energy ion beam facility. Tandem mass spectra were recorded for the protein precursor charge states ranging from -9 to -17. The present work reports the first study of slow highly charged ion collisions with poly-anions. A high signal to noise ratio allowed the study of the intensity of single and multiple electron removal by a projectile, as well as associated neutral losses, as a function of the target charge state. Relative single and double electron detachment cross sections were found to increase with increasing charge state of the precursor anion. The experimental findings are supported by the calculations of the total electron capture cross sections, based on the classical over-the-barrier model, restricted to a simple uniformly charged linear protein structure and a near-end electron capture.

  7. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σx(y) – 2σz = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σx(y) – 2σz = 0 resonance that are predicted by the simulation.« less

  8. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  9. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  10. Treatment of long-term stored DNA--comparison between different methods to obtain high-quality material.

    PubMed

    de Almeida, Máira Pedroso; do Nascimento, Carlos Souza; Périssé, Iuri Viotti; de Souza Duarte, Marcio; Veroneze, Renata; Facioni Guimarães, Simone E

    2013-11-01

    Long-term stored DNA can be sometimes the only source of genetic material of an organism that does not exist anymore, but a research interest still persists. However, there is a lack of information about useful methods to improve quality from such type of material. In this study, we compared four different protocols using DNA samples collected in 1998. Fresh DNA was also tested aiming to check the differences between these two material types. Sixteen samples of each DNA type treated with phenol-chloroform with PEG 5.0%, silica-gel membrane spin column, PEG 7.5%, and glass-fiber matrix spin column were submitted to spectrophotometer measurements, electrophoresis, PCR, and RFLP-PCR to assess the best method concerning yield, quality, and purity. Based on the results, purification with PEG 7.5% was considered the best method to treat aged DNA samples. In addition to the efficiency, this protocol has low cost. Analyzing the data, we also conclude that long-term stored DNA may be considered a reliable and potential resource for future molecular studies.

  11. Evaluation of hemoglobin performance in the assessment of iron stores in feto-maternal pairs in a high-risk population: receiver operating characteristic curve analysis

    PubMed Central

    Jaime-Pérez, José Carlos; García-Arellano, Gisela; Méndez-Ramírez, Nereida; González-Llano, Óscar; Gómez-Almaguer, David

    2015-01-01

    Objective By applying receiver operating characteristic curve analysis, the objective of this study was to see whether hemoglobin levels reflect body iron stores in a group of pregnant women at term who, by using serum ferritin as the reference test, had a high pre-test probability of having iron deficiency anemia. Likewise, we evaluated the ability of hemoglobin and maternal serum ferritin levels to predict iron deficiency anemia in newborns. Methods Hemoglobin and serum ferritin were measured in 187 pregnant women at term belonging to a group with a high pre-test probability of iron deficiency anemia and their newborns. Women with Hb <11.0 g/dL and newborns with cord Hb <13.0 g/dL were classified as anemic. A serum ferritin <12.0 μg/L in women and a cord blood serum ferritin <35.0 μg/L were considered to reflect empty iron stores. Receiver operating characteristic curve analysis was applied to select the cut-off points that better reflected iron stores. Results The Hb cut-off point selected by receiver operating characteristic curve analysis in women was <11.5 g/dL (sensitivity: 60.82, specificity: 53.33%, Youden Index: 0.450). Most of the newborns had normal Hb which precluded this analysis. Maternal Hb <11.0 g/dL was the cut-off point that best reflected iron deficiency anemia in newborns (sensitivity: 55.88%, specificity: 57.24%, Youden Index: 0.217). The best cut-off point of maternal serum ferritin to reflect empty iron stores in newborns was <6.0 μg/L (sensitivity: 76.47%, specificity: 31.58%, Youden Index: 0.200). Conclusion Hemoglobin concentration performed poorly to detect iron deficiency anemia in women at term with high risk for iron deficiency and their newborns. PMID:26041420

  12. High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    NASA Astrophysics Data System (ADS)

    House, M. G.; Bartlett, I.; Pakkiam, P.; Koch, M.; Peretz, E.; van der Heijden, J.; Kobayashi, T.; Rogge, S.; Simmons, M. Y.

    2016-10-01

    We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (<15 μ s ) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET.

  13. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.

    PubMed

    Qiu, Yinghua; Ma, Jian; Chen, Yunfei

    2016-05-17

    Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion appeared which depended on the surface charge density, bulk concentration, and confinement. In the nanoconfined NaCl solutions concentrated from 0.2 to 4.0 M, the locations of accumulation layers for Na(+) and Cl(-) ions remained stable, but their peak values increased. The higher the concentration was, the more obvious the charge inversion appeared. In 4.0 M NaCl solution, Na(+) and Cl(-) ions show obvious alternating layered distributions which may correspond to the solidification found in experiments. By changing surface separation, the confinement had a large effect on the ionic distribution. As both surfaces approached each other, many ions and water molecules were squeezed out of the confined space. Two adjacent layers in ion or water distribution profiles can be forced closer to each other and merge together. From ionic hydration analysis, the coordination number of Na(+) ions in highly confined space was much lower than that in the bulk.

  14. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  15. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  16. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.

    PubMed

    Paraecattil, Arun Aby; Banerji, Natalie

    2014-01-29

    PBDTTPD is one of the best conjugated polymers for solar cell applications (up to 8.5% efficiency). We have investigated the dynamics of charge generation in the blend with fullerene (PCBM) and addressed highly relevant topics such as the role of bulk heterojunction structure, fullerene excitation, and excess energy. We show that there are multiple charge separation pathways. These include electron transfer from photoexcited polymer, hole transfer from photoexcited PCBM, prompt (<100 fs) charge generation in intimately mixed polymer:fullerene regions (which can occur from hot states), as well as slower electron and hole transfer from excitons formed in pure PBDTTPD or PCBM domains (diffusion to an interface is necessary). Very interestingly, all the charge separation pathways are highly efficient. For example, the yield of long-lived carriers is not significantly affected by the excitation wavelength, although this changes the fraction of photons absorbed by PCBM and the amount of excess energy brought to the system. Overall, the favorable properties of the PBDTTPD:PCBM blend in terms of morphology and exciton delocalization allow excellent charge generation in all circumstances and strongly contribute to the high photovoltaic performance of the blend.

  17. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  18. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  19. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi; Collaboration: PRad Collaboration

    2013-11-07

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  20. A vacuum spark ion source: High charge state metal ion beams

    SciTech Connect

    Yushkov, G. Yu. Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  1. A high efficiency all-PMOS charge pump for 3D NAND flash memory

    NASA Astrophysics Data System (ADS)

    Liyin, Fu; Yu, Wang; Qi, Wang; Zongliang, Huo

    2016-07-01

    For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS charge pump with high voltage boosting efficiency, large driving capability and high power efficiency for 3D V-NAND has been proposed. In this circuit, the Pelliconi structure is used to enhance the driving capability, two auxiliary substrate bias PMOS transistors are added to mitigate the body effect, and the degradation of the output voltage and boost efficiency caused by the threshold voltage drop is eliminated by dynamic gate control structure. Simulated results show that the proposed charge pump circuit can achieve the maximum boost efficiency of 86% and power efficiency of 50%. The output voltage of the proposed 9 stages charge pump can exceed 2 V under 2 MHz clock frequency in 2X nm 3D V-NAND technology. Our results provide guidance for the peripheral circuit design of high density 3D V-NAND integration.

  2. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    SciTech Connect

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  3. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  4. Large space system - Charged particle environment interaction technology. [effects on high voltage solar array performance

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large high-voltage space power systems proposed for future applications in both low earth orbit and geosynchronous altitudes must operate in the space charged-particle environment with possible interactions between this environment and the high-voltage surfaces. The paper reviews the ground experimental work to provide indicators for the interactions that could exist in the space power system. A preliminary analytical model of a large space power system is constructed using the existing NASA Charging Analyzer Program, and its performance in geosynchronous orbit is evaluated. The analytical results are used to illustrate the regions where detrimental interactions could exist and to establish areas where future technology is required.

  5. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  6. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  7. Defect mediated desorption of the KBr(001) surface induced by single highly charged ion impact.

    PubMed

    Heller, R; Facsko, S; Wilhelm, R A; Möller, W

    2008-08-29

    The individual impacts of slow (300 eV/amu) highly charged Xe ions induce nanometer sized pitlike structures on the KBr (001) surface. The volume of these structures shows a strong dependence on the ions potential energy. Total potential sputter yields from atomically flat (001) terraces are determined by imaging single ion impact sites. The dependence of the sputter yield on the ions initial charge state combined with structure formation at low and high-fluence irradiations indicates that agglomeration of defects into complex centers plays a major role in the desorption process induced by the potential energy.

  8. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  9. Penning-trap experiments for spectroscopy of highly-charged ions at HITRAP

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Andelkovic, Z.; Birkl, G.; Ebrahimi, S.; Hannen, V.; von Lindenfels, D.; Martin, A.; Murböck, T.; Nörtershäuser, W.; Quint, W.; Schmidt, S.; Segal, D. M.; Thompson, R. C.; Vollbrecht, J.; Weinheimer, Ch; Wiesel, M.

    2015-11-01

    Highly charged ions offer the possibility to measure electronic fine structures and hyperfine structures with precisions of optical lasers. Microwave spectroscopy of transitions between Zeeman substates further yields magnetic moments (g-factors) of bound electrons, making tests of calculations in the framework of bound-state QED possible in the strong-field regime. We present the SPECTRAP and ARTEMIS experiments, which are currently being commissioned with highly charged ions in the framework of the HITRAP facility at GSI, Germany. We present the scientific outline, the experimental setups and first results with confined ions.

  10. Effects of high CO₂ levels on fermentation, peroxidation, and cellular water stress in Fragaria vesca stored at low temperature in conditions of unlimited O₂.

    PubMed

    Blanch, Maria; Rosales, Raquel; Mateos, Raquel; Perez-Gago, María B; Sanchez-Ballesta, Maria T; Escribano, María I; Merodio, Carmen

    2015-01-28

    To better understand the tolerance of strawberries (Fragaria vesca L.) to high CO2 in storage atmospheres, fermentation and cellular damage were investigated. Fruits were stored for 3 and 6 days at 0 °C in the presence of different CO2 levels (0, 20, or 40%) with 20% O2. Changes in pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) gene expression and in fermentative metabolites, as well as in bound water and malondialdehyde (MDA) concentrations, were analyzed. In strawberries stored without added CO2, up-regulation of PDC and ADH was not associated with an increase in fermentative metabolites. By contrast, moderate ethanol fermentation in fruits exposed to 20% CO2 seems to be essential to maintain fruit metabolism, reducing both lipid peroxidation and cellular water stress. However, if the CO2 concentration increases (40%), the excess acetaldehyde and ethanol produced were closely correlated with a decrease in bound water and production of MDA.

  11. High intracellular pH reversibly prevents gating-charge immobilization in squid axons.

    PubMed Central

    Wanke, E; Testa, P L; Prestipino, G; Carbone, E

    1983-01-01

    Squid giant axons were used to study the reversible effects of high intracellular pH (pHi) on gating currents. Under depolarization, when Na channels are activated, internal solutions buffered at high pHi (10.2) affect considerably the time course of gating charge associated with channel closing, QOFF, with almost no alteration of QON records. In particular, at pHi 10.2 the charge corresponding to the fast phase of IgOFF, measured after long depolarizing pulses (7.7 ms), was consistently larger than that recorded at physiological pHi (7.2). This suggests that high pH prevents immobilization of gating charges induced by Na inactivation. In this respect, the present data agree reasonably well with previous observations, which show that pHi greater than 7.2 reversibly removes the fast Na inactivation with little effects on activation kinetics (Carbone, E., P. L. Testa, and E. Wanke, 1981, Biophys. J., 35:393-413; Brodwick, M.S., and D. C. Eaton, 1978, Science [Wash. DC], 200:1494-1496). Unexpectedly, high pH increases the amount of charge associated with the slow phase of IgOFF. In our opinion, this might be the result of either an increment of the net charge produced by the exposure to high pHi or that gating charges that return to the closed state might experience a larger fraction of the potential drop across the membrane (Neumcke, B., W. Schwarz, and R. Stampfli, 1980, Biophys. J., 31:325-332). PMID:6652218

  12. Toxin production by Alternaria alternata in tomatoes and apples stored under various conditions and quantitation of the toxins by high-performance liquid chromatography.

    PubMed

    Ozcelik, S; Ozcelik, N; Beuchat, L R

    1990-12-01

    Alternaria alternata strain 8442-3 was inoculated into tomatoes (Lycopersicon esculentum Mill.) and Red Delicious cultivar apples (Malus domestica Borkh.). Half of the lots of each fruit were shrink-wrapped in high-density polyethylene film. Wrapped and unwrapped fruits were incubated under darkness at 4, 15 and 25 degrees C for up to 5 weeks. A high-performance liquid chromatography method was developed to quantitate tenuazonic acid (TeA), alternariol (AOH), alternariol methyl ether (AME), and altenuene (ALT). Shrink-wrapping retarded, but did not completely inhibit growth in tomatoes for 3-7 days. Concentrations of up to 120.6 mg of AOH and 63.7 mg of AME per 100 g of tissue were produced in unwrapped tomatoes stored at 15 degrees C for 4 weeks; 19.0 mg of ALT per 100 g of tomato tissue was produced after 3 weeks at 25 degrees C. AOH, AME and ALT were also produced in unwrapped tomatoes stored at 4 degrees C; however, no TeA was detected in decayed tomatoes, regardless of type of wrapping or storage temperature. Shrink-wrapping resulted in decreased production of AOH, AME, and ALT. Alternaria toxins were not detected in apples stored at 4 and 15 degrees C. The highest concentration of AOH produced (48.8 mg per 100 g of tissue) was in unwrapped apples stored at 25 degrees C for 2 weeks; 12.3 mg per 100 g of tissue of shrink-wrapped apples was detected after 5 weeks of storage at 25 degrees C, while ALT reached 5.7 mg per 100 g after 4 weeks. TeA was not detected in apples infected with A. alternata.

  13. An Enhanced Vacuum Arc Ion Source for High Current, High Charge State Uranium Beam Production

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Hershcovitch, A.; Brown, I. G.; Leemans, W.; Liu, F.

    1996-05-01

    We plan to carry out an experimental program at LBNL to develop a novel kind of vacuum arc ion source in which the metal ions are further stripped by interaction with an energetic, dense electron beam. Preliminary results obtained by Batalin et al.(V. A. Batalin, Y. N. Volkov, T. V. Kulevoy, and S. V. Petrenko, ITEP, Moscow, Reprints 18-93 (1993), 33-94 (1994); Proc. EPAC 1994, p. 1453.) using this approach have been most promising; the vacuum arc ion source(I.G. Brown, ``Vacuum Arc Ion Sources'', Rev. Sci. Instrum. 65, 3061 (1994).) uranium ion beam output of mostly U^3+ ions was increased significantly, although the yield of high charge state ions was only a small fraction of the original source current. In our experiments the electron beam will propagate antiparallel to the ion beam so as to provide a radially inward Lorentz force to confine and focus the stripped uranium beam, thus maximizing the electron-ion interactions and increasing the ion beam current density. We expect improved performance over the encouraging earlier^1 results. The motivation for this work(Ady Hershcovitch and Brant Johnson, RHIC/DET Note 17 and AGS/ ADD/Tech. Note No. 416) is the desire to eventually inject fully stripped uranium into the Relativistic Heavy Ion Collider (RHIC).

  14. Measuring the Charge of a Single Dielectric Nanoparticle Using a High-Q Optical Microresonator

    NASA Astrophysics Data System (ADS)

    Chen, You-Ling; Jin, Wei-Liang; Xiao, Yun-Feng; Zhang, Xuming

    2016-10-01

    Measuring the charge of a nanoparticle is of great importance in many fields including optics, astronomy, biochemistry, atmospheric science, environmental engineering, and dusty plasma. Here, we propose to use a high-Q whispering-gallery-mode (WGM) optical microresonator to detect the surface and bulk charge of a dielectric nanoparticle. Because of the modification of nanoparticle conductivity induced by the surplus electrons, both the coupling strength between the nanoparticle and the WGM and the dissipation changes compared with the case of a neutral nanoparticle. The charge density can be inferred from the transmission spectrum of the WGM microresonator. By monitoring the mode splitting, the linewidth broadening or the resonance dip value of the transmission spectrum, surface (bulk) electron density as low as 0.007 nm-2 (0.001 nm-3) can be detected for nanoparticles with negative (positive) electron affinity. The high sensitivity is attributed to the ultranarrow resonance linewidth and small mode volume of the microresonator.

  15. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  16. Key elements of space charge compensation on a low energy high intensity beam injector

    SciTech Connect

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia'er; Zhao Hongwei; Sun Liangting

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  17. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    PubMed

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  18. METHOD OF STORING ELECTRICAL ENERGY,

    DTIC Science & Technology

    a long charging at high temperature (relative to the operating temperature on discharging) by a high voltage close to the disruptive. From contact metallized surfaces a high voltage of D C microcurrent is obtained.

  19. Damage in graphene due to electronic excitation induced by highly charged ions

    NASA Astrophysics Data System (ADS)

    Hopster, J.; Kozubek, R.; Ban-d'Etat, B.; Guillous, S.; Lebius, H.; Schleberger, M.

    2014-06-01

    Graphene is expected to be rather insensitive to ion irradiation. We demonstrate that single layers of exfoliated graphene sustain significant damage from irradiation with slow highly charged ions. We have investigated the ion induced changes of graphene after irradiation with highly charged ions of different charge states (q = 28-42) and kinetic energies ({{E}_{\\text{kin}}} = 150-450 keV). Atomic force microscopy images reveal that the ion induced defects are not topographic in nature but are related to a significant change in friction. To create these defects, a minimum charge state is needed. In addition to this threshold behaviour, the required minimum charge state as well as the defect diameter show a strong dependency on the kinetic energy of the projectiles. From the linear dependency of the defect diameter on the projectile velocity we infer that electronic excitations triggered by the incoming ion in the above-surface phase play a dominant role for this unexpected defect creation in graphene.

  20. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  1. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  2. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  3. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    PubMed

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Angular and charge state distributions of highly charged ions scattered during low energy surface-channeling interactions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Schippers, S.

    1994-10-01

    The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.

  5. High Iron Stores in the Low Malaria Season Increase Malaria Risk in the High Transmission Season in a Prospective Cohort of Rural Zambian Children.

    PubMed

    Barffour, Maxwell A; Schulze, Kerry J; Coles, Christian L; Chileshe, Justin; Kalungwana, Ng'andwe; Arguello, Margia; Siamusantu, Ward; Moss, William J; West, Keith P; Palmer, Amanda C

    2017-08-01

    Background: Higher iron stores, defined by serum ferritin (SF) concentration, may increase malaria risk.Objective: We evaluated the association between SF assessed during low malaria season and the risk of malaria during high malaria season, controlling for inflammation.Methods: Data for this prospective study were collected from children aged 4-8 y (n = 745) participating in a biofortified maize efficacy trial in rural Zambia. All malaria cases were treated at baseline (September 2012). We used baseline SF and malaria status indicated by positive microscopy at endline (March 2013) to define exposure and outcome, respectively. Iron status was defined as deficient (corrected or uncorrected SF <12 or <15 μg/L, depending on age <5 or ≥5 y, respectively), moderate (<75 μg/L, excluding deficient), or high (≥75 μg/L). We used a modified Poisson regression to model the risk of malaria in the high transmission seasons (endline) as a function of iron status assessed in the low malaria seasons (baseline).Results: We observed an age-dependent, positive dose-response association between ferritin in the low malaria season and malaria incidence during the high malaria season in younger children. In children aged <6 y (but not older children), we observed a relative increase in malaria risk in the moderate iron status [incidence rate ratio (IRR) with SF: 1.56; 95% CI: 0.64, 3.86; IRR with inflammation-corrected SF: 1.92; 95% CI: 0.75, 4.93] and high iron status (IRR with SF: 2.66; 95% CI: 1.10, 6.43; or IRR with corrected SF: 2.93; 95% CI: 1.17, 7.33) categories compared with the deficient iron status category. The relative increase in malaria risk for children with high iron status was statistically significant only among those with a concurrently normal serum soluble transferrin receptor concentration (<8.3 mg/L; IRR: 1.97; 95% CI: 1.20, 7.37).Conclusions: Iron adequacy in 4- to 8-y-old children in rural Zambia was associated with increased malaria risk. Our findings

  6. A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions.

    PubMed

    Hou, Guanhua; Zhu, Xiao; Elstner, Marcus; Cui, Qiang

    2012-11-13

    To improve the description of electrostatic interaction between QM and MM atoms when the QM is SCC-DFTB, we adopt a Klopman-Ohno (KO) functional form which considers the finite size of the QM and MM charge distributions. Compared to the original implementation that used a simple Coulombic interaction between QM Mulliken and MM point charges, the KO based QM/MM scheme takes charge penetration effect into consideration and therefore significantly improves the description of QM/MM interaction at short range, especially when the QM region is highly charged. To be consistent with the third-order formulation of SCC-DFTB, the Hubbard parameter in the KO functional is dependent on the QM charge. As a result, the effective size of the QM charge distribution naturally adjusts as the QM region undergoes chemical transformations, making the KO based QM/MM scheme particularly attractive for describing chemical reactions in the condensed phase. Together with the van der Waals parameters for the QM atom, the KO based QM/MM model introduces four parameters for each element type. They are fitted here based on microsolvation models of small solutes, focusing on negatively charged molecular ions, for elements O, C, H and P with a specific version of SCC-DFTB (SCC-DFTBPR). Test calculations confirm that the KO based QM/MM scheme significantly improves the interactions between QM and MM atoms over the original point charge based model and it is transferable due to the small number of parameters. The new form of QM/MM Hamiltonian will greatly improve the applicability of SCC-DFTB based QM/MM methods to problems that involve highly charged QM regions, such as enzyme catalyzed phosphoryl transfers.

  7. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  8. Optical Transitions in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2012-08-01

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  9. High- but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinach.

    PubMed

    Glowacz, Marcin; Mogren, Lars M; Reade, John P H; Cobb, Andrew H; Monaghan, James M

    2015-07-01

    Quality management in the fresh produce industry is an important issue. Spinach is exposed to various adverse conditions (temperature, light, etc.) within the supply chain. The present experiments were conducted to investigate the effect of light conditions (dark, low-intensity light (LL) and high-intensity light (HL)) and photoperiod (6 h HL and 18 h dark) on the quality changes of cold-stored spinach. HL exposure resulted in oxidative stress, causing tissue damage and quality loss as evidenced by increased membrane damage and water loss. The content of total ascorbic acid was reduced under HL conditions. On the other hand, storage of spinach under LL conditions gave promising results, as nutritional quality was not reduced, while texture maintenance was improved. No significant differences, with the exception of nutritional quality, were found between spinach leaves stored under continuous (24 h) low-intensity light (30-35 µmol m(-2) s(-1)) and their counterparts stored under the same light integral over 6 h (130-140 µmol m(-2) s(-1)). LL extended the shelf-life of spinach. The amount of light received by the leaves was the key factor affecting produce quality. Light intensity, however, has to be low enough not to cause excess oxidative stress and lead to accelerated senescence. © 2014 Society of Chemical Industry.

  10. NACS Store Planning Manual.

    ERIC Educational Resources Information Center

    College Store Journal, 1979

    1979-01-01

    Topics discussed by the NACS Store Planning/Renovation Committees in this updated version of the college store renovation manual include: short- and long-range planning, financial considerations, professional planning assistance, the store's image and business character, location considerations, building requirements, space requirements, fixtures,…

  11. Convenience Store Operations.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This self-paced, individualized instructional guide is designed for use by those who are currently working in a convenience store or by those who wish to learn the basics of convenience store marketing and operations. Addressed in the individual units of the guide are the following topics: today's convenience store, regular duties and…

  12. Convenience Store Operations.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This self-paced, individualized instructional guide is designed for use by those who are currently working in a convenience store or by those who wish to learn the basics of convenience store marketing and operations. Addressed in the individual units of the guide are the following topics: today's convenience store, regular duties and…

  13. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.

    PubMed

    Qiu, Yinghua; Lin, Chih-Yuan; Hinkle, Preston; Plett, Timothy S; Yang, Crystal; Chacko, Jenu Varghese; Digman, Michelle A; Yeh, Li-Hsien; Hsu, Jyh-Ping; Siwy, Zuzanna S

    2016-09-27

    Single pores in the resistive-pulse technique are used as an analytics tool to detect, size, and characterize physical as well as chemical properties of individual objects such as molecules and particles. Each object passing through a pore causes a transient change of the transmembrane current called a resistive pulse. In high salt concentrations when the pore diameter is significantly larger than the screening Debye length, it is assumed that the particle size and surface charge can be determined independently from the same experiment. In this article we challenge this assumption and show that highly charged hard spheres can cause a significant increase of the resistive-pulse amplitude compared to neutral particles of a similar diameter. As a result, resistive pulses overestimate the size of charged particles by even 20%. The observation is explained by the effect of concentration polarization created across particles in a pore, revealed by numerical modeling of ionic concentrations, ion current, and local electric fields. It is notable that in resistive-pulse experiments with cylindrical pores, concentration polarization was previously shown to influence ionic concentrations only at pore entrances; consequently, additional and transient modulation of resistive pulses was observed when a particle entered or left the pore. Here we postulate that concentration polarization can occur across transported particles at any particle position along the pore axis and affect the magnitude of the entire resistive pulse. Consequently, the recorded resistive pulses of highly charged particles reflect not only the particles' volume but also the size of the depletion zone created in front of the moving particle. Moreover, the modeling identified that the effective surface charge density of particles depended not only on the density of functional groups on the particle but also on the capacitance of the Stern layer. The findings are of crucial importance for sizing particles and

  14. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  15. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  16. Theory of Bound-Electron g Factor in Highly Charged Ions

    SciTech Connect

    Shabaev, V. M.; Glazov, D. A.; Plunien, G.; Volotka, A. V.

    2015-09-15

    The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, quantum electrodynamics (QED), nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are reviewed. Special attention is paid to tests of QED effects at strong coupling regime and determinations of the fundamental constants.

  17. High-Level Spacecraft Charging in Eclipse at Geosynchronous Altitudes: A Statistical Study

    DTIC Science & Technology

    2006-01-01

    event in the recent solar maximum was the Bastille Day (14 July 2000) storm. The quadratic fits were done next. The quadratic fits were Figure 6 shows...temperatures, and Kp~ inidex in the Bastille Day, 2000, geomagnetic storm. high-voltage spacecraft charging to commence. The idea of atures are mostly

  18. Space-charge perturbation effects in photonic tubes under high irradiation

    SciTech Connect

    Kalibjian, R.; Peterson, G.G.

    1982-06-01

    Potential perturbation effects at the cathode region of a photonic tube can occur at high intensity due to space-charge. Using appropriate photoelectron energy distribution functions, the electric field at the cathode is calculated and its effect upon the spatial/temporal resolution is examined.

  19. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  20. Wafer charging monitored by high frequency and quasi-static C- V measurements

    NASA Astrophysics Data System (ADS)

    En, Bill; Cheung, Nathan W.

    1993-04-01

    A combined high frequency and quasi-static C- V technique is used to monitor wafer charging of MOS structures during plasma immersion ion implantation (PIII). The test chip used consists of MOS capacitors spanning over five decades of area (25 μm 2 to 4 × 10 6 μm 2). Measured interface trap density ( Qit) is found to be dependent exponentially on plasma exposure time and linearly on the plasma ion density. The PIII pulsed bias voltage has no effect on wafer charging.

  1. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  2. High-frequency acoustic charge transport in GaAs nanowires.

    PubMed

    Büyükköse, S; Hernández-Mínguez, A; Vratzov, B; Somaschini, C; Geelhaar, L; Riechert, H; van der Wiel, W G; Santos, P V

    2014-04-04

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.

  3. Multi-aperture ultra-high-speed imaging with lateral electric field charge modulators

    NASA Astrophysics Data System (ADS)

    Kagawa, K.; Mochizuki, F.; Seo, M.-W.; Yasutomi, K.; Kawahito, S.

    2016-03-01

    The time resolution of charge modulation in CMOS image sensors has entered the sub-nano second regime and is still reducing toward tens of pico-second. The lateral electric field modulators (LEFM) invented at Shizuoka University has significantly contributed to the recent progress in the solid-state time-resolved imaging field. Based on the LEFM technology, we are developing ultra-high-speed CMOS image sensors whose frame rate or time resolution is determined only by the charge modulation speed. In this presentation, the concept, architecture, example of implementation, and demonstration of 200Mfps single-shot video capturing based on our scheme are shown.

  4. High-melting point sediment from refined coconut oil stored in a tank for a long term.

    PubMed

    Mochida, Yoshiyuki; Hasegawa, Fukiko

    2008-01-01

    A small amount of sediment occurs in refined coconut oil stored in a large-scale tank for a long term. This sediment is different from that generally called Cocos Wax, is insoluble in various organic solvents, and has an m.p. of about 100 degrees C. In this report, we have done a structural analysis of this sediment. The sediment was carried out by hydrolyzing with a KOH/ethyl alcohol solution including toluene. Samples were analyzed by elemental analysis, IR spectroscopy, EI-MS, CI-MS, field desorption mass spectrometry (FD-MS), and MALDI/TOF-MS. The hydrolyzates were a compound including an oxo group, and its relative molecular mass was 382 for the acid part and 412 for the unsaponified matter according to EI-MS (ionization energy was 70 eV and 15 eV) and CI-MS (reagent gases were i-butane, ammonia, and nitrogen monoxide). The relative molecular mass of the sediment was 1140 according to the mass spectrometry of FD, EI, and MALDI. It was elucidated based on the characteristic absorption analysis by IR and the fragmentation behavior of the EI-MS that the sediment was a wax ester, 3, 9-di-9-oxotetradocosanecarboxy-11-oxohexacosane, consisting of an acid part of 9-oxotetradocosanecarboxylic acid and an unsaponified matter of 3, 9-di-hydroxy-11-oxohexacosane.

  5. Pushing the space charge limit: electron lenses in high-intensity synchrotrons?

    NASA Astrophysics Data System (ADS)

    Stem, William D.; Boine-Frankenheim, Oliver

    2017-07-01

    Several accelerator projects require an increase in the number of particles per bunch, which is constrained by the space charge limit. Above this limit the transverse space charge force in combination with the lattice structure causes beam quality degradation and beam loss. Proposed devices to mitigate this beam loss in ion beams are electron lenses. An electron lens imparts a nonlinear, localized focusing kick to counteract the (global) space-charge forces in the primary beam. This effort is met with many challenges, including a reduced dynamic aperture (DA), resonance crossing, and beam-beam alignment. This contribution provides a detailed study of idealized electron lens use in high-intensity particle accelerators, including a comparison between analytical calculations and pyORBIT particle-in-cell (PIC) simulations.

  6. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  7. Determination of levoglucosan in atmospheric aerosols using high performance liquid chromatography with aerosol charge detection.

    PubMed

    Dixon, Roy W; Baltzell, Gregor

    2006-03-24

    A sensitive method for analysis of levoglucosan (1,6-anhydro-beta,d-glucopyranose) and other monosaccharide anhydrides, compounds present in biomass combustion smoke, was investigated employing high-performance liquid chromatography (HPLC) with recently developed aerosol charge detection. Aerosol charge detection involves the conversion of the column effluent to an aerosol, which is charged to produce a current. Use of a cation-exchange column and a pure water eluent was found to separate levoglucosan and mannosan from other aerosol components with a detection limit of about 90 ng mL(-1) for levoglucosan or 5 ng injected. This method was demonstrated by successful analysis of aerosol filter samples from three locations.

  8. Isotropic charge transport in highly ordered regioregular poly(3-hexylthiophene) monolayer

    NASA Astrophysics Data System (ADS)

    Akai-Kasaya, M.; Okuaki, Y.; Nagano, S.; Saito, A.; Aono, M.; Kuwahara, Y.

    2013-10-01

    Charge transport anisotropy in π-stacked poly(3-hexylthiophene-2,5-diyl) (P3HT) monolayers was investigated. The monolayers were prepared using a Langmuir-Blodgett technique and were uniaxial but homogeneous two-dimensional sheets. Nanoscale electrical measurements were carried out using metal electrodes with a submicrometre gap between them in order to exclude breaches that occasionally occur along the chains. A remarkable degree of isotropy in both the conductivity and mobility was found. The conductivity isotropy implies that charge transport is dominated by fatal defects in polymers arising at structural and electrical discontinuities, even in the absence of large morphological defects. It was found that the mobility along the π-stacking direction can exceed that along the polymer chain in monolayers with good crystallinity. This high mobility along the π-stacking direction is thought to be an inherent charge transport characteristic that has so far been obscured in solid state conjugated polymers with complex microstructures.

  9. The use of ionization electron columns for space-charge compensation in high intensity proton accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.; /Fermilab

    2009-01-01

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  10. The Use of Ionization Electron Columns for Space-Charge Compensation in High Intensity Proton Accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.

    2009-01-22

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  11. High-voltage sheaths and charge neutralization in space power systems

    NASA Technical Reports Server (NTRS)

    Satyanarayana, P.; Chang, Chia-Lie; Drobot, Adam; Papadopoulos, Dennis

    1991-01-01

    The authors examine the electrodynamics of charged platforms in the ionosphere with a variety of analytical and numerical models. These models have been specifically designed to study the tethered satellite system (TSS-1) due to be launched in early 1992. One of the objectives of TSS-1 is to determine the potential of tethers for electrical power generation from orbital motion across the earth's magnetic field. The author identifies and explores important aspects of the interaction between the ambient ionospheric plasma and moving charged orbital platforms: (1) the formation of energetic particles in the wake of a nominally neutral satellite, (2) transient current collection by a highly charged platform, (3) the current closure paths in the ionosphere between multiple polarized platforms, and (4) the conditions for rapid neutralization by enhanced plasma formation in the presence of effluent gases.

  12. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  13. Ballistic Penetration of Highly Charged Nanoaerosol Particles through a Lipid Monolayer.

    PubMed

    Morozov, Victor N; Shlyapnikov, Yuri M; Kanev, Igor L; Shlyapnikova, Elena A

    2017-08-15

    To be used as a drug, inhaled nanoaerosol particles (NAPs) must first penetrate the lipid layer on top of the lung fluid before they will be able to reach the lung epithelium. We investigated how the penetration of NAPs through a model lipid monolayer (LM) depends upon their charging level and size. It was shown that deposition of NAPs 20-200 nm in diameter and charged to the Rayleigh limit gradually increased the surface tension of a dipalmitoylphosphatidylcholine monolayer (DPPC), indicating a loss of lipid molecules from the monolayer. This phenomenon was reproduced with a variety of NAPs produced from glucose, proteins, and polymers. Transfer of the lipid material into the subphase was documented by direct visualization of lipid nanoparticles in the subphase with atomic force microscopy after deposition of glucose NAPs on a DPPC monolayer, followed by collection of the lipid nanoparticles on a mica surface. Partial restoration of tension upon storage indicates that some of the lipid may return to the monolayer. Experiments with the deposition of highly charged calibrated polystyrene nanoparticles showed that the amount of lipid removed from the surface was roughly proportional to the overall surface area of the deposited NAPs. When the number of charges on the NAPs was reduced from their Rayleigh level of 10(3)-10(4) units to 1-10 units, no notable changes in monolayer surface tension were observed even with prolonged deposition of such NAPs. It was therefore concluded that only highly charged NAPs of a certain size acquire sufficient speed from their attraction by mirror charges to enable ballistic penetration through a lipid monolayer.

  14. Charge density distribution of KMnF3 under high pressure

    NASA Astrophysics Data System (ADS)

    Aoyagi, S.; Toda, S.; Nishibori, E.; Kuroiwa, Y.; Ohishi, Y.; Takata, M.; Sakata, M.

    2008-12-01

    The charge density distributions of KMnF3 under high pressure (0.3, 1.0, 1.7, 2.7, 3.4, 4.0, 4.8, 5.7, and 6.3 GPa) were determined from the synchrotron-radiation powder-diffraction data by the maximum entropy method (MEM). The difference-MEM charge density, which represents deformations from the spherical atomic charge density for each atom, is changed by applying pressure. The excess electrons on the Mn-F bond suggesting a Mn3d-F2p orbital hybridization were found in the difference-MEM charge densities at 0.3 GPa. The excess electrons are localized near Mn nuclei by increasing pressure. Two types of Mn-F bonds were found in the high-pressure tetragonal phase. One is parallel and another is perpendicular to the rotation axis of the F6 octahedra (i.e., c axis). The number of electrons for K, F, and Mn atoms was estimated from the MEM charge densities. The valence statuses of K atom were +1.02e at 0.3 GPa and +0.20e at 6.3 GPa. The valence statuses of F atom were -0.96e at 0.3GPa and -0.60 and -0.77e at 6.3 GPa. On the other hand, the valence status of Mn atom was virtually unchanged with pressure. This fact suggests that the electron charge transfer from F to K atom occurs with increasing pressure.

  15. Unconventional charge order in a co-doped high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Pelc, D.; Vučković, M.; Grafe, H.-J.; Baek, S.-H.; Požek, M.

    2016-09-01

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8-xEu0.2SrxCuO4. We use three complementary experiments--nuclear quadrupole resonance, nonlinear conductivity and specific heat--to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order.

  16. Unconventional charge order in a co-doped high-Tc superconductor

    PubMed Central

    Pelc, D.; Vučković, M.; Grafe, H. -J.; Baek, S. -H.; Požek, M.

    2016-01-01

    Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8−xEu0.2SrxCuO4. We use three complementary experiments—nuclear quadrupole resonance, nonlinear conductivity and specific heat—to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order. PMID:27605152

  17. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  18. Effect of introduced charge in cellulose gels on surface interactions and the adsorption of highly charged cationic polyelectrolytes.

    PubMed

    Notley, Shannon M

    2008-04-07

    The interaction between cellulose surfaces in aqueous solution has been measured using colloidal probe microscopy. Cellulose thin films with varying charge through carboxyl group substitution were used in this study with the surface forces fit to DLVO theory. It was found that the surface potential increased, as expected, with increasing carboxyl substitution. Furthermore, for a given degree of substitution, the surface potential increased as a function of increasing pH. At low pH, the surface forces interaction were attractive and could be fit to the non-retarded Hamaker equation using a constant of 3 x 10(-21) J. At pH greater than 5, the force interactions were monotonically repulsive, regardless of the ionic strength of the solution for all charge densities of the cellulose thin films. The adsorption of polyDADMAC to these charged cellulose films was also investigated using the quartz crystal microbalance. It was found that for the low charge film, a low surface excess of PDADMAC was sensed and that the adsorbed conformation was essentially flat. However for the higher charged cellulose film, a spontaneous de-swelling was observed resulting in no possibility of quantitatively determining the sensed mass using QCM.

  19. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    PubMed

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  20. Effect of high-dose irradiation on quality characteristics of ready-to-eat broiler breast fillets stored at room temperature.

    PubMed

    Baptista, R F; Teixeira, C E; Lemos, M; Monteiro, M L G; Vital, H C; Mársico, E T; Júnior, C A Conte; Mano, S B

    2014-10-01

    The effect of high-dose irradiation on the physical, chemical, and bacteriological parameters of ready-to-eat vacuum-packed broiler breast meat after 430 d of storage at room temperature was investigated. Ready-to-eat broiler breast fillets were immersed in brine with garlic powder and then drained, grilled, and vacuum-packed (primary packaging). The high-dose irradiation used was approximately 48 kGy. The treatments were designated as A (irradiated samples stored at room temperature), B (irradiated samples stored at -25°C), and C (nonirradiated samples stored at -25°C). All samples were packaged in polyethylene bags containing aluminum to exclude light (secondary packaging). Proximate composition, pH, 2-thiobarbituric acid reactive substance (TBARS), and heterotrophic aerobic mesophilic bacteria were analyzed during 430 d of storage. Results were analyzed using 1-way ANOVA and the Tukey test. Linear regression was used to analyze the correlation between the results for each parameter and storage time of the different treatments. The gamma radiation caused slight changes (P < 0.05) in the moisture and fat content, regardless of storage temperature. After storage d 110, TBARS values remained stable (P > 0.05) in all the treatments. The preservation methods used were effective in maintaining the mesophilic counts below the detection level during the entire storage period. We concluded that, among the treatments studied, high-dose irradiation with storage at room temperature showed potential for the preservation of ready-to-eat products made from poultry meat, to provide foods safe for consumption.

  1. Charge transport across high surface area metal/diamond nanostructured composites.

    PubMed

    Plana, D; Humphrey, J J L; Bradley, K A; Celorrio, V; Fermín, D J

    2013-04-24

    High surface area composites featuring metal nanostructures and diamond particles have generated a lot of interest in the fields of heterogeneous catalysis, electrocatalysis, and sensors. Diamond surfaces provide a chemically robust framework for active nanostructures in comparison with sp(2) carbon supports. The present paper investigates the charge transport properties of high surface area films of high-pressure, high-temperature diamond particles in the presence and absence of metal nanostructures, employing electrochemical field-effect transistors. Oxygen- and hydrogen-terminated surfaces were generated on 500 nm diamond powders. Homogeneously distributed metal nanostructures, with metal volume fractions between ca. 5 and 20%, were either nucleated at the diamond particles by impregnation or incorporated from colloidal solution. Electrochemical field-effect transistor measurements, employing interdigitated electrodes, allowed the determination of composite conductivity as a function of electrode potential, as well as in air. In the absence of metal nanostructures, the lateral conductivity of the diamond assemblies in air is increased by over one order of magnitude upon hydrogenation of the particle surface. This observation is consistent with studies at diamond single crystals, although the somewhat modest change in conductivity suggests that charge transport is not only determined by the intrinsic surface conductivity of individual diamond particles but also by particle-to-particle charge transfer. Interestingly, the latter contribution effectively controls the assembly conductivity in the presence of an electrolyte solution as the difference between hydrogenated and oxygenated particles vanishes. The conductivity in the presence of metal nanoparticles is mainly determined by the metal volume fraction, while diamond surface termination and the presence of electrolyte solutions exert only minor effects. The experimental trends are discussed in terms of the

  2. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    PubMed

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

  3. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  4. Charged electret deposition for the manipulation of high power microwave flashover delay times

    SciTech Connect

    Stephens, J.; Beeson, S.; Dickens, J.; Neuber, A.

    2012-11-15

    A quasi-permanent charged electret is embedded into the radiation window of a high power microwave system. It was experimentally observed that the additional electrostatic field introduced by the electret alters the delay times associated with the development of plasma at the window surface, resulting from high power microwave excitation. The magnitudes of both the statistical and formative delay times are investigated in detail for different pressures. Experimental observations are related to calculated discharge parameters using known E/p dependent properties.

  5. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  6. Atomic physics with highly charged ions: Progress report, 15 August 1985--14 August 1988

    SciTech Connect

    Richard, P.

    1988-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project ''Atomic Physics with Highly Charged Ions'' speaks to these points. The experimental work is made possible locally by the use of relatively high velocity, highly charged projectiles (v typically 5% c) as obtained from the 6 MV tandem Van de Graaff accelerator. The work in the past few years has divided into collisions at high velocity using the primary beams from the accelerator and collisions at low velocity using secondary beams (recoil ions produced in a high velocity collision) in a so-called SIRS (Secondary Ion Recoil Source) geometry. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x-rays and Auger electrons. Correlation effects and polarization phenomena in ion-atom collisions have been investigated.

  7. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  8. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  9. Fermi surface splittings in multilayered high-Tc cuprates with charge imbalance

    NASA Astrophysics Data System (ADS)

    Mori, M.; Tohyama, T.; Maekawa, S.

    2006-03-01

    Cuprate superconductors have layered structure of CuO2 planes, which makes conducting blocks separated by an charge- reservoir block. Multilayered high-Tc cuprates, e.g., Ba2Ca3Cu4O8(O1-yFy)2 and HgBa2Ca4Cu5Oy, have two kinds of CuO2 planes in a unit cell; the outer-pyramidal-coordinated-planes (OP's) and the inner- square-coordinated-planes (IP's). The carrier density in the OP is generally different from that in the IP. We call such an inhomogeneous charge-distribution charge imbalance'. We study doping dependence of interlayer hoppings, t, in such a charge-imbalance system in the Gutzwiller approximation. When the double occupancy is forbidden in the CuO2 plane, an effective amplitude of t is shown to be proportional to the square root of the product of doping rates in adjacent two planes. Therefore, the charge imbalance in more than three-layered cuprates results in two different values of t^eff, i.e., t^eff1t√δIP δIP between IP's, and t^eff2t√δIP δOP between IP and OP, where δIP (δOP) is the doping rates in IP (OP). Fermi surfaces are calculated in the four-layered t-t'- t''-J model by the mean-field theory. The order parameters, the renormalization factor of t, and the site- potential making the charge imbalance between IP and OP are self-consistently determined for several doping rates. We show the interlayer splitting of the Fermi surfaces, which may be observed in the angle resolved photoemission spectroscopy measurement. *cond-mat/0511249.

  10. Highly charged swelling mica-type clays for selective Cu exchange.

    PubMed

    Ravella, Ramesh; Komarneni, Sridhar; Martinez, Carmen Enid

    2008-01-01

    There is a need to develop highly CU2+ selective materials which can potentially remediate copper contaminated soils and water. Here we show that several highly charged synthetic swelling mica-type clays are highly selective for copper exchange. The synthetic micas have cation exchange capacities (CECs), which are close to their theoretical values. Both Na-saturated and Mg-saturated micas were investigated for Cu ion exchange selectivity. Ion exchange isotherms and Kielland plots were constructed using the equilibrated solution analyses. From these studies it was found that Na-4-mica and Na-3-mica could selectively exchange copper at lower concentrations from solution, whereas Na-2-mica sample performed better by showing Cu ion exchange selectively to almost its capacity. The EPR spectra of Cu-exchanged micas coincide with the mica's charge characteristics that predict increased binding strength of exchangeable Cu in Na-4-mica and Na-3-mica than in Na-2-mica.

  11. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules.

    PubMed

    Liu, Qinze; Yu, Bo; Ye, Weichun; Zhou, Feng

    2011-09-09

    A systematic study of the permeation of small molecules through Pdop microcapsules is reported. The zwitterionic Pdop microcapsules are prepared by oxidative polymerization of dopamine on polystyrene microspheres followed by core removal with THF. Rhodamine 6G, methyl orange and alizarin red are chosen as differently charged probing dyes. The loading amount is affected by pH and dye concentration. Highly selective and unidirectional uptake and release of charged molecules through Pdop microcapsules can be achieved by controlling pH value: at low pH, the Pdop particles incorporate cationic dye (rhodamine 6G); at high pH, they incorporate anionic dyes (methyl orange and alizarin red). In each case, the uptake is highly selective. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Correlated energy-spread removal with space charge for high-harmonic generation.

    PubMed

    Hemsing, E; Marinelli, A; Marcus, G; Xiang, D

    2014-09-26

    We study the effect of longitudinal space charge on the correlated energy spread of a relativistic high-brightness electron beam that has been density modulated for the emission of coherent, high-harmonic radiation. We show that, in the case of electron bunching induced by a laser modulator followed by a dispersive chicane, longitudinal space charge forces can act to strongly reduce the induced energy modulation of the beam without a significant reduction in the harmonic bunching content. This effect may be optimized to enhance the output power and overall performance of free-electron lasers that produce coherent light through high-gain harmonic generation. It also increases the harmonic number achievable in these devices, which are otherwise gain-limited by the induced energy modulation from the laser.

  13. EBIT in the Magnetic Trapping Mode: Mass Spectrometry, Atomic Lifetime Measurements, and Charge Transfer Reactions of Highly Charged Atomic Ions

    SciTech Connect

    Schweikhard, L; Beiersdorfer, P; Trabert, E

    2001-07-10

    Although it may sound like a contradiction in terms, the electron beam ion trap (EBIT) works as an ion trap even when the electron beam is switched off. We present various experiments that exploit the ''magnetic trapping mode'' for investigations of ion confinement, charge exchange processes, atomic lifetime and ion mass measurements.

  14. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  15. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  16. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  17. Aggregation of retail stores

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo; Boisson, Jean; Larralde, Hernán

    2005-06-01

    We propose a simple model to understand the economic factors that induce aggregation of some businesses over small geographical regions. The model incorporates price competition with neighboring stores, transportation costs and the satisfaction probability of finding the desired product. We show that aggregation is more likely for stores selling expensive products and/or stores carrying only a fraction of the business variety. We illustrate our model with empirical data collected in the city of Lyon.

  18. Surface Charge Transfer Doping of Low-Dimensional Nanostructures toward High-Performance Nanodevices.

    PubMed

    Zhang, Xiujuan; Shao, Zhibin; Zhang, Xiaohong; He, Yuanyuan; Jie, Jiansheng

    2016-12-01

    Device applications of low-dimensional semiconductor nanostructures rely on the ability to rationally tune their electronic properties. However, the conventional doping method by introducing impurities into the nanostructures suffers from the low efficiency, poor reliability, and damage to the host lattices. Alternatively, surface charge transfer doping (SCTD) is emerging as a simple yet efficient technique to achieve reliable doping in a nondestructive manner, which can modulate the carrier concentration by injecting or extracting the carrier charges between the surface dopant and semiconductor due to the work-function difference. SCTD is particularly useful for low-dimensional nanostructures that possess high surface area and single-crystalline structure. The high reproducibility, as well as the high spatial selectivity, makes SCTD a promising technique to construct high-performance nanodevices based on low-dimensional nanostructures. Here, recent advances of SCTD are summarized systematically and critically, focusing on its potential applications in one- and two-dimensional nanostructures. Mechanisms as well as characterization techniques for the surface charge transfer are analyzed. We also highlight the progress in the construction of novel nanoelectronic and nano-optoelectronic devices via SCTD. Finally, the challenges and future research opportunities of the SCTD method are prospected.

  19. Evaluation of non-volatile metabolites in beer stored at high temperature and utility as an accelerated method to predict flavour stability.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E

    2016-06-01

    Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High precision computing with charge domain devices and a pseudo-spectral method therefor

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor); Fijany, Amir (Inventor); Zak, Michail (Inventor)

    1997-01-01

    The present invention enhances the bit resolution of a CCD/CID MVM processor by storing each bit of each matrix element as a separate CCD charge packet. The bits of each input vector are separately multiplied by each bit of each matrix element in massive parallelism and the resulting products are combined appropriately to synthesize the correct product. In another aspect of the invention, such arrays are employed in a pseudo-spectral method of the invention, in which partial differential equations are solved by expressing each derivative analytically as matrices, and the state function is updated at each computation cycle by multiplying it by the matrices. The matrices are treated as synaptic arrays of a neural network and the state function vector elements are treated as neurons. In a further aspect of the invention, moving target detection is performed by driving the soliton equation with a vector of detector outputs. The neural architecture consists of two synaptic arrays corresponding to the two differential terms of the soliton-equation and an adder connected to the output thereof and to the output of the detector array to drive the soliton equation.

  1. Implications of charge ordering in high Tc cuprate superconductors in far-infrared spectroscopy.

    PubMed

    Kim, Y H; Hor, P H

    2013-09-04

    We addressed the issue of the absence of far-infrared signatures pertaining to charge ordering in the published far-infrared reflectivity data of La2-xSrxCuO4 single crystals while other experimental probes reveal that charge ordering is a hallmark of superconducting cuprates. Through direct comparison of the far-infrared data reported by various groups side by side and also with the Raman scattering data, we found that the inconsistencies stem from the failure in capturing delicate spectral features embedded in the close-to-perfect ab-plane far-infrared reflectivity of La2-xSrxCuO4 single crystals by misidentifying the reflectivity as the Drude-like metallic reflectivity. The analysis of the close-to-true reflectivity data reveals that only a small fraction (<3%) of the total doping-induced charge carriers (electrons) are itinerant on the electron lattice made up with the rest of the electrons (>97%) at all doping levels up to 16%. We conclude that the far-infrared reflectivity study is far from being ready to construct a coherent picture of the ubiquitous charge ordering phenomenon and its relationship with the high Tc superconductivity.

  2. Inductively-Charged High-Temperature Superconductors And Methods Of Use

    DOEpatents

    Bromberg, Leslie

    2003-09-16

    The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.

  3. Complex interaction of subsequent surface streamers via deposited charge: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.

    2017-07-01

    The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.

  4. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    PubMed Central

    Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282

  5. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  6. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    PubMed

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  7. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    PubMed

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-04

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

  8. High radical prostatectomy surgical volume is related to lower radical prostatectomy total hospital charges.

    PubMed

    Ramirez, Alvaro; Benayoun, Serge; Briganti, Alberto; Chun, Jongi; Perrotte, Paul; Kattan, Michael W; Graefen, Markus; McCormack, Michael; Neugut, Alfred I; Saad, Fred; Karakiewicz, Pierre I

    2006-07-01

    To test the hypothesis that individual surgical volume (SV) is an independent predictor of radical prostatectomy (RP) total charges. We used the Florida State Inpatient Data File. ICD-9 codes 60.5 (RP) and 185 (prostate cancer) identified all men treated with RP for prostate cancer between January 1 and December 31, 1998. Among 1,923,085 records, 3167 RPs were selected. SV represented the predictor. Total RP charges represented the outcome. Age, race, and comorbidity represented covariates. Univariate and multivariate linear regression models were used. All 3167 RPs were performed by 81 surgeons. SV ranged from 2 to 162 (mean, 68). Charges were 4755 dollars to 140,201 dollars (mean, 18,200 dollars). In the multivariate model, each SV increment corresponding to one RP reduced hospital charges by 25 dollars (p < or = 0.001). Redistribution of RPs from low to high SV users could result in significant savings. For example, 4 million dollars could be saved if 1000 RPs were redistributed from surgeons with an SV of 18 to surgeons with an SV of 200.

  9. A Charge-Based Low-Power High-SNR Capacitive Sensing Interface Circuit

    PubMed Central

    Peng, Sheng-Yu; Qureshi, Muhammad S.; Hasler, Paul E.; Basu, Arindam; Degertekin, F. L.

    2008-01-01

    This paper describes a low-power approach to capacitive sensing that achieves a high signal-to-noise ratio. The circuit is composed of a capacitive feedback charge amplifier and a charge adaptation circuit. Without the adaptation circuit, the charge amplifier only consumes 1 μW to achieve the audio band SNR of 69.34dB. An adaptation scheme using Fowler-Nordheim tunneling and channel hot electron injection mechanisms to stabilize the DC output voltage is demonstrated. This scheme provides a very low frequency pole at 0.2Hz. The measured noise spectrums show that this slow-time scale adaptation does not degrade the circuit performance. The DC path can also be provided by a large feedback resistance without causing extra power consumption. A charge amplifier with a MOS-bipolar pseudo-resistor feedback scheme is interfaced with a capacitive micromachined ultrasonic transducer to demonstrate the feasibility of this approach for ultrasound applications. PMID:18787650

  10. Light-storing photocatalyst

    SciTech Connect

    Zhang Junying; Pan Feng; Hao Weichang; Ge Qi; Wang Tianmian

    2004-12-06

    Light-storing photocatalyst was prepared by coating light-storing phosphor and TiO{sub 2} photocatalyst in sequence on ceramic. The light-storing photocatalyst can store light irradiation and emit slowly. Consequently, the photocatalyst remains active when the irradiation source is cut off. Rhodamine B (RhB) can be decomposed efficiently by this photocatalyst in the dark after it absorbs light irradiation. This photocatalyst is photoreactive in an outdoor environment or can save energy by supplying irradiation intermittently for the photocatalyst.

  11. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-05

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

  12. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Wang, Xiao-Feng; Zheng, Enqiang; Wei, Yingjin; Sanehira, Yoshitaka; Chen, Gang

    2017-05-01

    In this work, we demonstrated the dye-sensitized solar rechargeable batteries devices sharing a structure of Dye-TiO2/electrolyte/Ni/WO3. The WO3 film was prepared by a simple sol-gel process exhibit high cavities and large surface area allowing efficient chemical/electrical reactions. The WO3 films with 2 ± 0.5 μm in thickness as charge collection electrodes exhibited a high energy density over other materials reported thus far. Under irradiation energy of 7.5 mWcm-2 in the photo-charging, the discharging time sustained 1758 s at the current density of 0.05 mA cm-2 in dark, the first specific discharge capacities of WO3 nano-film reach 40.6 mAh g-1 (0.0244 mAh cm-2). This work substantially pushes forward the easy processing solar rechargeable batteries for future potential applications.

  13. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Jörg, Holger; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav

    2015-10-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron-beam ion trap with the electron-beam energy adjusted to recombination resonances in order to produce K α x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted-wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-Z element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  14. Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.

    PubMed

    Brown, Lowell S; Dooling, David C; Preston, Dean L

    2006-05-01

    The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.

  15. High temperature charging efficiency and degradation behavior of high capacity Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeon; Kim, Joong

    2001-02-01

    Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate for electric vehicles and portable computers, and etc. In this work, the charging efficiency of the Ni-MH battery which uses Ni electrode with addition of various compounds and the degradation behavior of the 90Ah battery were studied. The battery using the Ni electrode with Ca(OH)2 addition showed the charging efficiency and the utilization ratio significantly better than electrodes without added compounds. After 418 cycles, the residual capacities at the Ni electrode showed nearly the same values in the upper, middle and lower regions. In the case of the MH electrode, the residual capacity in the upper region appeared lower than that in other regions. As a result of ICP analysis, the amount of dissolved elements in the three regions appeared almost the same. The faster degradation in the upper region of the MH electrode was caused by the TiO2 oxide film formed at the electrode surface because of overcharging. The thickness of the oxide film increases with cycling, so it will form a layer that is not able to allow hydrogen to penetrate into the MH electrode.

  16. Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker.

    PubMed

    Huang, Steve S; Wang, Xinning; Zhang, Yuqing; Doke, Aniruddha; DiFilippo, Frank P; Heston, Warren D

    2014-05-01

    Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer and in tumor vasculature. Small molecule based inhibitors of PSMA have promised to provide sensitive detection of primary and metastatic prostate tumors. Although significant progress has been made, many of the radiolabeled imaging agents exhibit non-specific background binding. Prevailing tracer designs focus on high affinity urea-based inhibitors with strategically placed hydrophobic patches that interact favorably with the substrate tunnel of PSMA. We hypothesized that a novel PSMA inhibitor design incorporating highly negatively charged linkers may minimize non-specific binding and decrease overall background. Through iterative redesign, we generated a series of PSMA inhibitors with highly negatively charged linkers that connect to urea inhibitors and bulky radionuclide chelates. We then performed in vivo imaging and biodistribution studies with the radiolabeled tracers. The tracers derived from our iterative redesign have affinities for PSMA comparable to the "parent" urea ligand Cys-C(O)-Glu. Using a fluorine-18 labeled PSMA targeting tracer, we found that these highly negatively charged molecules exhibit rapid renal excretion with minimal non-specific binding. The biodistribution data at 2 hr showed 4.6%ID/g PC3-PIP tumor uptake with spleen, liver, bone, and blood background levels of 0.1%, 0.17%, 0.1%, and 0.04%, respectively. Placement of multiple negative charges in the linker region of PSMA tracers significantly reduced the non-specific background binding without significant reduction of binding affinity. This increased tumor/background contrast in positron emission tomography promises to provide more sensitive tumor detection while decreasing the overall radiation exposure to patients. © 2014 Wiley Periodicals, Inc.

  17. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    SciTech Connect

    Sun, L. Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  18. The Oxford electron-beam ion trap: A device for spectroscopy of highly charged ions

    NASA Astrophysics Data System (ADS)

    Silver, J. D.; Varney, A. J.; Margolis, H. S.; Baird, P. E. G.; Grant, I. P.; Groves, P. D.; Hallett, W. A.; Handford, A. T.; Hirst, P. J.; Holmes, A. R.; Howie, D. J. H.; Hunt, R. A.; Nobbs, K. A.; Roberts, M.; Studholme, W.; Wark, J. S.; Williams, M. T.; Levine, M. A.; Dietrich, D. D.; Graham, W. G.; Williams, I. D.; O'Neil, R.; Rose, S. J.

    1994-04-01

    An electron-beam ion trap (EBIT) has just been completed in the Clarendon Laboratory, Oxford. The design is similar to the devices installed at the Lawrence Livermore National Laboratory. It is intended that the Oxford EBIT will be used for x-ray and UV spectroscopy of hydrogenic and helium-like ions, laser resonance spectroscopy of hydrogenic ions and measurements of dielectronic recombination cross sections, in order to test current understanding of simple highly charged ions.

  19. Hydrogenlike highly charged ions for tests of the time independence of fundamental constants.

    PubMed

    Schiller, S

    2007-05-04

    Hyperfine transitions in the electronic ground state of cold, trapped hydrogenlike highly charged ions have attractive features for use as frequency standards because the majority of systematic frequency shifts are smaller by orders of magnitude compared to many microwave and optical frequency standards. Frequency measurements of these transitions hold promise for significantly improved laboratory tests of local position invariance of the electron and quark masses.

  20. Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor.

    PubMed

    Harkin, David J; Broch, Katharina; Schreck, Maximilian; Ceymann, Harald; Stoy, Andreas; Yong, Chaw-Keong; Nikolka, Mark; McCulloch, Iain; Stingelin, Natalie; Lambert, Christoph; Sirringhaus, Henning

    2016-08-01

    Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str(-1) m(-2) at 800 nm.

  1. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  2. Direct evidence of Lowenstein's rule violation in swelling high-charge micas.

    PubMed

    Pavón, E; Osuna, F J; Alba, M D; Delevoye, L

    2014-07-07

    The structure of high-charged micas, Na-n-micas (n = 2 and 4), a family of synthetic silicates with a wide range of applications, was investigated through the use of (17)O solid-state NMR at natural abundance in order to preserve quantitative spectral information. The use of a very high-field and highly sensitive probehead, together with (17)O NMR literature data allowed for the detection of an isolated signal at 26 ppm, assigned partially to AlOAl, as evidence of the violation of Lowenstein's rule for Na-4-mica.

  3. Enhanced Laboratory Sensitivity to Variation of the Fine-Structure Constant using Highly Charged Ions

    SciTech Connect

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant {alpha}. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest {alpha} sensitivities seen in atomic systems.

  4. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  5. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    PubMed

    Going, Catherine C; Williams, Evan R

    2015-04-07

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.

  6. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  7. Calculations of differential spacecraft charging in high and low Earth orbits using COULOMB-2 code

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Makletsov, Andrei; Sinolits, Vadim

    2016-07-01

    In the paper, we discuss the main physical quantities determining the principle features of spacecraft charging in high and low Earth orbits: characteristic values of magnetosphere plasma particle primary currents, peculiarities of the various particle current angular distributions, typical values of secondary emission currents for a number of spacecraft constructional materials. Methods for computation of electrostatic potential distribution over the spacecraft non-uniform complex shape surface which are used in COULOMB-2 program package for high (GEO) and low orbits (LEO) are described. The physical approximations necessary for calculation of the plasma particles primary currents which enable to use the analytical expressions in the case of high spacecraft surface charging similar to formulas for Langmuir currents, are discussed for GEO and for LEO. Distribution of the electrostatic potential over the spacecraft surface is determined as result of numerical solution of nonlinear algebraic equations system corresponding to the established balance of currents on each of discrete elements (2-5 thousands of elements) of the spacecraft surface. The analytical approach noted above enable to obtain the stationary distribution of the potential for rather small computation time that enables to obtain the results for a large number of the influencing factors orientations in reasonable computation time. Typical electric potential distributions over surfaces of the modern GEO and LEO spacecraft are presented. The principle features of these potential distributions determined by specific conditions of charging in GEO and in LEO are discussed.

  8. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  9. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    SciTech Connect

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab.

  10. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  11. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  12. Laboratory measurements of K-shell transitions in highly charged iron ions

    NASA Astrophysics Data System (ADS)

    Steinbrügge, René; Rudolph, Jan K.; Bernitt, Sven; Crespo López-Urrutia, José R.

    2016-09-01

    The x-ray spectra of celestial sources show a plethora of features originating from highly charged ions. These can be used to determine the flow, temperatures, and abundances of elements in the star, which are needed to benchmark-stellar evolution models. However, the underlying atomic transition data of the ions are often only known by theoretical calculations, thus testing them in laboratory measurements is crucial. We present our measurements of energies, natural linewidths, radiative and Auger decay rates for K-shell transitions in He-like to F-like iron ions. In this experiments, an electron beam ion trap was used to create a target of highly charged ions, which were resonantly excited by monochromatic light from the PETRA III synchrotron radiation source. Fluorescence was observed while simultaneously detecting photoionization by the change in the ionic charge state. This method, combined with the high resolution of the monochromator used, yields uncertainties on the ppm-level for the excitation energies and below 10% for the linewidths and transition rates, thus providing a valuable benchmark for atomic theory.

  13. Theoretical investigation of collisions between highly-charged N5+ and N6+ with He

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, L.; Yan, L. L.; Zhang, C. L.; Wang, J. G.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.

    2013-05-01

    For X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere, a primary production mechanism is charge exchange (CX) due to the collision between highly charged solar wind ions and ambient neutral species. In the present work, CX due to N6+ (1 s2 S)-He and N5+ (1s21 S)-He collisions has been investigated using the quantum-mechanical molecular-orbital close-coupling (QMOCC) and the atomic-orbital close-coupling (AOCC) methods. For the high charged N5+ and N6+, the electrons of He will be captured to very highly excited or doubly-excited states, which may lie in continua of various quasi-molecular channels. The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied and a large number of important configurations have been selected to compute the adiabatic potential and nonadiabatic couplings. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u and the autoionization process has been treated quasi-classically. The QMOCC results are compared to available experimental and theoretical data as well AOCC calculations. Partially supported by the National Basic Research Program of China (973 Program) (2013CB922200), the National Science Foundation of China under Grant Nos. 1097007, 11025417, and NASA grant NNX09AV46G.

  14. Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates

    NASA Astrophysics Data System (ADS)

    da Silva Neto, Eduardo H.

    2014-03-01

    In this talk, we will report on scanning tunneling microscopy (STM) and resonant elastic x-ray scattering measurements that are used to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those in Y-based or La-based cuprates, but also displays the analogous competition with superconductivity. These results indicate the universality of charge organization competing with superconductivity across different families of cuprates. Our spectroscopic STM measurements demonstrate that this charge ordering leaves a distinct signature in its energy-dependence, which allows us to distinguish the charge order from impurity-induced quasiparticle interference, and to connect it to the physics of a doped Mott insulator. Finally, we will comment on recent claims of electronic nematicity in Bi2Sr2CaCu2O8+x from STM studies. We show that anisotropic STM tip structures can induce energy-dependent features in spectroscopic maps on different correlated electron systems (cuprates and heavy-fermions) that can be misidentified as signatures of a nematic phase. Our findings show that such experimental features, which can be reproduced by a simple toy model calculation, can be understood as a generic tunneling interference phenomenon within an STM junction. Work done in collaboration with: P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, R. Baumbach, E. D. Bauer, J. Mydosh, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani Work supported by: DOE-BES, NSF-DMR1104612, NSF-MRSEC (DMR-0819860), Linda and Eric Schmidt Transformative Fund, W. M. Keck Foundation, The Max Planck - UBC Centre for Quantum Materials, CIFAR Quantum Materials, and DOE (DE-AC02-98CH10886).

  15. Real gas effects on charging and discharging processes of high pressure pneumatics

    NASA Astrophysics Data System (ADS)

    Luo, Yuxi; Wang, Xuanyin; Ge, Yaozheng

    2013-01-01

    The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.

  16. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    PubMed

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-07

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.

  17. New Supercharging Reagents Produce Highly Charged Protein Ions in Native Mass Spectrometry

    PubMed Central

    Going, Catherine C.; Xia, Zijie; Williams, Evan R.

    2015-01-01

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods. PMID:26421324

  18. Research and development of a high-performance differential-hybrid charge sensitive preamplifier.

    PubMed

    Zeng, Guoqiang; Hu, Chuanhao; Wei, Shilong; Yang, Jian; Li, Qiang; Ge, Liangquan; Tan, Chengjun

    2017-02-01

    A differential-hybrid charge sensitive preamplifier (CSP) was designed by taking a monolithic dual N-Channel Junction Field-effect Transistor (JFET) and a high-speed, low-noise, operational amplifier as the core parts. Input-stage of the circuit employs low-noise differential dual JFET, which ensures high input impedance and low noise. The differential dual transistor makes the quiescent point of the first-stage differential output stable, which is convenient for connecting with the post stage high-speed operational amplifier. Broadband could be amplified by connecting to the double differential dual transistors through the folded cascode-bootstrap. The amplifying circuit which replaces the interstage and post stage discrete components of a traditional CSP with integrated operational amplifier is simpler and more reliable. It simplifies the design of the quiescent point, gives full play to advantages of releasing large open-loop gain, and improves charge-voltage conversion gain stability. Particularly, the charge-voltage conversion gain is larger under a smaller feedback capacitor, thus enabling to gain better signal-noise ratio. The designed CSP was tested, reporting 3.3×10(13) V/C charge sensitivity, about 90ns rise time of signals, 35:1 signal-noise ratio to gamma-rays of (137)Cs (662keV) and a 0.023 fC/pF noise slope. Gamma-rays of (241)Am (59.5keV) were measured by the BPX66 detector and the designed CSP under room temperature, providing 1.97% energy resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Changes in polyphenols and expression levels of related genes in 'Duke' blueberries stored under high CO2 levels.

    PubMed

    Harb, Jamil; Saleh, Omar; Kittemann, Dominikus; Neuwald, Daniel Alexandre; Hoffmann, Thomas; Reski, Ralf; Schwab, Wilfried

    2014-07-30

    Blueberries are highly perishable fruits, and consequently, storage under high CO2 and low O2 levels is recommended to preserve the highly appreciated polyphenols. However, high CO2 levels might be detrimental for certain cultivars. The aim of this study was to investigate the impact of storage conditions on various quality parameters, including polyphenol composition in 'Duke' berries. Results show that storage under 18 kPa CO2, coupled with 3 kPa O2, resulted in accelerated softening of berries, which was accompanied by lower levels compared to other conditions of hexosides and arabinosides of malvidin, petunidin, cyanidine, and delphinidin. However, this storage condition had no negative impact on chlorogenic acid levels. Expression data of key polyphenol-biosynthesis genes showed higher expression levels of all investigated genes at harvest time compared to all storage conditions. Of particular importance is the expression level of chalcone synthase (VcCHS), which is severely affected by storage at 18 kPa CO2.

  20. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    USDA-ARS?s Scientific Manuscript database

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market val...

  1. Leasing the College Store.

    ERIC Educational Resources Information Center

    Scott, Richard M.

    1986-01-01

    A survey of college administrators responsible for supervising college stores found that three factors are strongly considered in deciding whether to lease the college store: available management skills, service orientation, and financial resources. It also found that private and public institutions and large and small institutions rank the…

  2. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    PubMed

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-07

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  3. Waste from grocery stores

    SciTech Connect

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.

  4. Regulation of defense and cryoprotective proteins by high levels of CO(2) in Annona fruit stored at chilling temperature.

    PubMed

    Goñi, Oscar; Sanchez-Ballesta, María T; Merodio, Carmen; Escribano, María I

    2009-02-15

    This study focuses on how the length of exposure to chilling temperature and atmosphere storage conditions regulate the hydrolytic activity and expression of chitinase (PR-Q) and 1,3-beta-glucanase (PR-2) isoenzymes in cherimoyas (Annona cherimola Mill.). Storage at 6 degrees C modified the expression of constitutive isoenzymes and induced the appearance of novel acidic chitinases, AChi26 and AChi24, at the onset of the storage period, and of a basic chitinase, BChi33, after prolonged storage. The induction of this basic isoenzyme was concomitant with the accumulation of basic constitutive 1,3-beta-glucanases. These low-temperature-induced chitinases modified the growth inhibition in vitro of Botrytis cinerea. Short-term high CO(2) treatment activated a coordinated response of acidic chitinases and 1,3-beta-glucanases after prolonged storage at chilling temperature. Moreover, the high in vitro cryoprotective activity of CO(2)-treated protein extracts was associated with the induction of two low molecular mass isoenzymes, AGlu19 and BChi14. Thus, exposure to high concentrations of CO(2) modified the response of fruit to low temperature, inducing the synthesis of cryoprotectant proteins such as specific pathogenesis-related isoenzymes that could be functionally associated with an increase in chilling tolerance in vivo.

  5. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Krichevskii, S. V.; Markushin, M. A.

    2017-01-01

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1-4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5-8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion-electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3-1 kV can be implemented in practice [3, 9, 10].

  6. Effects of high pressure strength of rock material on penetration by shaped charge jet

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2012-03-01

    Perforating of oil/gas well creates communication tunnel between reservoir and wellbore. Shaped charges are widely used as perforators in oilfield industry. The liners of the charges are mostly made of powder metal to prevent solid slug clogging the entrance hole of well casing or locking the hole in perforating gun. High speed jet from the shaped charge pierces through perforating gun, well fluid, well casing, and then penetrates into reservoir formation. Prediction of jet penetration in reservoir rock is critical in modeling of well production. An analytical penetration model developed for solid rod by Tate and Alekseevskii is applied in this work. For better results, strength of formation rock at high pressure needs to be measured. Lateral stress gauge measurements in plate impact tests are conducted. Piezoelectric pressure gauges are imbedded in samples to measure the longitudinal and transverse stress simultaneously. The two stresses provide Hugoniot and material compressive strength. Indiana limestone, a typical rock in perforation testing, is selected as target sample material in the plate impact tests. Since target strength effect on penetration is more important in late stage of penetration when the strength of material becomes significant compared to the impact pressure, all the impact tests are focused on lower impact pressure up to 9 GPa. The measurements show that the strength increases with impact pressure. The results are applied in the penetration calculations. The final penetration matches testing data very well.

  7. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  8. Benchmark study for charge deposition by high energy electrons in thick slabs

    NASA Technical Reports Server (NTRS)

    Jun, I.

    2002-01-01

    The charge deposition profiles created when highenergy (1, 10, and 100 MeV) electrons impinge ona thick slab of elemental aluminum, copper, andtungsten are presented in this paper. The chargedeposition profiles were computed using existing representative Monte Carlo codes: TIGER3.0 (1D module of ITS3.0) and MCNP version 4B. The results showed that TIGER3.0 and MCNP4B agree very well (within 20% of each other) in the majority of the problem geometry. The TIGER results were considered to be accurate based on previous studies. Thus, it was demonstrated that MCNP, with its powerful geometry capability and flexible source and tally options, could be used in calculations of electron charging in high energy electron-rich space radiation environments.

  9. Fractal-like charge injection kinetics in transformer oil stressed by high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2014-04-01

    Kerr electro-optic measurements are taken to study the transient electrode charge injection in high voltage pulsed transformer oil. It is found that the injection current densities from two stainless-steel parallel-plate electrodes with distinct surface roughness display fractal-like kinetics, i.e., power-law time dependence. Our measurement data agree with numerical simulation results of the time-dependent drift-diffusion model with the experimentally determined injection current boundary conditions. The fractal-like kinetics implies that the electric double layer processes contributing to injection are diffusion-limited. Physical mechanisms based on formative steps of adsorption-reaction-desorption reveal possible connections between geometrical characteristics of electrode surfaces and fractal-like kinetics of charge injection.

  10. Electronic interaction of individual slow highly charged ions with TiO2(110)

    NASA Astrophysics Data System (ADS)

    Tona, Masahide; Fujita, Yuso; Yamada, Chikashi; Ohtani, Shunsuke

    2008-04-01

    A TiO2(110) surface was bombarded with slow iodine highly charged ions (HCIs), Iq+ , having a wide range of charge states from Ni-like I25+ to He-like I51+ . A scanning tunneling microscopic observation revealed that nanometer-sized hillock or crater structures were created by individual HCI impacts and the size of the structures increased with q . In time-of-flight secondary-ion mass spectrometry, a strong q dependence of the secondary-ion yield of O+ , Y(O+) was observed; Y(O+) exceeded Y(Ti+) for qtilde 35 . We discuss that these secondary effects are the results of the strong coupling of HCIs with electrons in the valence band of the target.

  11. Excited-state energies and fine structure of highly charged lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Li, Jin-ying; Ding, Da-jun; Wang, Zhi-wen

    2013-10-01

    The full-core-plus-correlation method (FCPC) is extended to calculate the energies and fine structures of 1s2nd and 1s2nf (n≤5) states for the lithiumlike systems with high nuclear charge from Z = 41 to 50. In calculating energy, the higher-order relativistic contribution is estimated under a hydrogenic approximation. The nonrelativistic energies and wave functions are calculated by the Rayleigh-Ritz method. The mass polarization and the relativistic corrections including the kinetic energy correction, the Darwin term, the electron-electron contact term, and the orbit-orbit interaction are calculated perturbatively as the first-order correction. The quantum-electrodynamics contributions to the energy and to the fine-structure splitting are estimated by using the effective nuclear charge formula. The excited energies, the fine structures, and other relevant term energies are given and compared with the data available in the literature.

  12. Yes, pair correlations alone do determine sedimentation profiles of highly charged colloids.

    PubMed

    Belloni, Luc

    2005-11-22

    Recent analyses of sedimentation profiles in charged colloidal suspensions are examined in view of general, somewhat underestimated, concepts. It is recalled that the standard equation for osmotic pressure equilibrium, which involves pair correlations between colloids only, remains valid in the presence of long-range Coulombic interactions. The entropy of the counterions and the electric field generated by the spatial inhomogeneity are implicitly taken into account in the colloid structure factor through the compressibility equation and local electroneutrality conditions. Limiting the macroscopic analysis to the pure electric-field contribution or, equivalently, to the ideal ionic pressure, corresponds to the incorrect, bare Debye-Huckel approximation for the colloid-colloid correlations. A one-component description with reasonable Derjaguin-Landau-Verwey-Overbeek-type ion-averaged effective pair potential between colloids is sufficient to derive the sedimentation profile of highly charged, weakly screened colloidal suspensions. The macroscopic electric field is directly related to the microscopic electrostatic potential around the colloids.

  13. Birkeland currents and charged particles in the high-latitude prenoon region - A new interpretation

    NASA Technical Reports Server (NTRS)

    Bythrow, P. F.; Potemra, T. A.; Erlandson, R. E.; Zanetti, L. J.; Klumpar, D. M.

    1988-01-01

    The relationship between Birkeland currents and charged particles in the ionosphere was investigated for the period between the late morning through early afternoon, using data on simultaneous conjugate measurements of magnetic fields and charged particles at low altitude in the high-latitude prenoon sector, acquired on November 1, 1984 by four spacecraft, IMP 8, AMPTE CCE, DMSP F7, and HILAT. The results of these observations indicate that, for both northward and southward IMF, the traditional 'cusp Birkeland currents' lie poleward of the most intense sheathlike particle precipitation, and it is likely that these currents map to the plasma mantle and are associated with divergent flow of ionospheric plasma near noon. It is suggested that the traditional 'cusp' current system might be more appropriately named the 'mantle' Birkeland current system.

  14. Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis.

    PubMed

    Pandey, Rakesh K; Kawabata, Yuto; Teraji, Satoshi; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui; Soh, Siowling; Nakanishi, Hideyuki

    2017-10-03

    Nanostructured electrodes are at the forefront of advanced materials research, and have been studied extensively in the context of their potential applications in energy storage and conversion. Here, we report on the properties of core-shell (gold-polypyrrole) hybrid nanowires and their suitability as electrodes in electrochemical capacitors and as electrocatalysts. In general, the specific capacitance of electrochemical capacitors can be increased by faradaic reactions, but their charge transfer resistance impedes charge transport, decreasing the capacitance with increasing charge/discharge rate. The specific capacitance of the hybrid electrodes is enhanced due to the pseudocapacitance of the polypyrrole shells; moreover, the electrodes operate as an ideal capacitive element and maintain their specific capacitance even at fast charge/discharge rates of 4690 mA/cm(3) and 10 V/s. These rates far exceed those of other types of pseudocapacitors, and are even superior to electric double layer-based supercapacitors. The mechanisms behind these fast charge/discharge rates are elucidated by electrochemical impedance spectroscopy, and are ascribed to the reduced internal resistance associated with the fast charge transport ability of the gold nanowire cores, low ionic resistance of the polypyrrole shells, and enhanced electron transport across the nanowire's junctions. Furthermore, the hybrid electrodes show great catalytic activity for ethanol electro-oxidation, comparable to bare gold nanowires, and the surface activity of gold cores is not affected by the polypyrrole coating. The electrodes exhibit improved stability for electrocatalysis during potential cycling. This study demonstrates that the gold-polypyrrole hybrid electrodes can store and deliver charge at fast rates, and that the polypyrrole shells of the nanowires extend the catalytic lifetime of the gold cores.

  15. Studies on low energy beam transport for high intensity high charged ions at IMP

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Hu, Q.; Cao, Y.; Lu, W.; Feng, Y. C.; Fang, X.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-01

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18-24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  16. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect

    Yang, Y. Lu, W.; Fang, X.; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  17. Novel diketopyrroloppyrrole random copolymers: high charge-carrier mobility from environmentally benign processing.

    PubMed

    Yun, Hui-Jun; Lee, Gi Back; Chung, Dae Sung; Kim, Yun-Hi; Kwon, Soon-Ki

    2014-10-01

    The random copolymerization between two different diketopyrrolopyrole-based conducting units represents a suitable synthetic strategy to increase the solubility of polymer semiconductors in a non-chlorinated solvent, without compromising the high charge-carrier mobility. Highly performing thin-film transistors processed from environmentally benign solvents such as tetralin are demonstrated for the first time, resulting in a mobility of greater than 5 cm(2) V(-1) s(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases

    SciTech Connect

    Wilmer, CE; Farha, OK; Yildirim, T; Eryazici, I; Krungleviciute, V; Sarjeant, AA; Snurr, RQ; Hupp, JT

    2013-04-01

    We have synthesized and characterized a new metal-organic framework (MOF) material, NU-125, that, in the single-crystal limit, achieves a methane storage density at 58 bar (840 psi) and 298 K corresponding to 86% of that obtained with compressed natural gas tanks (CNG) used in vehicles today, when the latter are pressurized to 248 bar (3600 psi). More importantly, the deliverable capacity (58 bar to 5.8 bar) for NU-125 is 67% of the deliverable capacity of a CNG tank that starts at 248 bar. (For crystalline granules or powders, particle packing inefficiencies will yield densities and deliverable capacities lower than 86% and 67% of high-pressure CNG.) This material was synthesized in high yield on a gram-scale in a single-batch synthesis. Methane adsorption isotherms were measured over a wide pressure range (0.1-58 bar) and repeated over twelve cycles on the same sample, which showed no detectable degradation. Adsorption of CO2 and H-2 over a broad range of pressures and temperatures are also reported and agree with our computational findings.

  19. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype.

    PubMed

    Taksali, Sara E; Caprio, Sonia; Dziura, James; Dufour, Sylvie; Calí, Anna M G; Goodman, T Robin; Papademetris, Xenophon; Burgert, Tania S; Pierpont, Bridget M; Savoye, Mary; Shaw, Melissa; Seyal, Aisha A; Weiss, Ram

    2008-02-01

    To explore whether an imbalance between the visceral and subcutaneous fat depots and a corresponding dysregulation of the adipokine milieu is associated with excessive accumulation of fat in the liver and muscle and ultimately with insulin resistance and the metabolic syndrome. We stratified our multi-ethnic cohort of 118 obese adolescents into tertiles based on the proportion of abdominal fat in the visceral depot. Abdominal and liver fat were measured by magnetic resonance imaging and muscle lipid (intramyocellular lipid) by proton magnetic resonance spectroscopy. There were no differences in age, BMI Z score, or fat-free mass across tertiles. However, as the proportion of visceral fat increased across tertiles, BMI and percentage of fat and subcutaneous fat decreased, while hepatic fat increased. In addition, there was an increase in 2-h glucose, insulin, c-peptide, triglyceride levels, and insulin resistance. Notably, both leptin and total adiponectin were significantly lower in tertile 3 than 1, while C-reactive protein and interleukin-6 were not different across tertiles. There was a significant increase in the odds ratio for the metabolic syndrome, with subjects in tertile 3 5.2 times more likely to have the metabolic syndrome than those in tertile 1. Obese adolescents with a high proportion of visceral fat and relatively low abdominal subcutaneous fat have a phenotype reminiscent of partial lipodystrophy. These adolescents are not necessarily the most severely obese, yet they suffer from severe metabolic complications and are at a high risk of having the metabolic syndrome.

  20. Theory of highly charged ion energy gain spectroscopy of molecular collective excitations

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Benedek, G.; Sunjic, M.; Echenique, P. M.

    2011-01-01

    This paper discusses the physical mechanism by which a highly charged, energetic ion partly neutralized by electron transfers from a target—a large molecule, a cluster or a solid surface—can create target collective excitations in the process. We develop an analysis for the system of a highly charged ion flying by a fullerene molecule. Our analysis offers a new explanation for the periodic oscillations observed in the high-resolution energy gain spectra of energetic Arq+ ions (q=8, 13, 14, 15) flying by C60 molecules. For the Arq+→Ar(q-s)+ spectra with q=13-15 and s=1 or 2, the observed oscillations of 6 eV periodicity are assigned to energy losses due to multiple, Poissonian excitations of C60 π-plasmons (6 eV quantum). The excitation energy quanta are subtracted from the kinetic energy gained by the ion when one or at most two electrons are transferred to increasingly deep Rydberg states of the ion. The observed 3 eV periodicity for q=8 arises from the specific Rydberg energy levels of ArVIII (Ar7+). The first few shallow levels of this ion are separated by about 3 eV, while some of the pairs of adjacent, deeper levels are also separated by 3 eV. Each deep-level pair produces two interdigitated, Poissonian series of 6 eV π-plasmon excitation peaks resulting in an apparent periodicity of 3 eV throughout the spectra. The broad σ-plasmons (25 eV quantum) are found to contribute a background continuum to the medium- and high-energy regions of the observed spectra. The physical model analyzed here indicates that electronic collective excitations in several other systems could be studied by highly charged ion energy gain spectroscopy at sufficient resolution.

  1. Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells

    SciTech Connect

    Pérez-del-Rey, Daniel; Savenije, Tom J.; Nordlund, Dennis; Schulz, Philip; Berry, Joseph J.; Sessolo, Michele

    2016-09-22

    The addition of Sr2+ in CH3NH3PbI3 perovskite films enhances the charge carrier collection efficiency of solar cells leading to very high fill factors, up to 85%. The charge carrier lifetime of Sr2+-containing perovskites is in excess of 40 us, longer than those reported for perovskite single crystals.

  2. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The

  3. SMILETRAP—A Penning trap facility for precision mass measurements using highly charged ions

    NASA Astrophysics Data System (ADS)

    Bergström, I.; Carlberg, C.; Fritioff, T.; Douysset, G.; Schönfelder, J.; Schuch, R.

    2002-07-01

    The precision of mass measurements in a Penning trap increases linearly with the charge of the ion. Therefore we have attached a Penning trap, named SMILETRAP, to the electron beam ion source CRYSIS at MSL. CRYSIS is via an isotope separator connected to an ion source that can deliver singly charged ions of practically any element. In CRYSIS charge state breeding occurs by intense electron bombardment. We have shown that it is possible to produce, catch and measure the cyclotron frequencies of ions in the charge region 1+ to 52+. The relevant observable in mass measurements using a Penning trap is the ratio of the cyclotron frequencies of the ion of interest and ion used as a mass reference. High precision requires that the two frequencies are measured after one another in the shortest possible time. For reasons of convenience the precision trap operates at room temperature. So far it has been believed that warm traps working at 4 K are required for high mass precision with exactly one ion in the trap at a time. In this paper we demonstrate that mass precision of a few parts in 10 10 also can be obtained in a warm trap at a pressure of about 5×10 -12 mbar by stabilizing the pressure in the He-dewar, the trap temperature and the frequency synthesizer. In order to reduce the influence of changes of the magnetic field to a level below 10 -10, the scanning of the frequencies close to the resonances of both the ion of interest and the reference ion is done in a total time <2 min. Trapping of ions is a statistical procedure, allowing more than one ion to be trapped in each measurement cycle. However, after completing the measurements it is possible to reject all information except for events based on 1 and 2 trapped ions. The procedures of producing, transporting, catching, exciting and measuring the cyclotron resonance frequencies of highly charged ions and the mass reference ions with the time-of-flight method are described. In routine measurements with 1 s excitation

  4. Studies of highly charged iron ions using electron beam ion traps for interpreting astrophysical spectra

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Beilmann, C.; Bernitt, S.; Clementson, J.; Eberle, S.; Epp, S. W.; Graf, A.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Kubiček, K.; Leutenegger, M. A.; Mäckel, V.; Porter, F. S.; Rudolph, J. K.; Simon, M. C.; Steinbrügge, R.; Träbert, E.; Ullrich, J.; Crespo López-Urrutia, J. R.; Beiersdorfer, P.

    2013-09-01

    For over a decade, the x-ray astrophysics community has enjoyed a fruitful epoch of discovery largely as a result of the successful launch and operation of the high resolution, high sensitivity spectrometers on board the Chandra, XMM-Newton and Suzaku x-ray observatories. With the launch of the x-ray calorimeter spectrometer on the Astro-H x-ray observatory in 2014, the diagnostic power of high resolution spectroscopy will be extended to some of the hottest, largest and most exotic objects in our Universe. The diagnostic utility of these spectrometers is directly coupled to, and often limited by, our understanding of the x-ray production mechanisms associated with the highly charged ions present in the astrophysical source. To provide reliable benchmarks of theoretical calculations and to address specific problems facing the x-ray astrophysics community, electron beam ion traps have been used in laboratory astrophysics experiments to study the x-ray signatures of highly charged ions. A brief overview of the EBIT-I electron beam ion trap operated at Lawrence Livermore National Laboratory and the Max-Planck-Institut für Kernphysik's FLASH-EBIT operated at third and fourth generation advanced light sources, including a discussion of some of the results are presented.

  5. Long-term management of liquid high-level radioactive wastes stored at the Western New York Nuclear Service Center, West Valley

    NASA Astrophysics Data System (ADS)

    1981-07-01

    Environmental implications of possible alternatives for long-term management of the liquid high-level radioactive wastes stored in underground tanks in West Valley, New York were assessed and compared. Four basic alternatives, as well as options within these alternatives, considered in the EIS: (1) onsite processing to a terminal waste form for shipment and disposal in a federa repository; (2) onsite conversion to a solid interim form for shipment to a federal waste facility for later processing to a terminal form and shipment and subsequent disposal in a federal repository; (3) mixing the liquid wastes with cement and other additives, pouring it back into the existing tanks, and leaving onsite; and (4) no action (continued storage of the wastes in liquid form in the underground tanks at West Valley). Mitigative measures for environmental impacts were be required.

  6. Preparation of Nano-Composite Ca2-αZnα(OH)4 with High Thermal Storage Capacity and Improved Recovery of Stored Heat Energy

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Sun, S. M.; Hu, J.; Zhao, Y.; Yu, L. J.

    2014-11-01

    Thermal energy storage has very important prospects in many applications related to the use of renewable energies (solar energy, etc.) or other energy sources, such as waste heat from industrial processes. Thermochemical storage is very attractive for long-term storage, since it could be conducted at room temperature without energy losses. In the present paper, a novel nanocomposite material, Ca2-αZnα(OH)4, is prepared using coprecipitation methodology and is characterized by XRD and DSC tests. The XRD result shows that the grain size of the nano-composite ranges from 40 nm to 95 nm. The DSC test result shows that the nano-composite exhibits high thermal storage capacity: 764.5 J/g at α = 0.8555. Its thermal decomposition temperature was found to be approximately 180º. Itwas found possible to recover 63.25% of the stored heat energy.

  7. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110.

    PubMed

    Steward, David R; Bruss, Paul J; Yang, Xiaoying; Staggenborg, Scott A; Welch, Stephen M; Apley, Michael D

    2013-09-10

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation's irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500-1,300 y to completely refill a depleted aquifer. Significant declines in the region's pumping rates will occur over the next 15-20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15-20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20-80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability.

  8. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    PubMed

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field.

  9. Experimental charge density of hematite in its magnetic low temperature and high temperature phases.

    PubMed

    Theissmann, R; Fuess, H; Tsuda, K

    2012-09-01

    Structural parameters of hematite (α-Fe(2)O(3)), including the valence electron distribution, were investigated using convergent beam electron diffraction (CBED) in the canted antiferromagnetic phase at room temperature and in the collinear antiferromagnetic phase at 90K. The refined charge density maps are interpreted as a direct result of electron-electron interaction in a correlated system. A negative deformation density was observed as a consequence of closed shell interaction. Positive deformation densities are interpreted as a shift of electron density to antibinding molecular orbitals. Following this interpretation, the collinear antiferromagnetic phase shows the characteristic of a Mott-Hubbard type insulator whereas the high temperature canted antiferromagnetic phase shows the characteristic of a charge transfer insulator. The break of the threefold symmetry in the canted antiferromagnetic phase was correlated to the presence of oxygen-oxygen bonding, which is caused by a shift of spin polarized charge density from iron 3d-orbitals to the oxygen ions. We propose a triangular magnetic coupling in the oxygen planes causing a frustrated triangular spin arrangement with all spins lying in the oxygen planes. This frustrated arrangement polarizes the super-exchange between iron ions and causes the spins located at the iron ions to orient in the same plane, perpendicular to the threefold axis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation

    PubMed Central

    Shaw, Bryan F.; Schneider, Gregory F.; Bilgiçer, Başar; Kaufman, George K.; Neveu, John M.; Lane, William S.; Whitelegge, Julian P.; Whitesides, George M.

    2008-01-01

    This paper reports that the acetylation of lysine ε-NH3 + groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated α-amylase toward inactivation is attributed to the increased net negative charge of α-amylase that resulted from the acetylation of lysine ammonium groups (lysine ε-NH3 + → ε-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial α-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications. PMID:18451358

  11. Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Gavrilov, A. A.; Chertovich, A. V.; Kramarenko, E. Yu.

    2016-11-01

    In this work, we study the question of how to introduce electrostatic interactions in dissipative particle dynamics (DPD) method in order to correctly reproduce the properties of systems with high density of charges, including those with inhomogeneous charge distribution. To this end, we formulate general requirements for the electrostatic force in DPD and propose a new functional form of the force which suits better for satisfying these requirements than the previously used ones. In order to verify the proposed model, we study the problem of a single polyelectrolyte chain collapse and compare the results with molecular dynamics (MD) simulations in which the exact Coulomb force is used. We show that an excellent quantitative agreement between MD and DPD models is observed if the length parameter D of the proposed electrostatic force is chosen properly; the recommendations concerning the choice of this parameter value are given based on the analysis of a polyelectrolyte chain collapse behavior. Finally, we demonstrate the applicability of DPD with the proposed electrostatic force to studying microphase separation phenomenon in polyelectrolyte melts and show that the same values of D as in the case of single chain collapse should be used, thus indicating universality of the model. Due to the charge correlation attraction, a long-range order in such melts can be observed even at zero Flory-Huggins parameter.

  12. Development of highly accurate approximate scheme for computing the charge transfer integral

    NASA Astrophysics Data System (ADS)

    Pershin, Anton; Szalay, Péter G.

    2015-08-01

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  13. High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal

    NASA Astrophysics Data System (ADS)

    Weiss, Joel T.; Shanks, Katherine S.; Philipp, Hugh T.; Becker, Julian; Chamberlain, Darol; Purohit, Prafull; Tate, Mark W.; Gruner, Sol M.

    2017-04-01

    Several charge integrating CMOS pixel front-ends utilizing charge removal techniques have been fabricated to extend dynamic range for x-ray diffraction applications at synchrotron sources and x-ray free electron lasers (XFELs). The pixels described herein build on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging. These new pixels boast several orders of magnitude improvement in maximum flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 10$^{8}$ x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >10$^{11}$ x-rays/pixel/second. Pixel front-end linearity was evaluated by direct current injection and results are presented. A small-scale readout ASIC utilizing these pixel architectures has been fabricated and the use of these architectures to increase single x-ray pulse dynamic range at XFELs is discussed briefly.

  14. Development of highly accurate approximate scheme for computing the charge transfer integral.

    PubMed

    Pershin, Anton; Szalay, Péter G

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  15. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    PubMed

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.

  16. Exploring relativistic many-body recoil effects in highly charged ions.

    PubMed

    Orts, R Soria; Harman, Z; López-Urrutia, J R Crespo; Artemyev, A N; Bruhns, H; Martínez, A J González; Jentschura, U D; Keitel, C H; Lapierre, A; Mironov, V; Shabaev, V M; Tawara, H; Tupitsyn, I I; Ullrich, J; Volotka, A V

    2006-09-08

    The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

  17. Development of highly accurate approximate scheme for computing the charge transfer integral

    SciTech Connect

    Pershin, Anton; Szalay, Péter G.

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  18. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    PubMed Central

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2013-01-01

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500–1,300 y to completely refill a depleted aquifer. Significant declines in the region’s pumping rates will occur over the next 15–20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15–20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20–80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153

  19. Surface charging and x-ray emission from insulator surfaces induced by collisions with highly charged ions : relevance to cometary and planetary sp

    NASA Technical Reports Server (NTRS)

    Djuric, N.; Lozano, J. A.; Smith, S. J.; Chutjian, A.

    2005-01-01

    Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.

  20. Surface charging and x-ray emission from insulator surfaces induced by collisions with highly charged ions : relevance to cometary and planetary sp

    NASA Technical Reports Server (NTRS)

    Djuric, N.; Lozano, J. A.; Smith, S. J.; Chutjian, A.

    2005-01-01

    Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.

  1. High performance charge breeder for HIE-ISOLDE and TSR@ISOLDE applications

    SciTech Connect

    Shornikov, Andrey Mertzig, Robert C.; Wenander, Fredrik J. C.; Beebe, Edward N.; Pikin, Alexander

    2015-01-09

    We report on the development of the HEC{sup 2} (High Energy Compression and Current) charge breeder, a possible high performance successor to REXEBIS at ISOLDE. The new breeder would match the performance of the HIE-ISOLDE linac upgrade and make full use of the possible installation of a storage ring at ISOLDE (the TSR@ISOLDE initiative [1]). Dictated by ion beam acceptance and capacity requirements, the breeder features a 2–3.5 A electron beam. In many cases very high charge states, including bare ions up to Z=70 and Li/Na-like up to Z=92 could be requested for experiments in the storage ring, therefore, electron beam energies up to 150 keV are required. The electron-beam current density needed for producing ions with such high charge states at an injection rate into TSR of 0.5–1 Hz is between 10 and 20 kA/cm{sup 2}, which agrees with the current density needed to produce A/q<4.5 ions for the HIE-ISOLDE linac with a maximum repetition rate of 100 Hz. The first operation of a prototype electron gun with a pulsed electron beam of 1.5 A and 30 keV was demonstrated in a joint experiment with BNL [2]. In addition, we report on further development aiming to achieve CW operation of an electron beam having a geometrical transverse ion-acceptance matching the injection of 1{sup +} ions (11.5 μm), and an emittance/energy spread of the extracted ion beam matching the downstream mass separator and RFQ (0.08 μm normalized / ± 1%)

  2. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    NASA Astrophysics Data System (ADS)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  3. VRLA Ultrabattery for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D.; Kano, T.

    The objective of this study is to produce and test the hybrid valve-regulated Ultrabattery designed specifically for hybrid-electric vehicle duty, i.e., high-rate partial-state-of-charge operation. The Ultrabattery developed by CSIRO Energy Technology is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cells, taking the best from both technologies without the need for extra, expensive electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The work programme of this study is divided into two main parts, namely, field trial of prototype Ultrabatteries in a Honda Insight HEV and laboratory tests of prototype batteries. In this paper, the performance of prototype Ultrabatteries under different laboratory tests is reported. The evaluation of Ultrabatteries in terms of initial performance and cycling performance has been conducted at both CSIRO and Furukawa laboratories. The initial performance of prototype Ultrabatteries, such as capacity, power, cold cranking and self-discharge has been evaluated based upon the US FreedomCAR Battery Test Manual (DOE/ID-11069, October 2003). Results show that the Ultrabatteries meet, or exceed, respective targets of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist HEVs. The cycling performance of prototype Ultrabatteries has been evaluated using: (i) simplified discharge and charge profile to simulate the driving conditions of micro-HEV; (ii) 42-V profile to simulate the driving conditions of mild-HEV and (iii) EUCAR and RHOLAB profiles to simulate the driving conditions of medium-HEV. For comparison purposes, nickel-metal-hydride (Ni-MH) cells, which are presently used in the Honda Insight HEV

  4. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    SciTech Connect

    Jaspers, R. J. E.; Scheffer, M.; Kappatou, A.; Valk, N. C. J. van der; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G. I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  5. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    SciTech Connect

    Clementson, Joel

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  6. Storing Red Oak Acorns

    Treesearch

    F. T. Bonner

    1973-01-01

    Cherrybark, Shumard, and water oak acorns can be stored for 3 years or longer if kept at a moisture content of at least 30 percent of fresh weight and at a temperature of 37F. Polyethylene bags are good containers.

  7. Storing your medicines

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000534.htm Storing your medicines To use the sharing features on this page, ... child latch or lock. Do not use Damaged Medicine Damaged medicine may make you sick. DO NOT ...

  8. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  9. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  10. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction

    SciTech Connect

    Borghesi, Marco; Romagnani, Lorenzo; Kar, Satyabrata; Cecchetti, Carlo A.; Toncian, Toma; Jung, Ralph; Osterholtz, Jens; Willi, Oswald; Antici, Patrizio; Audebert, Patrick; Brambrink, Erik; Fuchs, Julien; Ceccherini, Francesco; Macchi, Andrea; Galimberti, Marco; Gizzi, Leonida A.; Grismayer, Thomas; Mora, Patrick; Schiavi, Angelo

    2006-04-07

    The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. An application employing laser-driven impulsive fields for energy-selective ion beam focusing is also presented.

  11. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    NASA Astrophysics Data System (ADS)

    Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; van Gorp, S.; Blaum, K.; Matsuda, Y.; Quint, W.; Walz, J.; Yamazaki, Y.

    2015-08-01

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H-) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton to that for the proton and obtain . The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of < 8.7 × 10-7.

  12. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    PubMed

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  13. Store Separation Methodology Analysis

    DTIC Science & Technology

    1991-09-01

    memory for operation. (This also depends upon the program application .) The aircraft fuselage, separated store body, and adjacent stores are modeled...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School (If applicable ) Naval Postgraduate School 31 6c ADDRESS (City...SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable ) 8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING

  14. Provenance Store Evaluation

    SciTech Connect

    Paulson, Patrick R.; Gibson, Tara D.; Schuchardt, Karen L.; Stephan, Eric G.

    2008-03-01

    Requirements for the provenance store and access API are developed. Existing RDF stores and APIs are evaluated against the requirements and performance benchmarks. The team’s conclusion is to use MySQL as a database backend, with a possible move to Oracle in the near-term future. Both Jena and Sesame’s APIs will be supported, but new code will use the Jena API

  15. Cytoscape App Store

    PubMed Central

    Lotia, Samad; Montojo, Jason; Dong, Yue; Bader, Gary D.; Pico, Alexander R.

    2013-01-01

    Summary: Cytoscape is an open source software tool for biological network visualization and analysis, which can be extended with independently developed apps. We launched the Cytoscape App Store to highlight the important features that apps add to Cytoscape, enable researchers to find and install apps they need and help developers promote their apps. Availability: The App Store is available at http://apps.cytoscape.org. Contact: apico@gladstone.ucsf.edu PMID:23595664

  16. Health food stores investigation.

    PubMed

    Gourdine, S P; Traiger, W W; Cohen, D S

    1983-09-01

    In accordance with the New York City Department of Consumer Affairs' mandate to educate consumers and to prevent fraud and deception in the marketplace, the agency conducted a three-month investigation of city health food stores. Twenty-three health food businesses located throughout the five boroughs were visited from September through November 1982 in order to ascertain what those stores sold and how their merchandise compared, in quality and price, with items sold by other businesses.

  17. Cold Highly Charged Ions in a Penning Trap: Experiment and Simulation

    SciTech Connect

    Holder, J P; Gruber, L; Church, D A; Schneider, D

    2001-08-18

    Using the LLNL EBIT/RETRAP system non-neutral plasmas of highly charged ions were produced and cooled to temperatures around one Kelvin. These strongly coupled plasmas can model white dwarf astrophysical plasmas in the laboratory. These systems may also have potential application to quantum computation. The experimental results from the last operations of the trap at Livermore are discussed. Molecular dynamics simulation results are discussed as a guide to past and future experiments. The status and future plans for RETRAP at LBNL's 88 inch Cyclotron are discussed.

  18. Stationary Josephson current as a tool to detect charge density waves in high-Tc oxides

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Voitenko, Alexander I.; Li, Mai Suan; Szymczak, Henryk

    2015-09-01

    Nonmonotonic and even sign-changing dependences on the temperature and the doping level were predicted for the stationary Josephson tunnel current Ic between superconductors with d-wave order parameter symmetry and partial gapping by charge density waves (CDWs). The junction electrodes were considered in the framework of the two-dimensional electron spectrum appropriate to high-Tc cuprates. The non-trivial behavior can be observed for certain relative electrode orientations. Hence, Ic -measurements in wide ranges of doping and temperature may serve as an indicator of CDW existence.

  19. Electronic sputtering of solids by slow, highly charged ions: fundamentals and applications

    SciTech Connect

    Banks, J C; Barnes, A V; Doyle, B L; Hamza, A V; Machioane, G A; McDonald, J W; Newman, M W; Niedermayr, T R; Schenkel, T; Wu, K J

    1999-07-20

    Electronic sputtering in the interaction of slow (vhighly charged ions (SHCI) with solid surfaces have been subject of controversial discussions for almost 20 years. We review results from recent studies of total sputtering yields and discuss distinct microscopic mechanisms (such as defect mediated desorption, Coulomb explosions and effects of intense electronic excitation) in the response of insulators and semiconductors to the impact of SHCI. We then describe an application of ions like Xe{sup 44+} and Au{sup 69+} as projectiles in time-of-flight secondary ion mass spectrometry for surface characterization of semiconductors.

  20. Design of a high-performance rotary stratified-charge research aircraft engine

    NASA Technical Reports Server (NTRS)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.