Science.gov

Sample records for highly conductive slags

  1. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  2. PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES

    SciTech Connect

    Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

    2009-10-05

    Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

  3. Phase Characterization of High Basicity Manganese Slags

    NASA Astrophysics Data System (ADS)

    Coetsee, Theresa; Nell, Johannes; Pistorius, Petrus Christiaan

    2017-02-01

    Slag chemistry applied in the AlloyStream process differs from that used in the production of high carbon ferromanganese in the submerged arc furnace. In process development of the AlloyStream process, several pilot plant and demonstration plant campaigns were completed. Slag samples were selected from the samples collected at each tap, throughout the four month pilot plant campaign. Phase characterization of these samples is reported here, and the results are interpreted in terms of the slag chemistry operational options in the AlloyStream process.

  4. Phase Characterization of High Basicity Manganese Slags

    NASA Astrophysics Data System (ADS)

    Coetsee, Theresa; Nell, Johannes; Pistorius, Petrus Christiaan

    2017-06-01

    Slag chemistry applied in the AlloyStream process differs from that used in the production of high carbon ferromanganese in the submerged arc furnace. In process development of the AlloyStream process, several pilot plant and demonstration plant campaigns were completed. Slag samples were selected from the samples collected at each tap, throughout the four month pilot plant campaign. Phase characterization of these samples is reported here, and the results are interpreted in terms of the slag chemistry operational options in the AlloyStream process.

  5. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-12-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since {sigma}/k is about 10{sup {minus}6}. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  6. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-01-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since [sigma]/k is about 10[sup [minus]6]. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  7. Slags

    NASA Astrophysics Data System (ADS)

    Zheng, Kai; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2014-08-01

    The viscosity of CaO-SiO2-TiO2 slags was measured via the rotating cylinder method to reveal the effect of TiO2 on viscous flow of the slags. Furthermore, the structure of the ternary slags and the role of Ti4+ were investigated by Fourier transform infrared and Raman spectroscopy techniques. The results are beneficial for a better understanding of the behaviors of Ti-bearing silicate slags. The TiO2 additions lowered the viscosity and apparent activation energy of the slags. However, the degree of polymerization (DOP) of silicate network was found to be enhanced with increasing the TiO2 content, which is suggested by the increase in mole fraction of Q 3 ([SiO4]-tetrahedra with three bridging oxygens) and the decrease in Q 0. The Eq. [2] Q 2 ↔ Q 1 + Q 3 was appropriate to express the relationship of different Q n species. The introduction of Ti4+ into the silicate network as network formers increased the DOP but weakened the strength of slag structure at the same time. Besides, a large proportion of Ti4+ exists in the slag in the form of monomers, resulting in a decrease of viscosity with increasing TiO2 content.

  8. The hydraulic potential of high iron bearing steel slags

    NASA Astrophysics Data System (ADS)

    Ionescu, Denisa Virginia

    The incorporation of additives to the clinker or to the raw materials stream is a common practice in cement manufacture. However, steel slag, unlike its ironmaking parent the blast furnace slag, it is not a conventional admixture for cement. Currently most steel slags are slow cooled rendering stable crystalline compounds with minor hydraulic value. Nevertheless, if steel slags would be quenched and granulated, the resulting glassy product might display increased hydration and strength development potential. The use of steel slag in cement could contribute to important savings for both cement and steelmaking industries and provide a solution for the environmental problems linked to CO2 emissions and costs of transport and disposal. The purpose of this research is to explore the thermodynamics and kinetics of steel slag hydration in an effort to produce a cement additive, or a more promising material of near Portland cement composition. An important criteria used in the assessment of slags as potential cements is the presence of a glassy phase. At present, it is not very clear why glass enhances the hydration process. However, it is known that the free energy of formation for glasses is less than for crystals so that glasses are easier to hydrate compared to crystalline materials. In the particular case of steel slag, the glassy phase would have to contain high amounts of iron. Steel slags are known to display iron levels approximately 10 times higher than Portland cement and commonly used blast furnace slags. However, the effect of high Fe2O3 levels on the setting and strengthening of cement paste is not clearly understood due to the fact that most cement additives do not present this characteristic. The present work looks at the progress made in recycling steel slag as cement additive, the complexity of the hydration process in slags, the possibilities of improving the hydration potential of slags at laboratory and industrial level, and the problems that still

  9. Reaction between Steel-Making Slag and Carbonaceous Materials While Mixing with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Hong, Lan; Sahajwalla, Veena

    2016-01-01

    Since the beginning of the extensive applications in numerous high temperature processes such as iron- and steel-making, coke-making etc. partly in the place of coke, the investigation into the reaction mechanism of waste plastics has become increasingly necessary. In this paper a fundamental study on the behavior of a typical component of waste plastics, high density polyethylene (HDPE), in a mixture with coke at a 1:1 ratio in mass base was conducted during the reaction with iron oxide in steel-making slag at 1823 K and was compared with coke and graphite. The reaction mechanism of carbonaceous materials was analyzed based on the contents of CO and CO2 in the off-gas monitored by an infrared (IR) gas analyzer. It is clear from the results that the reaction of HDPE and coke mixture with steel-making slag approached equilibrium of the Boudouard reaction more quickly and closely than coke or graphite.

  10. Diffusion zone between high-chromium cast iron and high-manganese steel during electric-slag facing

    SciTech Connect

    Ponomarenko, V.P.; Shvartser, A.Y.; Stroganova, G.V.

    1986-05-01

    The authors investigate extending the service lives of components by the method of electric-slag facing of working surfaces. Steel 45 was used in the annealed state. Electric-slag remelting was the method used to determine the bending strength. Metallographic examinations were conducted under an MIM-8m microscope, while x-ray analysis of the built-up and base metals were performed on a DRON-2 diffractometer. BAsic alloying elements, chromium and manganese were studied on a ''Cameca MS-46'' microanalyzer. During the electri-slag facing of a high-chromium cast iron containing 8% of Mn on high-manganese steel 11OG13L diffusion equalization of the manganese content occurs in the fusion zone. Diffusion displacement of carbon, chromium, and manganese from high-chromium cast iron into the high-manganese steel during electric-slag facing gies rise to a smooth change in the structure of the metal in the fusion zone, and to increased strength of the joint between the unlike materials investigated.

  11. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  12. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv

    2014-09-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  13. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  14. Slag-Refractory Interaction in Slagging Coal Gasifiers

    SciTech Connect

    Matyas, Josef; Sundaram, S. K.; Hicks, Brent J.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-03-03

    The combustion chamber of slagging coal gasifiers is lined with refractories to protect the stainless steel shell of the gasifier from elevated temperatures and corrosive attack of the coal slag. Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that slag penetration and subsequent spalling of refractory are the cause of significantly shorter service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of three slags representative of a wide variety of coals in the United States into chromia-alumina and two high-chromia refractories. Variables tested were refractory-slag combinations and two partial pressures of O2. Slag penetration depths were measured from spliced images of each refractory. Samples heated to 1470°C for 2 hrs had maximum penetration depths ranging from 1.99±0.15 mm to at least 21.6 mm. Aurex 95P, a high-chromia refractory containing 3.3% phosphorous pentoxide (P2O5), showed the least slag penetration of all refractories tested. P2O5 likely reacts with the slags to increase their viscosity and restrict molten slag penetration. Experimental data on the slag-refractory interaction will be incorporated into mathematical model that will be used to 1) identify critical conditions at which refractory corrosion sharply increases, and 2) predict the service life of a gasifier refractory.

  15. Long-term leaching tests with high ash fusion Maryland coal slag

    SciTech Connect

    Browman, M.G. )

    1991-03-01

    The main objective of this project was to investigate the potential environmental impact of the storage or disposal of coal gasification residues. In this regard, this investigation examined the quality of leachate produced during the long-term outdoor storage slag generated at the TVA 200-t/d Texaco gasifier in Muscle Shoals, Alabama. Evaluative laboratory extraction tests were also conducted on both the coarse and fine slag. Leachate quality was tracked in both the surface water and the water at depth after it percolated through the slag pile (leachate well water) by measuring pH and conductivity on a weekly basis and toxic trace elements and other chemical species quarterly or at longer intervals. The major species observed in the leachate well water were Ca and Mg cations as well as sulfate anions. The average electrical conductivity measured in the leachate well water was 2503 {mu}mhos/cm. The measured pH decreased from an initial value of 8.2 and stabilized at about 7.1 with occasional excursions to values as low as 6.3 during dry periods. Concurrently, sulfate concentrations averaged 1083 mg/l with occasional peaks as high as 2600 mg/l. Fe and Mn concentrations measured in the leachate well waters averaged 2.0 and 1.68 mg/l, respectively. Concentrations of species for which Primary Maximum Contaminant Limits (MCLs) for public drinking water supplies have been established were generally below the primary limits with the exception of Se and F which exceeded the limits occasionally. Concentrations of Fe, Mn, sulfate, and total dissolved solids were markedly above the Secondary MCLs set for these species. 35 refs., 2 figs., 21 tabs.

  16. The influence of compound admixtures on the properties of high-content slag cement

    SciTech Connect

    Dongxu, L.; Xuequan, W.; Jinlin, S.; Yujiang, W.

    2000-01-01

    Based on the activation theory of alkali and sulfate, the influence of compound admixtures on the properties of high-content slag cement was studied by testing the strength, pore structure, hydrates, and microstructure, Test results show that compound admixtures can obviously improve the properties of high-content slag cement. The emphasis of the present research is two-fold: substituting gypsum with anhydrite and calcining gypsum. These both can improve early and later performance.

  17. Study on modification of the high-strength slag cement material

    SciTech Connect

    Wang Fusheng . E-mail: fusheng429@163.com; Sun Ruilian; Cui Yingjing

    2005-07-01

    The influence of the slag powder's fineness, the amounts of activator, type and contents of modification addition on the dry-shrinkage and strength of the high-strength slag cement material was investigated. The experimental data showed that adding 9% Na{sub 2}SiO{sub 3} activator and 10% Portland cement (PC) made the ratios of drying-shrinkage of high-strength slag cement material similar to the ratios of Portland cement and the compressive strengths as higher. The main hydration products are calcium alumina-silicate gels and a little CH; the gel ratio of CaO/SiO{sub 2} is close to 1 and includes a little Na{sub 2}O and MgO for high-strength slag cement material, as shown by means of scanning electron microscope (SEM) and energy-dispersive X-ray analyzer (EDXA)

  18. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    NASA Astrophysics Data System (ADS)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-12-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases ( i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  19. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    PubMed

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Highly efficient slag cleaning — latest results from pilot-scale tests

    NASA Astrophysics Data System (ADS)

    König, Roland; Weyer, Axel; Degel, Rolf; Schmidl, Jürgen; Kadereit, Harald; Specht, Andreas

    Modern life would not be possible without copper. The high worldwide demand for copper raises several questions for the copper industry in terms of economic and ecological considerations regarding the main product copper as well as the by-product iron silicate. The future challenge for copper smelters is to increase the yield by reducing the copper losses and to obtain the iron-silicate as a marketable by-product. This can be achieved by further treatment of the slag. A newly developed slag cleaning technology has been evaluated in a specially designed pilot furnace integrated into an industrial process. Applying a magnetic field across a DC field improves stirring, thereby fostering the settling of entrained copper droplets. The results showed that a 30 % to 50 % reduction of the Cu content in the iron silicate product is feasible, depending on the composition of the incoming copper slag. This makes the process economically attractive.

  1. Dissolution of steel slags in aqueous media.

    PubMed

    Yadav, Shashikant; Mehra, Anurag

    2017-07-01

    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO2. For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO2 sequestration.

  2. Gasification Slag and the Mechanisms by Which Phosphorous Additions Reduce Slag Wear and Corrosion in High Cr2O3 Refractories

    NASA Astrophysics Data System (ADS)

    Bennett, James; Nakano, Anna; Nakano, Jinichiro; Thomas, Hugh

    Gasification is a high-temperature/high-pressure process that converts carbonaceous materials such as coal and/or petcoke into CO and H2, feedstock materials used in power generation and chemical production. Gasification is considered an important technology because of its high process efficiency and the ability to capture environmental pollutants such as CO2, SO3 and Hg. Ash impurities in the carbon feedstock materials melt and coalesce during gasification (1325-1575 °C), becoming slag that attaches to and flows down the gasifier sidewall, corroding and eroding the high Cr2O3 refractory liner used to protect the gasification chamber. Phosphate additions to high Cr2O3 refractory have been found to alter slag/refractory interactions and dramatically reduce refractory wear by the following mechanisms: a) spinel formation, b) slag chemistry changes, c) two phase liquid formation, and d) oxidation state changes. The mechanisms and how they work together to impact material wear/corrosion will be discussed.

  3. Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.

    2006-03-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  4. An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2006-01-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  5. Preparation of High-Grade Titania Slag from Ilmenite-Bearing High Ca and Mg by Vacuum Smelting Method

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Lv, Xuewei; Huang, Run; Song, Bing; Xi, Fei

    2014-06-01

    Ilmenite produced from the Panxi area in China has high impurities such as Ca and Mg. High-grade titanium (Ti) slag can be obtained by the electric arc furnace process, a traditional method of treating ilmenite. Thus, Ti slag prepared from the Panxi ilmenite contains high CaO and MgO, exceeding 5 pct of the slag content. This high CaO and MgO content confers considerable difficulty in producing titania (TiO2) white using fluidizing chlorination. In this study, a new process named vacuum separation was found to produce high-grade TiO2 materials. The effects of separation temperature and time on the TiO2 grade were studied. The high-grade TiO2 slag, which has 93 pct TiO2, <0.1 pct MgO, <1.2 pct SiO2, and <0.5 pct CaO, can be produced at 1823 K (1550 °C) in 45 minutes through the proposed method.

  6. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  7. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-quan; Zhang, Ting-an; Lü, Guo-zhi; Zhang, Ying; Liu, Yan; Liu, Zhuo-lin

    2015-01-01

    To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vanadium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L-1, a leaching temperature of 140°C, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g-1, and oxygen pressure at 0.2 MPa, the leaching rate of vanadium reaches 97.69%.

  8. Seismic behavior of geogrid reinforced slag wall

    SciTech Connect

    Edincliler, Ayse; Baykal, Gokhan; Saygili, Altug

    2008-07-08

    Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

  9. High conductivity composite metal

    DOEpatents

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  10. High conductivity composite metal

    DOEpatents

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  11. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching

    NASA Astrophysics Data System (ADS)

    Li, Xin-sheng; Xie, Bing

    2012-07-01

    The extraction of vanadium from high calcium vanadium slag was attempted by direct roasting and soda leaching. The oxidation process of the vanadium slag at different temperatures was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effects of roasting temperature, roasting time, Na2CO3 concentration, leaching temperature, leaching time, and liquid to solid ratio on the extraction of vanadium were studied. The results showed that olivine phases and spinel phases in the vanadium slag were completely decomposed at 500 and 800°C, respectively. Vanadium-rich phases were formed at above 850°C. The leaching rate of vanadium reached above 90% under the optimum conditions: roasting temperature of 850°C, roasting time of 60 min, Na2CO3 concentration of 160 g/L, leaching temperature of 95°C, leaching time of 150 min, and liquid to solid ratio of 10:1 mL/g. The main impurities were Si and P in the leach liquor.

  12. Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-yi; Lü, Wei; Qi, Yuan-hong; Zou, Zong-shu

    2016-08-01

    A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/ w(SiO2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al2O3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca2SiO4 and Ca12Al14O33, with small amounts of FeAl2O4, CaAl2O4, and Ca2Al2SiO7.

  13. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  14. Influence of Basicity and MgO on Fluidity and Desulfurization Ability of High Aluminum Slag

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Meng, Qing-min; Long, Hong-ming; Li, Jia-xin

    2016-08-01

    The viscosity of experimental slag, which was mixed based on the composition of a practical blast furnace slag, was measured in this paper. The influence of Al2O3 and MgO content, basicity R2 = w(CaO)/w(SiO2) on the fluidity of slag was studied. The stepwise regression analysis in SPSS was used to reveal the relationship between sulfur distribution coefficient LS and slag composition as well as furnace temperature. The results show that increasing of MgO up to 12% can decrease the slag viscosity. The w(MgO) should be controlled below 8% when there is 20% Al2O3 in the slag. Temperature of hot metal and content of CaO in slag are the two dominant factors on the desulfurization capacity of slag.

  15. Reduction Kinetics of MnO from High-Carbon Ferromanganese Slags by Carbonaceous Materials in Ar and CO Atmospheres

    NASA Astrophysics Data System (ADS)

    Safarian, J.; Tranell, G.; Kolbeinsen, L.; Tangstad, M.; Gaal, S.; Kaczorowski, J.

    2008-10-01

    The kinetics of MnO reduction from synthetic and industrial high-carbon ferromanganese slags were investigated using a sessile drop technique at 1600 °C. The effects of the reductant type, ambient atmosphere, and slag composition on the MnO reduction were illuminated. Six different types of carbonaceous reductants were used as substrates for small slag droplets, which were reacted in a CO or Ar atmosphere, with the reaction studied in situ. The cross sections of the reacted slag-carbon samples were subsequently studied by electron-probe microanalysis (EPMA), to find the extent of the MnO reduction as a function of the reaction time. It was found that the rate of the MnO reduction is affected by both the type of reductant and the ambient atmosphere. It was observed that the MnO reduction rate from synthetic slag by cokes produced from single coals is lower than that from industrial cokes. Reduction rates obtained when charcoal was used as the reductant were higher than when coke was used, while the CO atmosphere yielded a faster initial MnO reduction than did the Ar atmosphere. It was found that the faster reduction rates in the CO atmosphere are related to the MnO reduction by CO gas. A newly developed kinetic method was applied, to calculate the rate constants for the MnO reduction by carbon and CO that considered the reaction interfaces. It was indicated that the rate of the MnO reduction by CO is less than that by carbon; however, the contribution of these reductants to slag reduction is very dependent on their contact with the slag.

  16. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  17. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-12

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  18. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  19. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  20. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  1. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively.

  2. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.

    PubMed

    Su, Tung-Hsin; Yang, Huai-Jen; Shau, Yen-Hong; Takazawa, Eiichi; Lee, Yu-Chen

    2016-03-01

    Basic-oxygen furnace slag (BOF-slag) contains >35% CaO, a potential component for CO2 sequestration. In this study, slag-water-CO2 reaction experiments were conducted with the longest reaction duration extending to 96hr under high CO2 pressures of 100-300kg/cm(2) to optimize BOF-slag carbonation conditions, to address carbonation mechanisms, and to evaluate the extents of V and Cr release from slag carbonation. The slag carbonation degree generally reached the maximum values after 24hr slag-water-CO2 reaction and was controlled by slag particle size and reaction temperature. The maximum carbonation degree of 71% was produced from the experiment using fine slag of ≤0.5mm under 100°C and a CO2 pressure of 250kg/cm(2) with a water/slag ratio of 5. Vanadium release from the slag to water was significantly enhanced (generally >2 orders) by slag carbonation. In contrast, slag carbonation did not promote chromium release until the reaction duration exceeded 24hr. However, the water chromium content was generally at least an order lower than the vanadium concentration, which decreased when the reaction duration exceeded 24hr. Therefore, long reaction durations of 48-96hr are proposed to reduce environmental impacts while keeping high carbonation degrees. Mineral textures and water compositions indicated that Mg-wüstite, in addition to CaO-containing minerals, can also be carbonated. Consequently, the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO2 sequestration capability of the BOF-slag by ~20%. Therefore, the BOF-slag is a better CO2 storage medium than that previously recognized.

  3. Recovery of Vanadium from a High Ca/V Ratio Vanadium Slag Using Sodium Roasting and Ammonia Leaching

    NASA Astrophysics Data System (ADS)

    Xu, Song; Long, Mujun; Chen, Dengfu; Fan, Helin; Chen, Yuting; Sun, Xue

    In order to seek an effective extraction process for vanadium, the recovery of vanadium from a high Ca/V ratio vanadium slag was studied by sodium roasting and ammonia leaching. In the present paper, the oxidation and leaching process of vanadium slag was investigated by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) techniques. The effects of ammonium carbonate concentration, leaching temperature and leaching time on the leaching ratio of vanadium were discussed. As indicated in the experimental result, the optimal (NH4)2CO3 concentration was 120g/L, leaching temperature was 60°C and leaching time was 20 min. Approximately 92% of the vanadium was recovered under the optimal conditions. Furthermore, by means of X-ray diffraction analysis, the phase transformations of the vanadium slag during roasting and leaching processes were analyzed and discussed.

  4. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  5. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed.

    PubMed

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Tan, Chung-Sung; Chiang, Pen-Chi

    2012-08-15

    Carbon dioxide (CO(2)) sequestration using the accelerated carbonation of basic oxygen furnace (BOF) slag in a high-gravity rotating packed bed (RPB) under various operational conditions was investigated. The effects of reaction time, reaction temperature, rotation speed and slurry flow rate on the CO(2) sequestration process were evaluated. The samples of reacted slurry were analyzed quantitatively using thermogravimetric analysis (TGA) and atomic absorption spectrometry (AAS) and qualitatively using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM). The sequestration experiments were performed at a liquid-to-solid ratio of 20:1 with a flow rate of 2.5 L min(-1) of a pure CO(2) stream under atmospheric temperature and pressure. The results show that a maximum conversion of BOF slag was 93.5% at a reaction time of 30 min and a rotation speed of 750 rpm at 65°C. The experimental data were utilized to determine the rate-limiting mechanism based on the shrinking core model (SCM), which was validated by the observations of SEM and TEM. Accelerated carbonation in a RPB was confirmed to be a viable method due to its higher mass-transfer rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  7. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  8. Research and Industrial Application of a Process for Direct Reduction of Molten High-Lead Smelting Slag

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Zhan, Jing; Fan, Yanqing; Wei, Chang; Zhang, Chuanfu; Hwang, Jiann-Yang

    2017-01-01

    A pyrometallurgical process for the direct reduction of molten high-lead smelting slag obtained by the Shuikoushan (SKS) method was reported in this article using solid anthracite as the fuel and reductant. The chemical composition, the lead phase composition, and the physical properties of the molten high-lead slag were examined. The effects of the process parameters on the recovery rate of valued metals were investigated in the laboratory. According to the experimental results, a new efficient bottom blow reduction furnace was employed in the pilot-scale test for high-lead slag reduction. The results showed the average recovery rate of lead was more than 96.0% with lower Pb and high Zn content of the reducing slag under the condition of reduction temperature 1100-1200°C, coal ratio 5.5-7.5%, reduction time 90-150 min, CaO/SiO2 ratio 0.35-0.45, and FeO/SiO2 ratio 1.4-1.55. Moreover, nearly 250 kg of standard coal per ton of crude Pb output was reduced compared with the blast furnace reduction process.

  9. Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Xie, Bing; Tan, Wen-Feng; Diao, Jiang; Zhang, Xie; Li, Hong-Yi

    2016-09-01

    This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.

  10. Characterizing coal-gasifier slag-refractory interactions

    SciTech Connect

    Rawers, James C.; Kwong, Kyei-Sing; Bennett, James P.

    1999-01-01

    To characterize refractory degradation and loss in commercial coal-gasifier combined cycle power systems, cup-type tests were conducted on high chromium-alumina, sinter-bonded refractories under laboratory conditions designed to simulate commercial operations of temperature, atmosphere, and slag interactions. These tests provided qualitative results from which the slag?refractory interactions can be characterized. These high chromium refractories were generally inert with respect to the coal slag components. However, in this study preliminary findings did show (1) iron ( oxide) in the slag reacted with chrome sesquioxide to produce a Cr?Fe spinel at the slag?refractory interface, and (2) chrome was soluble in the molten slag. Comparison of cup-type test results with data from operating commercial plants suggests that the principal loss of refractory material in a coal-gasifier combustion chamber is chrome dissolution into the slag. Tests are currently underway to determine if minor modifications to the combustion process might increase refractory life.

  11. Chemical evolution of cementitious materials with high proportion of fly ash and slag

    SciTech Connect

    Kruger, A.A.; Bakharev, T.; Brough, A.R.; Kirkpatrick, R.J.; Struble, L.J.; Young, J.F.

    1995-12-01

    Cement mixtures containing high proportions of slag and fly ash were tested to assess their suitability to immobilize simulated off-gas waste solutions after vitrification of low-level radioactive tank wastes stored at Hanford. Materials were mixed with carbonated or alkaline solutions and cured initially adiabatically, then at 70{degrees}C. Chemical changes were monitored for 7 months using X-ray diffraction, selective dissolution and SEM; NMR was utilized to follow the polymerization of silicate species. The process of hydration during the first months of curing was characterized by formation of quite crystalline Al-substituted C-S-H structurally related to 1.1 nm tobermorite and traces of zeolites in some materials. A low content of calcium hydroxide was found in all materials after I month of curing. The SEM examination demonstrated rapidly decreasing porosity, making the mixtures favorable for long-term durability.

  12. Chemical characterization of high-temperature arc gasification slag with a focus on element release in the environment.

    PubMed

    Roessler, Justin G; Oehmig, Wesley N; Blaisi, Nawaf I; Townsend, Timothy G

    2014-07-15

    High-temperature arc gasification (HTAG) has been proposed as a viable technology for the generation of energy and the production of saleable byproducts from municipal solid waste (MSW). Total concentrations of elements in HTAG slag were assessed and indicated a high partitioning of trace elements (Pb, Cd, and As) into the flue gas, an issue of concern when assessing the air pollution control residues (APCR) status as a hazardous waste. Hazardous waste leaching tests [such as the toxicity characteristic leaching procedure (TCLP)] were performed and confirmed that the slag did not meet U.S. criteria for a hazardous waste. Leaching was assessed using batch and column tests; the results revealed that Sb and Al were elevated in respect to risk-based regulatory thresholds. Slag samples were carbonated to simulate weathering effects, and although leachable concentrations of Al did decrease by an order of magnitude, Sb concentrations were found to increase. Low total concentrations of certain trace elements (As, Cd, and Pb), with respect to MSW incineration bottom ashes support the potential for reuse of HTAG slag; however, leaching of elements (Pb, Al, and Sb) in batch and column tests indicate that proper engineering controls would need to be taken to ensure protection of water supplies in a reuse application.

  13. Thermodynamic and Experimental Investigations of High-Temperature Refractory Corrosion by Molten Slags

    NASA Astrophysics Data System (ADS)

    Wagner, Christoph; Wenzl, Christine; Gregurek, Dean; Kreuzer, Daniel; Luidold, Stefan; Schnideritsch, Holger

    2017-02-01

    Corrosion mechanisms between MgO refractory substrates and FeNi slags were investigated. The FeNi slags taken into consideration represent a simple synthetically mixed slag with specific oxides and a real slag from a ferroalloy producer. The MgO refractory substrates with the specimens of FeNi slag were heated in a hot-stage microscope at 10 K/min from room temperature to three different temperatures 1573 K, 1723 K, and 1923 K (1300 °C, 1450 °C, and 1650 °C). The experiments were carried out under a controlled gas atmosphere that simulates the relevant process conditions. The corrosion mechanisms of each system were followed by scanning electron microscope analyses. The results obtained showed that slag corrosion dominates, with a pronounced partial dissolution of refractory fines forming Mg-silicates of type forsterite. It was also observed that iron oxide present in the slag diffused into the coarse refractory grains forming magnesiowustite. Finally, the results obtained were compared with those predicted by FACTSAGE software to understand the corrosion mechanisms and draw implications for improving the refractory performance and lifetime.

  14. Slag of Greek provenance uses in materials science and geophysics: implications for a highly potential material in the service of the development of Greek economy

    NASA Astrophysics Data System (ADS)

    Leontakianakos, G.; Baziotis, I.; Sotiriadis, K.; Goulas, G.; Liakopoulos, S.; Karastathis, V.

    2012-04-01

    parameters was done at steady state isothermal conditions using a set-up of dimensional water-vapor diffusion. Thermal conductivity and heat capacity were also specified. Specimens showed very good behavior under heating. Thermal properties were not significantly affected during the heating procedure leading to the conclusion that such materials can be used as protective layers against fire. Covering concrete structures is an effective way of protection against high temperatures. The above study shows that the slag of Greek origin is a material with a significant potential to be used in the field of building constructions protection against high temperatures. Though, it is an extremely promising material of highly potential value which can turn it into to the accessory part of the steam engine for sustainable development of the Greek economy.

  15. Kinetics of Alkaline Activation of Slag and Fly ash-Slag Systems

    NASA Astrophysics Data System (ADS)

    Chithiraputhiran, Sundara Raman

    Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through

  16. Bubbling at high flow rates in inviscid and viscous liquids (slags)

    NASA Astrophysics Data System (ADS)

    Engh, T. Abel; Nilmani, M.

    1988-02-01

    The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of

  17. Vaporization Studies from Slag Surfaces Using a Thin Film Technique

    NASA Astrophysics Data System (ADS)

    Seetharaman, Seshadri; Shyrokykh, Tetiana; Schröder, Christina; Scheller, Piotr R.

    2013-08-01

    The investigations of vanadium vaporization from CaO-SiO2-FeO-V2O5 thin film slags were conducted using the single hot thermocouple technique (SHTT) with air as the oxidizing atmosphere. The slag samples were analyzed after the experiments by SEM/EDX. The vanadium content was found to decrease as a function of time. The loss of vanadium from the slag film after 30 minutes of oxidation was approximately 18 pct and after 50 minutes, it was nearly 56 pct. The possible mechanism of vanadium loss would be the surface oxidation of vanadium oxide in the slag, VO x to V5+, followed by surface evaporation of V2O5, which has a high vapor pressure at the experimental temperature.

  18. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Zhang, Zuotai

    2016-09-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  19. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    USGS Publications Warehouse

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  20. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  1. Crystallization Behavior of Perovskite in the Synthesized High-Titanium-Bearing Blast Furnace Slag Using Confocal Scanning Laser Microscope

    NASA Astrophysics Data System (ADS)

    Hu, Meilong; Liu, Lu; Lv, Xuewei; Bai, Chenguang; Zhang, Shengfu

    2013-10-01

    The isothermal phase composition of high-titanium-bearing slag (23 mass pct TiO2) under an argon atmosphere during cooling process from 1723 K (1450 °C) was calculated by FactSage.6.3 (CRCT-ThermFact Inc., Montréal, Canada). Three main phases, which were perovskite, titania spinel, and clinopyroxene, could form during the cooling process and they precipitated at 1713 K, 1603 K, and 1498 K (1440 °C, 1330 °C, and 1225 °C), respectively. The nonisothermal crystallization process of perovskite in synthesized high-titanium-bearing slag was studied in situ by a confocal scanning laser microscope (CSLM) with cooling rate of 30 K/min. The results showed that the primary phase was perovskite that precipitated at 1703 K (1430 °C). The whole precipitation and growth process of perovskite was obtained, whereas other phases formed as glass under the current experimental conditions. Perovskite grew along a specific growth track and finally appeared with snowflake morphology. The growing kinetics of perovskite formation from molten slag were also mentioned.

  2. Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Li, Jin-yan; Zhang, Mei; Guo, Min; Yang, Xue-Min

    2014-10-01

    The phosphate-enrichment behavior has experimentally been investigated in CaO-SiO2-FeO-Fe2O3-P2O5 steelmaking slags. The reaction ability of structural units in the slags has been represented the mass action concentration from the developed ion and molecule coexistence theory (IMCT)- model based on the IMCT. The defined enrichment possibility and enrichment degree of solid solutions containing P2O5 from the developed IMCT- model have been verified from the experimental results. The effects of binary basicity, the mass percentage ratio , and mass percentage of P2O5 in the initial slags on phosphate-enrichment behavior in the slags has also been discussed. The results show that the P2O5 component can easily be bonded by CaO to form tricalcium phosphate 3 CaO·P2O5, and the formed 3CaO·P2O5 can react with the produced dicalcium silicate 2CaO·SiO2 to generate solid-solution 2CaO·SiO2-3CaO·P2O5 under fixed cooling conditions. The maximum value of the defined enrichment degree of solid-solution 2CaO·SiO2-3CaO·P2O5 is obtained as 0.844 under conditions of binary basicity as 2.5 and the mass percentage ratio as 0.955 at fixed cooling conditions.

  3. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an

  4. Advanced Characterization of Slags and Refractory Bricks Using Electron Backscatter Diffraction

    SciTech Connect

    John Kay; Kurt Eylands

    2007-09-30

    Numerous studies have been conducted to determine changes that occur in slag that cause a rapid change in viscosity, but these studies have been limited by the inability to characterize/identify the phases present in the slag. Rapid freezing of slag in entrained gasifiers and slagging combustion systems can cause a shutdown of the system. The reactions occurring in slag that result in rapid freezing of slags are not well understood. It is believed that electron backscatter diffraction (EBSD) can be used to analyze slags and aid in their characterization although its use has not been found in literature. The EBSD technique allows particle-by-particle mineralogy based on diffraction patterns generated by the electron beam when the sample is tilted to a high angle. The diffraction pattern (Kikuchi bands) can only come from crystalline phases, which makes this technique ideally suited to study crystal formation in slags where oftentimes the crystals are very small and a reasonable chemical analysis cannot be made by conventional energy-dispersive spectrometry (EDS) methods in the scanning electron microscope. The ability to have mineralogical data based on the crystalline structure of a phase rather than a chemical analysis by EDS allows much better interpretation of the temperature regimes in which specific phases tend to form. Knowing the type and relative amounts of a phase crystallizing in a slag is critical in predicting the viscosity of a slag at a given temperature. Six slag samples were selected based on the parent coal. Unfortunately, none of the slags appeared to have any crystalline material associated with them. The funding for this project was not adequate for generating more slags from the various coal types. For this reason, sample archives were searched for those containing slags that were not rapidly quenched. A slag from a bituminous coal was found to contain several dendritic crystals (10 {mu}m to 50 {mu}m in size) that formed near the edges of the

  5. Highly elastic conductive polymeric MEMS

    PubMed Central

    Ruhhammer, J; Zens, M; Goldschmidtboeing, F; Seifert, A; Woias, P

    2015-01-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations. PMID:27877753

  6. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  7. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    SciTech Connect

    Massoudi, Mehrdad; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  8. Environmental impact of ferrochrome slag in road construction.

    PubMed

    Lind, B B; Fällman, A M; Larsson, L B

    2001-01-01

    Vargon Alloys in Western Sweden is one of the largest producers of ferrochrome slag in Europe. Ferrochrome slag is a by-product from the production of ferrochrome, an essential component in stainless steel. Extensive tests have been carried out on the physical properties of the ferrochrome slag from Vargon Alloys and it was found to be highly suitable as road construction material. The composition and leaching tests of the ferrochrome slag show that the chromium content is high, 1-3%, although leaching under normal conditions is very low. With the exception of potassium (K), which had a potential leaching capacity (availability test) of around 16%, the leaching of chromium, nickel, zinc and other elements was just a few per cent. However, all these tests were conducted in the laboratory. What happens out in the field, under the influence of acid rain and biological activity, and how does this compare with the laboratory results? To answer this question an investigation was carried out to study the environmental impact of ferrochrome slag in roads that were built in 1994. The investigation includes soil sampling (total content and leachable amounts of metals) and groundwater analysis (filtered and non-filtered samples). In addition, a new method involving the bio-uptake of chromium and other metals by the roots of the dandelion (Taraxacum officinale) was tested. The results show that there was a low migration of particles from the slag to the underlying soil and that the leaching into the groundwater was also low for all the elements analysed. However, there seemed to be a significant uptake of Cr by plants growing with their roots in the slag. An investigation of plant uptake was an important complement to laboratory leaching tests on alternative materials.

  9. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing

    2015-06-16

    Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.

  10. Experimental Study on Electrical Conductivity of MnO-CaO-SiO2 Slags at 1723 K to 1823 K (1450 °C to 1550 °C) and Various Oxygen Potentials

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Hao; Zhang, Guo-Hua; Wang, Zhi

    2017-09-01

    The electrical conductivity of molten slag has many important and practical effects in modeling and operating the electric smelting furnace. In the present study, the electrical conductivities (total and electronic/ionic properties) of MnO-CaO-SiO2 slags were measured by a four-electrode method at different oxygen potentials and temperatures. Experimental results show that the effects of temperature on the total, electronic, and ionic conductivities obey the Arrhenius law, and all conductivities increase when increasing the temperature. The stepped potential chronoamperometry method was used to measure the electronic transference number, which is affected strongly by oxygen potential but is unaffected by temperature. The total electrical, electronic, and ionic conductivities present similar increasing trends when increasing the CO/CO2 ratio, which resulted from increasing Mn2+.

  11. Blast furnace slags as sorbents of phosphate from water solutions.

    PubMed

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj

    2005-05-01

    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  12. SOLUBILIZATION OF ACTINIDE METAL-CONTAINING SLAG

    DOEpatents

    Hopkins, H.H. Jr.

    1959-08-01

    This patent relates to solubilization of the actinide rare earths valves contained in the slag materials resulting from the reduction of actinide salts, such as plutonium tetrafluoride. According to the invention the slag is subjected to a high temperature chloridizing roast, preferably from the reduction of actinide salts, such as plutonium tetrafluoride. According to the invention the slag is subjected to a high temperature chloridizing roast, preferably at about 700 deg C with gaseous hydrogen chloride, until the actinides within the slag are substantially convented to the chlorides. The resultant chlorinated actinides are then leached from the cooled roasted mass by treating with aqueous 0.01 M nitric acid.

  13. High-Thermal-Conductivity Fabrics

    NASA Technical Reports Server (NTRS)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  14. Utilization of Lightweight Materials Made from Coal Gasificaiton Slags

    SciTech Connect

    Choudhry, V.; Hadley, S.

    1996-12-31

    The integrated gasification combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power; however, it generates solid waste materials in relatively large quantities. For example, a 400-MW power plant using 4000 tons of 10% ash coal per day may generate over 440 tons/day of solid waste of slag, consisting of vitrified mineral matter and unburned carbon. The disposal of the wastes represents significant costs. Regulatory trends with respect to solid wastes disposal, landfill development costs and public concern make utilization of solid wastes a high-priority issue. As coal gasification technologies find increasing commercial applications for power generation or production of chemical feed stocks, it becomes imperative that slag utilization methods be developed, tested and commercialized in order to offset disposal costs. Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra-lightweight aggregates from slags left as solid by-products from the coal gasification process. The project objectives are to develop and demonstrate the technology for producing slag-based lightweight aggregates (SLA), to produce 10 tons of SLA products with different unit weights from two slags, to collect operational and emissions data from pilot-scale operations, and to conduct laboratory and commercial scale evaluations of SLA with conventional lightweight and ultra-lightweight aggregates.

  15. Characteristics of blast furnace slag leachate produced under reduced and oxidized conditions.

    PubMed

    Schwab, A P; Hickey, J; Hunter, J; Banks, M K

    2006-01-01

    A laboratory study was conducted to determine the environmental conditions necessary to reproduce leachates observed emerging from blast furnace slag acting as the foundation of highways in northwest Indiana. The leachates in the field are often highly alkaline with a pungent sulfur odor, a distinct green or milky-white in color, and sulfate concentrations exceeding 2,000 mg/L. Slag was equilibrated in the laboratory under both oxidized and anoxic environments and at various slag:water ratios. Constant anoxic conditions were required to produce to green colors in the slag, but high sulfate concentrations were observed only when the suspensions were fully oxidized. Leachate from the study site appears to form as a result of a series of complex chemical reactions including fluctuating oxidized and reduced conditions.

  16. Effects of a ladle furnace slag added to soil on morpho-physiological and biochemical parameters of Amaranthus paniculatus L. plants.

    PubMed

    Pietrini, Fabrizio; Iori, Valentina; Beone, Teresa; Mirabile, Daphne; Zacchini, Massimo

    2017-05-05

    Industrial slag from steelwork activities is considered a by-product by the EU legislation and it can be used for civil construction. In this work, an experiment in a greenhouse was conducted over a 6-week period to investigate the effect of soil enrichment with ladle furnace slag on morpho-physiological parameters of Amaranthus paniculatus L. plants. Results showed that the addition of 5% (w/w) slag to soil did not alter the plant growth, highlighting a high tolerance to this slag concentration. Contrarily, plants cultivated in a soil with 10% (w/w) slag showed a marked reduction both in growth and biometric parameters. Moreover, plants grown on a slag-rich soil (20% w/w) highlighted a very low survival rate. This behaviour was confirmed by the biochemical and physiological investigations on chlorophyll a and b content, gas exchange and chlorophyll fluorescence analyses. Metal(loid)s determination showed the accumulation of Ni, Se, Sn, As, Sb and Cd in 10% slag-treated plants, while revealed an increase in Ni, Cd, As and Pb in 5% slag-treated plants. Results are discussed highlighting the profitability of the cultivation of Amaranthus plants on slag enriched soil, as this plant species is largely used both as feedstock for energy production and for environmental restoration.

  17. Impact of the Solidified Slag Skin on the Current Distribution During Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Hugo, Mathilde; Dussoubs, Bernard; Jardy, Alain; Escaffre, Jessica; Poisson, Henri

    The ESR process is commonly used to produce defect-free ingots of high added value alloys such as special steels or Ni-based superalloys. Numerous simulation tools have been developed for the last 30 years to get better insight into the process and help its optimization. Most assume that no electrical current is able to cross the solidified slag skin and flow in the water-cooled mold. However, it has recently been claimed that the slag skin does not ensure perfect insulation, which is prone to modify the current distribution, hence some of the results previously assessed. This paper presents the assumptions made to simulate that phenomenon and some results in terms of current flow into the mold, depending on the thickness and electrical conductivity of the solidified slag skin. Results show that both parameters can have a great influence on the current distribution, hence the slag behaviour and final ingot quality.

  18. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction-Melting-Magnetic Separation Processing

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng

    2017-10-01

    This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.

  19. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction-Melting-Magnetic Separation Processing

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng

    2017-08-01

    This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.

  20. Melting Behaviour of Ferronickel Slags

    NASA Astrophysics Data System (ADS)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine

    2016-12-01

    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  1. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  2. Calibration problems with the viscosity measurement of liquid metallurgical slags

    NASA Astrophysics Data System (ADS)

    Heller, H. P.; Schürmann, M.; Scholl, K.; Haustein, N.; Lychatz, B.; Falkus, J.

    2017-01-01

    The viscosity of slag is an important characteristic of liquid slags regarding its lubricating effect and mass transfer. For measurement, however, they exhibit considerable differences in the values reported. Therefore, the rotation method, mostly used for high temperatures areas, is investigated regarding the impacts of any geometric inaccuracies. Furthermore, problems in the centering and use of calibration slags are discussed. It appears that, with the use of a more precise rheometer with air bearing, an error of less than +/- 3 % is possible in compliance with geometric critical values and online monitoring of the central operations. The verification was carried out with a blast furnace slag, which is also proposed as a calibration slag.

  3. A Brief Review of Viscosity Models for Slag in Coal Gasification

    SciTech Connect

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    , especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

  4. COAL SLAGGING AND REACTIVITY TESTING

    SciTech Connect

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  5. Phosphorus partitioning and recovery of low-phosphorus iron-rich compounds through physical separation of Linz-Donawitz slag

    NASA Astrophysics Data System (ADS)

    Makhija, Dilip; Rath, Rajendra Kumar; Chakravarty, Kaushik; Patra, Abhay Shankar; Mukherjee, Asim Kumar; Dubey, Akhilesh Kumar

    2016-07-01

    The Linz-Donawitz (LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction (XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron (Fe)-ore sintering. However, the presence of 1.2wt% phosphorus (P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis (EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases (i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.

  6. Experimental pavement using household waste slag

    SciTech Connect

    Kouda, Masahiro

    1996-12-31

    Municipal wastes used to be simply landfilled, but because of increasing difficulty in finding disposal sites, it became common practice to incinerate wastes and landfill the ash. In view of rapidly dwindling landfill sites, the author thought that the landfill site problem might be solved by finding a way to utilize slag made from incinerator ash. In this paper, a method for utilizing water-granulated slag as an asphalt pavement material is discussed. On the basis of laboratory test results, trial paving using base course materials consisting of crushed stone and 25 or 50% slag was carried out, paying attention primarily to bearing capacity. Marshall tests and fatigue resistance tests were conducted to determine the optimum content of water-granulated slag, and it was concluded that quality comparable to that of conventional asphalt concrete was attained at the slag content of 25% or less and that no problem would arise if the slag content was kept at 60% or less of the fine aggregate content. The mix proportions thus determined were also tested through experimental paving. A follow-up study to evaluate the durability of the experimental pavements confirmed that the experimental pavements were comparable in performance with conventional asphalt concrete pavements. This paper also reports on some problems encountered that need to be solved before utilizing water-granulated slag.

  7. Recent advances in understanding physical properties of metallurgical slags

    NASA Astrophysics Data System (ADS)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  8. A Comparison Study of the Oxygen-Rich Side Blow Furnace and the Oxygen-Rich Bottom Blow Furnace for Liquid High Lead Slag Reduction

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Hao, Zhandong; Yang, Tianzu; Liu, Weifeng; Zhang, Duchao; Zhang, Li; Bin, Shu; Bin, Wanda

    2015-05-01

    This work investigates the characteristics of the oxygen-rich side blow furnace (OSBF) and the oxygen-rich bottom blow furnace (OBBF) as the reductive smelting reactor for molten high lead slag. The slags were collected from different sampling points of these furnaces during a regular high lead slag reduction process and analyzed. It is disclosed that lead content of the melt in the OSBF shows dramatic fluctuations, while melt from different sampling points of the furnace behave similarly, exhibiting the characteristics of batch reactor. An obvious axial lead content gradient is detected in the OBBF, showing the characteristics of a plug flow reactor. The industrial performances of these furnaces are also compared. The results indicate that 1.38% higher lead recovery can be achieved by using the OSBF instead of the OBBF. Unit energy consumptions of the OBBF-OSBF and OBBF-OBBF processes can be reduced to 230 kgce/ t crude lead, which is 70 kgce/ t crude lead less than that of the tradition Shuikoushan (SKS) process.

  9. Effects of Various Slag Systems on Metal/Slag Separation of CCA and Slag Composition on Desulfurization and Dephosphorization of Iron Nugget

    NASA Astrophysics Data System (ADS)

    Park, Ji-Ook; Jung, Sung-Mo

    The reduction experiment of iron ore containing high Alumina content with petroleum coke was carried out in the temperature range of 1673 to 1773K by changing the slag composition. The sulfur and phosphorous content in the reduced iron nugget were measured to investigate the desulfurization and dephosphorization behavior during the reduction. The mineralogy of iron ore and additives to the carbon composite agglomerate (CCA) highly influenced on not only the reduction itself but also the melting, carburization, metal-slag separation, desulfurization and dephosphorization. High basicity of slag retarded the melting of CCA and the metal-slag separation, but enhanced sulfur and phosphorous removal degrees in the separated metal.

  10. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  11. Molten Slag Would Boost Coal Conversion

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1984-01-01

    Reactor increases residence time of uncovered char. Near-100percent carbon conversion achievable in reactor incorporating moltenslag bath. Slag maintains unconverted carbon impinging on surface at high temperatures for longer period of time, enhancing conversion.

  12. Semi lightweight concretes produced by volcanic slags

    SciTech Connect

    Topcu, I.B.

    1997-01-01

    The properties of the semi-lightweight concretes produced by using volcanic slags as coarse aggregate were investigated. The volcanic slags were brought from the quarry crushed and then classified according to their aggregate sizes of 0--8, 0--16, 0--31.5, 4--8, and 8--16 mm. The concrete series of five different volcanic slag sizes were produced by addition of a specific cement paste in volume fractions of 0.15, 0.30, 0.45 and 0.60. The cubic, cylindrical and prismatic specimens were made from each of the concrete series. The physical and mechanical properties of the concrete series were determined by conducting unit weight, slump, ultrasound velocity, Schmidt hardness, cylindrical and cubic compressive, bending and splitting tensile strength tests. The results indicated that the volcanic slags can be safely used in the production of semi lightweight concrete.

  13. Pulverized coal firing of aluminum melting furnaces. Final report. [Sulfide capacity of various slags in given temperature range

    SciTech Connect

    Stewart, D.L. Jr.; Dastolfo, L.E. Jr.; DeYoung, D.H.

    1984-04-01

    Significant progress has been achieved in the development of a desulfurizing coal combustion process by the Aluminum Company of America (Alcoa) in a research program funded by the United States Department of Energy. Conceptually, high sulfur coal is burned with additives in a staged cyclone combustor, such that sufficient sulfur to obviate products of combustion (POC) scrubbing is retained in the slag by-product. Bench scale studies conducted during the program have shown that 70% of the sulfur (2.65% sulfur coal) reports to the slag at equilibrium through a 25% addition of iron ore to the coal. Results obtained correlate with published data for similar slag at higher temperatures. In pilot scale combustion tests, equilibrium levels of coal sulfur were retained by the slag (11 to 14%). Equilibrium sulfur capture was limited by low particulate retention and operating temperature higher than optimal. Cost estimates for implementation of the process are included in this report. 28 references, 39 figures, 58 tables.

  14. High frequency conductivity in carbon nanotubes

    SciTech Connect

    Abukari, S. S. Mensah, S. Y.; Twum, A.; Mensah, N. G.; Adu, K. A.; Rabiu, M.

    2012-12-15

    We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ω{sub B} for metallic zigzag CNs and ω < ω{sub B} for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  15. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat.

    PubMed

    Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong

    2017-01-01

    Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H2 and CH4 and the polluted gases of NH3, NO and NO2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein.

  16. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    PubMed Central

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-01-01

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477

  17. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    PubMed

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  18. Liquidus Temperatures of Commercial ESR Slags,

    DTIC Science & Technology

    1981-05-01

    refining (ESR) process is calcium fluoride . To obtain the desired slag properties for each melting operation one or more compounds such as lime...magnesium oxide, alumina, s ’ilica and rare earth oxides may be added to the fluoride . Information on the physical and chemical properties of an Immense...the highly reactive nature of the fluoride -based slags, many gaps still remain. For example, most effort has concentrated upon the more commonly used

  19. High-frequency conductivity of photoionized plasma

    SciTech Connect

    Anakhov, M. V.; Uryupin, S. A.

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  20. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  1. Portland cement-blast furnace slag blends in oilwell cementing applications

    SciTech Connect

    Mueller, D.T.; DiLullo, G.; Hibbeler, J.

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  2. Immobilization of Cr (VI) in stainless steel slag and Cd, As, and Pb in wastewater using blast furnace slag via a hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Tae, Soon-Jae; Morita, Kazuki

    2017-05-01

    The immobilization of hexavalent chromium in stainless steel slag using blast furnace slag as the immobilizing agent and by performing a hydrothermal treatment was investigated. The results showed that there was no immobilization in the absence of the blast furnace slag. On the other hand, the hexavalent chromium in stainless steel slag could be immobilized through the hydrothermal reaction when blast furnace slag was used at 250 °C for 24 h. A leaching test was performed to evaluate the degree of immobilization of hexavalent chromium in the products formed by the hydrothermal reaction. It was found that the degree of immobilization was very high. Based on the results obtained, the immobilization mechanism of hexavalent chromium in stainless steel slag, resulting from the hydrothermal treatment of blast furnace slag, could be elucidated. Finally, the immobilization of cadmium, lead, and arsenic using blast furnace slag as the immobilization agent was also studied while focusing on the effects of the hydrothermal treatment.

  3. High Thermal Conductivity Carbon/Carbon Composites.

    DTIC Science & Technology

    1995-09-30

    The objective of this project was to develop a lowcost, high thermal conductivity carbon/carbon composite with a mesophase pitch -based matrix. A low...carbonization technique and heat treatment of the mesophase pitch was utilized to enhance composite properties by increasing the composite density...Three different fibers, T300 PAN-based, P55 pitch -based, and an experimental high thermal conductivity mesophase pitch -based, were incorporated as the

  4. Deformation Pattern of Nickel Slag Bonding on the Development of Concrete Construction

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Husain, H.; Mulyadi, M.; Samnur, S.; Arsyad, M.

    2017-05-01

    This paper presents an experimental work to study the deformation and compressive strength on Portland cement concrete with nickel slag aggregate. The amount of nickel slag varied were towards the total mass of coarse aggregate are 0%, 20%, 40%, 60%, 80%, and 100%, respectively. Each variation of the samples was made with a dimension of 15 cm X 15 cm X 15 cm, and then through the curing process. After 28 days, the sample was checked using mechanical testing conducted to investigate the compressive strength. The surface of the concrete fracture after mechanical testing process shows that the bonding between the matrix of Portland cement and nickel slag is a very strong. The bonding has connected very well. Therefore, when the force was given, then the fractions of nickel slag aggregate will hold the connectivity until to the maximum of the pressure force value before the materials are a damaged. The maximum of pressure force caused by the cracks will follow the fracture pattern of the concrete materials. This indicates that the bonding between matrix Portland cement and nickel slag has become the key factor in construction high-quality concrete.

  5. Phosphorus removal by steel slag filters: modeling dissolution and precipitation kinetics to predict longevity.

    PubMed

    Claveau-Mallet, Dominique; Courcelles, Benoît; Comeau, Yves

    2014-07-01

    This article presents an original numerical model suitable for longevity prediction of alkaline steel slag filters used for phosphorus removal. The model includes kinetic rates for slag dissolution, hydroxyapatite and monetite precipitation and for the transformation of monetite into hydroxyapatite. The model includes equations for slag exhaustion. Short-term batch tests using slag and continuous pH monitoring were conducted. The model parameters were calibrated on these batch tests and experimental results were correctly reproduced. The model was then transposed to long-term continuous flow simulations using the software PHREEQC. Column simulations were run to test the effect of influent P concentration, influent inorganic C concentration and void hydraulic retention time on filter longevity and P retention capacity. High influent concentration of P and inorganic C, and low hydraulic retention time of voids reduced the filter longevity. The model provided realistic P breakthrough at the column outlet. Results were comparable to previous column experiments with the same slag regarding longevity and P retention capacity. A filter design methodology based on a simple batch test and numerical simulations is proposed.

  6. Energy effective approach for activation of metallurgical slag

    NASA Astrophysics Data System (ADS)

    Mazov, I. N.; Khaydarov, B. B.; Mamulat, S. L.; Suvorov, D. S.; Saltikova, Y. S.; Yudin, A. G.; Kuznetsov, D. V.

    2016-01-01

    The paper presents results of investigation of the process of mechanical activation of metallurgical slag using different approaches - ball milling and electromagnetic vortex apparatus. Particle size distribution and structure of mechanically activated slag samples were investigated, as well as energetic parameters of the activation process. It was shown that electromagnetic vortex activation is more energy effective and allows to produce microscale milled slag-based concrete using very short treatment time. Activated slag materials can be used as clinker-free cement in civilian and road construction, providing ecology-friendly technology and recycling of high-tonnage industrial waste.

  7. Electrochemical corrosion of iron-magnesium-alumina spinel (FMAS) in molten potassium salts and coal slag

    SciTech Connect

    Marchant, D.D.; Griffin, C.W.; Bates, J.L.

    1981-01-01

    Iron, magnesium-alumina spinel (FMAS) (0.25 Fe/sub 3/O/sub 4/ . 0.75 MgAl/sub 2/O/sub 4/) has been considered for use as an electrode in magnetohydrodynamic (MHD) generator channels. Predominantly an electronic conductor, FMAS has adequate electrical conductivity (>1 S/m) above 520/sup 0/K. In addition, FMAS can be easily fabricated into a form and sintered in air to >90% theoretical density and has a melting point of 2124 +- 20/sup 0/K. Laboratory tests to measure both the electrochemical and chemical corrosion of FMAS in molten K/sub 2/CO/sub 3/, K/sub 2/SO/sub 4/ and coal slags were developed at the Pacific Northwest Laboratory to evaluate the relative corrosion of FMAS. Under isothermal conditions, a direct electric current was passed between an anode and a cathode through a molten electrolyte. The molten coal slags were synthetic high-calcium, low-iron Montana Rosebud and low-calcium, high-iron Illinois No. 6. Evaluations of electrochemical corrosion were made as functions of current density, temperature, and slag composition. These results were compared to those of FMAS tested without electric current. The corrosion rates and reaction products were investigated by optical microscopy and scanning electron microscopy. Overall, FMAS has too-high an electrochemical corrosion rate to be considered as MHD electrodes in Montana Rosebud coal slag or in systems where only molten potassium salts are present. However, FMAS may be considered for use in high-iron coal slags although the corrosion rates are still quite high even in these slags.

  8. Polyethylene nanofibres with very high thermal conductivities

    NASA Astrophysics Data System (ADS)

    Shen, Sheng; Henry, Asegun; Tong, Jonathan; Zheng, Ruiting; Chen, Gang

    2010-04-01

    Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m-1 K-1 (ref. 1). However, recent work suggests that individual chains of polyethylene-the simplest and most widely used polymer-can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as ~104 W m-1 K-1, which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an `ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.

  9. Polyethylene nanofibres with very high thermal conductivities.

    PubMed

    Shen, Sheng; Henry, Asegun; Tong, Jonathan; Zheng, Ruiting; Chen, Gang

    2010-04-01

    Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an 'ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.

  10. High electrical conductivity in upper mantle

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    In a joint study by geophysicists at two national laboratories, Los Alamos Scientific Laboratory and Lawrence Livermore National Laboratory, it was concluded that upper-mantle rocks may have relatively high electrical conductivity, presumably because of small amounts of carbon situated along grain boundaries. This impurity conductivity is similar to values determined in the laboratory for low-grade oil shale during pyrolysis. The residual char has electrical conductivity of 10-1 to 10-2 S/m, which is as much as 106 greater than the conductivity of unpyrolized low-grade oil shale (T. Shankland and A. Duba, Carbon-enhanced electrical conductivity in rocks (abstract), Eos, 63, 438, 1982). This much is known; the implications follow.

  11. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  12. The adsorptive removal of disinfection by-product precursors in a high-SUVA water using iron oxide-coated pumice and volcanic slag particles.

    PubMed

    Kaplan Bekaroglu, S S; Yigit, N O; Karanfil, T; Kitis, M

    2010-11-15

    The main objective of this work was to study the effectiveness of iron oxide-coated pumice and volcanic slag particles in removing disinfection by-product (DBP) precursors from a raw drinking water source with high specific UV absorbance (SUVA(254)) value. Iron oxide coating of particles significantly increased dissolved organic carbon (DOC) uptakes and decreased DBP formation after chlorination compared to uncoated particles. pH values close to neutral levels during adsorption and chlorination provided DOC, trihalomethane and haloacetic acid reductions around 60-75% employing 6 g/L coated particle dosage. Higher degree of DOC and DBP reductions (>85%) were obtained with increasing particle dose. The uptake of bromide by iron oxide surfaces was negligible and increasing bromide concentrations (up to 550 μg/L) did not negatively impact the DOC uptake. However, due to competition between natural organic matter (NOM) and bicarbonate for the iron oxide surfaces, increasing bicarbonate alkalinity levels reduced DOC uptakes. Overall, the results indicated that the iron oxide-coated pumice/slag particles are effective adsorbents to remove NOM and control DBP formation in waters with relatively high DOC and SUVA(254) levels. However, they may not be effective for waters with alkalinity levels above 250 mg CaCO(3)/L. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Separation of Anosovite from Modified Titanium-Bearing Slag Melt in a Reducing Atmosphere by Supergravity

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Gao, Jintao; Wang, Fuqiang; Guo, Zhancheng

    2017-04-01

    The anosovite was effectively separated from the modified titanium (Ti)-bearing slag melt in a reducing atmosphere by supergravity. The slag melt went through the filter along the supergravity direction, whereas the high-purity rod-shaped anosovite crystals of size 200 to 4000 μm were intercepted by the filter and separated from the slag melt. Moreover, the effects of slag composition and gravity coefficient on the reduction, precipitation, and separation of anosovite crystals were investigated further.

  14. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate

    NASA Astrophysics Data System (ADS)

    Permana, S.; Soedarsono, J. W.; Rustandi, A.; Maksum, A.

    2016-05-01

    Indonesia, as the second largest tin producer in the world, has a byproduct from the production of tin. This byproduct is in the forms of tin slag containing tantalum pentoxide (Ta2O5) and niobium pentoxide (Nb2O5). This study focuses on the recovery of tantalum pentoxide and niobium pentoxide from the tin slag. In the process, one part of the tin slag sample was sieved only (BTS), and the other was roasted at 900°C, water quenched and then sieved (BTS-RQS). Samples BTS and BTS-RQS were characterized by thermo gravimetric analysis (TGA) and X-ray flourence (XRF). One part of BTS-RQS sample was dissolved in hydrofluoric acid (HF) and the other was dissolved in hydrochloric acid (HCl), washed with distilled water, then dissolved into sodium hydroxide (NaOH). Each sample was characterized by using XRF. The BTS sample produced the highest recovery of 0.3807 and 0.6978% for Ta2O5 and Nb2O5, respectively, from the particle size of -1.00+0.71 and a fraction of 47.29%, while BTS-RQS produced the highest recovery of 0.3931 and 0.8994% for Ta2O5 and Nb2O5, respectively, on the particle size of -0.71+0350 and a fraction of 21%. BTS-RQS, dissolved with 8% hydro fluoride acid, yields tantalum pentoxide and niobium pentoxide with a ratio of 2.01 and 2.09, respectively. For the sample BTS-RQS dissolve first with 6M hydrochloric acid, washed with distilled water, then dissolved with sodium hydroxide 10M, the yield ratios are 1.60 and 1.84 for tantalum pentoxide and niobium pentoxide, respectively. In this study, it is found that the dissolution by using hydrofluoric acid 8% yields the best ratio.

  15. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect

    PI: James S. Tulenko; Co-PI: Ronald H. Baney,

    2007-10-14

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. UO2 has the advantages of a high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation. The main disadvantage of UO2 is its low thermal conductivity. During a reactor’s operation, because the thermal conductivity of UO2 is very low, for example, about 2.8 W/m-K at 1000 oC [1], there is a large temperature gradient in the UO2 fuel pellet, causing a very high centerline temperature, and introducing thermal stresses, which lead to extensive fuel pellet cracking. These cracks will add to the release of fission product gases after high burnup. The high fuel operating temperature also increases the rate of fission gas release and the fuel pellet swelling caused by fission gases bubbles. The amount of fission gas release and fuel swelling limits the life time of UO2 fuel in reactor. In addition, the high centerline temperature and large temperature gradient in the fuel pellet, leading to a large amount of stored heat, increase the Zircaloy cladding temperature in a lost of coolant accident (LOCA). The rate of Zircaloy-water reaction becomes significant at the temperature above 1200 oC [2]. The ZrO2 layer generated on the surface of the Zircaloy cladding will affect the heat conduction, and will cause a Zircaloy cladding rupture. The objective of this research is to increase the thermal conductivity of UO2, while not affecting the neutronic property of UO2 significantly. The concept to accomplish this goal is to incorporate another material with high thermal conductivity into the UO2 pellet. Silicon carbide (SiC) is a good candidate, because the thermal conductivity of single crystal SiC is 60 times higher than that of UO2 at room temperature and 30 times higher at 800 oC [3]. Silicon carbide also has the properties of low thermal neutron absorption cross section, high melting point, good chemical

  16. Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Huang, Shuigen; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2017-03-01

    Basic oxygen furnace (BOF) steel slag is a main byproduct in steelmaking, and its valorization is therefore of considerable interest, from a metal-recovery perspective and from a residue-utilization perspective. In the present study, the carbothermic reduction of BOF slag was investigated systematically. The reductions of Fe- and P-containing phases (i.e., oxide and compounds) are discussed. Effects of Al2O3 and SiO2 additions on the solidification microstructure and mineralogy associated with the reduction processes were also investigated. The formation and growth of the extracted metallic phase are discussed, and the mineralogy of the residue slag is determined. We conclude that by controlling the additions under a rapid cooling condition, it is possible to extract metallic iron as high-grade metal and simultaneously to utilize the remaining slag for construction applications.

  17. Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Huang, Shuigen; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2017-06-01

    Basic oxygen furnace (BOF) steel slag is a main byproduct in steelmaking, and its valorization is therefore of considerable interest, from a metal-recovery perspective and from a residue-utilization perspective. In the present study, the carbothermic reduction of BOF slag was investigated systematically. The reductions of Fe- and P-containing phases ( i.e., oxide and compounds) are discussed. Effects of Al2O3 and SiO2 additions on the solidification microstructure and mineralogy associated with the reduction processes were also investigated. The formation and growth of the extracted metallic phase are discussed, and the mineralogy of the residue slag is determined. We conclude that by controlling the additions under a rapid cooling condition, it is possible to extract metallic iron as high-grade metal and simultaneously to utilize the remaining slag for construction applications.

  18. A highly stretchable, transparent, and conductive polymer

    DOE PAGES

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...

    2017-03-10

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less

  19. A highly stretchable, transparent, and conductive polymer

    PubMed Central

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan

    2017-01-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040

  20. A highly stretchable, transparent, and conductive polymer.

    PubMed

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  1. Micronutrient availability from steel slag amendment in pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Steel slag is a byproduct of the steel industry that can be used as a liming agent, but also has a high mineral nutrient content. While micronutrients are present in steel slag, it is not known if the mineral form of the micronutrients would render them available for plant uptake. The objective of...

  2. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  3. Predicting slag viscosity from coal ash composition

    SciTech Connect

    Laumb, J.; Benson, S.A.; Katrinak, K.A.; Schwalbe, R.; McCollor, D.P.

    1999-07-01

    Management of slag flow from cyclone-fired utility boilers requires accurate prediction of viscosity. Cyclones tend to build up slag when the cyclone combustion temperature is less than the temperature required to melt and tap the ash from the coal being fired. Cyclone-fired boilers designed for lignite are equipped with predry systems, which remove 6-9% of the moisture from the coal. Cyclones tend to slag when the as-received heating value of the fuel is less than 6350 Btu/lb and T250 (temperature where viscosity equals 250 poise) is greater than 2350 F. The T250 value, as well as the rest of the viscosity-temperature relationship, can be predicted using models based on coal ash composition. The focus of this work is to evaluate several models in terms of their agreement with measured viscosities. Viscosity measurements were made for ten samples, including nine lignite coals and one lignite-derived slag. Model performance is related to the SiO{sub 2}, CaO, and Fe{sub 2}O{sub 3} contents of the slag. The Sage and McIlroy and Kalmanovitch models worked best for high SiO{sub 2} and low Fe{sub 2}O{sub 3} fuels. The Senior model worked best when Fe{sub 2}O{sub 3} content was moderate to high.

  4. On the high conductivity of nonconjugated polymers

    SciTech Connect

    Lachinov, A. N. Kornilov, V. M.; Zagurenko, T. G.; Zherebov, A. Yu.

    2006-04-15

    The mechanism of charge transfer in a metal-electroactive polymer-metal structure has been experimentally studied near the threshold of the uniaxial-pressure-induced transition into a high-conductivity state in the polymer. The dynamics of the I-V curve is investigated as a function of the applied pressure. The data obtained are analyzed in terms of the model of injection currents using the concepts of possible scanning of a quasi-Fermi level near an injection level. Our estimates suggest that a narrow band made of deep trap states located near the Fermi level forms in the polymer film in the pretransition pressure range. In the immediate vicinity of the transition range, a narrow band of coherent charge transfer appears from these states; this band can be responsible for the high metal-type conductivity of thin polymer films, which has been repeatedly observed by many researchers.

  5. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    PubMed

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  6. Highly stretchable electrospun conducting polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Boubée de Gramont, Fanny; Zhang, Shiming; Tomasello, Gaia; Kumar, Prajwal; Sarkissian, Andranik; Cicoira, Fabio

    2017-08-01

    Biomedical electronics research targets both wearable and biocompatible electronic devices easily adaptable to specific functions. To achieve such goals, stretchable organic electronic materials are some of the most intriguing candidates. Herein, we develop highly stretchable poly-(3,4-ethylenedioxythiphene) (PEDOT) doped with tosylate (PEDOT:Tos) nanofibers. A two-step process involving electrospinning of a carrier polymer (with oxidant) and vapor phase polymerization was used to produce fibers on a polydimethylsiloxane substrate. The fibers can be stretched up to 140% of the initial length maintaining high conductivity.

  7. Highly conductive, printable pastes from capillary suspensions

    NASA Astrophysics Data System (ADS)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-08-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  8. Laser patterning of highly conductive flexible circuits.

    PubMed

    Ji, Seok Young; Ajmal, C Muhammed; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun

    2017-04-21

    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s(-1)). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm(-1). The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  9. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  10. Highly conductive, printable pastes from capillary suspensions

    PubMed Central

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-01-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics. PMID:27506726

  11. Laser patterning of highly conductive flexible circuits

    NASA Astrophysics Data System (ADS)

    Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun

    2017-04-01

    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  12. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  13. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1995-08-01

    This document is the third quarterly status report on a project conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve our technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. The knowledge gained from this work is intended to be incorporated into numerical codes that can be used to formulate anti-slagging strategies involving minimal disturbance of coal combustor performance.

  14. Ice melting properties of steel slag asphalt concrete with microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan

    2017-03-01

    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  15. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  16. Study of Reaction Between Slag and Carbonaceous Materials

    NASA Astrophysics Data System (ADS)

    Maroufi, Samane; Mayyas, Mohannad; Mansuri, Irshad; O'Kane, Paul; Skidmore, Catherine; Jin, Zheshi; Fontana, Andrea; Sahajwalla, Veena

    2017-06-01

    The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step C0 {\\longrightarrow}\\limits{{k3 }}{CO} + nC_{f} (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

  17. Aluminium recycling and environmental issues of salt slag treatment.

    PubMed

    Xiao, Yanping; Reuter, Markus A; Boin, Udo

    2005-01-01

    Environmental friendly recycling is the trend toward total recycling of aluminium metal. In the secondary aluminium industry, due to the complexity of compositions and contaminants in the various types of aluminium scraps, an understanding of the behavior of different scraps during melting is crucial in the recycling process. Salt slags are the byproducts of the secondary aluminium industry, which should be recycled and processed in a proper way by taking the environmental impact into consideration. This article provides qualitative assessment on 10 different commercial aluminium scraps for their relative recyclability via well-designed and controlled laboratory experiments. It confirms that more nonmetallic contaminants, smaller size, and higher ratio of surface area to body volume generally lead to a lower metal recovery. Recycling the scraps with lower recyclability normally generates more salt slags. High slag viscosity leads to more fine aluminum metal entrapped in the salt slag and thus increases the load of salt slag recycling. It was found that viscosity of the salt flux is increased with the amount of entrapped nonmetallic components, which affect the settling of heavier materials. In addition, the slag samples from the melting tests were leached and analyzed to evaluate the behavior of carbon containing scrap. The elevated carbon content in the scrap resulted in more carbide formation in salt slags and thus more methane generation in salt slag recycling with a higher environmental impact.

  18. Study of Reaction Between Slag and Carbonaceous Materials

    NASA Astrophysics Data System (ADS)

    Maroufi, Samane; Mayyas, Mohannad; Mansuri, Irshad; O'Kane, Paul; Skidmore, Catherine; Jin, Zheshi; Fontana, Andrea; Sahajwalla, Veena

    2017-10-01

    The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step C0 {\\longrightarrow}\\limits{{k3 }}{CO} + nCf (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

  19. Modeling of Manganese Ferroalloy Slag Properties and Flow During Tapping

    NASA Astrophysics Data System (ADS)

    Muller, Jacques; Zietsman, Johannes Hendrik; Pistorius, Petrus Christiaan

    2015-12-01

    Stable operation of submerged-arc furnaces producing high-carbon ferromanganese (HCFeMn) and silicomanganese (SiMn) requires tapping of consistent amounts of liquid slag and metal. Minimal effort to initiate and sustain tapping at reasonable rates is desired, accommodating fluctuations in especially slag chemical composition and temperature. An analytical model is presented that estimates the tapping rate of the liquid slag-metal mixture as a function of taphole dimensions, coke bed particulate properties, and slag and metal physicochemical properties with dependencies on chemical composition and temperature. This model may be used to evaluate the sensitivity to fluctuations in these parameters, and to determine the influence of converting between HCFeMn and SiMn production. The model was applied to typical HCFeMn and SiMn process conditions, using modeled slag viscosities and densities. Tapping flow rates estimated were comparable to operational data and found to be dependent mostly on slag viscosity. Slag viscosities were generally lower for typical SiMn slags due to the higher temperature used for calculating viscosity. It was predicted that flow through the taphole would mostly develop into laminar flow, with the pressure drop predominantly over the coke bed. Flow rates were found to be more dependent on the taphole diameter than on the taphole length.

  20. Modeling and control of copper loss in smelting slag

    NASA Astrophysics Data System (ADS)

    Tan, Pengfu

    2011-12-01

    A series of technical improvements have been implemented to address the issue of high copper losses in rotary holding furnace (RHF) slag, which were experienced at the Xstrata Copper Smelter at Mount Isa in 2007 and 2008. The copper losses in smelting slag in the RHF were more than 3% in 2006 and 2007. Thermodynamic models and viscosity models have been applied in the operation of Xstrata Copper Smelter in Australia. The theory of RHF key performance indicators has also been developed to reduce the copper losses in RHF slag. The RHF KPIs Theory has been applied in Mount Isa Copper Smelter. The copper losses in RHF slag dropped from 3.1% in 2007 to 0.76% in April 2009. The average copper loss in RHF slag in 2009 and 2010 was about 0.9%.

  1. Effect of Al2O3 Addition on the Precipitated Phase Transformation in Ti-Bearing Blast Furnace Slags

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin; Li, Jinfu; Sun, Yongqi; Seetharaman, Seshadri; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    The present paper aims to provide a fundamental understanding on phase change of Ti-enriched crystalline phase induced by Al2O3 addition in Ti-bearing blast furnace slags with different basicities using Single Hot Thermocouple Technique and X-ray Diffraction. The results showed that an increase in the Al2O3 content led to phase change from rutile or perovskite to Mg3Al4Ti8O25 and prompted crystallization of the slags with basicity of 0.60 and 0.75, whereas only CaTiO3 was precipitated at a basicity of 0.95. Both thermodynamic and kinetic analyses were conducted to study the slag crystallization, which would throw light on phase change and enhanced crystallization. To further reveal the relationship with Al2O3 addition on slag structure and crystallization, Fourier transform infrared spectroscopy and magic angle spinning-nuclear magnetic resonance were adopted, with AlO4 tetrahedra and AlO6 octahedra observed in the slag. For slags with the basicity of 0.60 and 0.75, AlO6 octahedron, which was suggested to induce the phase change from TiO2 or CaTiO3 to Mg3Al4Ti8O25, was detected at high Al2O3 content. On the other hand, in slags with the basicity of 0.95, abundant Ca2+ may be connected to TiO6 octahedra, resulting in CaTiO3 formation.

  2. Hydration of mechanically activated granulated blast furnace slag

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Kumar, Sanjay; Badjena, S.; Mehrotra, S. P.

    2005-12-01

    Ground granulated blast furnace slag (GGBFS) is known to possess latent hydraulic activity, i.e., it shows cementitious properties when in contact with water over a long period of time. Results are presented in this article to show that, in sharp contrast to published literature on the hydration of neat GGBFS, the complete hydration of slag is possible in a short time (days), even without a chemical activator. This is achieved if the slag used for hydration is mechanically activated, using an attrition mill. The nature of the hydration product of the mechanically activated slag depends not only on the initial specific surface area (SSA) of the slag but also on the surface activation, as manifested by the change in the zeta potential ( ξ) of the slag during the milling process. Depending upon the SSA and the ξ, the hydration product changed from nonreacted slag with high porosity (slag SSA < 0.3 m2/g, ξ>-29 mV) to hydrated slag with a compact structure (SSA=0.3 to 0.4 m2/g, ξ=-29 to -31 mV), and, finally, to fully hydrated slag with high porosity (SSA>0.4 m2/g, ξ ˜ 26 mV). Unlike the poorly crystalline hydration product formed by the nonactivated slag, even after prolonged hydration for years, the hydration product of mechanically activated slag was crystalline in nature. The crystallinity of the product improved as the duration of the mechanical activation increased. The calcium-silicate-hydrate (C-S-H) phases present in the slag hydration product, characterized by a Ca/Si ratio of 0.7 to 1.5, were similar to those found for the hydraulic cement binder, except for the presence of Mg and Al as impurities. In addition, the presence of a di-calcium-silicate-hydrate phase ( α-C2SH), which normally forms under hydrothermal conditions, and a Ca-deficient and Si-Al-rich phase (average Ca/Si mole ratio < 0.1 and Si/Al ˜ 3) is indicated, especially in the hydration product of slag that was activated for a longer time.

  3. High Thermal Conductivity Graphite Electronic Components

    NASA Astrophysics Data System (ADS)

    Peck, S. O.; Young, G. L.; Mellberg, W. J.; Wellman, A. F.; Cooney, J. E.

    1996-08-01

    This project will apply high thermal conductivity graphite to three major spacecraft electronic components: (1) the thermal plane of a printed wiring board, (2) the subassembly or tray that holds the board, and (3) the equipment panel that the tray mounts on. The complete heat transfer path from chip level heat source to radiative rejection on the exterior surface of the equipment panel will therefore be addressed. Thermal and structural requirements representative of current spacecraft will drive an optimized solution strategy. The project will be completed by fabricating the three prototypical test articles and measuring their performance in a representative space environment.

  4. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres.

    PubMed

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal "influence" in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis.

  5. Hierarchical Order of Influence of Mix Variables Affecting Compressive Strength of Sustainable Concrete Containing Fly Ash, Copper Slag, Silica Fume, and Fibres

    PubMed Central

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal “influence” in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis. PMID:24707213

  6. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  7. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  8. Nonequilibrium Sulfur Capture and Retention in an Air cooled Slagging Coal Combustion.

    SciTech Connect

    Zauderer, B.

    1997-04-14

    Calcium oxide sorbents injected in a slagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. The last of the 16 tests planned for this project was completed in the present reporting period. This was the first test in this project that validated one of the primary hypothesis of this project, namely to retain substantial quantities of sulfur in slag requires high slag mass flow rate. Previous attempts to achieve high sulfur retention with artificial slag met limited success. In this, the 16th test, a high, 37%, ash Indian coal was injected into Coal Tech`s 20 MMBtu/hr air cooled, slagging combustor with gypsum, CaSO{sub 4} (2H{sub 2}O). The slag analysis showed that 20% of the sulfur in the gypsum remained in the slag. This is double the highest sulfur concentration in slag measured in numerous test operations with this combustor. While the test results to date have met the objectives of this project, further high slag mass flow rate tests are planned with the Indian coal to optimize sulfur retention in slag.

  9. Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass

    NASA Astrophysics Data System (ADS)

    Dai, Wen-bin; Li, Yu; Cang, Da-qiang; Zhou, Yuan-yuan; Fan, Yong

    2014-05-01

    This study proposes an efficient way to utilize all the chemical components of the basic oxygen furnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000°C in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.

  10. Recovery of Copper from the Slag of Khatoonabad Flash Smelting Furnace by Flotation Method

    NASA Astrophysics Data System (ADS)

    Karimi, Nader; Vaghar, Ramez; Mohammadi, Mohammad Reza Tavakoli; Hashemi, Seyed Ahmad

    2013-04-01

    Copper loss in the slag of Khatoonabad flash smelting furnace is estimated to be about 1-3 %. At present, the electric slag cleaning furnace is used for the recovery of copper from slag. However, due to low recovery efficiency of electric furnace along with high consumption of electrical energy and water, selection of a method to enable minimum energy consumption and maximum recovery of copper seems to be essential. Therefore, the aim of this study was to investigate the possibility of copper recovery from this slag using flotation method, and to determine the effective parameters involved in the process. Based on the experiments conducted, the best results were obtained for pH 11.5, 60 g/t Z11 and R407 collectors with a weighing ratio of 3-2, 40 g/t of MIBC and A65 frothers with an equal weighting ratio and grinding time of 45 min. Under these conditions, the copper concentrate grade and recovery were 19 and 91.1 % in the rougher step, 27.4 and 96.3 % in the cleaner step, and 32 and 93 % in the recleaner step, respectively.

  11. Ecotoxicity of Concretes with Granulated Slag from Gray Iron Pilot Production as Filler.

    PubMed

    Hybská, Helena; Hroncová, Emília; Ladomerský, Juraj; Balco, Karol; Mitterpach, Jozef

    2017-05-06

    This paper focuses on research concerning the ecotoxicological properties of granulated slag from the pilot production of gray iron with red mud addition and concrete composites with the application of this slag. Red mud is a hazardous waste generated in the production of aluminium oxide. Negative ecotoxicological tests are, therefore, one of the basic prerequisites for the ability to use granulated slag from gray iron pilot production. Granulated slag and concrete composite samples with various ratios of granulated slag have been subject to ecotoxicity tests: determining root growth inhibition in the highly-cultivated plant Sinapisalba, and determining acute toxicity in Daphniamagna. The results of ecotoxicological testing of granulated slag from gray iron standard production and gray iron pilot production with the additive were, according to the standard (STN 83 8303), negative. Additionally, the results of ecotoxicological tests of concrete composites were negative, with the exception of a 50% substitution of fine aggregate with slag from gray iron pilot production.

  12. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, July 1--September 31, 1996

    SciTech Connect

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1996-10-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Conventional slag and ash removal methods include the use of in situ blowing or jet-type devices such as air or steam soot blowers and water lances. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. Several tests have been performed with single shot detonation wave at University of Texas at Arlington to remove the slag deposit. To hold the slag deposit samples at the exit of detonation tube, two types of fixture was designed and fabricated. They are axial arrangement and triangular arrangement. The slag deposits from the utility boilers have been used to prepare the slag samples for the test. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer, and air-heater, i.e., relatively softer slags) and 30% of the reheater slag (which is harder) even at a distance of 6 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. The annual report discusses about the results obtained in effectively removing the slag.

  13. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    PubMed

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na2SiO3:NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Slag recycling of irradiated vanadium

    SciTech Connect

    Gorman, Patrick K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  15. Dissolution of alumina, copper oxide and nitrogen in molten slags: Thermodynamics and kinetics

    NASA Astrophysics Data System (ADS)

    Fan, Peng

    Three studies have been conducted concerning thermodynamics and kinetics of dissolution of alumina, copper oxides and nitrogen in various molten slags. In the first study, the dissolution rate of alumina particles in molten CaO-Al2O3-SiO2 slag was measured at 1500--1550°C by direct sampling method for the purpose of understanding the dissolution behavior of alumina inclusion in molten slags. It was found that the dissolution rate decreased with increasing SiO2 and Al2O3 contents in slag, but increased with increasing temperature. In the ladle type slags, alumina particles dissolved much faster than in the tundish type slags. In the second study, solubility of solid CuO in molten Na2O-B 2O3 slag and liquid Cu2O in molten CaO-B 2O3-SiO2 slag was measured at 1000°C and 1250°C, with attempts to find suitable slags for the fluxing stage of the proposed oxidizing-fluxing process to remove copper from steel scrap. Experimental results showed that the minimum solubility occurred at neutral slag compositions, demonstrating amphoteric nature of CuO and Cu2O A regular solution model was employed to interpret the solubility data of CuO in Na2O-B 2O3 slag to obtain the interaction energies of CuO-NaO 0.5 and CuO-BO1.5, and then solubility curve, iso-activity curves and isothermal section of phase diagram of CuO-Na2O-B 2O3 system at 1000°C were drawn from the model calculation. Basic Na2O-B2O3 slag is expected to be a suitable slag for the fluxing process. The objective of the third study is to investigate the feasibility of removing nitrogen from molten steel by two newly proposed slag systems, TiO slag and Ti2O3 slag. Nitrogen distribution ratios between slag and steel were measured at 1600°C, for CaO-Al2O3-TiO, CaO-Al2O3-Ti 2O, CaO-Al2O3-TiO2 and CaO-Al 2O3 by two new slag-metal equilibration techniques, i.e., liquid sealing method and static atmosphere method. Activity coefficients of AIN and TiN, as useful indexes of measuring ability of slag to remove nitrogen, were

  16. Removal of phosphate from aqueous solution with blast furnace slag.

    PubMed

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  17. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect

    Jamil A. Khan

    2009-11-21

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  18. Effect of fuel quality on slagging behavior in a cyclone-fired boiler

    SciTech Connect

    Katrinak, K.; Laumb, J.; Peterson, W.; Schwalbe, R.

    1998-12-31

    Relationships between the occurrence of poor slag flow episodes at a cyclone-fired boiler, coal mineral content, heating value, and other fuel quality parameters have been investigated. In addition, optimization of boiler operating conditions to match coal quality is the major emphasis of current activities. The boiler fires North Dakota lignite, a highly variable fuel, and experiences intermittent cyclone slagging problems related to coal quality. Cyclone slagging episodes were found to occur when the heating value of the fuel was less than 6600 Btu/lb and the T250 was greater than 2250 F. Higher-Btu coals burn hotter and appear to be able to handle higher T250 values without slagging. Other fuel quality parameters related to cyclone slag flow behavior include high silicon and aluminum concentrations and high concentrations of the silicon- and aluminum-rich clay minerals illite and montmorillonite. These minerals are thought to contribute to cyclone slagging episodes by reducing the ability of the slag to incorporate calcium, thus leading to increased slag viscosity. To improve slag flow behavior, operating conditions have been modified to maintain high temperatures in the cyclones. Changes include increasing coal drying temperature and balancing the air/fuel ratio. T250 can be readily calculated from coal ash composition. Clays and other minerals can be identified in individual coal particles using automated scanning electron microscopy with energy-dispersive X-ray spectrometry. Use of these analytical techniques can enable potential cyclone slagging problems to be predicted in advance.

  19. Evolution of Temperature and Solid Slag Film During Solidification of Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Wen, Guanghua; Sun, Qihao; Tang, Ping

    2017-01-01

    A mathematical model based on one-dimensional transient heat conduction was developed to calculate temperature distribution of slag film during cooling process. Solid slag film was obtained from a water-cooled copper detector, and the evolution of its structure was analyzed according to the calculated results and crystallization behavior of mold fluxes. During formation process of the solid slag film, the cooling rate of liquid slag first increases, and then decreases with time. The maximum value of the cooling rate may exceed 50 K/s. Before the solid slag film is formed, the cooling rate of molten slag on the detector side is much higher than that of slag on the liquid slag side. Experimental results indicate that the thermal history of a cooling process has an effect on the crystallization temperature of mold flux. In addition, variation of temperature can also influence the structure of solid slag film since the increase of temperature inside the slag film may lead to the crystallization of the glassy layer.

  20. Evolution of Temperature and Solid Slag Film During Solidification of Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Wen, Guanghua; Sun, Qihao; Tang, Ping

    2017-04-01

    A mathematical model based on one-dimensional transient heat conduction was developed to calculate temperature distribution of slag film during cooling process. Solid slag film was obtained from a water-cooled copper detector, and the evolution of its structure was analyzed according to the calculated results and crystallization behavior of mold fluxes. During formation process of the solid slag film, the cooling rate of liquid slag first increases, and then decreases with time. The maximum value of the cooling rate may exceed 50 K/s. Before the solid slag film is formed, the cooling rate of molten slag on the detector side is much higher than that of slag on the liquid slag side. Experimental results indicate that the thermal history of a cooling process has an effect on the crystallization temperature of mold flux. In addition, variation of temperature can also influence the structure of solid slag film since the increase of temperature inside the slag film may lead to the crystallization of the glassy layer.

  1. Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution.

    PubMed

    Gao, Hongyu; Song, Zhenzhen; Zhang, Weijun; Yang, Xiaofang; Wang, Xuan; Wang, Dongsheng

    2017-03-01

    Water quenching blast furnace slag (WQBFS) is widely produced in the blast furnace iron making process. It is mainly composed of CaO, MgO, Al2O3, and SiO2 with low contents of other metal elements such as Fe, Mn, Ti, K and Na. In this study, WQBFS was treated with grinding, hydrochloric acid acidification, filtration, filtrate extraction by alkali liquor and a hydration reaction. Then BFS micropowder (BFSMP), BFS acidified solid (BFSAS) and BFS acid-alkali precipitate (BFSAP) were obtained, which were characterized by X-ray diffraction, scanning electron microscopy, X-ray fluorescence and Brunauer-Emmet-Teller (BET) specific surface area. The decoloration efficiency for Methyl Orange (MO) was used to evaluate the adsorptive ability of the three absorbents. The effects of adsorptive reaction conditions (pH and temperature of solution, reaction time, sorbent dosage and initial concentration) on MO removal were also investigated in detail. The results indicated that BFSAP performed better in MO removal than the other two absorbents. When the pH value of MO solutions was in the range 3.0-13.0, the degradation efficiency of a solution with initial MO concentration of 25mg/L reached 99.97% for a reaction time of 25min at 25°C. The maximum adsorption capacity of BFSAP for MO was 167mg/g. Based on optimized experiments, the results conformed with the Langmuir adsorption isotherm and pseudo-second-order kinetics. Among inorganic anions, SO4(2-) and PO4(3-) had significant inhibitory effects on MO removal in BFSAP treatment due to ion-exchange adsorption. Copyright © 2016. Published by Elsevier B.V.

  2. Use of Al-Killed Ladle Furnace Slag in Si-Killed Steel Process to Reduce Lime Consumption, Improve Slag Fluidity

    NASA Astrophysics Data System (ADS)

    Behera, Narottam; Raddadi, Ahmad; Ahmad, Shahreer; Tewari, Neeraj; Zeghaibi, Othman

    Slag is a by-product formed in most metallurgical process. During the steelmaking process a large amount of slag is produced, which becomes a source of waste, which in many instances is land filled. Such areas filled with waste materials have become a significant source of pollution. Slag recycling is then becoming important in recent years. Recycling can be an efficient option to reduce such waste. Fluorspar (Calcium Fluoride) is generally used to help fluidize the slag; however, Fluorspar has a corrosive effect on the ladle refractory and is environmentally harmful. Alternatively, Calcium Aluminate synthetic slag is very effective in making the slag more fluid, but it is costly. The slag generated in Al-killed treatment at ladle can provide a material with advantages over Calcium aluminate synthetic slags and Fluorspar, by being low-cost, noncorrosive, and less environmentally harmful. Plant trials conducted at Hadeed indicate that Al-killed ladle slags coming from its Flat Product Ladle Furnace process could be used in place of Calcium Fluoride/ Bauxite/Calcium Aluminate fluxes for the production of Si- killed steel grades, thus reducing Lime consumption, reducing waste and improving desulphurization levels.

  3. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium].

    PubMed

    Zhai, Li-hua; He, Lian-sheng; Xi, Bei-dou; Chen, Yue; Meng, Rui; Huo, Shou-liang; Liu, Hong-liang

    2008-12-01

    The long-term phosphorus (P) adsorption and retention capacities of electric arc furnace (EAF) steel slag materials derived from one batch and a 278-d column experiments with a synthetic P solution were compared. The investigations of the regeneration of the P adsorption capacity by water level decrease was conducted. It was revealed column experiment on a long-term basis can determine P saturation of EAF accurately. And the results can be used for realistic estimations of constructed wetland systems (CWS) longevity. EAF slag showed a high afinity for P, reaching a saturation value of 1.65 g/kg. Regeneration experiment of the P adsorbing capacity by this material showed that, after 4 weeks of water level decrease, EAF steel slag was able to increase its initial P adsorption capacity to 2.65 g/kg. A sequential P fractionation experiment was performed to quantify the proportion of P bound to mineral compounds in EAF. From the most loosely bound to the most strongly bound P fraction, P1 was associated with resin extractable (13%), Fe extractable (0.5 mol/L Na2CO3, 39%), Al extractable (0.1 mol/L NaOH, 21%), Ca extractable (1 mol/L HCl, 13%), and Ca in a stable residual pool (concentrated hot HCl, 14%). X-ray fluorescence analyses of EAF steel slag chemical composition revealed that the continuous application of a P solution resulted in 300% and 170% increases in K2O and P2O5, respectively. Al2O3 and FeO increased by 8%, while the portion of CaO remained unchanged. The investigated properties (P retention potential, regeneration of P adsorption, P fractionation) provide useful data about the suitability of slag material as a media for longterm P removal and dry-wet operation can improve P retention capacity of EAF to prolong the longevity of full-scale CWS.

  4. Conducting polymer for high power ultracapacitor

    DOEpatents

    Shi, Steven Z.; Gottesfeld, Shimshon

    2002-01-01

    In accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention is directed to an electrode having a conducting polymer active material for use in an ultracapacitor. The conducting polymer active material is electropolymerized onto a carbon paper substrate from a mixed solution of a dimer of (3,3' bithiophene) (BT) and a monomer that is selected from the group of thiophenes derived in the 3-position, having an aryl group attached to thiophene in the 3-position or having aryl and alkly groups independently attached to thiophene in the 3 and 4 positions.

  5. Electric conductance of highly selective nanochannels

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2013-05-01

    We consider electric conductance through a narrow nanochannel in the thick-double-layer limit, where the space-charge Debye layers adjacent to the channel walls overlap. At moderate surface-charge densities the electrolyte solution filling the channel comprises mainly of counterions. This allows to derive an analytic closed-form approximation for the channel conductance, independent of the salt concentration in the channel reservoirs. The derived expression consists of two terms. The first, representing electromigratory transport, is independent of the channel depth. The second, representing convective transport, depends upon it weakly.

  6. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  7. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  8. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  9. High precision cryogenic thermal conductivity standards

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Powell, R. L.; Weitzel, D. H.

    1970-01-01

    New apparatus allows accurate simultaneous measurement of thermal conductivity, electrical resistivity, and thermopower for technically important materials, such as new or uncommon alloys. A list of materials investigated is presented. Sources for obtaining data on these materials, as well as the source giving a description of the apparatus, are cited.

  10. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    NASA Astrophysics Data System (ADS)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  11. Stabilization of Black Cotton Soil Using Micro-fine Slag

    NASA Astrophysics Data System (ADS)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  12. Desulfurization ability of refining slag with medium basicity

    NASA Astrophysics Data System (ADS)

    Yu, Hui-xiang; Wang, Xin-hua; Wang, Mao; Wang, Wan-jun

    2014-12-01

    The desulfurization ability of refining slag with relative lower basicity ( B) and Al2O3 content ( B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity ( C S) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution ( L S). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO ( a CaO), with no deterioration of C S compared with conventional desulfurization slag. The measured L S between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  13. Suppression of slag foaming by a sound wave.

    PubMed

    Komarov, S V; Kuwabara, M; Sano, M

    2000-10-01

    The aim of this work was to study the effects of sound frequency, sound intensity and viscosity of slag on the slag foaming rate and the steady-state foam height. Experiments were carried out using two slags (BaO-B2O3) melted at a temperature of 1223 or 1273 K, as well as water-glycerin solutions at room temperature. Low frequency sound waves (< 1.3 kHz) are found to be more effective in the slag foaming suppression than high frequency waves (1.3-12 kHz). The steady-state foam height decreases abruptly when the sound pressure reaches a threshold value that depends on sound frequency and liquid viscosity. The results can be explained in terms of enhancing the rates of liquid drainage and film rupture induced by sound.

  14. Making steel with slag from secondary-aluminum production

    SciTech Connect

    Ovsyannikov, A.M.; Gizatulin, G.Z.; Perevorachaev, N.M.; Papuna, A.F.; Terziyan, S.P.; Voroshilin, V.S.

    1987-09-01

    Test slag was developed from secondary aluminum production and was found to contain no hydrate moisture. It is not hygroscopic, does not cake during storage, does not freeze and consists of 50-70% aluminum oxide, up to 8% silicon dioxide, 4-6% carbon oxide, 6-8% iron oxide, 2-4% potassium oxide plus sodium dioxide, 0.1% phosphorus oxide and 0.03-0.09% silicon. The high content of aluminum oxides and alkaline oxides makes the secondary-aluminum slag effective while the presence of metallic aluminum gives it deoxidizer and heat carrier properties. Three methods of using secondary-aluminum slag were compared. Producing active slag was found to aid sulfur removal and deoxidation and reduce refining time and heat.

  15. Slagging retrofit pulsed coal combustor: Final report

    SciTech Connect

    Not Available

    1987-01-01

    A concept for a novel form of slagging retrofit pulsed coal combustor was tested in the laboratory. The combustor is based on controlled use of a form of high pressure amplitude combustion instability. The approach adopted was to resolve, in single pulse experiments, the basic technical issues arising in the development of the combustor. In a cold flow device, the issues of coal spatial distribution were addressed and a combustor and solids disperser configuration was developed to give uniform coal distribution in the combustor. Single pulse ignition experiments were conducted to determine the pressure rise in combustor, pressure rise-decay times, and coal conversion a function of various operating variables. Coal injection, flame propagation, and blowdown times leading to potential combustor size reduction of three times over steady flow combustors were demonstrated. The results give high pressure exhaust leading to potentially improved downstream heat transfer and reduced boiler size. Finally, zero-, one-, and two-dimensional mathematical models were developed in support of the experiments and also to provide design capability. 11 refs., 43 figs.

  16. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  17. Estimating phosphorus removal by steel slag in a flume experiment: effects of P concentrations and subsurface hydrological conditions

    NASA Astrophysics Data System (ADS)

    Chagas, I. S. P.; Huang, C. H.; Bowling, L. C.; Smith, D. R.

    2015-12-01

    Managing excessive phosphorus (P) is essential to reduce the incidence of environmental quality issues, such as eutrophication and harmful algal blooms. One potential strategy that have been developed with this purpose is the use of P sorption materials (PSMs) to sequester P from water systems, which is the objective of this study. We evaluated the performance of steel slag, an industrial by-product with high P sorption potential, through a flume experiment under two different subsurface hydrological conditions, drainage and saturation, and two input P concentrations, 1 and 5 ppm. The 10-m flume configuration, designed to simulate processes occurring in a drainage ditch, is comprised of four 2.5-m sequential segments: a sediment bed, a slag bed over sediment, a slag dam built over a slag bed, and another sediment bed. In the experiments, all four segments of the flume were set to either saturation or with a constant drainage (percolation) of 0.1 L/min for each segment. The experiment was conducted with a constant flow of elevated P water at 7.3 L/min for 4 hrs (adsorption run) and followed 24 hrs later by a 4-hr run of deionized water (desorption run) at the same inflow rate. The adsorption-desorption cycle was repeated three times with the same sediment and slag materials, to allow testing of the resilience of P sorption under different PSM placement, subsurface hydrologic and P loading conditions. Preliminary results from the first adsorption and desorption cycle show that the flow-through slag section sequestered the most P during the adsorption runs. By comparing the different P inflow concentrations analysis, it is clear that the removal process is concentration driven: 83% of the injected P was removed in the 5 ppm as compared to 46% in the 1 ppm saturation run. Because of the higher P removal at 5 ppm P inflow, slightly higher release was also observed during the desorption run. Analyses of the persistence of steel slag as PSM under repeated adsorption and

  18. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    PubMed

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  19. Unconventional High Density Vertically Aligned Conducting Polymer

    DTIC Science & Technology

    2014-08-21

    CVD) method on silicon substrates using iron (Fe) on alumina as a catalyst . The as-grown A-CNT forests have a 1% volume fraction (Vf) of CNTs with...here, consisting of the anode of the conformal coating of oCVD PEDOT on A-CNTs (PEDOT/A-CNTs) and ultra-high density graphene-oxide cathode ( HD -a

  20. Modification of steelmaking slag by additions of salts from aluminum production

    NASA Astrophysics Data System (ADS)

    Walker, David C.

    The most common slag fluidizer in steelmaking is fluorspar, a mineral primarily composed of CaF2. Because of increasing consumption and decreasing availability of cheap fluorspar, steelmakers are seeking alternative means of achieving slag fluidity. One possible alternative to fluorspar is spent salt from secondary aluminum production. This salt is obtained from the used flux in remelting aluminum scrap and dross. This material is widely available and considered toxic (meaning that use in steelmaking helps to reduce environmental impacts from disposal). This project is an investigation of spent salt as a replacement for fluorspar in slag-fluidizing applications by viscosity measurements and weight loss measurements at high temperatures (to evaluate the amounts of gases are formed). In addition, characterization of raw materials and melted slags by XRD, chemical analysis, and EPMA have been undertaken. The spent salt addition has a positive effect on slag fluidity, and shows promise for use in slags.

  1. Long and high conductance helium heat pipe

    NASA Astrophysics Data System (ADS)

    Gully, Philippe

    2014-11-01

    This paper reports on the development and the thermal tests of two superfluid helium heat pipes. They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The copper braid is the support of the Rollin superfluid helium film which is essential in the heat transfer. The extremely low thickness of the liquid film allows for a low filling pressure, making the technology very simple without the need for any external hot reservoir and with the possibility to easily bend the tube. We present the design and discuss the thermal performance of two heat pipes tested for several filling pressures, adverse tilt angles and in 1.4-2.0 K temperature range. A minimum filling pressure (0.6 MPa) is needed to get significant transport capacity. A 12 mW transport capacity is achieved for 3.0 MPa filling pressure. It is shown that the long heat pipe (1.2 m) and the short one (0.25 m) have similar thermal performance in adverse tilt. At 1.7 K the long heat pipe, 120 g in weight, reaches a transport capacity of 5.7 mW/4.2 mW for a tilt angle of 0 / 60° and a thermal conductance of 600 mW/K for 4 mW transferred power. When the condenser reaches the super-fluid transition temperature, the Rollin film accelerates the cool down of the evaporator down to 1.7 K with a heating power applied to the evaporator.

  2. Effects of Slag Ejection on Solid Rocket Motor Performance

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Purinton, David C.; Hengel, John E.; Skelley, Stephen E.

    1995-01-01

    In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  3. Effect of Na2CO3 Addition on Carbothermic Reduction of Copper Smelting Slag to Prepare Crude Fe-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Yao, Weijie; Xu, Wuqi; Chen, Jinan

    2017-09-01

    Copper smelting slag is a useful secondary resource containing high iron and copper, which can be utilized to prepare crude Fe-Cu alloy by a direct reduction-magnetic separation process for making weathering-resistant steel. However, it is difficult to recover iron and copper from the slag by direct reduction since the iron mainly occurs in fayalite and the copper is held in copper sulfide. Therefore, enhancement reduction of copper slag is conducted to improve the recovery of copper and iron. Additives such as Na2CO3 has been proven to be capable of reinforcing the reduction of refractory iron ore. In this research, the effect of Na2CO3 on the carbothermic reduction of copper slag was investigated, and phase transformations during reduction and the distributing characteristics of iron and copper in the alloy and non-metallic phases of the reduced pellets were also studied. The results show that the metallization rate of iron and copper was increased with the addition of Na2CO3, leading to higher iron and copper recovery in Fe-Cu alloy powder. X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) results confirm that Na2CO3 is capable of enhancing the reduction of fayaltie, copper silicate and copper sulfide, which agrees well with thermodynamic analysis. Furthermore, the reduction mechanism of copper slag was demonstrated based on systematic experimental observations.

  4. Geochemistry and toxicity of a large slag pile and its drainage complex in Sudbury, Ontario.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2017-12-15

    Slag piles from mining activities are common worldwide, but in contrast to mine tailings the environmental impact of runoff from slag piles is less documented. This study was designed to assess the geochemistry and potential toxicity of water draining a large, 62.2ha slag pile in Sudbury, Ontario. The Coniston slag pile contains 12-20Mt of slag from smelting local Ni-Cu ore between 1913 and 1972. Slag leaching experiments confirmed slag is a source of sulphate (SO4), heavy metals (including Fe, Al, Ni, Co, Cu, Zn, Pb, Cr, Mn) and base cations (Ca, K, Mg, Na). Concentrations of some metals draining through slag in column experiments were similar to concentrations measured at the base of the slag pile, although base cations, SO4 and pH were much higher, possibly because of water inputs interacting with the surrounding basic glaciolacustrine landscape. The high pH rapidly precipitates metals, leading to high accumulations in surface sediments in the pond-wetland complex draining from the pile. Away from the pile's base, vegetation cover increases, which increases dissolved organic carbon (DOC) and nutrient concentrations in runoff along with metals with strong binding affinities (e.g. Cu). Total metal concentration in water and sediment exceed provincial guidelines, particularly near the slag pile, however WHAM7 modeling indicated the free metal ion concentration in water is very low. Nevertheless, 48-h toxicity experiments showed that water with greater concentrations of solutes collected close to the slag negatively impacts D. magna, suggesting water draining the slag pile can adversely impact biota in nearby drainage areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  6. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-08-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1-x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1-x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1-x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  7. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    SciTech Connect

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  9. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  10. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    NASA Astrophysics Data System (ADS)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  11. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea

    2017-01-01

    Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Computational Modeling of Temperature, Flow, and Crystallization of Mold Slag During Double Hot Thermocouple Technique Experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Liu, Rui; Thomas, Brian G.

    2013-10-01

    A three-dimensional finite-difference model has been developed to study heat transfer, fluid flow, and isothermal crystallization of mold slag during double hot thermocouple technique (DHTT) experiments. During the preheating stage, temperature in the middle of the mold slag sample was found to be significantly [~350 K (~77 °C)] lower than near the two thermocouples. During the quenching stage, the mold slag temperature decreases with the cooled thermocouple. The temperature across the mold slag achieves a steady, nonlinear temperature profile during the holding stage; the insulating effect of the crystallizing layer in the middle of the slag sample causes the high temperature region to become hotter, while the lower temperature mold slag becomes cooler. Fluid flow is driven by Marangoni forces along the mold slag surface from the hotter region to the cooler region, and then recirculates back through the interior. Slag velocities reach 7 mm/s. Crystallization is predicted to start in the middle of the slag sample first and then grows toward both thermocouples, which matches well with observations of the DHTT experiment.

  13. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  14. Molybdate adsorption from steel slag eluates by subsoils.

    PubMed

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils.

  15. Purex Processing of Dissolved Sand, Slag, and Crucible Containing High Levels of Boric Acid and Calcium Fluoride

    SciTech Connect

    Kyser, E.A.

    1998-05-01

    The plutonium solution obtained from the dissolution of SSC in F- Canyon will be high in fluoride. Flowsheet adjustments must be made to increase the plutonium extraction in the solvent extraction cycle to keep Pu losses from being excessive.

  16. Decontamination of metals by melt refining/slagging: First year progress report

    SciTech Connect

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1994-03-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult. The problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technologies for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of pilot scale melting demonstrations (100-500 lbs) to be conducted at selected commercial facilities. This program will identify methods that can be used to recycle stainless steel RSM which will be used to fabricate high and low level waste canisters for the Idaho Waste Immobilization Facility. This report summarizes the results of an extensive literature review and the first year`s progress on slag design, small-scale melt refining of surrogate-containing stainless steel (presently only a three month effort), and pilot-scale preparation of surrogate master ingots.

  17. Preparation of calcium silicate absorbent from iron blast furnace slag.

    PubMed

    Brodnax, L F; Rochelle, G T

    2000-09-01

    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  18. Low-Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers.

    PubMed

    Ugur, Asli; Katmis, Ferhat; Li, Mingda; Wu, Lijun; Zhu, Yimei; Varanasi, Kripa K; Gleason, Karen K

    2015-08-19

    Electronic conduction in conjugated polymers is of emerging technological interest for high-performance optoelectronic and thermoelectric devices. A completely new aspect and understanding of the conduction mechanism on conducting polymers is introduced, allowing the applicability of materials to be optimized. The charge-transport mechanism is explained by direct experimental evidence with a very well supported theoretical model. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    USDA-ARS?s Scientific Manuscript database

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  20. Kinetics and Mechanism of the Simultaneous Carbothermic Reduction of FeO and MnO from High-Carbon Ferromanganese Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv; Tangstad, Merete; Tranell, Gabriella

    2009-12-01

    The carbothermic reduction of 38.7 pct MnO-12.1 pct CaO-5.4 pct MgO-9.3 pct Al2O3-24.1 pct SiO2-10.4 pct FeO slag in Ar at 1600 °C was studied using the sessile drop wettability technique. Pure graphite, coke, and charcoal were used as the carbon material substrates. The reduction rates were evaluated by sampling at different reduction times and by analyzing the chemical compositions of the reduced slag and the produced metal. The carbothermic FeO reduction from slag is initially fast followed by a much slower reduction rate. However, the rate of the MnO reduction is slow in the fast FeO reduction stage, and it starts to increase significantly during the slow FeO reduction stage. The kinetics of FeO and MnO reduction are affected by the type of carbonaceous materials. Moreover, the rate of the carbon dissolution/transfer into the produced metal phase and the amount of the transferred manganese to the metal phase depend on the type of carbon. Based on the experimental observations and the thermodynamic calculations, a mechanism for MnO reduction was proposed. According to this mechanism, MnO is mainly reduced through a metallothermic reduction by Fe and the rate of MnO reduction is controlled by the rate of the consumption of FeO from the slag, which takes place simultaneously. In contrast, the rate of FeO reduction in the fast initial reduction stage is controlled by the rate of the carbon dissolution/transfer into the metal phase. However, at the second slow FeO reduction stage, it is reduced mainly by the solid carbon.

  1. Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles.

    PubMed

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-20

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 10(5) S m(-1)) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  2. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    PubMed Central

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-01-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m−1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333

  3. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m-1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  4. Reduction of nitrobenzene by steel convert slag with Fe(II) system: the role of calcium in steel slag.

    PubMed

    Luan, Fubo; Xie, Li; Sheng, Jie; Li, Jun; Zhou, Qi; Zhai, Guiming

    2012-05-30

    Experiments were conducted to examine of nitrobenzene reduction by steel convert slag (SCS) with Fe(II) system. The results showed SCS with Fe(II) was an effective reductant for nitrobenzene at pH 5.5-6.5. Further analysis suggested Fe(II) was adsorbed by SCS through ion replacement with SCS-bound Ca(II). More than 81% of the total Ca(II) in SCS was replaced with dissolved Fe(II), indicating a high adsorption capacity for Fe(II) (more than 5.82 mmol Fe(II)/g SCS). A three step mechanism (replacement process, conversion process and electron transfer process) was proposed for nitrobenzene reduction by SCS with Fe(II) system. The amount of Ca(II) in SCS determined the adsorption capacity for Fe(II) and further determined the reduction capacity of SCS with Fe(II) system. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A clean coal combustion technology-slagging combustors

    SciTech Connect

    Chang, S. L.; Berry, G. F.

    1989-03-01

    Slagging combustion is an advanced clean coal technology technique characterized by low NOx and SOx emission, high combustion efficiency, high ash removal, simple design and compact size. The design of slagging combustors has operational flexibility for a wide range of applications, including retrofitting boilers, magnetohydrodynamic combustors, coal-fired gas turbines, gasifiers and hazardous waste incinerators. In recent years, developers of slagging combustors have achieved encouraging progress toward the commercialization of this technology. Although there is a diversity of technical approaches among the developers, they all aim for a compact design of pulverized coal combustion with high heat release and sub-stoichiometric combustion regimes of operation to suppress NOx formation, and most aim to capture sulfur by using sorbent injection in the combustor. If the present pace toward commercialization continues, retrofitting boilers of sizes ranging from 20 to 250 MMBtu/hr (5.9 to 73 MWt) may be available for commercial use in the 1990's. 18 refs., 2 figs.

  6. Investigation of Freeze-Linings in a Nonferrous Industrial Slag

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Vervynckt, Stephanie; Jak, Evgueni

    2014-06-01

    Slag freeze-lining reactor wall protection is a widely used technology in high temperature reaction systems. An air-cooled probe technique was used to investigate the formation of the freeze-linings in an industrial blast furnace slag. The compositions of the phases and the microstructures within the deposits have been characterized. It has been demonstrated that an industrial air-cooled probe can be used to take bath samples from actual smelter operations. In addition, a laboratory-scale experiment was undertaken to investigate the formation, stability, and bath/deposit interface temperature at steady-state conditions. Importantly, the current study has shown that stable steady-state freeze-linings can be obtained in metallurgical reactors operating below the slag liquidus temperature. In spite of the fact that solids are present in the bulk slag, the deposit thickness remains unaltered due to the dynamic conditions present at the deposit/bath interface. The results are consistent with findings obtained on a number of other different slag systems and the proposed dynamic mechanism of deposit stabilization. The findings demonstrate the basis for, and potential benefits that may follow from, operating the high temperature reactors at temperatures below the liquidus temperature, i.e., with solids present, without a catastrophic build-up of solids. This change in design concept could result in significant decreases in operating temperature, energy, and operating cost savings.

  7. Mineral resource of the month: ferrous slag

    USGS Publications Warehouse

    ,

    2009-01-01

    The article offers information on mineral resource ferrous slag. Ferrous slag is produced through the addition of materials such as limestone and dolomite to blast and steel furnaces to remove impurities from iron ore and to lower the heat requirements for processes in iron and steel making. It is stated that the method of cooling is important for the market uses and value of ferrous slag. Some types of slag can be used in construction, glass manufacturing and thermal insulation.

  8. Analyzing the Technology of Using Ash and Slag Waste from Thermal Power Plants in the Production of Building Ceramics

    NASA Astrophysics Data System (ADS)

    Malchik, A. G.; Litovkin, S. V.; Rodionov, P. V.; Kozik, V. V.; Gaydamak, M. A.

    2016-04-01

    The work describes the problem of impounding and storing ash and slag waste at coal thermal power plants in Russia. Recovery and recycling of ash and slag waste are analyzed. Activity of radionuclides, the chemical composition and particle sizes of ash and slag waste were determined; the acidity index, the basicity and the class of material were defined. The technology for making ceramic products with the addition of ash and slag waste was proposed. The dependencies relative to the percentage of ash and slag waste and the optimal parameters for baking were established. The obtained materials were tested for physical and mechanical properties, namely for water absorption, thermal conductivity and compression strength. Based on the findings, future prospects for use of ash and slag waste were identified.

  9. Distinctive microstructural features of aged sodium silicate-activated slag concretes

    SciTech Connect

    San Nicolas, Rackel; Bernal, Susan A.; Mejía de Gutiérrez, Ruby; Deventer, Jannie S.J. van; Provis, John L.

    2014-11-15

    Electron microscopic characterisation of 7-year old alkali-activated blast-furnace slag concretes enabled the identification of distinct microstructural features, providing insight into the mechanisms by which these materials evolve over time. Backscattered electron images show the formation of Liesegang-type ring formations, suggesting that the reaction at advanced age is likely to follow an Oswald supersaturation–nucleation–depletion cycle. Segregation of Ca-rich veins, related to the formation of Ca(OH){sub 2}, is observed in microcracked regions due to the ongoing reaction between the pore solution and available calcium from remnant slag grains. A highly dense and uniform interfacial transition zone is identified between siliceous aggregate particles and the alkali activated slag binders, across the concretes assessed. Alkali-activated slag concretes retain a highly dense and stable microstructure at advanced ages, where any microcracks induced at early ages seem to be partially closing, and the remnant slag grains continue reacting.

  10. Products of steel slags an opportunity to save natural resources.

    PubMed

    Motz, H; Geiseler, J

    2001-01-01

    already accepted as a CEN standard and are used for a continuous quality control. Usually the suitability of steel slags is stated by fulfilling the requirements of national and/or international standards and regulations. Based on these standards and regulations in Germany in 1998 about 97% of the produced steel slags have been used as aggregates for road construction (e.g. as surface layer, road base and sub base for high trafficked roads), ways, earthworks, and armourstones for hydraulic structures. Consistent to the successful long-term experience not only products of steel slags but also products of blast furnace slags have been eliminated from the European Waste Catalogue and the European Shipment of Waste Regulation of the European Community, as well as from the lists of OECD for transfrontier movements by the decision of the OECD-Council from 21 September, 1995.

  11. Thermodynamics of Indium Dissolution Behavior in FeO-Bearing Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Park, Joo Hyun

    2015-02-01

    Indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was measured at 1573 K (1300 °C) to confirm the thermodynamic dissolution behavior of indium at atm. The indium solubility in FeO-bearing slags increased with increasing oxygen partial pressure and decreased with increasing basicity which is in proportion to the activity of FeO. The dissolution of indium in FeO-bearing slags was confirmed to progress according to the following reaction: The enthalpy change for the dissolution of indium in FeO-bearing slag was about -181 kJ/mol, indicating that indium dissolution is exothermic. The indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was minimized as a function of alumina content at a given FeO/SiO2 ratio, which can be explained by the amphoteric behavior of Al2O3 in the slag system. To improve indium recovery by lowering indium loss to the slag phase during the pyro-recycling of In-containing materials using FeO-bearing metallurgical slags, a lower oxygen potential and lower silica content are highly favorable.

  12. Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation

    NASA Astrophysics Data System (ADS)

    Shi, Huayue; Chen, Liugang; Malfliet, Annelies; Jones, Peter Tom; Blanpain, Bart; Guo, Muxing

    2016-10-01

    A ZnO-containing fayalite-based slag can be formed in copper smelting from secondary raw materials and its high viscosity is a common issue that hinders slag tapping. In this work, the crystallization behavior of the industrial slag was observed in situ by confocal laser scanning microscopy. Solid precipitation was found to be the major cause of the poor slag fluidity. The phase relations in the industrial slag system ZnO-"FeO"-SiO2-Al2O3-CaO (CaO/SiO2 = 0.05, Al2O3/SiO2 = 0.15) were investigated by quenching the samples after reaching equilibrium at 1423 K (1150 °C) under iron saturation. The equilibrium composition of the phases was determined with electron probe micro-analysis. The effect of individual components, such as FeO, ZnO, and CaO on the phase equilibrium of the slag system has been quantitatively studied. The relation between the solid-phase fraction and the chemical composition of the slag has been revealed. Suggestions to modify the slag composition toward low viscosity are provided.

  13. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup.

  14. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  15. Rapid Dissolution of Quicklime into Molten Slag by Internally Formed Gas

    NASA Astrophysics Data System (ADS)

    Maruoka, Nobuhiro; Nogami, Hiroshi

    2017-02-01

    In steelmaking process, quicklime is used to produce CaO-based slag. Although rapid dissolution of quicklime is required for high-efficiency refining, it is known that the rate decreases when dicalcium silicate (C2S) layer forms around the quicklime by reacting with slag. The equation that driving force is the difference of CaO content between in slag and a liquid phase of slag saturated by C2S has been often used for estimating the dissolution rate of lime, in which this saturated value is thermodynamically determined. The authors, however, revealed that the quicklime used in actual operation showed much faster dissolving rate than that of completely calcined lime that is covered by C2S layer during dissolution into slag. This was caused by a gas formation due to a thermal decomposition of residual limestone existed in quicklime. In this study, the dissolution rate of quicklime with the gas formation is quantitatively investigated.

  16. Development of a Novel Titania Slag Upgrading Process Using Titanium Tetrachloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2016-02-01

    In order to remove iron from titania slag for the production of high-grade titanium dioxide (TiO2), a novel slag upgrading process was developed based on a selective chlorination method. In the experiments, various types of suitably pretreated slag reacted with titanium tetrachloride (TiCl4) as a chlorinating agent at 1100 K (827 °C) for 5 hours in the presence of carbon. Once the reaction had reached completion, the iron in the slags was selectively removed as iron chloride (FeCl2) in a dry form. As a result, the mass percent of iron decreased from 13.9 to 0.21 pct (nominal, excluding oxygen) and the mass percent of titanium increased from 78.1 to 96.0 pct (nominal, excluding oxygen) under certain conditions. Therefore, this selective chlorination process using TiCl4 is considered a feasible approach for the upgrading of titania slag.

  17. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994

    SciTech Connect

    1997-07-01

    Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

  18. Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou-Hua; Hou, Dong; Dong, Yan-Wu; Cao, Yu-Long; Cao, Hai-Bo; Gong, Wei

    2016-04-01

    Many factors influence the chemical composition in electroslag remelting (ESR) steel, including atmosphere in crucible, melting rate, slag composition, deoxidation, and so on. Fluoride-based slag, which is exposed to liquid metal directly, influences the chemical composition of ESR ingots to a large extent. The present paper focuses on the effect of slag on the titanium, silicon, and aluminum contents in ingots based on the interaction of the slag and metal. In present work, superalloy of GH8825 and several slags containing different CaO contents have been employed for investigating the effect of slag on titanium, silicon, and aluminum contents in an electrical resistance furnace under argon atmosphere. Results indicate that the higher CaO content in slag has better capacity for avoiding loss of titanium caused by the reaction of titanium with silica in slag, especially in case of remelting superalloy with high titanium and low silicon content. The CaO has a great effect on the activities of TiO2, SiO2, and Al2O3. Thermodynamic analysis is applied to investigate the CaO behavior. Based on the ion and molecule coexistence theory of slag, activity model is established to calculate the activities of components containing titanium, silicon, and aluminum elements in a six-component slag consisting of CaO-CaF2-Al2O3-SiO2-TiO2-MgO. The components containing titanium, silicon, and aluminum in slag are mainly CaO·TiO2, 2CaO·SiO2, CaO·SiO2, CaO·Al2O3, and MgO·Al2O3. With the increase of CaO mass fraction in slag, the activity coefficient of SiO2 decreases significantly, whereas slightly change happens for Al2O3. As a result, the lg ({{γ_{{{{SiO}}2 }} } {/ {{{γ_{{{{SiO}}2 }} } {γ_{{{{TiO}}2 }} }}} {γ_{{{{TiO}}2 }} }}) decreases with increasing CaO content, which is better for preventing loss of titanium caused by the reaction of titanium with silica in slag. The slag with high CaO and appropriate TiO2 content is suitable for electroslag remelting of GH8825.

  19. Humidifier for fuel cell using high conductivity carbon foam

    DOEpatents

    Klett, James W.; Stinton, David P.

    2006-12-12

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  20. Highly conductive single naphthalene and anthracene molecular junction with well-defined conductance

    SciTech Connect

    Liu, Chenyang; Kaneko, Satoshi; Komoto, Yuki; Fujii, Shintaro Kiguchi, Manabu

    2015-03-09

    We performed electronic investigation on single acene molecular junctions bridging Au-electrodes in ultra-high vacuum conditions using mechanically controllable break junction technique. While the molecular junctions displayed various conductance values at 100 K, they exhibited well-defined high conductance values (∼0.3 G{sub 0}) at 300 K, which is close to that of metal atomic contact. Direct π-binding of the molecules to the Au-electrodes leads to the high conductivities at the metal-molecule interface. At the elevated temperature, single molecular junctions trapped in local metastable structures can be fallen into energetically preferential more stable state and thus we fabricated structurally well-defined molecular junctions.

  1. High conductivity Be-Cu alloys for fusion reactors

    SciTech Connect

    Lilley, E.A.; Adachi, Takao; Ishibashi, Yoshiki

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  2. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect

    Das, K.; Akan-Etuk, A.E.J.; Mitchell, R.E.

    1996-12-01

    This document is the eighth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P. C.) combustion. In general, the project has the following objectives: (1) the characterization of the various mechanisms of intraparticle mass transfer and chemical reaction that control overall pyrite combustion rates and (2) the synthesis of the reaction rate resistances of the various mechanisms into a general rate expression for pyrite combustion. The knowledge gained from this project will be incorporated into numerical codes and utilized to formulate slagging abatement strategies involving the minor adjustment of firing conditions. Ultimately, the benefit of this research program is intended to be an increase in the range of coals compatible with staged, low-NO{sub X} combustor retrofits.

  3. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes

    NASA Astrophysics Data System (ADS)

    Kang, Jin Gyu; Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun

    2017-03-01

    Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and

  4. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes

    NASA Astrophysics Data System (ADS)

    Kang, Jin Gyu; Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun

    2017-08-01

    Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and

  5. Effect of Physicochemical Properties of Slag and Flux on the Removal Rate of Oxide Inclusion from Molten Steel

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun

    2016-12-01

    The slag-metal reaction experiments were carried out using a high-frequency induction furnace to confirm the effect of slag composition on the removal rate of inclusions in molten steel through the CaO-based slags. The apparent rate constant of oxygen removal ( k O) was obtained as a function of slag composition. It increased with increasing basicity, and the content of MgO and CaF2, whereas it decreased by increasing the content of Al2O3 in the slag. The removal rate of inclusions was strongly affected not only by the driving force of the chemical dissolution but also by the viscosity of the slags and fluxes.

  6. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    NASA Technical Reports Server (NTRS)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  7. Evaluation of Secondary Steelmaking Slags and Their Relation with Steel Cleanliness

    NASA Astrophysics Data System (ADS)

    da Rocha, Vinicius Cardoso; Pereira, Julio A. M.; Yoshioka, Ayumi; Bielefeldt, Wagner V.; Vilela, Antônio C. F.

    2017-02-01

    Based on data provided from an industrial plant and FactSage commercial software use, a study of secondary refining slags and inclusion cleanliness was performed. Six heats of two slag series, namely, A and B, with average chemical composition (wt pct) of 43.00CaO-25.90SiO2-12.96Al2O3-18.13MgO for series A and 49.98CaO-23.88SiO2-10.11Al2O3-11.99MgO-4.03CaF2 for series B, were used for the study. Both series used DIN 38MnS6 modified steel. The effective viscosity, solid fraction, composition of the liquid fraction, and slag saturation degree in MgO (calculated through thermodynamic software) were related to the experimental results obtained for the inclusion cleanliness. The B slags showed lower effective viscosity than the A slags, due to their high liquid fraction. Regarding the capacity of slags in the inclusion removal, slag B5 resulted in the lowest inclusion density and was considered as the best choice among the slags studied. The inclusion species formed using B slags are constituted especially of CaO-Al2O3-SiO2 and MgO-Al2O3 and are Al2O3 rich. The presence of sulfide-type inclusions (AlMnS and CaS) were more pronounced among A slags.

  8. Evaluation of Secondary Steelmaking Slags and Their Relation with Steel Cleanliness

    NASA Astrophysics Data System (ADS)

    da Rocha, Vinicius Cardoso; Pereira, Julio A. M.; Yoshioka, Ayumi; Bielefeldt, Wagner V.; Vilela, Antônio C. F.

    2017-06-01

    Based on data provided from an industrial plant and FactSage commercial software use, a study of secondary refining slags and inclusion cleanliness was performed. Six heats of two slag series, namely, A and B, with average chemical composition (wt pct) of 43.00CaO-25.90SiO2-12.96Al2O3-18.13MgO for series A and 49.98CaO-23.88SiO2-10.11Al2O3-11.99MgO-4.03CaF2 for series B, were used for the study. Both series used DIN 38MnS6 modified steel. The effective viscosity, solid fraction, composition of the liquid fraction, and slag saturation degree in MgO (calculated through thermodynamic software) were related to the experimental results obtained for the inclusion cleanliness. The B slags showed lower effective viscosity than the A slags, due to their high liquid fraction. Regarding the capacity of slags in the inclusion removal, slag B5 resulted in the lowest inclusion density and was considered as the best choice among the slags studied. The inclusion species formed using B slags are constituted especially of CaO-Al2O3-SiO2 and MgO-Al2O3 and are Al2O3 rich. The presence of sulfide-type inclusions (AlMnS and CaS) were more pronounced among A slags.

  9. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

    PubMed

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B

    2012-04-03

    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  10. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  11. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

    PubMed

    van Zomeren, André; van der Laan, Sieger R; Kobesen, Hans B A; Huijgen, Wouter J J; Comans, Rob N J

    2011-11-01

    Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH±12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained

  12. Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jonayat, A. S. M.; Thomas, Brian G.

    2014-10-01

    The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a "mold simulator" to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.

  13. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  14. Measurement of FeO activity and solubility of MgO in smelting slags

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Hsien; Fruehan, R. J.; Morales, A.; Ozturk, B.

    2001-02-01

    In bath smelting, the FeO activity of the slag must be known to predict the equilibrium of slag-metal reactions and for effective control of the rate of reduction in the system. Also, knowledge of the solubility of MgO in these slags is useful for reducing refractory consumption. A series of measurements of the FeO activity in simulated bath smelting slags (CaO-SiO2-Al2O3-MgOsat-FeO) were conducted by the electromotive force (EMF) technique. The influence of the slag composition on the relationship between the FeO activity coefficient and FeO content was studied. It has been found that the measured FeO activity coefficient decreases with increasing FeO content in the slag and increases slightly with increasing slag basicity, which is defined as (CaO + MgO)/(SiO2 + Al2O3) on a mole fraction basis. The measured values of the FeO activity coefficient are in reasonable agreement with previously published data. The solubility of MgO was also measured and found to rang from 16 to 30 pct and decrease with increasing basicity.

  15. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  16. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  17. Divalent beta aluminas: High conductivity solid electrolytes for divalent cations

    NASA Astrophysics Data System (ADS)

    Farrington, G. C.; Dunn, B.

    1982-10-01

    The Na(+) content of beta alumina can be replaced by a variety of divalent cations in simple ion exchange reactions. The resulting divalent beta' aluminas are the first family of high conductivity solid electrolytes for divalent cations. Divalent beta' aluminas which have been prepared so far include conductors of Ca(2+), Sr(2+), Ba(2+), Zn(2+), Cd(2+), Pb(2+), Hg(2+), and Mn(2+). Most have conductivities of about 0.1/(ohm-cm) at 300-400 C. However, the conductivity of Pb(++) beta alumina is 0.0046/(ohm-cm) at 40 C, nearly equal to that of Na(+) beta alumina. Preliminary structure studies indicate that order-disorder reactions among the divalent cations and vacancies in the conduction region of beta alumina critically influence conductivity in the structure.

  18. Stretchable fine fiber with high conductivity fabricated by injection forming

    NASA Astrophysics Data System (ADS)

    Wakuda, Daisuke; Suganuma, Katsuaki

    2011-02-01

    Stretchable conductors are necessary to realize soft and rubbery electronics. A stretchable fine fiber with high conductivity was fabricated by a injection forming. The fiber is made of silicone series conductive adhesive containing Ag flake fillers. The fiber has uniform diameter without any substrate and has very long length by the injection forming method. The diameters can be controlled by changing the bore diameter of the injection needle. Furthermore, the fine fiber, 230 μm in diameter, maintains excellent conductivity under cyclic tensile stress. The conductivity is approximately 470 S/cm without tensile stress and maintains over 90 S/cm under cyclic tensile test which is stretched up to 10% strain. The result exhibits a great potential of the conductive fine fiber as a stretchable conductor.

  19. Monitoring the condition of the slag crust in blast furnaces

    SciTech Connect

    Chernov, N.N.; Marder, B.F.; Demidenko, T.V.; Riznitskii, I.G.; Safina, L.A.; Dyshlevich, I.I.; Tkach, A.Ya.

    1988-05-01

    Studies conducted at the Krivorozhstal' combine blast furnaces have shown that fusion of the crust can be established from the change in the total content of alkali metals in the slag. After the furnaces were blown out for repairs the remaining lining and crust were inspected. It was found that the lining of the uncooled part of the stock remained in relatively good shape with the greatest amount of lining wear seen between the second row of stack coolers and bosh coolers. The composition and structure of the slag crust for different regions of the furnaces were analyzed and various physicochemical properties leading to crust formation and behavior were assessed. It was concluded that the systematic determination of the fraction of K/sub 2/O in the alkali compounds in the furnace slag will permit monitoring of the conditions of the slag crust in the furnace and, in the event of the onset of its collapse, will enable measures to be taken to stabilize the heating of the furnace.

  20. High Thermal Conducting Boron Arsenide: Crystal Growth and Characterization

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J.; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu

    2015-03-01

    Intrigued by recent calculations [Phys. Rev. Lett. 111, 025901(2013)] which predict a remarkably high thermal conductivity of ~ 2,000 Wm-1K-1 , comparable to that of diamond, in cubic boron arsenide (BAs) crystals, we have succeeded in synthesizing single crystals of BAs with a zinc blende structure and lattice parameters of a = 4.7830(7) Å characterized by X-ray single crystal diffraction and transmission electron microscopy (TEM). A relatively high thermal conductivity is obtained but still smaller than the predicted value. We attribute the difference of thermal conductivity value to the defect scattering associated with crystal twinning and As vacancies, verified both from experimental evidence and theoretical calculations. The predicted super-thermal-conductivity may be achieved in BAs single crystals with further improvement of crystal growth by removing the defects. Lawrence Berkeley National Laboratory, Berkeley California 94720.

  1. High conductivity magnetic tearing instability. [of neutral plasma sheets

    NASA Technical Reports Server (NTRS)

    Cross, M. A.; Van Hoven, G.

    1976-01-01

    Linearized equations of magnetohydrodynamics are used to investigate the tearing mode, for arbitrary values of the conductivity, through a consideration of the additional effect of the electron-inertia contribution to Ohm's law. A description is provided of the equilibrium and subsequent instability in the magnetohydrodynamic approximation. A method for solving the perturbation equations in the linear approximation is discussed and attention is given to the results in the high conductivity limit.

  2. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-10-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh.

  3. Experimental study on sulfur removal from ladle furnace refining slag in hot state by blowing air

    NASA Astrophysics Data System (ADS)

    Zhao, Li-hua; Lin, Lu; Wu, Qi-fan

    2016-01-01

    In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high temperature by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the temperature exceeded 1350°C. At 1370°C and 1400°C, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are beneficial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur removal.

  4. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    SciTech Connect

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  5. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    PubMed

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-05

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  6. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    NASA Astrophysics Data System (ADS)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  7. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1995-12-01

    This document is the fourth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve our technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. The knowledge gained from this work is intended to be incorporated into numerical codes that can be used to formulate anti-slagging strategies involving minimal disturbance of coal combustor performance. This project is to be performed over the three-year period from September 1994 to August 1997. The project aims to identify the mechanisms of pyrite combustion and to quantify their effects, in order to formulate a general rate expression for the combustion of pyrite that accounts for coal properties as well as furnace conditions.

  8. Nonequilibrium Sulfur Capture and Retention in an Air Cooled Slagging Coal Combustor.

    SciTech Connect

    Zauderer, B.

    1997-09-30

    Calcium oxide injected in a slagging combustor react with the sulfur from coal combustion to form sulfur bearing particles, which are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, it must be drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 36 month project was to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag. In the present quarterly reporting period, 3 days of combustor tests were performed, bringing the total number of tests performed to 19. Two of the test were a repeat of two tests performed in the previous quarter with a high, 37% ash, Indian coal. The high slag flow rate with that coal resulted in the highest observed sulfur retention to-date, namely 20% of the injected sulfur. In the present quarter, this test was repeated with the same coal feed rate but with 75% longer period of 2.4 hours. The total mineral matter injected was 635 lb/hr, compared to only 19.7 lb/hr of sulfur, of which 75% was from injected gypsum. However, despite excellent slag flow from the previous Indian coal tests, only 5.8% of the sulfur from the gypsum reported to the slag. Since substantial amounts slag remained on the combustor walls, it is concluded that still longer duration tests are required to establish equilibrium conditions. Current efforts are focused on finding a U.S. source of high ash coal to implement additional tests.

  9. Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C.

    2017-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  10. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  11. Silicon-graphene conductive photodetector with ultra-high responsivity

    PubMed Central

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at −25 °C in our experiment. PMID:28106084

  12. Development of a high conductivity intercalated graphite composite wire

    SciTech Connect

    Singhal, S.C.

    1982-02-01

    Beginning in May 1979, the Department of Energy initiated the present program entitled, Development of a High Conductivity Intercalated Graphite Composite Wire, to develop the scientific base and technology for reproducibly fabricating high conductivity intercalated graphite composite wires. Toward achieving this objective, the following work was carried out in this program: (1) composite wires previously fabricated by swaging at the University of Pennsylvania and claimed to possess conductivity equal to or greater than that of copper were analyzed, (2) intercalation of HOPG crystals with SbF/sub 5/+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound, and (3) composite wires consisting of copper, aluminum or lead outer sheath and SbF/sub 5/+HF- or AsF/sub 5/-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  13. Silicon-graphene conductive photodetector with ultra-high responsivity

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at ‑25 °C in our experiment.

  14. Steel slag used in landfill cover liners: laboratory and field tests.

    PubMed

    Herrmann, Inga; Andreas, Lale; Diener, Silvia; Lind, Lotta

    2010-12-01

    Stricter rules for landfilling within the EU have led to the closure of many landfills and a need for large amounts of cover liner materials. Therefore, the potential utilization of mixtures of electric arc furnace slag (EAFS) and ladle slag (LS), which are currently deposited in landfills, as a material for use as landfill liner was investigated. Laboratory analyses showed the mixtures to have similar compression strength to that of high-strength concrete and low hydraulic conductivity (< 10(-11) m s(-1) in some cases). However, both their hydraulic conductivity and compaction properties were strongly affected by the time between adding water to the mixtures and compacting them (tests showed that a delay of 24 h can lead to an increase in hydraulic conductivity, so it should be compacted as soon as possible after mixing the material with water). In addition, the performance of a cover liner constructed using EAFS and LS was studied in a 2-year field trial on a landfill for municipal solid waste, in which the average amount of leachate collected from ten lysimeters was only 27 L m(-2) year(-1), easily meeting Swedish criteria for the permeability of covers on non-hazardous waste landfills (≤ 50 L m(-2) year(-1)). Thus, the material seems to have promising potential for use in barrier constructions.

  15. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  16. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  17. High conductivity transparent carbon nanotube films deposited from superacid.

    PubMed

    Hecht, David S; Heintz, Amy M; Lee, Roland; Hu, Liangbing; Moore, Bryon; Cucksey, Chad; Risser, Steven

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 Ω/sq and 90.9% respectively, which corresponds to a DC conductivity of 12,825 S cm(-1) and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  18. High conductivity, low cost aluminum composite for thermal management

    SciTech Connect

    Sommer, J.L.

    1997-04-01

    In order to produce an inexpensive packaging material that exhibits high thermal conductivity and low CTE, Technical Research Associates, Inc. (TRA) has shown in Phase I the feasibility of incorporating natural flake graphite in an aluminum matrix. TRA has developed a proprietary coating technique where graphite flakes have been coated with a thin layer of molybdenum/molybdenum carbide (approximately 0.2 microns). This barrier coating can protect the graphite flake from chemical reaction and high temperature degradation in molten aluminum silicon alloys. Methods to successfully vacuum infiltrate coated flake with molten aluminum alloys were developed. The resulted metal matrix composites exhibited lower CTE than aluminum metal. The CTE of the composites were significantly lower than aluminum and its alloys. The CTE can potentially be tailored for specific applications. The in plane thermal conductivity was higher than the aluminum matrix alloy. The thermal conductivity and CTE of the composite may be significantly improved by improving the bond strength of the molybdenum coating on the graphite flake. The flake can potentially be incorporated in the molten aluminum and pressure die cast to align the flakes within the aluminum matrix. By preferentially aligning high conductivity graphite flakes within a plane or direction, the thermal conductivity of the resulting composite will be above pure aluminum in the alignment direction.

  19. Ultra high Transparent and Conductive Electrodes Based on As-Grown SWNT with Metallic Conductivity

    NASA Astrophysics Data System (ADS)

    Paronyan, Tereza; Pigos, Elena; Chen, Gugang; Harutyunyan, Avetik

    2012-02-01

    Carbon based materials have been proven to be a unique material for transparent conducting films, with potential for application on liquid crystal displays, touch screens and solar cells. We successfully grew SWNT films by Chemical Vapor Deposition method using Fe nanocatalysts on quartz substrates. The ratio of semiconductor/metallic nanotubes varied depending on the treatment conditions of the catalyst nanoparticles, according to Raman analysis. SEM analysis of the samples revealed homogeneous coverage of the quartz substrates by SWNTs, which exhibit transparencies higher than 98%. Sheet resistance measurements of these SWNT films, by Van der Pauw method, demonstrated the correlation between the conductivity and the abundance of semiconductor and metallic nanotubes in the films. Increasing the content of metallic SWNTs in the film up to 90% decreased the sheet resistance down to 4-5 Kφ/, while maintaining a high transparency of over 98%. For comparison, transparent electrodes based on high quality monolayer graphene sheets were also fabricated. The conductivity and transparency of the electrodes of as grown SWNTs were comparable to the electrodes based on monolayer graphene.

  20. High ionic conductivity in confined bismuth oxide-based heterostructures

    NASA Astrophysics Data System (ADS)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens; Pryds, Nini

    2016-12-01

    Bismuth trioxide in the cubic fluorite phase ( δ - Bi 2 O 3 ) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ - Bi 2 O 3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ - Bi 2 O 3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [ δ - Bi 2 O 3 / YSZ ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ - Bi 2 O 3 , which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  1. Hybrid electrokinetic manipulation in high-conductivity media.

    PubMed

    Gao, Jian; Sin, Mandy L Y; Liu, Tingting; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2011-05-21

    This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (∼1 S m(-1)). The hybrid electrokinetic technique combines short-range electrophoresis and dielectrophoresis, and long-range AC electrothermal flow to improve its effectiveness. The major technical hurdle of electrode instability for manipulating high conductivity samples is tackled by using a Ti-Au-Ti sandwich electrode and a 3-parallel-electrode configuration is designed for continuous isolation of bacteria. The device operates directly with biological samples including urine and buffy coats. We show that pathogenic bacteria and biowarfare agents can be concentrated for over 3 orders of magnitude using hybrid electrokinetics.

  2. Deep-level transient conductance spectroscopy of high resistivity semiconductors

    NASA Astrophysics Data System (ADS)

    Alexiev, Dimitri; Prokopovich, Dale; Reinhard, Mark I.; Thomson, Stuart; Mo, Li

    2005-03-01

    We describe a deep-level transient-conductance (DLTC) spectrometer for high resistivity semiconductors, which uses a radiofrequency (40 MHz) marginal oscillator as conductance detector. The DLTC spectra are generated by periodically filling the deep-level trapping centres by carriers stimulated by a pulsed GaAs laser. Then the trap-emptying conductance's signal process through an exponential Miller correlator as the sample temperature is slowly ramped. A simple capacitive coupling of the samples to the oscillator tank circuit eliminates problems such as unwanted defect annealing and other material changes often associated with the high-temperature techniques necessary for ohmic contact formation. Representative deep-level spectra for CdTe, CdZnTe, HgI and gamma-irradiated Si are given.

  3. Environmental impact and potential utilization of historical Cu-Fe-Co slags.

    PubMed

    Veselská, Veronika; Majzlan, Juraj

    2016-04-01

    Historical slags from the past Fe and Cu-Co production were investigated in order to evaluate either their potential for utilization or their long-term environmental risk for unsupervised old smelting areas. Here, we studied ferrous slags produced during the recovery of Fe from siderite-Cu ores in Slovakia and two different types of non-ferrous slags produced during the recovery of Cu and Co from Kupferschiefer ores in Germany. The glassy character, rare occurrence of primary silicate phases, and the lack of secondary phases in Cu slags indicate their stability for a prolonged period of time. Electron microprobe analytical work showed that the metals and metalloids (Cu, Co, Fe, Zn, Pb, As) are largely encased in droplets of matte and metal alloys and remain protected by the glassy matrix with its low weathering rate. Fe and Co slags are composed of high-temperature silicates such as wollastonite, cristobalite, as well as olivine, feldspar, quartz, leucite, pyroxene, and pyroxenoids. The presence of secondary phases attests to a certain degree metal release owing to weathering. Assuming minimal contents of metals in slags after a treatment with dilute H2SO4, slags could be used as pozzolanas for addition to cement.

  4. Ecotoxicity of Concretes with Granulated Slag from Gray Iron Pilot Production as Filler

    PubMed Central

    Hybská, Helena; Hroncová, Emília; Ladomerský, Juraj; Balco, Karol; Mitterpach, Jozef

    2017-01-01

    This paper focuses on research concerning the ecotoxicological properties of granulated slag from the pilot production of gray iron with red mud addition and concrete composites with the application of this slag. Red mud is a hazardous waste generated in the production of aluminium oxide. Negative ecotoxicological tests are, therefore, one of the basic prerequisites for the ability to use granulated slag from gray iron pilot production. Granulated slag and concrete composite samples with various ratios of granulated slag have been subject to ecotoxicity tests: determining root growth inhibition in the highly-cultivated plant Sinapis alba, and determining acute toxicity in Daphnia magna. The results of ecotoxicological testing of granulated slag from gray iron standard production and gray iron pilot production with the additive were, according to the standard (STN 83 8303), negative. Additionally, the results of ecotoxicological tests of concrete composites were negative, with the exception of a 50% substitution of fine aggregate with slag from gray iron pilot production. PMID:28772864

  5. Viscous Behavior of Alumina and Titania in Amphoteric Slags and Their Influence on Refractory Corrosion

    NASA Astrophysics Data System (ADS)

    Kaußen, Frank; Friedrich, Bernd

    Recovering iron from bauxite residue (red mud) by carbothermic reduction creates, depending on the composition of bauxite, slag phases with high amounts of alumina and titania which are commonly known as amphoteric slag components. In this case the prediction of slag properties and even the calculation of basicity are very difficult since the slag consists of about 50 wt.-% amphoteric components. As a consequence the correct choice of refractory materials has to be taken into consideration as well. In this study synthetic slags similar to the compositions which occur during the reductive smelting of bauxite residue are mixed and melted. By the addition of CaO and Na2O and SiO2 the basicity is constantly adjusted to 1 [(CaO+Na2O)/SiO2] to monitor the influence of the addition of amphoteric compounds regarding the viscosity and refractory corrosion. In advance thermodynamic calculations concerning the liquidus temperature and viscosity of the examined slag are done by the software FactSage (vers. 6.4). The molten slags are qualitatively examined regarding the viscosity and later on exposed to three different types of refractory materials (MgO, Al2O3, mullite) in order to observe the refractory corrosion and infiltration behavior.

  6. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  7. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    PubMed

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  8. Method of measuring thermal conductivity of high performance insulation

    NASA Technical Reports Server (NTRS)

    Hyde, E. H.; Russell, L. D.

    1968-01-01

    Method accurately measures the thermal conductivity of high-performance sheet insulation as a discrete function of temperature. It permits measurements to be made at temperature drops of approximately 10 degrees F across the insulation and ensures measurement accuracy by minimizing longitudinal heat losses in the system.

  9. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, Gene H.; Smith, James L.; Sim, James W.

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  10. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  11. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.

    PubMed

    De, Sukanta; Higgins, Thomas M; Lyons, Philip E; Doherty, Evelyn M; Nirmalraj, Peter N; Blau, Werner J; Boland, John J; Coleman, Jonathan N

    2009-07-28

    We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.

  12. Metallic behaviour of acid doped highly conductive polymers.

    PubMed

    Massonnet, Nicolas; Carella, Alexandre; de Geyer, Arnaud; Faure-Vincent, Jérôme; Simonato, Jean-Pierre

    2015-01-01

    Conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are used in a wide range of applications as transparent electrodes, hole injecting layers or thermoelectric materials for room-temperature applications. However, progress is needed to enhance the electrical conductivities of the materials and to provide understanding about their structure-transport relationships. This work presents the synthesis of highly conductive PEDOT-based polymers using iron(iii) trifluoromethanesulfonate as oxidant for the first time. The metallic behaviour of the polymer is revealed by conductivity monitoring from 3 to 300 K. The electrical conductivity is further improved (to 2273 S cm(-1)) using acids, leading to a positive temperature coefficient of resistivity at an unprecedented 45.5% oxidation state. X-ray photoemission spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS) analyses demonstrate a complete replacement of the trifluoromethanesulfonate anions by hydrogen sulphate counter ions. This substitution results in an increased concentration of charge carriers (measured in organic electrochemical transistors) along with an enhancement of the mean size of crystalline domains, highlighted by small and wide angle X-ray scattering (SAXS/WAXS), which explains the 80% increase of electrical conductivity.

  13. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.

    PubMed

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh

    2012-03-14

    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties. © 2012 American Chemical Society

  14. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  15. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  16. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  17. Ultralow thermal conductivity of multilayers with highly dissimilar Debye temperatures.

    PubMed

    Dechaumphai, Edward; Lu, Dylan; Kan, Jimmy J; Moon, Jaeyun; Fullerton, Eric E; Liu, Zhaowei; Chen, Renkun

    2014-05-14

    Thermal transport in multilayers (MLs) has attracted significant interest and shows promising applications. Unlike their single-component counterparts, MLs exhibit a thermal conductivity that can be effectively engineered by both the number density of the layers and the interfacial thermal resistance between layers, with the latter being highly tunable via the contrast of acoustic properties of each layer. In this work, we experimentally demonstrated an ultralow thermal conductivity of 0.33 ± 0.04 W m(-1) K(-1) at room temperature in MLs made of Au and Si with a high interfacial density of ∼0.2 interface nm(-1). The measured thermal conductivity is significantly lower than the amorphous limit of either Si or Au and is also much lower than previously measured MLs with a similar interfacial density. With a Debye temperature ratio of ∼3.9 for Au and Si, the Au/Si MLs represent the highest mismatched system in inorganic MLs measured to date. In addition, we explore the prior theoretical prediction that full phonon dispersion could better model the interfacial thermal resistance involving materials with low Debye temperatures. Our results demonstrate that MLs with highly dissimilar Debye temperatures represent a rational approach to achieve ultralow thermal conductivity in inorganic materials and can also serve as a platform for investigating interfacial thermal transport.

  18. Thermal conductance of metal-diamond interfaces at high pressure.

    PubMed

    Hohensee, Gregory T; Wilson, R B; Cahill, David G

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two-phonon processes. The high pressures achievable in a diamond anvil cell (DAC) can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt and Al films deposited on type 1A natural [100] and type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.

  19. Observation of highly decoupled conductivity in protic ionic conductors.

    PubMed

    Wojnarowska, Zaneta; Wang, Yangyang; Paluch, Krzysztof J; Sokolov, Alexei P; Paluch, Marian

    2014-05-21

    Ionic liquids (ILs) are key materials for the development of a wide range of emerging technologies. Protic ionic liquids, an important class of ILs, have long been envisioned as promising anhydrous electrolytes for fuel cells. It is well known that in comparison to all other cations, protons exhibit abnormally high conductivity in water. Such superprotonic dynamics was expected in protic ionic conductors as well. However, many years of extensive studies led to the disappointing conclusion that this is not the case and most protic ionic liquids display subionic behavior. Therefore, the relatively low conductivity seems to be the main obstacle for the application of protic ionic liquids in fuel cells. Using dielectric spectroscopy, herein we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor. We show that its proton transport is strongly decoupled from the structural relaxation, in terms of both temperature dependence and characteristic rates. This finding offers a fresh look on the charge transport mechanism in PILs and also provides new ideas for design of anhydrous materials with exceptionally high proton conductivity.

  20. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices.

  1. Thermal conductance of metal–diamond interfaces at high pressure

    SciTech Connect

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.

  2. Thermal conductance of metal–diamond interfaces at high pressure

    DOE PAGES

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. In all cases,more » the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less

  3. Highly thermally conductive and mechanically strong graphene fibers

    NASA Astrophysics Data System (ADS)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-01

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals.

  4. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  5. Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates.

    PubMed

    Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng

    2015-01-01

    This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.

  6. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    PubMed

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca(2+) concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca(2+) and OH(-) release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca(2+) concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH(-) released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH3·H2O), which would cause the dissociation of NH4(+) from zeolite. On the other hand, Ca(2+) could replace the NH4(+) ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  7. Fabrication of graphene films with high transparent conducting characteristics.

    PubMed

    Ma, Xiying; Zhang, Hao

    2013-10-23

    We present a study on the transparent conducting characteristics of graphene-based films prepared by means of rapid chemical vapor deposition. The graphene films were grown on quartz slides with a CH4/Ar mixed gas under a constant flow at 950°C and then annealed at 1,000°C. It was found that the graphene films present excellent electrical conductivity with high transparency. The conductivity is up to 1,240 S/cm, the sheet resistance is lower than 1 kΩ/sq, and the transparency is well over 85% in the visible wavelength range of 400 to 800 nm, showing that the graphene films have very low resistivity and superior transparency and completely satisfy the need for transparent conductors. These properties can be used in many applications, such as transparent conductor films for touch panels. PACS: 61.48.+c, 78.67.Pt, 68.37.Hk, 68.65.Ac.

  8. Fabrication of graphene films with high transparent conducting characteristics

    PubMed Central

    2013-01-01

    We present a study on the transparent conducting characteristics of graphene-based films prepared by means of rapid chemical vapor deposition. The graphene films were grown on quartz slides with a CH4/Ar mixed gas under a constant flow at 950°C and then annealed at 1,000°C. It was found that the graphene films present excellent electrical conductivity with high transparency. The conductivity is up to 1,240 S/cm, the sheet resistance is lower than 1 kΩ/sq, and the transparency is well over 85% in the visible wavelength range of 400 to 800 nm, showing that the graphene films have very low resistivity and superior transparency and completely satisfy the need for transparent conductors. These properties can be used in many applications, such as transparent conductor films for touch panels. PACS 61.48.+c, 78.67.Pt, 68.37.Hk, 68.65.Ac PMID:24153052

  9. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  10. Axisymmetric instabilities in electrospinning of highly conducting, viscoelastic polymer solutions

    NASA Astrophysics Data System (ADS)

    Carroll, Colman P.; Joo, Yong Lak

    2009-10-01

    In this paper the axisymmetric instabilities observed during the electrospinning of highly electrically conducting, viscoelastic poly(ethylene oxide) (PEO)/water solutions are investigated. In our theoretical study, a linear stability analysis is coupled with a model for the stable electrospun jet. The combined model is used to calculate the expected bead growth rate and wave number for given electrospinning conditions. In the experimental section of the study, PEO/water solutions are electrospun and the formation of axisymmetric beads is captured using high-speed photography. Experimental values for the bead growth rate and wave number are extracted and compared with the model predictions. An energy analysis is then carried out on the stability results to investigate the mechanism of instability via the coupling between base flow and perturbation. The analysis reveals that the unstable axisymmetric mode for electrically driven, highly conducting jets is not a capillary mode, but is mainly driven by electrical forces due to the interaction of charges on the jet. We note that this axisymmetric, conducting mode often exhibits a growth rate too small to be observed during electrospinning. However, both our experiments and stability analysis demonstrate that the axisymmetric instability with a high growth rate can be seen in practice when the electrical force is effectively coupled with viscoelastic forces.

  11. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  12. Highly thermally conductive papers with percolative layered boron nitride nanosheets.

    PubMed

    Zhu, Hongli; Li, Yuanyuan; Fang, Zhiqiang; Xu, Jiajun; Cao, Fangyu; Wan, Jiayu; Preston, Colin; Yang, Bao; Hu, Liangbing

    2014-04-22

    In this work, we report a dielectric nanocomposite paper with layered boron nitride (BN) nanosheets wired by one-dimensional (1D) nanofibrillated cellulose (NFC) that has superior thermal and mechanical properties. These nanocomposite papers are fabricated from a filtration of BN and NFC suspensions, in which NFC is used as a stabilizer to stabilize BN nanosheets. In these nanocomposite papers, two-dimensional (2D) nanosheets form a thermally conductive network, while 1D NFC provides mechanical strength. A high thermal conductivity has been achieved along the BN paper surface (up to 145.7 W/m K for 50 wt % of BN), which is an order of magnitude higher than that in randomly distributed BN nanosheet composites and is even comparable to the thermal conductivity of aluminum alloys. Such a high thermal conductivity is mainly attributed to the structural alignment within the BN nanosheet papers; the effects of the interfacial thermal contact resistance are minimized by the fact that the heat transfer is in the direction parallel to the interface between BN nanosheets and that a large contact area occurs between BN nanosheets.

  13. Interior Regularity Estimates in High Conductivity Homogenization and Application

    NASA Astrophysics Data System (ADS)

    Briane, Marc; Capdeboscq, Yves; Nguyen, Luc

    2013-01-01

    In this paper, uniform pointwise regularity estimates for the solutions of conductivity equations are obtained in a unit conductivity medium reinforced by an ɛ-periodic lattice of highly conducting thin rods. The estimates are derived only at a distance ɛ 1+ τ (for some τ > 0) away from the fibres. This distance constraint is rather sharp since the gradients of the solutions are shown to be unbounded locally in L p as soon as p > 2. One key ingredient is the derivation in dimension two of regularity estimates to the solutions of the equations deduced from a Fourier series expansion with respect to the fibres' direction, and weighted by the high-contrast conductivity. The dependence on powers of ɛ of these two-dimensional estimates is shown to be sharp. The initial motivation for this work comes from imaging, and enhanced resolution phenomena observed experimentally in the presence of micro-structures (L erosey et al., Science 315:1120-1124, 2007). We use these regularity estimates to characterize the signature of low volume fraction heterogeneities in the fibred reinforced medium, assuming that the heterogeneities stay at a distance ɛ 1+ τ away from the fibres.

  14. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial.

    PubMed

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea

    2017-05-10

    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg(-1)year(-1) and D, 2, 7 g kg(-1)year(-1)) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca(++) and Mg(++)) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    PubMed

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Highly transparent, conductive, flexible resin films embedded with silver nanowires.

    PubMed

    Jiang, Yaqiu; Xi, Jun; Wu, Zhaoxin; Dong, Hua; Zhao, Zhixu; Jiao, Bo; Hou, Xun

    2015-05-05

    In this article, a low sheet resistance and highly transparent silver nanowire (AgNW) resin composite film was demonstrated, which was prepared by a simple and efficacious two-step spin-coating method. By burying the AgNWs below the surface of the transparent resin matrix which was cured at 150 °C in air, we achieved a uniform, highly transparent, conductive, flexible film. Compared to the reported transparent electrodes, this composite transparent and conductive film showed 10 Ω/□ sheet resistance and nearly 90% mean optical transmittance over the UV-visible range simultaneously. Undergoing hundreds of cycles of tensile and compression folding, the composite film slightly increased its sheet resistance by less than 5%, displaying good electromechanical flexibility. These characteristics of the composite AgNW-resin films were expected to be used in applications of flexible optoelectronics.

  17. Fabrication of highly conductive carbon nanotube fibers for electrical application

    NASA Astrophysics Data System (ADS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-09-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 106 s m-1. The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers.

  18. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  19. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  20. Method for producing highly conformal transparent conducting oxides

    SciTech Connect

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  1. Recent Improvements in High-Frequency Eddy Current Conductivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2008-02-01

    Due to its frequency-dependent penetration depth, eddy current measurements are capable of mapping near-surface residual stress profiles based on the so-called piezoresistivity effect, i.e., the stress-dependence of electric conductivity. To capture the peak compressive residual stress in moderately shot-peened (Almen 4-8A) nickel-base superalloys, the eddy current inspection frequency has to go as high as 50-80 MHz. Recently, we have reported the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz. Unfortunately, spurious self- and stray-capacitance effects render the complex coil impedance variation with lift-off more nonlinear as the frequency increases, which makes it difficult to achieve accurate apparent eddy current conductivity (AECC) measurements with the standard four-point linear interpolation method beyond 25 MHz. In this paper, we will demonstrate that reducing the coil size reduces its sensitivity to capacitive lift-off variations, which is just the opposite of the better known inductive lift-off effect. Although reducing the coil size also reduces its absolute electric impedance and relative sensitivity to conductivity variations, a smaller coil still yields better overall performance for residual stress assessment. In addition, we will demonstrate the benefits of a semi-quadratic interpolation scheme that, together with the reduced lift-off sensitivity of the smaller probe coil, minimizes and in some cases completely eliminates the sensitivity of AECC measurements to lift-off uncertainties. These modifications allow us to do much more robust measurements up to as high as 80-100 MHz with the required high relative accuracy of +/-0.1%.

  2. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    PubMed Central

    Pan, Lijia; Yu, Guihua; Zhai, Dongyuan; Lee, Hye Ryoung; Zhao, Wenting; Liu, Nian; Wang, Huiliang; Tee, Benjamin C.-K.; Shi, Yi; Cui, Yi; Bao, Zhenan

    2012-01-01

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes. PMID:22645374

  3. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  4. Switch on the high thermal conductivity of graphene paper.

    PubMed

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei

    2016-10-14

    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.

  5. High conductivity micro-wires in diamond following arbitrary paths

    NASA Astrophysics Data System (ADS)

    Sun, Bangshan; Salter, Patrick S.; Booth, Martin J.

    2014-12-01

    High quality graphitic wires embedded beneath the surface of single crystal diamond are fabricated using a combination of adaptive ultrashort pulsed laser fabrication, high numerical aperture focusing, and an axial multi-fabrication scheme. Wires are created with micrometer and sub-micrometer dimensions that can follow any three dimensional path within the diamond. The measured conductivities are over an order of magnitude greater than previously reported wires fabricated by ultra-short pulsed lasers. The increased level of graphitization control in this scheme appears particularly important for fabrication of wires parallel to the diamond surface.

  6. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.

    PubMed

    Asuman Korkusuz, E; Beklioğlu, Meryem; Demirer, Göksel N

    2007-08-01

    Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.

  7. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO{sub 2} pressure

    SciTech Connect

    Zomeren, Andre van; Laan, Sieger R. van der; Kobesen, Hans B.A.; Huijgen, Wouter J.J.; Comans, Rob N.J.

    2011-11-15

    Highlights: > Accelerated carbonation studied to improve environmental properties of steel slag. > Carbonation found to occur predominantly at surface of the steel slag grains. > Combined geochemical modelling and mineral analysis revealed controlling processes. > Enhanced V-leaching with di-Ca silicate (C2S) dissolution identified as major source. > Identified mineral transformations provide guidance for further quality improvement. - Abstract: Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO{sub 2} pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 {sup o}C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO{sub 2} and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted

  8. Hydration of ground granulated blast-furnace slag

    NASA Astrophysics Data System (ADS)

    Song, Sujin

    1998-12-01

    The hydration of ground granulated blast-furnace slag (GGBFS) has been studied for 28 days of hydration at 25sp°C. The reaction between GGBFS and DI water is slow, however, activated hydration was observed for GGBFS pastes mixed with NaOH solutions. When NaOH was added into the mixing solution to control the pH, the rate of reaction was dependent on the pH of the starting solution and it was quantified using heat evolution characteristics. The main hydration product was identified as C-S-H, and hydrotalcite was observed when the paste reached high degree of hydration. The non-evaporable water content of fully hydrated GGBFS pastes was determined to be 0.162 g Hsb2O/g of slag, indicating that the stoichiometry of C-S-H formed in GGBFS paste is close to Csb{1.7}SHsb{1.5}. GGBFS paste showed microstructure consisted of poorly crystalline, homogeneous solid and highly disconnected pores. Highly disconnected capillary pore structure was responsible for low conductivity as well as low water transport through GGBFS pastes. C-S-H formed on the surface of GGBFS particles had honeycomb-like morphology close to Type II C-S-H. Pore solution chemistry of GGBFS paste provided important understanding with respect to the role of pH in alkali-activated hydration of GGBFS. pH was concluded to be a very important variable controlling the aqueous solubility, the equilibrium between C-S-H and aqueous phase, and the alkali-activation of GGBFS. At early stages of hydration, the pH was determined by the amount of NaOH added into initial mixing solution. High pH in the pore solution increases the solubilities of Si and Al, but decreases the solubilities of Ca and Mg. This pH-dependent solubility behavior is well explained using solubility equations from thermodynamics. The solubility of Si is the most important variable affecting alkali-activation of GGBFS since it is hard to solubilize Si from solid into aqueous phase due to the low Si solubility at pH < 11.5, which is the critical p

  9. Use of Phosphates to Reduce Slag Penetration in CR203-Based Refractories

    SciTech Connect

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorus oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  10. The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories

    DOEpatents

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  11. Use of phosphates to reduce slag penetration in Cr2O3-based refractories

    DOEpatents

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  12. Effect of calcium silicate slag application on radium-226 concentrations in plant tissues

    SciTech Connect

    Mortvedt, J.J.

    1986-01-01

    A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to /sup 226/Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments in Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of /sup 226/Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of /sup 226/Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane.

  13. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    NASA Astrophysics Data System (ADS)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2016-10-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  14. Highly conductive paper for energy-storage devices

    PubMed Central

    Hu, Liangbing; Choi, Jang Wook; Yang, Yuan; Jeong, Sangmoo; La Mantia, Fabio; Cui, Li-Feng; Cui, Yi

    2009-01-01

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Ω/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30–47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices. PMID:19995965

  15. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

    PubMed

    Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  16. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    NASA Astrophysics Data System (ADS)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  17. Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags.

    PubMed

    Maweja, Kasonde; Mukongo, Tshikele; Mbaya, Richard K; Mochubele, Emela A

    2010-11-15

    Leaching tests of base metals contained in two smelter slags were undertaken in ammonia and nitric acid solutions aiming to recover Co, Cu and Zn. Leaching tests were conducted at 25 and 60°C at pH=0 and 3 in HNO(3) and pH=12 in NH(4)OH media. XRD analysis revealed that the dumped slags were amorphous. Annealing these slags at 1180°C produced crystalline phases comprising diopside, magnetite and fayalite. SEM and EDS analysis revealed that Cu and Pb compounds have concentrated in the magnetite phase, whereas another phase rich in Zn and Cu was located in the diopside matrix. ICP-OES analysis of the pregnant leaching solutions (PLS) showed that 30-60% of Co, Cu and Zn were released from the amorphous slags treated in HNO(3) at pH=0, and lesser in ammonia. However, the contamination by Fe and Pb was higher at pH=0. The contamination of the PLS obtained by leaching of the crystallised slags remained low. The low Fe and Pb contamination was attributed in this case to the chemical stability of the crystalline phases formed upon annealing treatment. The higher solubilisation of metals contained in amorphous slags was attributed to the collapse of silicate structures during nitric acid leaching at pH∼0. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    NASA Astrophysics Data System (ADS)

    Mitrašinović, Aleksandar

    2017-07-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  19. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    NASA Astrophysics Data System (ADS)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  20. Utilization of Illinois slags for the production of ultra-lightweight aggregates

    SciTech Connect

    Choudhry, V. ); Zimmerle, T. ); Banerjee, D.D. )

    1993-01-01

    The objective of this program is to demonstrate that solid residues (slag) from the gasification of Illinois coals can be utilized to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are made by pyroprocessing perlite ores and have unit weights in the range of 3--15 lb/ft[sup 3]. In a previous project, Praxis Engineers demonstrated at the pilot scale that lightweight aggregates with unit weights of 40--55 lb/ ft[sup 3] can be produced from Illinois coal slags, which is suitable for making lightweight cement concrete and precast blocks. These tests also indicated that a product with a unit weight of less than 25 lb/ft[sup 3] could be produced from slag. This project is aimed at testing the potential for producing ULWA from Illinois coal slags. Target applications include loose fill insulation, insulating concrete, lightweight precast products such as concrete blocks and rooftiles, and filtration media. Laboratory- and pilot-scale testing is being conducted in Phase I to identify operating conditions for the expansion of Illinois slags to produce ULWA. Following this, a large batch of expanded slag will be produced, for evaluation in various applications in Phase II.

  1. Thermal conduction in single-layer black phosphorus: highly anisotropic?

    PubMed

    Jiang, Jin-Wu

    2015-02-06

    The single-layer black phosphorus is characteristic for its puckered structure, which has led to distinct anisotropy in its optical, electronic, and mechanical properties. We use the non-equilibrium Green's function approach and the first-principles method to investigate the thermal conductance for single-layer black phosphorus in the ballistic transport regime, in which the phonon-phonon scattering is neglected. We find that the anisotropy in the thermal conduction is very weak for the single-layer black phosphorus--the difference between two in-plane directions is less than 4%. Our phonon calculations disclose that the out-of-plane acoustic phonon branch has lower group velocities in the direction perpendicular to the pucker, as the black phosphorus is softer in this direction, leading to a weakening effect for the thermal conductance in the perpendicular direction. However, the longitudinal acoustic phonon branch behaves abnormally; i.e., the group velocity of this phonon branch is higher in the perpendicular direction, although the single-layer black phosphorus is softer in this direction. The abnormal behavior of the longitudinal acoustic phonon branch is closely related to the highly anisotropic Poisson's ratio in the single-layer black phosphorus. As a result of the counteraction between the out-of-plane phonon mode and the in-plane phonon modes, the thermal conductance in the perpendicular direction is weaker than the parallel direction, but the anisotropy is pretty small.

  2. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  3. Highly conductive grain boundaries in copper oxide thin films

    SciTech Connect

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  4. Fabrication of setup for high temperature thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Patel, Ashutosh; Pandey, Sudhir K.

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi0.36Sb1.45Te3, polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  5. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  6. High Conductance Loop Heat Pipes for Space Application

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey Y.; Cho, Wei-Lin; Jensen, Scott M.

    2006-01-01

    Three high conductance Loop Heat Pipes (LHPs) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) were designed, fabricated and thermal vacuum tested. One LHP with ammonia working fluid was designed for heat removal from a cryocooler cold head. Two ethane LHPs were designed to reject heat from the aft and fore optics to space. Thermal performance tests were performed in a vacuum chamber with attached masses simulating actual components. Thermal tests were also conducted on the bench and in an environmental chamber. The following features of the GIFTS LHPs were observed: (a) reliable startup and steady state operation with conductance as high as 83W/°C at various temperatures; (b) precision temperature control using compensation chamber heater during thermal cycling. Heat input power and condenser temperatures were varied periodically, while evaporator was maintained at a constant temperature. Temperature of the evaporator heat input surface fluctuated only by a fraction of a degree; (c) in addition there was no thermal performance degradation after 16 month of storage. The LHPs are installed on the instrument and waiting for a launch platform.

  7. High Surface Area Conducting Polymer Composites for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Gutowska, Anna; Tarasevich, Barbara; Shin, Yongsoon; Ferris, Kim; Linehan, John; White, James

    2004-03-01

    We are investigating high surface area mesoporous conducting polymer composites as new materials for on-board hydrogen storage. A recent study reported significant levels of hydrogen storage in two conducting polymers, polyaniline (PANI) and polypyrrole (PPy) (8 wtPANI).1 We have used templated synthesis methods to obtain PPy and PANI composites with mesoporous structure. We have designed composites that offer a combination of several desirable properties: - favorable wt. - multiple mechanisms of hydrogen storage (physi-, chemi-sorption, and voids available for gas compression), and high surface area meoporous morphology for enhanced gas-material interactions and greater control of gas transport. Our experimental approaches to materials design were supported by computational methods aimed at developing predictive capabilities for the structure-property relationship (SPR) of electronic structure effects on hydrogen storage capacity in conducting polymers. Computational methods were also used to support design of mesoporous structures for optimized gas-material interactions and effective diffusion control of gas transport. 1. Cho, J. J.; Song, K. S.; Kim, J. W.; Kim, T. H.; Choo, K. Fuel Chemistry Div. Reprints 2002, 47, 790.

  8. Highly-conducting molecular circuits based on antiaromaticity

    NASA Astrophysics Data System (ADS)

    Fujii, Shintaro; Marqués-González, Santiago; Shin, Ji-Young; Shinokubo, Hiroshi; Masuda, Takuya; Nishino, Tomoaki; Arasu, Narendra P.; Vázquez, Héctor; Kiguchi, Manabu

    2017-07-01

    Aromaticity is a fundamental concept in chemistry. It is described by Hückel's rule that states that a cyclic planar π-system is aromatic when it shares 4n+2 π-electrons and antiaromatic when it possesses 4n π-electrons. Antiaromatic compounds are predicted to exhibit remarkable charge transport properties and high redox activities. However, it has so far only been possible to measure compounds with reduced aromaticity but not antiaromatic species due to their energetic instability. Here, we address these issues by investigating the single-molecule charge transport properties of a genuinely antiaromatic compound, showing that antiaromaticity results in an order of magnitude increase in conductance compared with the aromatic counterpart. Single-molecule current-voltage measurements and ab initio transport calculations reveal that this results from a reduced energy gap and a frontier molecular resonance closer to the Fermi level in the antiaromatic species. The conductance of the antiaromatic complex is further modulated electrochemically, demonstrating its potential as a high-conductance transistor.

  9. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters.

    PubMed

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2013-03-15

    The objective of this work was to evaluate the capacity of steel slag filters to treat a gypsum mining leachate containing 11-107 mg P/L ortho-phosphates, 9-37 mg/L fluoride, 0.24-0.83 mg/L manganese, 0.20-3.3 zinc and 1.7-8.2 mg/L aluminum. Column tests fed with reconstituted leachates were conducted for 145-222 days and sampled twice a week. Two types of electric arc furnace (EAF) slags and three filter sequences were tested. The voids hydraulic retention time (HRT(v)) of columns ranged between 4.3 and 19.2 h. Precipitates of contaminants present in columns were sampled and analyzed with X-ray diffraction at the end of tests. The best removal efficiencies over a period of 179 days were obtained with sequential filters that were composed of Fort Smith EAF slag operated at a total HRT(v) of 34 h which removed 99.9% of phosphorus, 85.3% of fluoride, 98.0% of manganese and 99.3% of zinc. Mean concentration at this system's effluent was 0.04 mg P/L ortho-phosphates, 4 mg/L fluoride, 0.02 mg/L manganese, 0.02 zinc and 0.5 mg/L aluminum. Thus, slag filters are promising passive and economical systems for the remediation of mining effluents. Phosphorus was removed by the formation of apatite (hydroxyapatite, Ca(5)(PO(4))(3)OH or fluoroapatite, Ca(5)(PO(4))(3)F) as confirmed by visual and X-ray diffraction analyses. The growth rate of apatite was favored by a high phosphorus concentration. Calcite crystals were present in columns and appeared to be competing for calcium and volume needed for apatite formation. The calcite crystal growth rate was higher than that of apatite crystals. Fluoride was removed by precipitation of fluoroapatite and its removal was favored by a high ratio of phosphorus to fluoride in the wastewater.

  10. The zwitterion effect in high-conductivity polyelectrolyte materials.

    PubMed

    Tiyapiboonchaiya, Churat; Pringle, Jennifer M; Sun, Jiazeng; Byrne, Nolene; Howlett, Patrick C; MacFarlane, Douglas R; Forsyth, Maria

    2004-01-01

    The future of lithium metal batteries as a widespread, safe and reliable form of high-energy-density rechargeable battery depends on a significant advancement in the electrolyte material used in these devices. Molecular solvent-based electrolytes have been superceded by polymer electrolytes in some prototype devices, primarily in a drive to overcome leakage and flammability problems, but these often exhibit low ionic conductivity and prohibitively poor lithium-ion transport. To overcome this, it is necessary to encourage dissociation of the lithium ion from the anionic polymer backbone, ideally without the introduction of competing, mobile ionic species. Here we demonstrate the effect of zwitterionic compounds, where the cationic and anionic charges are immobilized on the same molecule, as extremely effective lithium ion 'dissociation enhancers'. The zwitterion produces electrolyte materials with conductivities up to seven times larger than the pure polyelectrolyte gels, a phenomenon that appears to be common to a number of different copolymer and solvent systems.

  11. High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2007-11-07

    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab.

  12. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  13. Transient Response of Different Highly Conductive PCM Composites

    NASA Astrophysics Data System (ADS)

    Mahmoud Alhamdo, Mohammed H.; Bdaiwi, Bashar A.; Hasan, Ali H.

    In this work, the thermal conductivity of paraffin wax has been enhanced by employing four different high conductivity additives infiltrated within the PCM. These include the use of Graphite Powder (GP), Copper Particles (CP), Aluminum oxide Particles (AP), and Copper Network (CN). Four different types of pure waxes were selected, tested and compared. Twelve samples of wax/additives composites were prepared by adding different mass ratios of 3, 6 and 9 % of additives by weight in each type of wax. The storage system contains spherical capsules filled with composite PCMs that are packed in an insulated cylindrical storage. Transient temperature based governing equations have been developed and solved numerically by both ANSYS FLUENT 14 code and by numerical implicit time marching model. With progress of time, results showed that the numerical predictions of ANSYS software start to deviate from the experimental observations. The grade-B paraffin was found to be the best one. Results indicate that all the enhancement methods have significant effect on the thermal response of the system. However, the utilization of 6 % additives by weight has been found to provide the best enhancement effect. The developed new-sort CN composite is found to produce the best thermal response due to its good homogeneity with wax and its high conductivity. Results showed that for CN composite with 6 % additives, the charging and discharging time decreased by 26.4 and 30.3 % respectively than that of pure wax and the thermal conductivity enhanced by 2.57 times that of pure wax.

  14. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity.

    PubMed

    Wang, J N; Luo, X G; Wu, T; Chen, Y

    2014-06-25

    Macroscopic fibres made up of carbon nanotubes exhibit properties far below theoretical predictions and even much lower than those for conventional carbon fibres. Here we report improvements of mechanical and electrical properties by more than one order of magnitude by pressurized rolling. Our carbon nanotubes self-assemble to a hollow macroscopic cylinder in a tube reactor operated at high temperature and then condense in water or ethanol to form a fibre, which is continually spooled in an open-air environment. This initial fibre is densified by rolling under pressure, leading to a combination of high tensile strength (3.76-5.53 GPa), high tensile ductility (8-13%) and high electrical conductivity ((1.82-2.24) × 10(4) S cm(-1)). Our study therefore demonstrates strategies for future performance maximization and the very considerable potential of carbon nanotube assemblies for high-end uses.

  15. Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.; Orndoff, Evelyne; Tang, Henry

    2010-01-01

    This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat

  16. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    PubMed

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.

  18. Nonequilibrium Sulfur Capture & Retention in an Air Cooled Slagging Coal Combustor

    SciTech Connect

    Bert Zauderer

    1998-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles, which are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 36 month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 19 days of testing were completed prior to 9/30/97. In the present quarterly reporting period ending 12/31/97, 13 tests days were completed on co-firing coal and a high ash, rice husk biomass, which was selected to produce a high slag flow rate. Most of the test effort focussed on developing methods for feeding the very low density rice husks into combustor. Various levels of mineral matter from coal ash, rice husk ash, calcium sulfate, and calcium oxide was injected in the combustor during these 13 tests. The peak mineral matter, injection rate was 592 lb/hr for a period of about one-hour. No significant sulfur concentration was measured in the slag removed from the combustor. This may be due to the brief test duration, and longer duration tests are planned for the next quarter. The two major accomplishments in this quarter are the successful co-firing of coal and biomass in the slagging combustor. This is a major technical milestone due to its application to greenhouse gas emission reduction. It was not in the original project plan. Also, the total of 31 test days completed by 12/31/97 is double the number originally planned.

  19. High conductance ohmic junction for monolithic semiconductor devices

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R. (Inventor)

    1988-01-01

    In order to increase the efficiency of solar cells, a monolithic stacked device is constructed comprising a plurality of solar sub-cells adjusted for different bands of radiation. The interconnection between these sub-cells has been a significant technical problem. The invention provides an interconnection which is a thin layer of high ohmic conductance material formed between the sub-cells. Such a layer tends to form beads which serve as a shorting interconnect while passing a large fraction of the radiation to the lower sub-cells and permitting lattice-matching between the sub-cells to be preserved.

  20. Development of a high capacity variable conductance heat pipe.

    NASA Technical Reports Server (NTRS)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.

    1973-01-01

    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  1. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  2. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect

    Dr. Bert Zauderer

    1999-03-15

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char.

  3. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    PubMed

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  4. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  5. Subgap conductivity in SIN-junctions of high barrier transparency

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Balashov, D. V.; Khabipov, M. I.; Buchholz, F.-I.; Zorin, A. B.

    2006-11-01

    We investigate the current-voltage characteristics of high-transparency superconductor-insulator-normal metal (SIN) junctions with the specific tunnel resistance ρ ≲ 30 Ω μm2. The junctions were fabricated from different superconducting and normal conducting materials, including Nb, Al, AuPd and Cu. The subgap leakage currents were found to be appreciably larger than those given by the standard tunnelling model. We explain our results using the model of two-electron tunnelling in the coherent diffusive transport regime. We demonstrate that even in the high-transparency SIN-junctions, a noticeable reduction of the subgap current can be achieved by splitting a junction into several submicron sub-junctions. These structures can be used as nonlinear low-noise shunts in rapid-single-flux-quantum (RSFQ) circuitry for controlling Josephson qubits.

  6. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.

    PubMed

    Kwon, Soonshin; Zheng, Jianlin; Wingert, Matthew C; Cui, Shuang; Chen, Renkun

    2017-02-02

    Amorphous Si (a-Si) nanostructures are ubiquitous in numerous electronic and optoelectronic devices. Amorphous materials are considered to possess the lower limit to the thermal conductivity (κ), which is ∼1 W·m(-1) K(-1) for a-Si. However, recent work suggested that κ of micrometer-thick a-Si films can be greater than 3 W·m(-1) K(-1), which is contributed to by propagating vibrational modes, referred to as "propagons". However, precise determination of κ in a-Si has been elusive. Here, we used structures of a-Si nanotubes and suspended a-Si films that enabled precise in-plane thermal conductivity (κ∥) measurement within a wide thickness range of 5 nm to 1.7 μm. We showed unexpectedly high κ∥ in a-Si nanostructures, reaching ∼3.0 and 5.3 W·m(-1) K(-1) at ∼100 nm and 1.7 μm, respectively. Furthermore, the measured κ∥ is significantly higher than the cross-plane κ on the same films. This unusually high and anisotropic thermal conductivity in the amorphous Si nanostructure manifests the surprisingly broad propagon mean free path distribution, which is found to range from 10 nm to 10 μm, in the disordered and atomically isotropic structure. This result provides an unambiguous answer to the century-old problem regarding mean free path distribution of propagons and also sheds light on the design and performance of numerous a-Si based electronic and optoelectronic devices.

  7. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  8. Sodium-sulfur cells with high conductivity glass electrolytes

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Bloom, I.; Bradley, J.; Roche, M. F.

    1985-05-01

    A study is under way to develop glasses in the soda-alumina-zirconia-silica system that have high conductivity for sodium ions. Sodium-conductivity and corrosion experiments indicate that the target resistivity of 100 ohm-cm at 300(0)C can be achieved for glasses having satisfactory corrosion resistance for use in sodium-sulfur cells. The low resistivity makes possible a unique approach to cell design. Cells of 150 A-hr capacity were designed having 6-mm dia electrolytes and are expected to achieve a specific energy of up to 270 W-hr/kg. Others having 1.5-mm dia electrolytes are expected to attain a specific power of up to 2 or 3 kW/kg. Excellent heat removal can be provided for high-specific-power cells by short metallic paths from the center of the cell to the cooled cell wall. Reliability of the cell may be achieved by: (1) use of a protective tube around each electrolyte tube to protect against failure propagation, and (2) the provision for automatic disconnection of a failed element by burnout of its current collector wire.

  9. The thermal conductivity of electrically-conducting liquids at high pressures

    NASA Astrophysics Data System (ADS)

    Wakeham, W. A.; Zalaf, M.

    1986-05-01

    The paper describes a new instrument for the measurement of the thermal conductivity of electrically-conducting liquids at pressures up to 700 MPa with an accuracy of ±0.3%. The instrument is based upon the transient hot-wire principle and the novel features that make it applicable to electrically-conducting fluids are described. In particular a new automatic bridge for the direct measurement of the temperature rise of the hot-wires is discussed.

  10. Wettability of Silicon Carbide by CaO-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Tangstad, Merete

    2009-12-01

    The wettability of silicon carbide by liquid CaO-SiO2 slags that contain 47 to 60 wt pct SiO2 was studied using the sessile drop wettability technique. The experiments were carried out in Ar and CO atmospheres. A small piece of slag was melted on SiC substrates under different heating regimes up to 1600 °C. It was found that the wetting is not significantly dependent on the temperature and the heating rate. However, the wettability is relatively high, and the wetting is higher for slags that contain lower SiO2 concentrations. Moreover, the wettability between the slags and SiC is dependent on the gas phase composition, and it is higher in Ar than that in CO. When the SiO2 concentration changes from 47 pct wt to 60 pct wt, the wetting angle changes from 20 deg to 73 deg in Ar and from 58 deg to 87 deg in a CO atmosphere. The formation and bursting of gas bubbles also was observed after some contact time, which indicates that the wetting system is a reactive type. However, microscopic studies indicated that no metal phase exists at the slag/silicon-carbide interface. Therefore, it was concluded that chemical reactions between the slag and SiC take place and that SiO2 is slowly reduced to form CO and SiO gases. Based on the experimental data, the dependence of the Girifalco-Good coefficient on the slag composition and the relationship between the interfacial tension of CaO-SiO2 slags and SiC also were estimated.

  11. Glassy slags for minimum additive waste stabilization. Interim progress report, May 1993--February 1994

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.

    1994-05-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.

  12. Glassy slag from rotary hearth vitrification

    SciTech Connect

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-12-31

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation {open_quotes}glassy slag.{close_quotes} Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag.

  13. Recycling SAW slag proves reliable and repeatable

    SciTech Connect

    Beck, H.P.; Jackson, A.R.

    1996-06-01

    Submerged arc welding (SAW) slag is recycled by taking the fused part of the slag after welding and processing it in a manner that allows it to be reused for the same SAW operation. This slag recycling process has been around the welding industry for many years, and trial-and-error experimentation through the years has made it a reliable and accepted process. Two major reasons why a welding manufacturer would consider the use of recycled submerged arc welding slag are cost savings and the environment. The cost of processing recycled slag is less than the purchase of new flux from the manufacturer. Many times this can amount to savings of 50% or greater. Savings can also be realized by eliminating the need to collect the slag and have it removed to an approved landfill. Environmentally, recycling slag minimizes the use of nonrenewable resources such as minerals, and it reduces the mass of material that must be sent to a landfill. It should be noted, though, that in most recycling processes there is some loss in weight, and not all the slag is processed into reusable flux. Also, there is magnetic separation during processing in which magnetic impurities are removed and disposed of as waste. An average for this loss is 25% of the total weight processed. To realize all of the advantages of recycling, it is essential that the process is performed properly and according to the standards established by industry. Below are steps required for recycling slag as established by two standards setting organizations.

  14. A numerical study on electrochemical transport of ions in calcium fluoride slag

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.

    2016-07-01

    Electrically resistive CaF 2-based slags are widely used in electroslag remelting (ESR) process to generate Joule heat for the melting of electrode. The electric current is conducted by ions (electrolyte) such as Ca +2 or F -, thus it is necessary to establish electrochemical models to study electrical behavior of slag. This paper presents a numerical model on electrochemical transport of ions in an arbitrary symmetrical (ZZ) and non-symmetrical (CaF2) stagnant electrolytes blocked by two parallel, planar electrodes. The dimensionless Poisson-Nernst-Planck (PNP) equations are solved to model electro-migration and diffusion of ions. The ions are considered to be inert that no Faradic reactions occur. Spatial variations of concentrations of ions, charge density and electric potential across the electrolyte are analyzed. It is shown that the applied potential has significant influence on the system response. At high applied voltage, the anodic potential drop near the electrode is significantly larger than cathodic potential drop in fully dissociated CaF2 electrolyte.

  15. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steels

    SciTech Connect

    Chernicoff, W.P.; Chou, K.C.; Gao, H.; MacDonald, C.J.; Molecke, M.A.; Pal, U.B.; Van Den, J.; Woolley, D.

    1999-06-30

    Downsizing and decommissioning of nuclear operations is increasing the stockpile of Radioactive Scrap Metal (RSM). It is estimated that the annual generation of RSM for the entire DOE complex will be approximately 120,000 metric tons beginning in the year 2000. Out of which contaminated stainless steel with high chromium and nickel contents constitutes 25-30 wt. % [1]. Disposal of this material not only represents resource and value lost, but also necessitates long term monitoring for environmental compliance. The latter results in additional recurring expense. Therefore, it is desirable to be able to decontaminate the radioactive stainless steel to a satisfactory level that can be recycled or at least used for fabrication of containers for RSM disposal instead of using virgin stainless steel. Decontamination of radioactive stainless steel using the ESR process is investigated. In this paper the relevant slag properties, capacity to incorporate the radioactive contaminant, slag-metal partition coefficient, volatilization rate, volatile species, viscosity, electrical conductivity and surface tension are presented as a function of temperature. The impact of these properties on the ESR decontamination process is discussed.

  16. Highly conductive Li garnets by a multielement doping strategy.

    PubMed

    Tong, Xia; Thangadurai, Venkataraman; Wachsman, Eric D

    2015-04-06

    Highly conductive Li7La3Zr2O12 (LLZ) garnet-type solid electrolytes were further optimized to improve Li-ion conduction by La(3+)-sites substitution with Ba(2+) and Zr(4+)-sites substitution with Ta(5+) and Nb(5+). Garnet-structured metal oxides of the nominal chemical compositions Li6.65La2.75Ba0.25Zr1.4Ta0.5Nb0.1O12, Li6.4La3Zr1.4Ta0.6-xNbxO12 (x = 0, 0.1, 0.2, and 0.3), and the parent LLZ, as a reference, were prepared via conventional solid-state reaction to investigate the effect of multielement doping on ionic conductivity. The phase formation, morphology, and Li ion conductivity were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy, and alternating current impedance spectroscopy methods, respectively. In addition, solid-state (27)Al and (7)Li magic-angle spinning (MAS) NMR was used to study the effect of "Al doping" on the investigated multielement doped Li-stuffed garnet metal oxides. All the prepared samples obtained the cubic garnet-type structure (space group: Ia3̅d; No. 230) at 1150 °C, similar to that of cubic LLZ. Except for Li6.4La3Zr1.4Ta0.6O12, all the members show Al content by Al MAS NMR. However, it was not possible to detect Al-based impurity phases using PXRD in any of the investigated garnets. Among the samples investigated in this work, "Al-free" Li6.4La3Zr1.4Ta0.6O12 demonstrated a bulk Li ion conductivity of 0.72 mS cm(-1) at 25 °C, with apparent activation energy of 0.26 eV, significantly higher than the parent LLZ.

  17. Synthesis of steel slag ceramics: chemical composition and crystalline phases of raw materials

    NASA Astrophysics Data System (ADS)

    Zhao, Li-hua; Wei, Wei; Bai, Hao; Zhang, Xu; Cang, Da-qiang

    2015-03-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-Al2O3-SiO2 and CaO-MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  18. Estimation for Iron Redox Equilibria in Multicomponent Slags

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Hao; Zhang, Guo-Hua; Chou, Kuo-Chih

    2017-07-01

    The knowledge of redox equilibria of iron in multicomponent molten slags is of significant importance to understand the viscosity, electrical conductivity and structure of iron-containing slags. However, the available data of molar ratio of ferric ion to ferrous ion are limited due to the difficulty of experiment and heavy workload. In this study, a model was established to estimate the X_{FeO}_2^{-}/X_{Fe}^{2+} (normally, most of ferric ions exist in the form of complex anions such as FeO_2^{-}) ratio in CaO-MgO-Al2O3-SiO2-"FeOt" slags, which can give good estimation results compared to the experimental measured values. From the model, by increasing oxygen partial pressure or decreasing temperature, the X_{FeO}_2^{-}/X_{Fe}^{2+} ratio will increase. Different components have different influences on X_{FeO}_2^{-} X_{Fe}^{2+} ratio: CaO and MgO are beneficial for the increase of this ratio, but Al2O3 and SiO2 have reverse effects.

  19. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  20. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  1. Thermal Conductance Engineering for High-Speed TES Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Hays-Wehle, J. P.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-07-01

    Many current and future applications for superconducting transition-edge sensor (TES) microcalorimeters require significantly faster pulse response than is currently available. X-ray spectroscopy experiments at next-generation synchrotron light sources need to successfully capture very large fluxes of photons, while detectors at free-electron laser facilities need pulse response fast enough to match repetition rates of the source. Additionally, neutrino endpoint experiments such as HOLMES need enormous statistics, yet are extremely sensitive to pile-up effects that can distort spectra. These issues can be mitigated only by fast rising and falling edges. To address these needs, we have designed high-speed TES detectors with novel geometric enhancements to increase the thermal conductance of pixels suspended on silicon nitride membranes. This paper shows that the thermal conductivity can be precisely engineered to values spanning over an order of magnitude to achieve fast thermal relaxation times tailored to the relevant applications. Using these pixel prototypes, we demonstrate decay time constants faster than 100 μ s, while still maintaining spectral resolution of 3 eV FWHM at 1.5 keV. This paper also discusses the trade-offs inherent in reducing the pixel time constant, such as increased bias current leading to degradation in energy resolution, and potential modifications to improve performance.

  2. High conductance values in π-folded molecular junctions

    NASA Astrophysics Data System (ADS)

    Carini, Marco; Ruiz, Marta P.; Usabiaga, Imanol; Fernández, José A.; Cocinero, Emilio J.; Melle-Franco, Manuel; Diez-Perez, Ismael; Mateo-Alonso, Aurelio

    2017-05-01

    Folding processes play a crucial role in the development of function in biomacromolecules. Recreating this feature on synthetic systems would not only allow understanding and reproducing biological functions but also developing new functions. This has inspired the development of conformationally ordered synthetic oligomers known as foldamers. Herein, a new family of foldamers, consisting of an increasing number of anthracene units that adopt a folded sigmoidal conformation by a combination of intramolecular hydrogen bonds and aromatic interactions, is reported. Such folding process opens up an efficient through-space charge transport channel across the interacting anthracene moieties. In fact, single-molecule conductance measurements carried out on this series of foldamers, using the scanning tunnelling microscopy-based break-junction technique, reveal exceptionally high conductance values in the order of 10-1 G0 and a low length decay constant of 0.02 Å-1 that exceed the values observed in molecular junctions that make use of through-space charge transport pathways.

  3. High conductance values in π-folded molecular junctions.

    PubMed

    Carini, Marco; Ruiz, Marta P; Usabiaga, Imanol; Fernández, José A; Cocinero, Emilio J; Melle-Franco, Manuel; Diez-Perez, Ismael; Mateo-Alonso, Aurelio

    2017-05-18

    Folding processes play a crucial role in the development of function in biomacromolecules. Recreating this feature on synthetic systems would not only allow understanding and reproducing biological functions but also developing new functions. This has inspired the development of conformationally ordered synthetic oligomers known as foldamers. Herein, a new family of foldamers, consisting of an increasing number of anthracene units that adopt a folded sigmoidal conformation by a combination of intramolecular hydrogen bonds and aromatic interactions, is reported. Such folding process opens up an efficient through-space charge transport channel across the interacting anthracene moieties. In fact, single-molecule conductance measurements carried out on this series of foldamers, using the scanning tunnelling microscopy-based break-junction technique, reveal exceptionally high conductance values in the order of 10(-1) G0 and a low length decay constant of 0.02 Å(-1) that exceed the values observed in molecular junctions that make use of through-space charge transport pathways.

  4. Stable high conductivity ceria/bismuth oxide bilayered electrolytes

    SciTech Connect

    Wachsman, E.D.; Jayaweera, P.; Jiang, N.; Lowe, D.M.; Pound, B.G.

    1997-01-01

    The authors have developed a high conductivity bilayered ceria/bismuth oxide anolyte/electrolyte that uses the Po{sub 2} gradient to obtain stability at the anolyte-electrolyte interface and reduced electronic conduction due to the electrolyte region. Results in terms of solid oxide fuel cell (SOFC) performance and stability are presented. These results include a 90 to 160 mV increase in open-circuit potential, depending on temperature, with the bilayered structure as compared to SOFCs fabricated from a single ceria layer. An open-circuit potential of >1.0 V was obtained at 500 C with the bilayered structure. This increase in open-circuit potential is obtained without any measurable increase in cell resistance and is stable for over 1,400 h of testing, under both open-circuit and maximum power conditions. Moreover, SOFCs fabricated from the bilayered structure result in a 33% greater power density as compared to cells with a single ceria electrolyte layer.

  5. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

    SciTech Connect

    PAL, UDAY B.

    1999-08-01

    Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

  6. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  7. Secondary emission conductivity of high purity silica fabric

    NASA Technical Reports Server (NTRS)

    Belanger, V. J.; Eagles, A. E.

    1977-01-01

    High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test.

  8. Using high hydraulic conductivity nodes to simulate seepage lakes.

    PubMed

    Anderson, Mary P; Hunt, Randall J; Krohelski, James T; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10(-3) m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  9. Using high hydraulic conductivity nodes to simulate seepage lakes

    USGS Publications Warehouse

    Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  10. Flexible and conductive MXene films and nanocomposites with high capacitance

    PubMed Central

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M.; Qiu, Jieshan; Barsoum, Michel W.; Gogotsi, Yury

    2014-01-01

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few. PMID:25389310

  11. Flexible and conductive MXene films and nanocomposites with high capacitance

    DOE PAGES

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; ...

    2014-11-11

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. In this study, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 ×more » 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ~530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. Finally, to our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.« less

  12. Flexible and conductive MXene films and nanocomposites with high capacitance

    SciTech Connect

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M.; Qiu, Jieshan; Barsoum, Michel W.; Gogotsi, Yury

    2014-11-11

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. In this study, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ~530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. Finally, to our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.

  13. Experimental processing of salt slags from an aluminum dross furnace

    SciTech Connect

    Magyar, M.J.; Kaplan, R.S.; Makar, H.V.

    1980-01-01

    The Federal Bureau of Mines has developed a hydrometallurgical method to recover aluminum, aluminum oxide, and fluxing salts from aluminum salt slags. The slag is leached with water at room temperature to produce a saturated brine slurry. Screening of the slurry yields an aluminum-rich fraction that can be returned to the dross furnace. The remaining slurry is vacuum filtered, yielding a clear brine solution and an aluminum oxide filter cake. Evaporation of the clear filtrate produces a high-purity fluxing salt for reuse in the dross furnace. Over 80 pct of the metallic aluminum is recovered in the aluminum-rich oversize fraction, while essentially all the fluxing salts are recovered by evaporation. This report contains the final results of an investigation on a process research unit scale, an economic evaluation of the method, and recommendations to further improve the process.

  14. Manganese waste water treatment by fungi derived from manganese slag.

    PubMed

    Ou-Yang, Yu-Zhu; Cao, Jian-Bing; Li, Xiao-Ming; Zheng, Wei; Wang, Dong-Bo; Zhang, Yi

    2010-01-01

    The aim of this study was to isolate a mould from the surface of manganese slag which had strong resistance and high adsorption of Mn(2 + ), and to determine the effects of initial Mn(2 + ) concentration, incubation temperature, rotation speed and inoculation amount on adsorption of Mn(2 + ) from manganese waste water solution. The result showed that a mould (A5) which was isolated from manganese slag had the adsorption rate of Mn(2 + ) to 97.5% at the initial pH value 6, inoculation amount 2%, rotation speed 150 r/min, a concentration of Mn(2 + ) 500 mg/L, and a temperature of 28 degrees C cultivated for 50 h. As there is no research on adsorption of Mn(2 + ) from manganese waste water by fungi before, this research showed a theoretical guidance on this field.

  15. Toward nanofluids of ultra-high thermal conductivity.

    PubMed

    Wang, Liqiu; Fan, Jing

    2011-02-18

    The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are negligible, their indirect effects can be significant via their influence on the particle morphology and/or the coupled transport.

  16. Safe disposal of metal values in slag

    SciTech Connect

    Halpin, P.T.; Zarur, G.L.

    1982-10-26

    The method of safely disposing of sludge containing metal values capable of displaying toxic ecological properties includes the steps of deriving from an organic or inorganic sludge an intermediate product such as a dewatered sludge or an incinerated ash, and adding this intermediate product to a metal smelting step of a type producing a slag such that most of the metal values become encapsulated in the slag. Some precious metal values may be recovered with the metal being smelted, and may be subsequently separated therefrom by appropriate metal winning steps. The sludge product brings to the smelting process certain additives needed therein such as silica and phosphates for the slag, alumina and magnesium to lower the viscosity of the molten slag, and organic matter serving as reducing agents.

  17. Settling of copper drops in molten slags

    NASA Astrophysics Data System (ADS)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  18. Improving thermocouple service life in slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

  19. Development of improved performance refractory liner materials for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

  20. Selective Sulfidation of Lead Smelter Slag with Sulfur

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  1. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity.

    PubMed

    Kuang, Zhiqiao; Chen, Yulong; Lu, Yonglai; Liu, Li; Hu, Shui; Wen, Shipeng; Mao, Yingyan; Zhang, Liqun

    2015-04-08

    A homogeneous dispersion of hexagonal boron nitride nanosheets (BNNSs) in elastomers is obtained by solution compounding methods, and a high orientation of BNNSs is achieved by strong shearing. The composites show high thermal conductivities, especially when BNNS loading exceeds 17.5 vol%, indicating that the material is promising for thermal-management applications which need high thermal conductivity, low dielectric constant, and adequate softness.

  2. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  3. Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices.

    PubMed

    Kang, Wenbin; Lin, Meng-Fang; Chen, Jingwei; Lee, Pooi See

    2016-12-01

    It is of great challenge to develop a transparent solid state electrochromic device which is foldable at the device level. Such devices require delicate designs of every component to meet the stringent requirements for transparency, foldability, and deformation stability. Meanwhile, nanocellulose, a ubiquitous natural resource, is attracting escalating attention recently for foldable electronics due to its extreme flexibility, excellent mechanical strength, and outstanding transparency. In this article, transparent conductive nanopaper delivering the state-of-the-art electro-optical performance is achieved with a versatile nanopaper transfer method that facilitates junction fusing for high-quality electrodes. The highly compliant nanopaper electrode with excellent electrode quality, foldability, and mechanical robustness suits well for the solid state electrochromic device that maintains good performance through repeated folding, which is impossible for conventional flexible electrodes. A concept of camouflage wearables is demonstrated using gloves with embedded electrochromics. The discussed strategies here for foldable electrochromics serve as a platform technology for futuristic deformable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kinetics of the zinc slag-Fuming process: Part i. industrial measurements

    NASA Astrophysics Data System (ADS)

    Richards, G. G.; Brimacombe, J. K.; Toop, G. W.

    1985-09-01

    A study involving industrial measurements and mathematical modeling has been conducted to eluci-date kinetic phenomena in the zinc slag fuming process. In the first part of this three-part paper, the results of industrial measurements and observations are presented. In Part II a mathematical model of the process is developed, and finally in Part III the implications of a kinetic conception of the process for process improvement are explored. The industrial work consisted primarily of slag sampling through the fuming cycles of five different fuming operations. In addition, tuyere back-pressure mea-surements, tuyere photography using a tuyerescope, and sampling of the fume product were under-taken at one operation. Analysis of the slag samples has shown that, in general, the zinc elimination curve is linear with time and that a portion of the injected coal entrains in the slag. Analysis of tuyere back-pressure fluctuations and movie photographs of the tuyere tip indicate that the coal-air mixture enters the slag in the form of discrete bubbles. From these results it can be deduced that the fuming furnace consists of two reaction zones which are created by the division of coal between the slag and the tuyere gas stream. The coal entrained in the slag reduces ZnO and Fe3O4 in a “reduction zone” which is responsible for fuming. The coal remaining in the tuyere gas stream combusts in an “oxidation zone” although a fraction passes through the bath unconsumed and reports to the solid products. The oxidation zone supplies heat to the endothermic reduction reactions and heat losses.

  5. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  6. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  7. Plasma formation in water vapour layers in high conductivity liquids

    NASA Astrophysics Data System (ADS)

    Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.

    2011-10-01

    The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current

  8. Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the `Refractory-Slag-Metal-Inclusion (ReSMI)' Multiphase Reaction Model

    NASA Astrophysics Data System (ADS)

    Shin, Jae Hong; Park, Joo Hyun

    2017-08-01

    High-temperature experiments and Refractory-Slag-Metal-Inclusion (ReSMI) multiphase reaction simulations were carried out to determine the effect of the ladle slag composition on the formation behavior of non-metallic inclusions in molten steel. Immediately after the slag-metal reaction, magnesium migrated to the molten steel and a MgAl2O4 spinel inclusion was formed due to a reaction between magnesium and alumina inclusions. However, the spinel inclusion changed entirely into a liquid oxide inclusion via the transfer of calcium from slag to metal in the final stage of the reaction. Calcium transfer from slag to metal was more enhanced for lower SiO2 content in the slag. Consequently, the spinel inclusion was modified to form a liquid CaO-Al2O3-MgO-SiO2 inclusion, which is harmless under steelmaking conditions. The modification reaction was more efficient as the SiO2 content in the slag decreases.

  9. Blasted copper slag as fine aggregate in Portland cement concrete.

    PubMed

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  11. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  12. Modeling of thermal conductivity in high performing thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hatzikraniotis, E.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2017-01-01

    The enhanced TE-performance in Mg2Si-Mg2Sn based pseudo-binaries is presented, which is attributed to low thermal conductivity. Sn-Si alloying, reduces the lattice thermal conductivity due to mass fluctuation. Furthermore, miscibility gap in the Sn-Si substitution causes the formation of composites, with Si-rich and Sn-rich phases, which span from mm to nm scale, and these nano-inclusions reduce further lattice thermal conductivity.

  13. Inkjet printed organic electrochemical transistors with highly conducting polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Afonso, Mónica; Morgado, Jorge; Alcácer, Luís

    2016-10-01

    Organic Electrochemical Transistors (OECTs) were fabricated with two kinds of highly conducting polymer electrolytes, one with cations of small dimensions (Li+) and the other with cations of large dimensions (1-ethyl-3-methylimidazolium, EMI+). All OECTs exhibit transconductance values in the millisiemens range. Those with the larger EMI+ cations reach higher transconductance values and the saturated region of their I(V) characteristics extends to drain negative voltages of the order of -2 V without breakdown. These OECTs aim at potential applications for which it is relevant to use a solid polymer electrolyte instead of an aqueous electrolyte, namely, for integration in complex devices or in sensors and transducers where the electrolyte film may act as a membrane to prevent direct contact of the active material (PEDOT:PSS) with the biological media. The choice of electrolytes with cations of disparate sizes aims at assessing the nature (Faradaic or capacitive) of the processes occurring at the electrolyte/channel interface. The results obtained are consistent with a Faradaic-based operation mechanism.

  14. Life cycle assessment of Japanese high-temperature conductive adhesives.

    PubMed

    Andrae, Anders S G; Itsubo, Norihiro; Yamaguchi, Hiroshi; Inaba, Atsushi

    2008-04-15

    The electrically conductive adhesives (ECA) are on the verge of a breakthrough as reliable interconnection materials for electronic components. As the ban of lead (Pb) in the electronics industry becomes a reality, the ECA's could be attractive overall alternatives to high melting point (HMP) Pb-based solder pastes. Environmental life cycle assessment (LCA) was used to estimate trade-offs between the energy use and the potential toxicity of two future types of ECA's and one HMP Pb-based. The probability is around 90% that the overall CO2 emissions from an ECA based on a tin-bismuth alloy are lower than for a silver-epoxy based ECA, whereas the probability is about 80% that the cumulative energy demand would be lower. It is more uncertain whether the tin-bismuth ECA would contribute to less CO2, or consume less energy, than a HMP Pb-based solder paste. Moreover, for the impact categories contributing to the life-cycle impact assessment method based on end point modeling (LIME) damage category of human health, the tin-bismuth ECA shows a 25 times lower score, and a silver-epoxy based ECA shows an 11 times lower score than the HMP Pb-based solder paste. In order to save resources and decrease CO2 emissions it is recommended to increase the collection and recycling of printed board assemblies using silver-epoxy based ECA.

  15. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.

    2003-01-01

    Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also

  16. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.

  17. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  18. Development of a high conductivity intercalated graphite composite wire

    NASA Astrophysics Data System (ADS)

    Singhal, S. C.

    1982-02-01

    Composite wires previously fabricated by swaging and claimed to possess conductivity equal to or greater than that of copper were analyzed. Intercalation of HOPG crystals with SbF5+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound. Composite wires consisting of copper, aluminum or lead outer sheath and SbF5+HF-or AsF5-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  19. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    SciTech Connect

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.; Mizia, R.E.

    1995-01-01

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  20. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  1. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  2. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  3. Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications

    NASA Astrophysics Data System (ADS)

    Arifvianto, Budi; Suyitno; Mahardika, Muslim

    2013-08-01

    Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60-300 s using 2-5 mm steel slag balls and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates.

  4. High and low thermal conductivity of amorphous macromolecules

    NASA Astrophysics Data System (ADS)

    Xie, Xu; Yang, Kexin; Li, Dongyao; Tsai, Tsung-Han; Shin, Jungwoo; Braun, Paul V.; Cahill, David G.

    2017-01-01

    We measure the thermal conductivity, heat capacity and sound velocity of thin films of five polymers, nine polymer salts, and four caged molecules to advance the fundamental understanding of the lower and upper limits to heat conduction in amorphous macromolecules. The thermal conductivities vary by more than one order of magnitude, from 0.06 W m-1K-1 for [6,6]-phenyl-C71-butyric acid methyl ester to 0.67 W m-1K-1 for poly(vinylphosphonic acid calcium salt). Minimum thermal conductivity calculated from the measured sound velocity and effective atomic density is in good agreement with the thermal conductivity of macromolecules with various molecular structures and intermolecular bonding strength.

  5. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  6. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  7. Transmission eigenvalue distributions in highly conductive molecular junctions

    PubMed Central

    Barr, Joshua D; Stafford, Charles A

    2012-01-01

    Summary Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τn. Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τn > 0) have been formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding properties at the lead–molecule interface and of the molecular symmetry. Results: We use a many-body theory that properly describes the complementary wave–particle nature of the electron to investigate transport in an ensemble of Pt–benzene–Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead–molecule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body theory, and facilitates unambiguous interpretation of transmission spectra. Conclusion: We confirm that Pt–benzene–Pt junctions have two dominant transmission channels, with only a small contribution from a third channel with τn << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and determine that transport occurs predominantly via the HOMO orbital in Pt–benzene–Pt junctions. Finally, we show that the transport occurs in a lead–molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously, requiring a many-body description. PMID:22428095

  8. Experimental Study on Smelting of Waste Smartphone PCBs Based on Al2O3-FeOx-SiO2 Slag System

    NASA Astrophysics Data System (ADS)

    Fan, Youqi; Gu, Yaowu; Shi, Qiyong; Xiao, Songwen; Jiang, Fatian

    Waste smartphone, as an important type of secondary resource has high content of rare and precious metals. The traditional mechanical process could easily lead to the dispersion and loss of precious metals. In this research, a smelting method using Al2O3-FeOx-SiO2 slag system is proposed to recover the valuable metals in smartphone PCBs. Based on the evaluation of liquidus projection calculated and plotted by Factsage software, reasonable smelting temperatures and slag composition ranges were selected, namely 1300℃-1500℃, 10-15wt% Al2O3, FeO / SiO2 ratio of 0.8-1.5. Then several lab experiments were conducted, with Cu-Fe-Sn-Ni alloy obtained. The results show that distribution of valuable metals could be controlled by appropriate oxidation of iron. Rare metals primarily enrich in the alloy, and most of active metals like Fe, Al in slag as oxide. Recovery efficiencies of Cu, Ni, Sn, Au, Ag are more than 95wt%.

  9. Ecological conditions of ponds situated on blast furnace slag deposits located in South Gare Site of Special Scientific Interest (SSSI), Teesside, UK.

    PubMed

    Raper, E; Davies, S; Perkins, B; Lamb, H; Hermanson, M; Soares, A; Stephenson, T

    2015-06-01

    Slag, a by-product from the iron and steel industry, has a range of applications within construction and is used in wastewater treatment. Historically considered a waste material, little consideration was given to the environmental impacts of its disposal. South Gare (a Site of Special Scientific Interest) located at the mouth of the Tees estuary, UK, formed on slag deposits used to create a sea wall and make the land behind permanent. Over time, ponds formed in depressions with the water chemistry, being significantly impacted by the slag deposits. Calcium levels reached 504 mg/L, nitrate 49.0 mg/L and sulphate 1,698 mg/L. These levels were also reflected in the composition of the sediment. pH (5.10-9.90) and electrical conductivity (2,710-3,598 µS/cm) were variable but often notably high. Pb, Cu and Cd were not present within the water, whilst Zn ranged from 0.027 to 0.37 mg/L. Heavy metal levels were higher in surface sediments. Zinc was most dominant (174.3-1,310.2 mg/L) followed by Pb (9.9-431 mg/L), Cu (8.4-41.8 mg/L) and Cd (0.4-1.1 mg/L). A sediment core provided a historical overview of the ponds. The ponds were unfavourable for aquatic biodiversity and unsuitable for drinking water abstraction.

  10. Pre-fired, refractory block slag dams for wet bottom furnace floors

    SciTech Connect

    Vihnicka, R.S.; Meskimen, R.L.

    1998-12-31

    Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item, however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.

  11. Potential Dependence of the Conductivity of Highly Oxidized Polythiophenes, Polypyrroles, and Polyaniline: Finite Windows of High Conductivity

    DTIC Science & Technology

    1990-05-16

    protonation/deprotonation mechanism . Conductivity increases by at least 108 upon oxidizing polyani-ine from neutral to maximally conducting, and decreases...reversible, potential dependent changes in conductivity in liquid S02/electrolyte in the apparent absence of a protonation/deprotonation mechanism ...polyaniline is similar in 0.5 M H2SO4 ,1 liquid S02 /electrolyte, and poly(vinyl alchohol )/H 3PO4.nH20.8 However, the positive potential limit in aqueous

  12. Temporal dissolution of potentially toxic elements from silver smelting slag by synthetic environmental solutions.

    PubMed

    Ash, Christopher; Borůvka, Luboš; Tejnecký, Václav; Šebek, Ondřej; Nikodem, Antonín; Drábek, Ondřej

    2013-11-15

    Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  14. High Thermal Conductive BBL/Graphene Nanocomposite System

    DTIC Science & Technology

    2011-09-02

    properties. Composite materials employing carbon -based materials such as carbon - nanotube (CNT), graphene, and fullerene have been explored. However, at...fraction as low as 0.1 vol %, comparable to those observed in carbon nanotube -based composites1c and a conductivity of 0.1 Sm-1, sufficient for many...in both poly(benzimidazobenzophenanthroline) (BBL) and the carbon sheets of the graphene so that the electrical-conductivity levels of the composites

  15. STABLCOR™: A high conductivity, low CTE printed circuit board

    NASA Astrophysics Data System (ADS)

    Davis, William E.

    2002-01-01

    The power dissipation levels and the size (footprint) of integrated circuit components that are being assembled to printed circuit boards is causing significant thermal problems that require higher thermal conductivity and close matching of coefficient of thermal expansion. This is especially true when using chip scale devices, chip on board assembly and flip chip on board assembly procedures. AMT has developed a unique printed circuit board that has a thermally conductive layer laminated into the board, which has a thermal conductivity of 225 w/m-k and a very low coefficient of thermal expansion. These properties result in a printed circuit board that is thermally conductive and which has a coefficient of thermal expansion that is closely matched to silicon die and ceramic packages. AMT has demonstrated the benefits of this printed circuit board by conducting thermal cycling tests and vibration tests of boards that were populated with surface mount parts and flip chip on board parts. The testing was conducted under SBIR contracts funded by NASA Glenn Research Center. .

  16. Unique high temperature microwave sintering of aluminum nitride based ceramics with high thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Gengfu

    High temperature microwave sintering is one of the most challenging areas in microwave processing of ceramics. In this dissertation, for the first time, stable, controlled "ultra" high temperature (up to 2100°C) microwave sintering was achieved by development of a unique insulation system based on BN/ZrO2 fiber composite powder synthesized by a unique processing route. It uses a system approach to mitigate the tendency of all insulation materials to interfere with specimen coupling. This insulation system allows stable, controlled ultra high microwave sintering and could be modified to microwave process materials with different thermal, dielectric properties with improved properties. In addition, unlike other high temperature microwave insulation schemes that must be replaced after each run, the insulation system is robust enough for repeated use. Using the insulation design, high density and very high thermal conductivity (˜225 W/m·K) AlN ceramics were fabricated much more efficiently (≤6 hours versus 10's to 100's of hours at high temperature) by microwave sintering than by comparable conventional sintering. A detailed data study of densification, grain growth and thermal conductivity in microwave sintered AlN indicated that there were two time regimes in the development of high thermal conductivity AlN and that oxygen removal was more important to the development of high thermal conductivity than removal of the liquid phase sintering phase. While there have been many previous studies examining processing of high thermal conductivity AlN, this was the first study of microwave processing of high thermal conductivity AlN. AlN-TiB2 composites, which had previously only been successfully densified with pressure-assisted techniques such as HIPing or hot pressing, were successfully microwave sintered in this dissertation. The effect of TiB 2 on the densification behavior and thermal, mechanical, and dielectric properties of microwave sintered AlN based composites

  17. 44. DETAIL VIEW LOOKING EAST AT THE FOUNDATION FOR SLAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. DETAIL VIEW LOOKING EAST AT THE FOUNDATION FOR SLAG CRUSHER, A DEVICE USED TO REMOVE HARDENED SLAG FROM STEEL LADLES. - John A. Roebling's Sons Company, Kinkora Works, Support Systems, Roebling, Burlington County, NJ

  18. Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996

    SciTech Connect

    Zygarlicke, C.J.; McCollor, D.P.

    1997-08-01

    With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

  19. Preliminary results from field testing an improved refractory material for slagging coal gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.

    2004-01-01

    Slag attack of refractory materials used to line the hot face of slagging gasifiers limits their service life to between 3 and 24 months. These gasifiers use coal, petroleum coke, or combinations of them as raw materials to produce chemicals, liquid fuel, and/or electricity; with future consideration being given to the use of other abundant, low cost feedstock such as biomass. The ash from these materials generate liquid slags during gasification at temperature between 1300 - 1575 C and pressures up to 1000 psi, leading to severe slag attack of a vessel lining and causing unacceptable gasifier reliability and on-line availability. To maximize refractory life and provide protection of the gasifier metal shell, the best liners have contained a minimum of 60-70 pct chromia in combination with alumina, alumina/zirconia, or magnesia. The Albany Research Center of DOE has developed a phosphate containing high chrome oxide refractory liner that indicates potential for increased service life over currently used materials. This new liner has been produced commercially by a refractory company and installed in a gasifier for performance evaluation. Refractory issues in slagging gasifiers, the development and properties of the phosphate containing high chrome oxide material, and the preliminary results from the plant trial of this material will be presented.

  20. Chemical and physical properties of plasma slags containing various amorphous volume fractions.

    PubMed

    Kuo, Yi-Ming; Wang, Chih-Ta; Tsai, Cheng-Hsien; Wang, Lin-Chi

    2009-02-15

    In this study, municipal solid waste incinerator fly ash was vitrified using a plasma torch. The fly ash contained rich Ca, causing a high basicity of 2.43. Pure quartz was used as an additive to adjust the basicity. BET surface area analysis, X-ray diffraction analysis, and a scanning electron microscope were used to examine the physical properties of slags. The chemical stability and the acid resistance of slags were evaluated using the toxicity characteristics leaching procedure and tests of acid bathing. The results indicate that the plasma torch effectively vitrified the fly ash. Anthropogenic metals with low boiling points, such as Cd, Pb, and Zn, were predominately vaporized into flue gas. Most of the metals with high boiling points, such as Cr, Cu, and Mn, remained in the slag. After the vitrification, hazardous metals were noticeably immobilized in all slags. However, the slags with higher amorphous volume fractions were more effective in metal immobilization and in resisting acid corrosion. This indicates that SiO(2) enhanced the formation of the glassy amorphous phase and improved the resistance of acid corrosion and the immobilization of hazardous metals.

  1. Dependence of Temperature and Slag Composition on Dephosphorization at the First Deslagging in BOF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chao-gang; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Zhang, Zhi-ming; Liu, Zhi-ming; Deng, Chang-fu

    2016-04-01

    Effects of temperature and slag composition on dephosphorization in a 120 ton top-bottom combined blown converter steelmaking process by double slag method were studied. The slag properties were determined by scanning electron microscope- energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD). The results show that the transition oxidation temperature between dephosphorization and decarbonization Tf is not the favorable temperature for the first deslagging. The optimum first deslagging temperature is confirmed to be approximately 1,673 K which is about 70 K higher than Tf. High melting temperatures phases (such as 3CaO·SiO2) in the slag with high basicity and MgO content are unfavorable to the dephosphorization. The optimum process condition for dephosphorization at the first deslagging in present work is approximately 1,673 K in temperature, 2.0 in slag basicity, 6 and 17 mass% in MgO and T.Fe content, 6 mass% ≤ MnO content.

  2. Use of the dump slags of the Zlatoust metallurgical works

    NASA Astrophysics Data System (ADS)

    Dil'din, A. N.; Chumanov, I. V.; Eremyashev, V. E.; Zherebtsov, D. A.

    2015-06-01

    The methods of processing and salvaging of the wastes of steelmaking are considered for steelmaking slags. The dump slags of the Zlatoust metallurgical works are analyzed. A scheme of two-stage reduction of metal from the dump slags using the reduction-melting scheme is developed and tested under laboratory conditions. The reduction parameters that correspond to the maximum recovery of a metallic component from the slags are found.

  3. ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG

    SciTech Connect

    Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

    2006-03-15

    As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

  4. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  5. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Fifth quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Zauderer, B.

    1997-02-04

    Calcium oxide sorbents injected in a stagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. In the present quarterly reporting period, 10 days of combustor tests were performed, bringing the total number of tests performed to 15. A wide range of operating conditions were tested including injection of metal oxide powders to achieve total mineral injection rates in excess of 400 lb/hr at coal mass flow rates of around 1000 lb/hr. It was determined that efficient sulfur capture requires calcium oxide particle sizes that are too small to be effectively retained in the combustor. On the other hand, injection of coarse calcium sulfate particles into the combustor sharply increased the slag viscosity, thereby reducing the slag flow rate and causing substantial revolution of the sulfur in the slag. It is tentatively concluded that conditions necessary for sulfur capture with sorbents and its retention in the slag cannot be efficiently achieved in one step in a cyclone combustor. It is further concluded that due to the increases in slag viscosity by calcium sulfate extremely high slag mass flow rates are required for sulfur retention in slag. Further tests in that direction are planned for the next quarterly reporting period.

  6. The improvement of slagging gasifier refractories

    SciTech Connect

    Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.

    2006-03-01

    Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

  7. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  8. A highly conductive electrolyte for molten oxide fuel cells.

    PubMed

    Belousov, V V; Fedorov, S V

    2017-01-03

    A gas-tight and ductile solid/liquid δ-Bi2O3-0.2 wt% B2O3 electrolyte for molten oxide fuel cells (MOFCs) is developed. The MOFCs are a new class of intermediate temperature fuel cells. The composite, consisting of solid (δ-Bi2O3) and liquid (molten Bi2O3 + B2O3) oxygen ion-conducting phases, demonstrates the promising application as an MOFC electrolyte with the highest oxygen ionic conductivity.

  9. Highly conductive self-assembled nanoribbons of coordination polymers.

    PubMed

    Welte, Lorena; Calzolari, Arrigo; Di Felice, Rosa; Zamora, Felix; Gómez-Herrero, Julio

    2010-02-01

    Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers-in which metal centres are incorporated into a molecular backbone-and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt(2)I(S(2)CCH(3))(4)](n) self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains ( approximately 10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal-organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

  10. Affordable, Lightweight, Highly Conductive Polymer Composite Electronic Packaging Structures

    DTIC Science & Technology

    1996-06-01

    matrix composite materials and how various material designs can be utilized in various structural/thermal configurations to produce electronic housings and...conductive polymer composite electronic packaging (i.e., electronic housings and heat sinks). The research will center on predominately polymer

  11. Thermal conductivity of earth materials at high temperatures.

    NASA Technical Reports Server (NTRS)

    Schatz, J. F.; Simmons, G.

    1972-01-01

    The total thermal conductivity (lattice plus radiative) of several important earth materials is measured in the temperature range from 500 to 1900 K. A new technique is used in which a CO2 laser generates a low-frequency temperature wave at one face of a small disk-shaped sample, and an infrared detector views the opposite face to detect the phase of the emerging radiation. Phase data at several frequencies yield the simultaneous determination of the thermal diffusivity and the mean extinction coefficient of the material. The lattice, radiative, and total thermal conductivities are then calculated. Results for single-crystal and polycrystalline forsterite-rich olivines and an enstatite indicate that, even in relatively pure large-grained material, the radiative conductivity does not increase rapidly with temperature. The predicted maximum total thermal conductivity at a depth of 400 km in an olivine mantle is 0.020 cal/cm/sec/deg C, which is less than twice the surface value.

  12. Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator

    NASA Astrophysics Data System (ADS)

    Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian

    Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.

  13. Reactions Between Liquid CaO-SiO2 Slags and Graphite Substrates

    NASA Astrophysics Data System (ADS)

    White, Jesse F.; Lee, Jaewoo; Hessling, Oscar; Glaser, Bjoern

    2017-02-01

    In this study, the spreading and infiltration behavior of liquid slag in contact with different grades of graphite was investigated. The wetting and infiltration of slag into graphite were found to be highly material dependent. The reduction of silica by carbon is a characteristic of the system, and it generates gaseous products as evidenced by the observation of bubble formation. The higher the temperature and silica activity of the slag is, the greater the slag infiltration and the faster the rate of spreading. Silicon infiltrated into the graphite substrates much deeper than the oxide phases, indicating gas-phase transport of SiO(g) into the graphite pores. Fundamentally, in this system where the liquid and substrate are reacting, the driving force for spreading is the movement of the system toward a lower total Gibbs energy. Reduction of silica in the slag near the interface may eventually lead to the formation of a solid, CaO-rich layer, slowing down or stopping the reduction reaction.

  14. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters.

    PubMed

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2012-02-07

    The objective of this study was to develop a phosphorus retention mechanisms model based on precipitation and crystallization in electric arc furnace slag filters. Three slag columns were fed during 30 to 630 days with a reconstituted mining effluent at different void hydraulic retention times. Precipitates formed in columns were characterized by X-ray diffraction and transmission electronic microscopy. The proposed model is expressed in the following steps: (1) the rate limiting dissolution of slag is represented by the dissolution of CaO, (2) a high pH in the slag filter results in phosphorus precipitation and crystal growth, (3) crystal retention takes place by filtration, settling and growth densification, (4) the decrease in available reaction volume is caused by crystal and other particulate matter accumulation (and decrease in available reaction time), and (5) the pH decreases in the filter over time if the reaction time is too low (which results in a reduced removal efficiency). Crystal organization in a slag filter determines its phosphorus retention capacity. Supersaturation and water velocity affect crystal organization. A compact crystal organization enhances the phosphorus retention capacity of the filter. A new approach to define filter performance is proposed: saturation retention capacity is expressed in units of mg P/mL voids.

  15. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    PubMed

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  16. Utilization of Illinois slags for the production of ultra-lightweight aggregates. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Choudhry, V.; Zimmerle, T.; Banerjee, D.D.

    1993-05-01

    The objective of this program is to demonstrate that solid residues (slag) from the gasification of Illinois coals can be utilized to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are made by pyroprocessing perlite ores and have unit weights in the range of 3--15 lb/ft{sup 3}. In a previous project, Praxis Engineers demonstrated at the pilot scale that lightweight aggregates with unit weights of 40--55 lb/ ft{sup 3} can be produced from Illinois coal slags, which is suitable for making lightweight cement concrete and precast blocks. These tests also indicated that a product with a unit weight of less than 25 lb/ft{sup 3} could be produced from slag. This project is aimed at testing the potential for producing ULWA from Illinois coal slags. Target applications include loose fill insulation, insulating concrete, lightweight precast products such as concrete blocks and rooftiles, and filtration media. Laboratory- and pilot-scale testing is being conducted in Phase I to identify operating conditions for the expansion of Illinois slags to produce ULWA. Following this, a large batch of expanded slag will be produced, for evaluation in various applications in Phase II.

  17. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, Ross D; Zapf, Vivien; Altarawneh, M M; Lacerda, A; Alsmadi, A M; Alyones, S; Chang, S; Adak, S; Kothapalli, K; Nakotte, H

    2009-01-01

    We have performed rf-skin depth (complex-conductivity) and magnetoresistance measurements of anti ferromagnetic UTX compounds (T=Ni and X=Al, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The rf penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  18. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Lacerda, Alex Hugo; Mielke, Charles H; Mc Donald, Ross D

    2008-01-01

    We have performed Resonance Frequency (RF) skin depth (complex-conductivity) and magnetoresistance measurements of antiferromagnetic UTX compounds (T Ni, and X := AI, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The RF penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  19. Electrical conductivity of noble gases at high pressures.

    PubMed

    Adams, J R; Reinholz, H; Redmer, R; Mintsev, V B; Shilkin, N S; Gryaznov, V K

    2007-09-01

    Theoretical results for the electrical conductivity of noble gas plasmas are presented in comparison with experiment. The composition is determined within a partially ionized plasma model. The conductivity is then calculated using linear response theory, in which the relevant scattering mechanisms of electrons from ions, electrons, and neutral species are taken into account. In particular, the Ramsauer-Townsend effect in electron-neutral scattering is discussed and the importance of a correct description of the Coulomb logarithm in electron scattering by charged particles is shown. A detailed comparison with recent experiments on argon and xenon plasmas is given and results for helium and neon are also revisited. Excellent agreement between theory and experiment is observed, showing considerable improvement upon previous calculations.

  20. Acetones Removal with Fe Doped Titanium Nano Tube Catalysts Prepared from Slag Iron in Steel Plant.

    PubMed

    Lin, Yu-Jung; Wen-ZhiCao; Chang, Chang-Tang

    2016-01-01

    TiO₂ has been studied most commonly because it has high stability, non-toxicity, high catalytic activity, and highly conductivity. Many studies have shown that TiO₂ would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. However, the surface area of TiO₂ is not large enough and the adsorption capacity is small. In this study, the titanium nano tube (TNT) catalysts were prepared to increase the surface area and adsorption capacity. The Fe-TNT was also prepared from slag iron since many slag iron cause waste treatment problems. In this study, the effect of Fe loading, including 0.77%, 1.13%, 2.24% and 4.50%, on acetone removal was also assessed since TNT doped with transitional or precious metals can be used to improve catalytic reaction efficiency. Furthermore, four kinds of VOCs concentration, including 250, 500, 1000 and 1500 ppm were tested. Four kinds of retention time, including 0.4, 0.8, 4.0 and 6.0 sec, and four kinds of dosage, including 0.15, 0.25, 0.30 and 0.45 g cm⁻³, were also assessed. In this study, the adsorption capacity of Fe-TNT was 18.8, 23.3, 28.9 and 32.6 mg g⁻¹ for acetone of 250, 500, 1000 and 1500 ppm, respectively. Four kinds of temperature, including 150, 200, 250 and 300 °C were tested in catalytic reaction system. The results showed removal efficiency increased with increasing temperature. The efficiency can be reached 95% under the conditions with the dosage higher than 0.3 g cm⁻³, temperature higher than 270 °C and retention time higher than 270 °C. Reaction efficiency was 20, 31, 41 and 96% at the temperature of 150, 200, 250 and 300 °C, respectively.

  1. Development of Conducting Polymers of High Structural Strength

    DTIC Science & Technology

    1988-05-31

    electrical conductivity measurements over an extended range of temperatures for both pristine and chemically doped samples. Doping of samples by ion...GPC, TGA, DSC , TMA, etc. were charried out. Defects which limit optical nonlinearity have been identified. The most serious of these appears to be...been synthesized. For example, we have prepared copolymers of polythiophene and polyaniline and have characterized the nonlinear optical as well as

  2. High-Voltage Power Switching for a Conducting Tether

    DTIC Science & Technology

    2006-01-01

    emission, and external cross-field conduction. Under an Air Force SBIR contract1, we designed a spacecraft called the ElectroDynamic Delivery Express...of orbital position and spin plane and phase, the EDDE spacecraft can adjust its spin state and all 6 elements of its orbit: altitude, inclination...effort to maintain). The solar arrays are centrifugally stabilized, and track the sun only around the tether axis. II. Current Control System The

  3. Measurement of Thermal Conductivity of Liquids at High Temperature

    NASA Astrophysics Data System (ADS)

    Schick, V.; Remy, B.; Degiovanni, A.; Demeurie, F.; Meulemans, J.; Lombard, P.

    2012-11-01

    The goal purchased in this paper is to implement a pulse method to measure the thermal conductivity of liquid silica glass above 1200°C until 1600°C. A heat flux stimulation controlled in energy and in time is generated on the front face of an experimental cell. The temperature rise is measured on the rear face of this cell face by using a fast cooled infrared camera. The choice of the measurement cell geometry is fundamental to be able to estimate at the same time the thermal diffusivity and the specific heat of the liquid by an inverse technique. The parameters estimation problem takes into account the optimization of the cell wall thickness. The theoretical model used for the inversion takes into account the coupled heat transfer modes (conduction, convection and radiation) that can occur during the experiment, particularly the thermal conductive short-cut through metallic lateral walls of the cell and radiative transfer within the semi-transparent and participating medium. First measurements are performed on a cell filled with water at ambient temperature in order to validate the parameters estimation procedure.

  4. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil.

    PubMed

    Lima, L R P de Andrade; Bernardez, L A

    2011-05-30

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe(2)O(3) (28.10), CaO (23.11), SiO(2) (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al(2)O(3) (3.56), C (2.26), MnO (1.44), Na(2)O (0.27), S (0.37), K(2)O (0.26), and TiO(2) (0.25). The Cd content of the slag was 57.3mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wüstite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene-nanotube-palladium hybrid and conducting polymer.

    PubMed

    Kim, Hyun-Jun; Randriamahazaka, Hyacinthe; Oh, Il-Kwon

    2014-12-29

    Highly conductive, capacitive and flexible electrodes are fabricated by employing 3D graphene-nanotube-palladium nanostructures and a PEDOT:PSS conducting polymer. The fabricated flexible electrodes, without any additional metallic current collectors, exhibit increased charge mobility and good mechanical properties; they also allow greater access to the electrolyte ions and hence are suitable for flexible energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  7. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, D.H.; Ulrich, K.H.

    1998-09-22

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.

  8. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, D.H.; Ulrich, K.H.

    1998-04-21

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.

  9. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, David H.; Ulrich, Klaus H.

    1998-01-01

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.

  10. Refractory lining system for high wear area of high temperature reaction vessel

    DOEpatents

    Hubble, David H.; Ulrich, Klaus H.

    1998-01-01

    A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.

  11. Viscosity Measurement and Structure Analysis of Cr2O3-Bearing CaO-SiO2-MgO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Li, Qiuhan; Gao, Jintao; Zhang, Yanling; An, Zhuoqing; Guo, Zhancheng

    2017-02-01

    In this study, the effects of different Cr2O3 contents and optical basicity (denoted by Λ) on the viscosity and structure of the Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slag were investigated. The viscosities of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags in the liquid phase below 1823 K (1550 °C) were measured by rotating-cylinder method, and the structures of the slags were examined via Raman spectroscopy. Three different parameters were used to characterize the structures of the slags. The results showed that the viscosity of the slags increased as the Cr2O3 content increased, but decreased as Λ increased. The Cr3+ ions acted as network formers and increased the degree of polymerization (DOP), and thus, the addition of Cr2O3 to the slag increased the number of bridging oxygen atoms in the silicate structural units. Generally, the viscosity increased by increasing DOP. In addition, there was a linear inverse relationship between the viscous activation energy ( E μ ) and Λ. Furthermore, as the Cr2O3 content increased, the gradients of the plots of E μ vs Λ decreased. This indicates that for a slag with a high Cr2O3 content, trying to improve the fluidity of the slag by increasing Λ has a limited effect.

  12. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  13. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network.

    PubMed

    Lee, Phillip; Lee, Jinhwan; Lee, Hyungman; Yeo, Junyeob; Hong, Sukjoon; Nam, Koo Hyun; Lee, Dongjin; Lee, Seung Seob; Ko, Seung Hwan

    2012-07-03

    A highly stretchable metal electrode is developed via the solution-processing of very long (>100 μm) metallic nanowires and subsequent percolation network formation via low-temperature nanowelding. The stretchable metal electrode from very long metal nanowires demonstrated high electrical conductivity (~9 ohm sq(-1) ) and mechanical compliance (strain > 460%) at the same time. This method is expected to overcome the performance limitation of the current stretchable electronics such as graphene, carbon nanotubes, and buckled nanoribbons.

  14. ZnFe2O4 Nanotapers: Slag Assistant-Growth and Enhanced Photoelectrochemical Efficiency.

    PubMed

    She, Xuefeng; Zhang, Zhuo

    2017-12-01

    In this study, ZnFe2O4 (ZFO) nanotapers are fabricated on the ZnO nanorods (NRs) by recycling rare-earth oxide (REO) slag as the iron source, which thereby exhibits dramatically enhanced photoelectrochemical (PEC) efficiency. Our studies demonstrate that the electron-hole separation and charge migration can be facilitated by the cascade band alignment of ZFO and ZnO and the branched nanotaper structures. Not only the iron source, the slag particles can also act as the passivation layers, leading to improved electron lifetime and significant PEC enhancement. The current study presents a novel REO-slag-modified PEC anode for high-efficiency PEC devices and offers a possibility of recycling industrial waste for renewable energy generation.

  15. Highly conductive anion exchange membrane for high power density fuel-cell performance.

    PubMed

    Ren, Xiaoming; Price, Samuel C; Jackson, Aaron C; Pomerantz, Natalie; Beyer, Frederick L

    2014-08-27

    Anion exchange membrane fuel cells (AEMFCs) are regarded as a new generation of fuel cell technology that has the potential to overcome many obstacles of the mainstream proton exchange membrane fuel cells (PEMFCs) in cost, catalyst stability, efficiency, and system size. However, the low ionic conductivity and poor thermal stability of current anion exchange membranes (AEMs) have been the key factors limiting the performance of AEMFCs. In this study, an AEM made of styrenic diblock copolymer with a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block and possessing bicontinuous phases of a hydrophobic network and hydrophilic conduction paths was found to have high ionic conductivity at 98 mS cm(-1) and controlled membrane swelling with water uptake at 117 wt % at 22 °C. Membrane characterizations and fuel cell tests of the new AEM were carried out together with a commercial AEM, Tokuyama A201, for comparison. The high ionic conductivity and water permeability of the new membrane reported in this study is attributed to the reduced torturosity of the ionic conduction paths, while the hydrophobic network maintains the membrane mechanical integrity, preventing excessive water uptake.

  16. New family of lithium salts for highly conductive nonaqueous electrolytes.

    PubMed

    Barbarich, Thomas J; Driscoll, Peter F; Izquierdo, Suzette; Zakharov, Lev N; Incarvito, Christopher D; Rheingold, Arnold L

    2004-11-29

    New lithium salts of weakly coordinating anions were prepared by treating lithium imidazolates or LiN(CH3)2 with 2 equiv of BF(3). They are LiIm(BF3)2, Li 2-MeIm(BF3)2, Li 4-MeIm(BF3)2, LiBenzIm(BF3)2, Li 2-iPrIm(BF3)2, and LiN(CH3)2(BF3)2 (Im=imidazolate, Me=methyl, iPr=isopropyl, BenzIm=benzoimidazolate). The salts were characterized by NMR spectroscopy and mass spectrometry. The structure of LiBenzIm(BF3)2 consists of a dimeric centrosymmetric unit with each lithium atom forming a bridge between the two anions through one fluorine contact to each anion. The structure of a hydrate of LiN(CH3)2(BF3)2 consists of an infinite chain in which each anion chelates two different lithium atoms through Li-F bonds. The conductivities of electrolyte solutions of these salts were measured and are discussed in terms of different ion-pairing modes determined from the solid-state structures, the anion's ability to distribute charge, and solution viscosity. Organic carbonate solutions of LiIm(BF3)2 partially disproportionate at 85 degrees C forming LiBF4, LiBF2[Im(BF3)]2, and Li[(BF3)ImBF2ImBF2Im(BF3)], reaching equilibrium by 3 months at 85 degrees C but not disproportionating at room temperature after 9 months. A mechanism for the formation of these disproportionation products is proposed. The lower conductivity of the 1 M LiIm(BF3)2 solution that has undergone disproportionation is attributed to the formation LiBF4, which is less conductive, and LiBF2[Im(BF3)]2 and Li[(BF3)ImBF2ImBF2Im(BF3)], which increase solution viscosity.

  17. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  18. Low-temperature thermal conductivity of highly porous copper

    NASA Astrophysics Data System (ADS)

    Tomás, G.; Martins, D.; Cooper, A.; Bonfait, G.

    2015-12-01

    The development and characterization of new materials is of extreme importance in the design of cryogenic apparatus. Recently Versarien® PLC developed a technique capable of producing copper foam with controlled porosity and pore size. Such porous materials could be interesting for cryogenic heat exchangers as well as of special interest in some devices used in microgravit.y environments where a cryogenic liquid is confined by capillarity. In the present work, a system was developed to measure the thermal conductivity by the differential steady-state mode of four copper foam samples with porosity between 58% and 73%, within the temperatures range 20 - 260 K, using a 2 W @ 20 K cryocooler. Our measurements were validated using a copper control sample and by the estimation of the Lorenz number obtained from electrical resistivity measurements at room temperature. With these measurements, the Resistivity Residual Ratio and the tortuosity were obtained.

  19. Development of high performance proton-conducting solid electrolytes

    SciTech Connect

    Linkous, C.A.; Kopitzke, R.W.

    1998-08-01

    This work seeks to improve the efficiency of fuel cell and electrolyzer operation by developing solid electrolytes that will function at higher temperatures. Two objectives were pursued: (1) determine the mechanism of hydrolytic decomposition of aromatic sulfonic acid ionomers, with the intent of identifying structural weaknesses that can be avoided in future materials; and (2) identify new directions in solid electrolyte development. After evaluating a number of aromatic sulfonates, it became apparent that no common mechanism was going to be found; instead, each polymer had its own sequence of degradation steps, involving some combination of desulfonation and/or chain scission. For electrochemical cell operation at temperatures > 200 C, it will be necessary to develop solid electrolytes that do not require sulfonic acids and do not require water to maintain its conductivity mechanism.

  20. High Resolution Thermal Conductivity Measurements of Wide Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Pollak, Fred

    2002-03-01

    Despite the considerable amount of work on the electronic, optical, and structural properties of wide gap semiconductors (e.g. GaN, AlN, SiC, ZnO) relatively few thermal conductivity (κ)results have been reported. κ is a function of both intrinsic (anharmonic phonon-phonon scattering) and extrinsic (phonon scattering by dislocations, imputities, process-induced damage). Thus κ provides a measure of a material's quality and hence is important from both applied (device heat management, sample quality) and fundamental perspectives. κ can be evaluated by a number of methods including steady-state longitudinal heat flow, modified Angstrom's method, optical pump-probe, laser flash, third harmonic, and scanning thermal microscopy (SThM). With the exception of SThM these approaches require either contacts (destructive) and/or samples thicker than about 100 microns. SThM is essentially nondestructive. flexible, and has a spatial/depth resolution of 2-3 microns. The latter is important for examining low-defect techniques such as LEO in addition to mapping variations in κ across a wafer. This talk will review recent SThM thermal conductivity results on (0001) GaN [LEO (2.0-2.1 W/cm-K), for OMCVD materials sample thickness, n-type doping, grain boundaries, process-induced effects], thick free standing films of (0001) AlN (3.0-3.3 W/cm-K), (0001) SiC wafers including mapping (3.8-3.9 W/cm-K), and the Zn (1.16 W/cm-K) and O (1.02 W/cm-K) faces of bulk (0001) ZnO. Work supported by ONR contract N00014-99-C-0663 administered by Dr. Colin Wood

  1. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water.

    PubMed

    Mercado-Borrayo, B M; Schouwenaars, R; González-Chávez, J L; Ramírez-Zamora, R M

    2013-01-01

    A multi-analytical approach was used to develop a mathematical regression model to calculate the residual concentration of borate ions in water present at high initial content, as a function of the main physicochemical, mineralogical and electrokinetic characteristics after adsorption on five different types of iron and steel slag. The analytical techniques applied and slag properties obtained in this work were: X-ray Fluorescence for the identification of the main chemical compounds, X-ray Diffraction to determine crystalline phases, physical adsorption of nitrogen for the quantification of textural properties and zeta-potential for electrokinetic measurements of slag particles. Adsorption tests were carried out using the bottle-point technique and a highly concentrated borate solution (700 mg B/L) at pH 10, with a slag dose of 10 g/L. An excellent correlation between the residual concentration of boron and three independent variables (content of magnesium oxide, zeta potential and specific surface area) was established for the five types of slag tested in this work. This shows that the methodology based on a multi-analytical approach is a very strong and useful tool to estimate the performance of iron and steel slag as adsorbent of metalloids.

  2. THERMOCHEMICAL MODELING OF REFRACTORY CORROSION IN SLAGGING COAL GASIFIERS

    SciTech Connect

    Besmann, Theodore M

    2008-01-01

    Slagging coal gasifiers suffer corrosive attack on the refractory liner and these interactions were thermochemically simulated. The slag is observed to penetrate the refractory, which complicates modeling the phase behavior of the slag-penetrated interior of the refractory. A simple strategy was adopted such that step-wise changes in composition with decreasing slag content were assumed to account for the compositional changes as slag penetrates the refractory. The thermochemical equilibrium calculations following this strategy typically yielded three solution phases as well as the stoichiometric crystalline phases AlPO4 and Ca3(PO4)2 depending on composition/penetration. Under some conditions a slag liquid miscibility gap exists such that two slag liquids co-exist.

  3. Leaching assessment of road materials containing primary lead and zinc slags.

    PubMed

    Barna, R; Moszkowicz, P; Gervais, C

    2004-01-01

    Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.

  4. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang

    2017-10-01

    The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.

  5. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  6. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity

    SciTech Connect

    Matos, Bruno R.; Goulart, Cleverson A.; Santiago, Elisabete I.; Muccillo, R.; Fonseca, Fabio C.

    2014-03-03

    The proton transport properties of Nafion membranes were studied in a wide range of temperature by using an air-tight sample holder able to maintain the sample hydrated at high relative humidity. The proton conductivity of hydrated Nafion membranes continuously increased in the temperature range of 40–180 °C with relative humidity kept at RH = 100%. In the temperature range of 40–90 °C, the proton conductivity followed the Arrhenius-like thermal dependence. The calculated apparent activation energy E{sub a} values are in good agreement with proton transport via the structural diffusion in absorbed water. However, at higher measuring temperatures an upturn of the electrical conductivity was observed to be dependent on the thermal history of the sample.

  7. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.

  8. High rechargeable sodium metal-conducting polymer batteries

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Trottier, J.; Gagnon, C.; Barray, F.; Zaghib, K.

    2016-12-01

    Rechargeable lithium batteries accelerated the wireless revolution over the last two decades, and they are now a mature technology for transportation applications in electric vehicles (EV). However, numerous studies have concluded that the proven lithium reserves can hardly absorb the growth in demand. Therefore, sustainable sodium batteries are being considered to overcome the lithium resource shortages that may arise from large-scale application in EVs and stationary energy storage. It is difficult to find a suitable host material for reversible Na-ion storage due to the size of the Na+ ion (0.102 nm) compared to the Li+ ion (0.076 nm). Here we report a low cost and simple sodium technology that is based on a metal-free cathode material. Sodium metal was used as the anode with a conducting polymer cathode and electrochemically tested in a liquid electrolyte. With this technology, a host material for Na intercalation is not required, and because a polymer conductor is used, the size of the Na ion is not an issue.

  9. NMR evidence for the metallic nature of highly conducting polyaniline

    NASA Astrophysics Data System (ADS)

    Kolbert, A. C.; Caldarelli, S.; Thier, K. F.; Sariciftci, N. S.; Cao, Y.; Heeger, A. J.

    1995-01-01

    Polyaniline doped with camphor sulphonic acid (PANI-CSA) has been shown to yield a material that, after casting from solution in meta-cresol, exhibits a temperature-independent magnetic susceptibility [Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 48, 91 (1992); N. S. Sariciftici, A. J. Heeger, and Y. Cao, Phys. Rev. B 49, 5988 (1994)]. We report recent 13C NMR experiments on uniformly 13enriched PANI-CSA in which the 13C spin-lattice relaxation rates are shown to obey a modified Korringa relation for relaxation via the hyperfine coupling to conduction electrons. This observation of Korringa relaxation in polyaniline provides strong evidence for a metallic state in this material. An estimate is made of the Korringa enhancement factor that provides a measure of the degree of electron-electron correlations present. Two-dimensional spin-exchange experiments are also reported, which show that the 13C NMR signal results from a heterogeneity in the sample over at least a 30-Å distance scale. These results are discussed in terms of the spatial extent of the doping-induced defect.

  10. Ultra-high strength, high conductivity Cu-Ag alloy wires

    SciTech Connect

    Sakai, Y.; Schneider-Muntau, H.J.

    1997-03-01

    A new wire-conductor fabrication method has been developed for Cu-Ag alloys containing 6--24 wt% Ag in which ultra-high strength and high conductivity are obtained by cold drawing combined with intermediate heat treatments. At optimized stages of cold drawing, the wires were given five intermediate heat treatments at 330--430 C for 1--2 hr. This new fabrication method has made it possible to get ultra-high strength at low reduction. The optimized Cu-24 wt% Ag alloy wire with a total drawing strain of {eta} = 5.8 shows an ultimate tensile strength of 1.5 GPa and an electrical conductivity of 65% IACS at room temperature. One advantage of this processing from a manufacturing point of view is that a special technique, such as rebundling, is not required to obtain ultra-high strength, only cold drawing combined with intermediate heat treatments. Also, this fabrication method has made it possible to produce ultra-high strength at low reductions making high-strength, large cross-section conductors a possibility. The wires fabricated by this method are promising candidate conductors for high-field pulse magnets.

  11. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    SciTech Connect

    Jambunathan, N.; Sanjayan, J.G.; Pan, Z.; Li, G.; Liu, Y.; Korayem, A.H.; Duan, W.H.; Collins, F.

    2013-12-15

    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  12. Highly Conducting, Iodine-Doped Fluoroaluminum and Fluorogallium Naphthalocyanine Polymers.

    DTIC Science & Technology

    1982-10-20

    manium (8), alumif (10), and gallium (10) polymers are stable at high tea "Orattes under vacuum and that the silicon polymer is inert to concen...but this did not interfere.) Properties and Structures of Fluoroaluminum and Fluorogallium 2,3-Naphthalo- cyanine The two fluorides are dark green when...Can " ONR Pasadena Detachment Attn: Dr. A# B. Amster, Attn: Dr. R. J. Marcus Chemistry Division 1030 East Green Street China. Lake, California 93555

  13. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  14. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones

    NASA Astrophysics Data System (ADS)

    Hu, Haiying; Dai, Lidong; Li, Heping; Hui, Keshi; Sun, Wenqing

    2017-04-01

    The anomalously high electrical conductivities ( 0.1 to 1 S/m) in deep mantle wedge regions extensively detected by magnetotelluric studies are often associated with the presence of fluids released from the progressive dehydration of subducting slabs. Epidote minerals are the Ca-Al-rich hydrous silicates with huge stability fields exceeding those of amphibole (>70-80 km) in subducting oceanic crust, and they may therefore be transported to greater depth than amphibole and release water to the mantle wedge. In this study, the electrical conductivities of epidote were measured at 0.5-1.5 GPa and 573-1273 K by using a Solartron-1260 Impedance/Gain-Phase Analyzer in a YJ-3000t multianvil pressure within the frequency range of 0.1-106 Hz. The results demonstrate that the influence of pressure on electrical conductivity of epidote is relatively small compared to that of temperature. The dehydration reaction of epidote is observed through the variation of electrical conductivity around 1073 K, and electrical conductivity reaches up to 1 S/m at 1273 K, which can be attributed to aqueous fluid released from epidote dehydration. After sample dehydration, electrical conductivity noticeably decreases by as much as nearly a log unit compared with that before dehydration, presumably due to a combination of the presence of coexisting mineral phases and aqueous fluid derived from the residual epidote. Taking into account the petrological and geothermal structures of subduction zones, it is suggested that the aqueous fluid produced by epidote dehydration could be responsible for the anomalously high conductivities in deep mantle wedges at depths of 70-120 km, particularly in hot subduction zones.

  15. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1996-05-01

    This document is the seventh quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub X} pulverized coal (P. C.) combustion. The project aims to identify the mechanisms of pyrite combustion and to quantify their effects, in order to formulate a general rate expression for the combustion of pyrite that accounts for coal properties as well as furnace conditions. In general, the project has the following objectives: 1) the characterization of the various mechanisms of intraparticle mass transfer and chemical reaction that control overall pyrite combustion rates and 2) the synthesis of the reaction rate resistances of the various mechanisms into a general rate expression for pyrite combustion. The knowledge gained from this project will be incorporated into numerical codes and utilized to formulate slagging abatement strategies involving the minor adjustment of firing conditions. Ultimately, the benefit of this research program is intended to be an increase in the range of coals compatible with staged, low-NO{sub X} combustor retrofits. 9 refs., 12 figs.

  16. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  17. Mineralogical determination and geo-chemical modeling of chromium release from AOD slag: Distribution and leachability aspects.

    PubMed

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming

    2017-01-01

    AOD (argon oxygen decarburization) slag, which is the by-product of the stainless steel refining process, is a recyclable slag because of its high content of calcium and silicon. The leaching toxicity cannot be ignored in the recycling process because the slag contains a certain amount of Cr. In this study, the mineral analysis, batch leaching tests and thermodynamic and kinetic modeling by PHREEQC combined with FactSage software were performed to explore the influence of the dissolution of primary minerals and the precipitation of secondary minerals on the elution of Cr from AOD slag. The results indicated that the main minerals in the original AOD slag are larnite, merwinite, pyroxene and periclase. Cr was dispersed in the mineral phases mentioned above. The simulation of Cr leaching controlled by Cr(III)-hydroxide corresponded better to the batch leaching tests, while the Cr leaching controlled by chromite or double control was underestimated. Increasing the L/S ratio enhances the pH of the leachate and restrains the elution of Cr from the AOD slag.

  18. Electrical conductivity measurements of aqueous electrolyte solutions at high temperatures and high pressures

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-02-01

    In aqueous solutions all electrolytes tend to associate at high temperatures (low dielectric constants). Ion association results in the formation of uncharged substrates, which are substantially more volatile than their precursor ions. Thus knowledge of the association constants is important in interpreting the thermodynamics of the partitioning of electrolytes to the vapor phase in a fully speciated approach. Electrical conductance measurements provide a unique window into ionic interactions of solutions at high temperatures and pressures. In this study, the electrical conductivities of dilute (<0.1 molal) aqueous solutions of NaCl (100-600{degrees}C to 300 MPa) and sodium and potassium hydroxides (0-600 and 100-600{degrees}C, respectively, and to 300 MPa) were measured. The results show that the extent of association of Na{sup +} and Cl{sup -} is similar to those for Na{sup +} and K{sup +} with OH{sup -} in solution from subcritical to supercritical conditions.

  19. High frequency electrical conduction block of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin; Gustafson, Kenneth J.

    2006-06-01

    A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter (EUS). A proximal electrode on the pudendal nerve after its exit from the sciatic notch was used to apply low frequency stimuli to evoke EUS contractions. HFAC at frequencies from 1 to 30 kHz with amplitudes from 1 to 10 V were applied through a conforming tripolar nerve cuff electrode implanted distally. Sphincter responses were recorded with a catheter mounted micro-transducer. A fast onset and reversible motor block was obtained over this range of frequencies. The HFAC block showed three phases: a high onset response, often a period of repetitive firing and usually a steady state of complete or partial block. A complete EUS block was obtained in all animals. The block thresholds showed a linear relationship with frequency. HFAC pudendal nerve stimulation effectively produced a quickly reversible block of evoked urethral sphincter contractions. The HFAC pudendal block could be a valuable tool in the rehabilitation of bladder-sphincter dyssynergia.

  20. Dissolution Behaviour of Hazardous Materials from Steel Slag with Wet Grinding Method

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Steel slag is a by-product from steel industry and it contains variety of hazardous materials. In this study, the dissolution behaviour and removal potential of hazardous materials from steel slag with the wet grinding method was investigated. The slag was wet ground in the CO2 atmosphere and the slurry produced was filtered using centrifugal separator to separate the liquid and solid sediments. Then, the concentrations of dissolved metal elements in the liquid sediment were analyzed by ICP-MS. The changes of pH during the grinding were also investigated. It was found that the pHs were decreased immediately after the CO2 gas introduced into the vessel. The pHs were ranging from 6.8 to 7.6 at the end of grinding. The dissolved concentration of Zn and Cr were ranging from 5~45 [mg/dm3] and 0.2~2.5 [mg/dm3] respectively. The ratios of Zn removal for stainless steel oxidizing and reducing slag were very high, but those from normal steel oxidizing and reducing slag were very low. It is assumed that the Zn dissolved as ZnOH+ from Zn(OH)2 that formed due to the reaction between ZnO and water. Dissolution of Cr also occurred but in very low quantity compared to the dissolution of Zn. The dissolution of Cr occurred due to the grinding process and small amount of Cr(OH)3 was formed during the grinding. This small formation of Cr(OH)3 resulted to the low dissolved concentration of Cr in the form of Cr(OH)2+. According to the XRD analysis, the Cr mostly existed in the slags as Cr(IIl) in the form of MgCr2O4 and FeCr2O4.

  1. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  2. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  3. MECHANISMS OF PYRITE OXIDATION TO NON-SLAGGING SPECIES

    SciTech Connect

    Professor Reginald E. Mitchell

    2002-09-01

    A project was undertaken to characterize the oxidation of iron pyrite to the non-slagging species magnetite during pulverized coal combustion. The work was aimed at defining the pyrite transformations responsible for the higher slagging propensity of staged, low-NO{sub x} pulverized coal combustor burners. With such burners, coal is injected into a reducing environment. Consequently, the products of pyrite combustion become shifted from non-depositing, oxidized species such as Fe{sub 3}O{sub 4} to highly-depositing, reduced species such as FeO and Fe{sub 1-x}S, where x ranges from 0 to 0.125. The propensity for slagging can be minimized by the judicious redistribution of furnace air to maximize the oxide formation rate. This must be accomplished with minimal degradation of other aspects of boiler performance. To effect this, an understanding of the rate-limiting mechanisms of pyrite oxidation is required. The overall objectives of this project were to characterize the various mechanisms that control overall pyrite combustion rates and to synthesize the mechanisms into a pyrite combustion model. These objectives were achieved. The model produced has the capability of being incorporated into numerical codes developed to predict phenomena occurring in coal-fired boilers and furnaces. Such comprehensive codes can be used to formulate and test strategies for enhancing pyrite transformation rates that involve the minor adjustment of firing conditions. Ultimately, the benefit of this research project is intended to be an increase in the range of coals compatible with staged, low-NO{sub x} combustor retrofits. Project activities were aimed at identifying the mechanisms of pyrite combustion and quantifying their effects on the overall oxidation rate in order to formulate a model for pyrite conversion during coal combustion. Chemical and physical processes requiring characterization included pyrite intraparticle kinetics and mass transfer, gas-phase kinetics and mass

  4. Slag remelt purification of irradiated vanadium alloys

    SciTech Connect

    Carmack, W.J.; Smolik, G.R.; McCarthy, K.A.; Gorman, P.K.

    1995-07-01

    This paper describes theoretical and scoping experimental efforts to investigate the decontamination potential of a slag remelting process for decontaminating irradiated vanadium alloys. Theoretical calculations, using a commercial thermochemical computer code HSC Chemistry, determined the potential slag compositions and slag-vanadium alloy ratios. The experiment determined the removal characteristics of four surrogate transmutation isotopes (Ca, Y - to simulate Sc, Mn, and Ar) from a V-5Ti-5Cr alloy with calcium fluoride slag. An electroslag remelt furnace was used in the experiment to melt and react the constituents. The process achieved about a 90 percent removal of calcium and over 99 percent removal of yttrium. Analyses indicate that about 40 percent of the manganese may have been removed. Argon analyses indicates that 99.3% of the argon was released from the vanadium alloy in the first melt increasing to 99.7% during the second melt. Powder metallurgy techniques were used to incorporate surrogate transmutation products in the vanadium. A powder mixture was prepared with the following composition: 90 wt % vanadium, 4.7 wt % titanium, 4.7 wt % chromium, 0.35 wt % manganese, 0.35 wt % CaO, and 0.35 wt % Y{sub 2}O{sub 3}. This mixture was packed into 2.54 cm diameter stainless steel tubes. Argon was introduced into the powder mixture by evacuating and backfilling the stainless steel containers to a pressure of 20 kPa (0.2 atm). The tubes were hot isostatically pressed at 207 MPa (2000 atm) and 1473 K to consolidate the metal. An electroslag remelt furnace (crucible dimensions: 5.1 cm diameter by 15.2 cm length) was used to process the vanadium electrodes. Chemical analyses were performed on samples extracted from the slags and ingots. Ingot analyses results are shown below. Values are shown in percent removal of the four targeted elements of the initial compositions.

  5. A NASA DC-8 conducts high-altitude hurricane studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA Dryden Flight Research Center DC-8 takes off from Patrick Air Force Base to pursue its goal of collecting high- altitude information about Atlantic hurricanes and tropical storms. Flying at 35,000 to 40,000 feet, the plane is equipped with instruments to measure the storm's structure, environment and changes in intensity and tracking. The DC-8 is part of the NASA-led Atmospheric Dynamics and Remote Sensing program that includes other government weather researchers and the university community in a study of Atlantic hurricanes and tropical storms. The hurricane study, which lasts through September, is part of NASA's Earth Science enterprise to better understand the total Earth system and the effects of natural and human-induced changes on the global environment.

  6. High Power Terahertz Conductive Antenna with Chaotic Electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Christopher; Graber, Benjamin; Wu, Dong Ho

    2015-03-01

    Time domain terahertz spectroscopy (TDTS) is now widely adopted and being used for various purposes, including chemical and material analysis as well as detection of hazardous materials in the laboratories. While there are several different methods available to generate a wideband terahertz pulse for the TDTS, currently a terahertz photoconductive antenna may be the most popular one, as it can produce a wideband terahertz pulse very efficiently. However our experimental investigation indicates that the conventional photoconductive antenna with a pair of parallel electrodes can produce a terahertz pulse at most about 100 micro-Watts. When attempted to produce a higher power terahertz pulse the antenna may experience irrevocable failure. In order to overcome this problem we recently redesigned the photoconductive antenna and implemented electrodes that lead to a chaotic trajectories of charged particles. With the new electrodes we have demonstrated a high power (>2 mW) coherent terahertz beam, and we found that the lifetime of the antenna is also substantially longer than that of the conventional antenna. In this talk I will present our experimental results and disclose some of our new antenna designs. Supported by DTRA and Naval Research Laboratory.

  7. Simulation of Slag Freeze Layer Formation: Part I. Experimental Study

    NASA Astrophysics Data System (ADS)

    Guevara, Fernando J.; Irons, Gordon A.

    2011-08-01

    This study was conducted to understand the freeze layer formation and heat transfer that is required to design cooling systems in pyrometallurgical operations in which a frozen slag layer is used to protect the furnace wall. Similar Grashof and Prandtl numbers for operating furnaces were obtained in a 200-mm square cavity differentially heated on the sides containing an aqueous solution of calcium chloride. The solid front was tracked using a digital camera, and the temperature field was measured with thermocouples. The flow velocity field was measured using the two-dimensional particle image velocimetry technique. Experiments were conducted over a range of superheat conditions, and the solidification front was planar ( i.e., neither cellular nor dendritic) because the system slowly approached steady state. The two-phase zone comprised particles circulating slowly with the liquid in the bulk of the cavity; at the vertical walls, velocities were higher.

  8. Dusting control of magnesium slag produced by Pidgeon process

    NASA Astrophysics Data System (ADS)

    Wu, Laner; Yang, Qixing; Han, Fenglan; Du, Chun

    2013-06-01

    Magnesium production by Pidgeon process has been developed very fast in China since 1990's. The waste slag from magnesium production has attracted broad attention because the huge amounts of the slag. For each ton of magnesium produced, there will be 6-8 tons of the slag generated. A big part of the Mg slag exists as fine dust with particle size of D95 < 0.1mm, which may pollute air, soil and water surrounding the Mg industry. The fine particles are generated by phase transformations of dicalcium silicate C2S (2CaOṡSiO2) during the slag cooling. There is a volume expansion of more than 10% with the transformation of β-C2S to γ-C2S phase, causing a disintegration or dusting of the Mg slag. In the present study, several chemical stabilizers were used to treat the dusting Mg slag at 1200°C, including borates, phosphates and rare earth oxides, in order to obtain volume stable slag aggregates for environmental protection and recycling of the Mg slag. The volume expanding rates of the samples were measured. XRD and SEM studies were carried out to confirm effects of the stabilizers. The results show that all of the stabilizers were effective for the stabilization of Mg slag. Some differences between the stabilizers were also described and discussed.

  9. Reprocessing of metallurgical slag into materials for the building industry

    SciTech Connect

    Pioro, L.S.; Pioro, I.L

    2004-07-01

    Several methods of reprocessing metallurgical (blast furnace) slag into materials for the building industry, based on melting aggregates with submerged combustion, were developed and tested. The first method involves melting hot slag with some additives directly in a slag ladle with a submerged gas-air burner, with the objective of producing stabilized slag or glass-ceramic. The second method involves direct draining of melted slag from a ladle into the slag receiver, with subsequent control of the slag draining into the converter where special charging materials are added to the melt, with the objective of producing glass-ceramic. A third method involves melting cold slag with some additives inside a melting converter with submerged gas-air burners, with the objective of producing glass-ceramic fillers for use in road construction. Specific to the melting process is the use of a gas-air mixture with direct combustion inside the melt. This feature provides melt bubbling to help achieve maximum heat transfer from combustion products to the melt, improve mixing (and therefore homogeneity of the melt), and increases the rate of chemical reactions. The experimental data for different aspects of the proposed methods are presented. The reprocessed blast-furnace slag in the form of granules can be used as fillers for concretes, asphalts, and as additives in the production of cement, bricks and other building materials. As well, reprocessed blast-furnace slag can be poured into forms for the production of glass-ceramic tiles.

  10. Characteristics of steel slag under different cooling conditions

    SciTech Connect

    Tossavainen, M.; Engstrom, F. Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B.

    2007-07-01

    Four types of steel slags, a ladle slag, a BOF (basic oxygen furnace) slag and two different EAF (electric arc furnace) slags, were characterized and modified by semi-rapid cooling in crucibles and rapid cooling by water granulation. The aim of this work was to investigate the effect of different cooling conditions on the properties of glassy slags with respect to their leaching and volume stability. Optical microscopy, X-ray diffraction, scanning electron microscope and a standard test leaching (prEN 12457-2/3) have been used for the investigation. The results show that the disintegrated ladle slag was made volume stable by water granulation, which consisted of 98% glass. However EAF slag 1, EAF slag 2 and the BOF slag formed 17%, 1% and 1% glass, respectively. The leaching test showed that the glass-containing matrix did not prevent leaching of minor elements from the modified slags. The solubility of chromium, molybdenum and vanadium varied in the different modifications, probably due to their presence in different minerals and their different distributions.

  11. Characteristics of steel slag under different cooling conditions.

    PubMed

    Tossavainen, M; Engstrom, F; Yang, Q; Menad, N; Lidstrom Larsson, M; Bjorkman, B

    2007-01-01

    Four types of steel slags, a ladle slag, a BOF (basic oxygen furnace) slag and two different EAF (electric arc furnace) slags, were characterized and modified by semi-rapid cooling in crucibles and rapid cooling by water granulation. The aim of this work was to investigate the effect of different cooling conditions on the properties of glassy slags with respect to their leaching and volume stability. Optical microscopy, X-ray diffraction, scanning electron microscope and a standard test leaching (prEN 12457-2/3) have been used for the investigation. The results show that the disintegrated ladle slag was made volume stable by water granulation, which consisted of 98% glass. However EAF slag 1, EAF slag 2 and the BOF slag formed 17%, 1% and 1% glass, respectively. The leaching test showed that the glass-containing matrix did not prevent leaching of minor elements from the modified slags. The solubility of chromium, molybdenum and vanadium varied in the different modifications, probably due to their presence in different minerals and their different distributions.

  12. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    PubMed

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  13. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell

    PubMed Central

    Yu, Binbin; Zhang, Huimin; Xu, Wei; Li, Gang; Wu, Zucheng

    2014-01-01

    Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel and Cr(VI) from the leakage of the dichromate slag served as the oxidant. Furthermore, the electrochemical results showed that the removal percent of Cr(VI) was more than 96% after 18 h with the leakage Cr(VI) concentration of 2.69 mM. The open circuit potential (OCP) varied in the range of 1.56 ~ 1.59 V under different initial Cr(VI) leakage concentrations. The approach explores the feasibility of the promising technique without the need of energy input for simultaneous chromium-slag remediation and generation of electricity. PMID:25168513

  14. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell.

    PubMed

    Yu, Binbin; Zhang, Huimin; Xu, Wei; Li, Gang; Wu, Zucheng

    2014-08-29

    Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel and Cr(VI) from the leakage of the dichromate slag served as the oxidant. Furthermore, the electrochemical results showed that the removal percent of Cr(VI) was more than 96% after 18 h with the leakage Cr(VI) concentration of 2.69 mM. The open circuit potential (OCP) varied in the range of 1.56 ~ 1.59 V under different initial Cr(VI) leakage concentrations. The approach explores the feasibility of the promising technique without the need of energy input for simultaneous chromium-slag remediation and generation of electricity.

  15. Highly conductive ionic liquids toward high-performance space-lubricating greases.

    PubMed

    Fan, Xiaoqiang; Wang, Liping

    2014-08-27

    Although ionic liquids (ILs) as a class of promising materials have a wide range of applications due to the excellent properties, their potential as space lubricants has been not systematically explored. Here two kinds of conductive alkyl imidazolium ILs greases were prepared using 1-hexyl-3-methylimidazolium tetrafluoroborate (LB106) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (L-F106) as base oil and the polytetrafluoroethylene (PTFE) as thickener, with multiple-alkylated cyclopentane grease (MACs) as a comparison. Their chemical composition and tribological properties were investigated in detail under simulated space environment which is composed of high vacuum, high temperature and irradiation. Results show that the high conductive ILs greases not only possess good adaptive abilities to space environment and thermal stability but also provide excellent friction reducing and antiwear behaviors as well as high load carrying capacities. The unique physicochemical properties are attributed to a combination of special anions and cations, the excellent tribological properties are strongly dependent on a boundary protective film on the rubbing surfaces.

  16. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  17. Combining Proximal and Penetrating Soil Electrical Conductivity Sensors for High Resolution Digital Soil Mapping

    USDA-ARS?s Scientific Manuscript database

    Proximal ground conductivity sensors produce high spatial resolution maps that integrate the bulk electrical conductivity (ECa) of the soil profile. Variability in conductivity maps must either be inverted to profile conductivity, or be directly calibrated to profile properties for meaningful interp...

  18. Achieving high strength and high electrical conductivity in Ag/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Wei, M. Z.; Xu, L. J.; Shi, J.; Pan, G. J.; Cao, Z. H.; Meng, X. K.

    2015-01-01

    In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5-20 nm. The barrier to dislocation transmission by stacking faults, twin boundaries, and interfaces leads to hardness enhancement. Simultaneously, in order to get high conductivity, the strong textures in-layers were induced to form for reducing the amount of grain boundaries. The resistivity keeps low even when h decreases to 10 nm. Furthermore, we developed a facile model to evaluate the comprehensive property of Ag/Cu multilayers—the results indicate that the best combination of strength and conductivity occurs when h = 10 nm.

  19. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  20. Quantifying the Thermal Behavior of Slags (TRP 9903)

    SciTech Connect

    Alan W. Cramb

    2003-05-30

    Successful operation of a continuous caster is based upon control of heat transfer in the mold. The mold slag is a key component in the success of continuous casting; however, the phenomena that occur in the gap between the shell and the mold are largely unknown as until recently there have been no techniques that allowed visualization and quantification of the solidification behavior of liquid slags. This has lead to slag design being an empirical science or art. Recently a new experimental technique, called Double Hot Thermocouple Technique (DHTT), was developed at Carnegie Mellon University that allowed the solidification behavior of a slag to be observed and quantified under conditions that simulate the thermal conditions that occur in steelmaking environments. This technique allows ladle, tundish and mold slags to be characterized under extreme conditions including those found between the mold wall and the growing shell of a continuous caster. Thus, a program is initiated, under this grant, to quantify and describe the phenomena that occur during the solidification of a slag in a steel mill environment. This will allow slag design to become an engineering science rather than an empirical exercise. The project deliverables were as follows: (1) The further development of a tool that will have broad use in the quantification of slag melting and solidification behavior; and (2) The development of a set of meaningful design criteria for slag application in steel mill environments. The project was broken down into a number of objectives: (a) Develop a systematic understanding of the effect of cooling rate on slag solidification; (b) Develop a systematic understanding on the effect of slag chemistry changes on slag solidification behavior; (c) Develop a method to characterize slag melting; (d) Develop an understanding of the role of the environment on slag solidification and melting; (e) Develop the ability to understand slag solidification under the conditions that