Baines, Anthony J
2003-01-01
The spectrin superfamily (spectrin, alpha-actinin, utrophin and dystrophin) has in common a triple helical repeating unit of ~106 amino acid residues. In spectrin, alpha and beta chains contain multiple copies of this repeat. beta-spectrin chains contain the majority of binding activities in spectrin and are essential for animal life. Canonical beta-spectrins have 17 repeats; beta-heavy spectrins have 30. Here, the repeats of five human beta-spectrins, plus beta-spectrins from several other vertebrates and invertebrates, have been analysed. Repeats 1, 2, 14 and 17 in canonical beta are highly conserved between invertebrates and vertebrates, and repeat 8 in some isoforms. This is consistent with conservation of critical functions, since repeats 1, 2 and 17 bind alpha-spectrin. Repeats 1 of beta-spectrins are not always detected by SMART or Pfam tools. A profile hidden Markov model of beta-spectrin repeat 1 detects alpha-actinins, but not utrophin or dystrophin. Novel examples of repeat 1 were detected in the spectraplakins MACF1, BPAG1 and plectin close to the actin-binding domain. Ankyrin binds to the C-terminal portion of repeat 14; the high conservation of this entire repeat may point to additional, undiscovered ligand-binding activities. This analysis indicates that the basic triple helical repeat pattern was adapted early in the evolution of the spectrin superfamily to encompass essential binding activities, which characterise individual repeats in proteins extant today.
2012-01-01
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678
Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L
2013-01-30
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
2013-01-01
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705
Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights
Kumar, Amitha Sampath; Sowpati, Divya Tej; Mishra, Rakesh K.
2016-01-01
Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features. PMID:27893794
Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals.
Qiu, Huan; Zelzion, Ehud; Putnam, Hollie M; Gates, Ruth D; Wagner, Nicole E; Adams, Diane K; Bhattacharya, Debashish
2017-10-01
Stony coral (Scleractinia) genomes are still poorly explored and many questions remain about their evolution and contribution to the success and longevity of reefs. We analyzed transcriptome and genome data from Montipora capitata, Acropora digitifera, and transcriptome data from 20 other coral species. To our surprise, we found highly conserved, anciently derived, Scleractinia COral-specific Repeat families (SCORs) that are abundant in all the studied lineages. SCORs form complex secondary structures and are located in untranslated regions and introns, but most abundant in intergenic DNA. These repeat families have undergone frequent duplication and degradation, suggesting a 'boom and bust' cycle of invasion and loss. We speculate that due to their surprisingly high sequence identities across deeply diverged corals, physical association with genes, and dynamic evolution, SCORs might have adaptive functions in corals that need to be explored using population genomic and function-based approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular architecture of classical cytological landmarks: Centromeres and telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyne, J.
1994-11-01
Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less
Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J
2015-09-18
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...
2015-07-22
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less
Amino acid sequence analysis of the annexin super-gene family of proteins.
Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J
1991-06-15
The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of the predictions and shows the power of techniques for the determination of tertiary structural information from the amino acid sequences of an aligned protein family.
Williams, R R; Hassan-Walker, A F; Lavender, F L; Morgan, M; Faik, P; Ragoussis, J
2001-05-16
Minisatellites are tandemly repeated DNA sequences found throughout the genomes of all eukaryotes. They are regions often prone to instability and hence hypervariability; thus repeat unit sequence is generally not conserved beyond closely related species. We have studied the minisatellite located in intron 9 of the human glucose phosphate isomerase (GPI) gene (also known as neuroleukin, autocrine motility factor, maturation and differentiation factor) and have found, by Zoo blotting coupled with PCR amplification and DNA sequencing, that similar repeat units are present in seven other species of mammal. There is also evidence for the presence of the minisatellite in chicken. The repeat unit does not appear to be present at any other locus in these genomes. Minisatellite DNA has been reported to be involved in recombination activity, control of gene expression of nearby gene(s) (both transcriptional and translational), whilst others form protein coding regions. The high level of conservation exhibited by the GPI minisatellite, coupled with the unique location, strongly suggests a functional role. Our results from transient and stable transfections using luciferase reporter constructs have shown that the GPI minisatellite region can act to increase transcription from the SV40 promoter, CMV promoter and the human GPI promoter.
Conservation of human chromosome 13 polymorphic microsatellite (CA){sub n} repeats in chimpanzees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, R.; Shriver, M.D.; Yu, L.M.
Tandemly repeated (dC-dA){sub n} {center_dot} (dG-dT){sub n} sequences occur abundantly and are found in most eukaryotic genomes. To investigate the level of conservation of these repeat sequences in nonhuman primates, the authors have analyzed seven human chromosome 13 dinucleotide (CA){sub n} repeat loci in chimpanzees by DNA amplification using primers designed for analysis of human loci. Comparable levels of polymorphism at these loci in the two species, revealed by the number of alleles, heterozygosity, and allele sizes, suggest that the (CA){sub n} repeat arrays and their genomic locations are highly conserved. Even though the proportion of shared alleles between themore » two species varies enormously and the modal alleles are not the same, allelic lengths at each locus in the chimpanzees are detected within the bounds of the allele size range observed in humans. A similar observation has been noted in a limited number of gorillas and orangutans. Using a new measure of genetic distance that takes into account the size of alleles, they have compared the genetic distance between humans and chimpanzees. The genetic distance between these two species was found to be ninefold smaller than expected assuming there is no selection or mutational bias toward retention of (CA){sub n} repeat arrays. These findings suggest a functional significance for these microsatellite loci. 34 refs., 1 fig., 2 tabs.« less
Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).
Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S
2016-01-01
Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. © 2016 S. Karger AG, Basel.
Evolution of Protein Domain Repeats in Metazoa
Schüler, Andreas; Bornberg-Bauer, Erich
2016-01-01
Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125
Conservative Protestantism and attitudes toward corporal punishment, 1986-2014.
Hoffmann, John P; Ellison, Christopher G; Bartkowski, John P
2017-03-01
Research indicates that conservative Protestants are highly supportive of corporal punishment. Yet, Americans' support for this practice has waned during the past several decades. This study aggregates repeated cross-sectional data from the General Social Surveys (GSS) to consider three models that address whether attitudes toward spanking among conservative Protestants shifted relative to those of other Americans from 1986 to 2014. Although initial results reveal a growing gap between conservative Protestants and the broader American public, we find that average levels of support have remained most robust among less educated conservative Protestants, with some erosion among more highly educated conservative Protestants. Moreover, trends in variability suggest that conservative Protestants exhibit more cohesive support for this practice than do others. These results provide a window into the cultural contours of religious change and the social factors that facilitate such change. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo
2012-07-01
With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.
Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.
Morgan, Timothy M; Case, L Douglas
2013-07-05
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.
Folli, Secondo; Falco, Giuseppe; Mingozzi, Matteo; Buggi, Federico; Curcio, Annalisa; Ferrari, Guglielmo; Taffurelli, Mario; Regolo, Lea; Nanni, Oriana
2016-04-01
Patients with ipsilateral breast tumor recurrence or new ipsilateral primary tumor after previous breast conservative surgery with negative sentinel lymph node biopsy need a new axillary staging procedure. However, the best surgical option, i.e. repeat sentinel lymph node biopsy or axillary lymph node dissection, is still debated. Purpose of the study is to assess the performance of repeat sentinel lymph node biopsy. In a multicenter study, lymph node biopsy completed by back-up axillary lymph node dissection was undertaken for ipsilateral breast tumor recurrence or new ipsilateral primary tumor. Tracer uptake was used to identify and isolate the sentinel lymph node during surgery, and it was classified after staining with hematoxylin and eosin and monoclonal anti-cytokeratin antibodies. Aside from negative predictive value, overall accuracy and false-negative rate of repeat sentinel lymph node biopsy were assessed. A multicenter, prospective study was conducted performing 30 repeat sentinel lymph node biopsy completed by back-up axillary lymph node dissection for ipsilateral breast tumor recurrence or new ipsilateral primary tumor in patients formerly treated with previous breast conservative surgery and negative sentinel lymph node biopsy. Negative predictive value, overall accuracy and false-negative rate of repeat sentinel lymph node biopsy were assessed. Sentinel lymph nodes were mapped in 27 patients out of 30 (90%). Aberrant drainage pathways were observed in one patient (3.7%). Tracer uptake was sufficient to identify and isolate the sentinel lymph node during surgery in 23 cases (76.6%); the patients in whom lymphoscintigraphy failed or no sentinel lymph nodes could be isolated underwent axillary lymph node dissection. The negative predictive value was 95.2%, the accuracy was 95.6% and the false-negative rate was 33%. Repeat sentinel lymph node biopsy is feasible and accurate, with a high negative predictive value. Patients with ipsilateral breast tumor recurrence or new ipsilateral primary tumor after previous breast conservative surgery and negative sentinel lymph node biopsy can be treated with repeat sentinel lymph node biopsy for the axillary staging and can be spared axillary dissection in case of absence of metastases. However, repeat sentinel lymph node biopsy may prove technically impracticable in about one quarter of cases and thus axillary lymph node dissection remains the only viable option in such instance.
Chromosome ends: different sequences may provide conserved functions.
Louis, Edward J; Vershinin, Alexander V
2005-07-01
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection. Copyright (c) 2005 Wiley Periodicals, Inc.
Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1–3*
Rowe, Emily R.; Mimmack, Michael L.; Barbosa, Antonio D.; Haider, Afreen; Isaac, Iona; Ouberai, Myriam M.; Thiam, Abdou Rachid; Patel, Satish; Saudek, Vladimir; Siniossoglou, Symeon; Savage, David B.
2016-01-01
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs in Saccharomyces cerevisiae, demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targeting in vivo and in vitro. Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment. PMID:26742848
Zhou, Fujun; Walker, Sarah E.; Mitchell, Sarah F.; Lorsch, Jon R.; Hinnebusch, Alan G.
2014-01-01
eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC. PMID:24285537
DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats
de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas
2015-01-01
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363
2010-01-01
Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430
Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv
2016-01-01
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548
Do, Hoang Dang Khoa; Kim, Joo-Hwan
2017-01-01
Chloroplast genomes (cpDNA) are highly valuable resources for evolutionary studies of angiosperms, since they are highly conserved, are small in size, and play critical roles in plants. Slipped-strand mispairing (SSM) was assumed to be a mechanism for generating repeat units in cpDNA. However, research on the employment of different small repeated sequences through SSM events, which may induce the accumulation of distinct types of repeats within the same region in cpDNA, has not been documented. Here, we sequenced two chloroplast genomes from the endemic species Heloniopsis tubiflora (Korea) and Xerophyllum tenax (USA) to cover the gap between molecular data and explore "hot spots" for genomic events in Melanthiaceae. Comparative analysis of 23 complete cpDNA sequences revealed that there were different stages of deletion in the rps16 region across the Melanthiaceae. Based on the partial or complete loss of rps16 gene in cpDNA, we have firstly reported potential molecular markers for recognizing two sections ( Veratrum and Fuscoveratrum ) of Veratrum . Melathiaceae exhibits a significant change in the junction between large single copy and inverted repeat regions, ranging from trnH_GUG to a part of rps3 . Our results show an accumulation of tandem repeats in the rpl23-ycf2 regions of cpDNAs. Small conserved sequences exist and flank tandem repeats in further observation of this region across most of the examined taxa of Liliales. Therefore, we propose three scenarios in which different small repeated sequences were used during SSM events to generate newly distinct types of repeats. Occasionally, prior to the SSM process, point mutation event and double strand break repair occurred and induced the formation of initial repeat units which are indispensable in the SSM process. SSM may have likely occurred more frequently for short repeats than for long repeat sequences in tribe Parideae (Melanthiaceae, Liliales). Collectively, these findings add new evidence of dynamic results from SSM in chloroplast genomes which can be useful for further evolutionary studies in angiosperms. Additionally, genomics events in cpDNA are potential resources for mining molecular markers in Liliales.
DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.
de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas
2015-11-16
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Functional amyloid in Pseudomonas.
Dueholm, Morten S; Petersen, Steen V; Sønderkær, Mads; Larsen, Poul; Christiansen, Gunna; Hein, Kim L; Enghild, Jan J; Nielsen, Jeppe L; Nielsen, Kåre L; Nielsen, Per H; Otzen, Daniel E
2010-08-01
Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid-like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA-F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation. © 2010 Blackwell Publishing Ltd.
The Prp19 WD40 Domain Contains a Conserved Protein Interaction Region Essential for its Function
Vander Kooi, Craig W.; Ren, Liping; Xu, Ping; Ohi, Melanie D.; Gould, Kathleen L.; Chazin, Walter J.
2010-01-01
Summary Prp19 is a member of the WD40-repeat family of E3 ubiquitin ligases and a conserved eukaryotic RNA splicing factor essential for activation and stabilization of the spliceosome. To understand the role of the WD40 repeat domain of Prp19 we have determined its structure using X-ray crystallography. The domain has a distorted seven bladed WD40 architecture with significant asymmetry due to irregular packing of blades one and seven into the core of the WD40 domain. Structure-based mutagenesis identified a highly conserved surface centered around blade five that is required for the physical interaction between Prp19 and Cwc2, another essential splicing factor. This region is found to be required for Prp19 function and yeast viability. Experiments in vitro and in vivo demonstrate that two molecules of Cwc2 bind to the Prp19 tetramer. These coupled structural and functional studies provide a model for the functional architecture of Prp19. PMID:20462492
Zhao, Guangyu; Li, Hu; Zhao, Ping; Cai, Wanzhi
2015-01-01
In this study, we sequenced four new mitochondrial genomes and presented comparative mitogenomic analyses of five species in the genus Peirates (Hemiptera: Reduviidae). Mitochondrial genomes of these five assassin bugs had a typical set of 37 genes and retained the ancestral gene arrangement of insects. The A+T content, AT- and GC-skews were similar to the common base composition biases of insect mtDNA. Genomic size ranges from 15,702 bp to 16,314 bp and most of the size variation was due to length and copy number of the repeat unit in the putative control region. All of the control region sequences included large tandem repeats present in two or more copies. Our result revealed similarity in mitochondrial genomes of P. atromaculatus, P. fulvescens and P. turpis, as well as the highly conserved genomic-level characteristics of these three species, e.g., the same start and stop codons of protein-coding genes, conserved secondary structure of tRNAs, identical location and length of non-coding and overlapping regions, and conservation of structural elements and tandem repeat unit in control region. Phylogenetic analyses also supported a close relationship between P. atromaculatus, P. fulvescens and P. turpis, which might be recently diverged species. The present study indicates that mitochondrial genome has important implications on phylogenetics, population genetics and speciation in the genus Peirates. PMID:25689825
Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian
2009-11-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.
Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.
Gibbons, John G; Rokas, Antonis
2009-03-01
Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.
Tikhonov, Denis B; Zhorov, Boris S
2011-01-28
In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.
Hernández-Martínez, Miguel Ángel; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
Circumsporozoite (CS) protein is a malaria antigen involved in sporozoite invasion of hepatocytes, and thus considered to have good vaccine potential. We evaluated the polymorphism of the Plasmodium vivax CS gene in 24 parasite isolates collected from malaria-endemic areas of Colombia. We sequenced 27 alleles, most of which (25/27) corresponded to the VK247 genotype and the remainder to the VK210 type. All VK247 alleles presented a mutation (Gly → Asn) at position 28 in the N-terminal region, whereas the C-terminal presented three insertions: the ANKKAGDAG, which is common in all VK247 isolates; 12 alleles presented the insertion GAGGQAAGGNAANKKAGDAG; and 5 alleles presented the insertion GGNAGGNA. Both repeat regions were polymorphic in gene sequence and size. Sequences coding for B-, T-CD4+, and T-CD8+ cell epitopes were found to be conserved. This study confirms the high polymorphism of the repeat domain and the highly conserved nature of the flanking regions. PMID:21292878
Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).
Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar
2016-12-01
In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.
Multiplexed microsatellite recovery using massively parallel sequencing
T.N. Jennings; B.J. Knaus; T.D. Mullins; S.M. Haig; R.C. Cronn
2011-01-01
Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of...
ERIC Educational Resources Information Center
Baucal, Aleksandar; Arcidiacono, Francesco; Budjevac, Nevena
2013-01-01
The aim of this paper is to highlight and discuss advantages and constraints of different methods applied within the field of children's thinking studies, through the test of the repeated question hypothesis validity, using the conservation of liquid task. In our perspective, the Piagetian interview is an ecologically valid context for…
The evolution and function of protein tandem repeats in plants.
Schaper, Elke; Anisimova, Maria
2015-04-01
Sequence tandem repeats (TRs) are abundant in proteomes across all domains of life. For plants, little is known about their distribution or contribution to protein function. We exhaustively annotated TRs and studied the evolution of TR unit variations for all Ensembl plants. Using phylogenetic patterns of TR units, we detected conserved TRs with unit number and order preserved during evolution, and those TRs that have diverged via recent TR unit gains/losses. We correlated the mode of evolution of TRs to protein function. TR number was strongly correlated with proteome size, with about one-half of all TRs recognized as common protein domains. The majority of TRs have been highly conserved over long evolutionary distances, some since the separation of red algae and green plants c. 1.6 billion yr ago. Conversely, recurrent recent TR unit mutations were rare. Our results suggest that the first TRs by far predate the first plants, and that TR appearance is an ongoing process with similar rates across the plant kingdom. Interestingly, the few detected highly mutable TRs might provide a source of variation for rapid adaptation. In particular, such TRs are enriched in leucine-rich repeats (LRRs) commonly found in R genes, where TR unit gain/loss may facilitate resistance to emerging pathogens. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Conserved expression of transposon-derived non-coding transcripts in primate stem cells.
Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume
2017-02-28
A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.
Tsuchiya, Karen D.; Greally, John M.; Yi, Yajun; Noel, Kevin P.; Truong, Jean-Pierre; Disteche, Christine M.
2004-01-01
We have performed X-inactivation and sequence analyses on 350 kb of sequence from human Xp11.2, a region shown previously to contain a cluster of genes that escape X inactivation, and we compared this region with the region of conserved synteny in mouse. We identified several new transcripts from this region in human and in mouse, which defined the full extent of the domain escaping X inactivation in both species. In human, escape from X inactivation involves an uninterrupted 235-kb domain of multiple genes. Despite highly conserved gene content and order between the two species, Smcx is the only mouse gene from the conserved segment that escapes inactivation. As repetitive sequences are believed to facilitate spreading of X inactivation along the chromosome, we compared the repetitive sequence composition of this region between the two species. We found that long terminal repeats (LTRs) were decreased in the human domain of escape, but not in the majority of the conserved mouse region adjacent to Smcx in which genes were subject to X inactivation, suggesting that these repeats might be excluded from escape domains to prevent spreading of silencing. Our findings indicate that genomic context, as well as gene-specific regulatory elements, interact to determine expression of a gene from the inactive X-chromosome. PMID:15197169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.
2006-01-09
Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 andmore » ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies identified a number of taxa inwhich several rearrangements have occurred (reviewed in Raubeson andJansen, 2005), an extraordinary number of chloroplast genome alterationsare concentrated in several families in the angiosperm order Asterales(sensu APGII, Bremer et al., 2003). Gene mapping studies ofrepresentatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997,2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999)identified large inversions, contraction and expansion of the invertedrepeat regions, and several insertions and deletions in the cpDNAs ofthese closely related taxa. Detailed restriction site and gene mapping ofthe chloroplast genome of Trachelium caeruleum (Campanulaceae) identifiedseven to ten large inversions, families of repeats associated withrearrangements, possible transpositions, and even the disruption ofoperons (Cosner et al., 1997). Seventeen other members of theCampanulaceae were mapped and exhibit many additional rearrangements(Cosner et al., 2004). What happened in this lineage that made itsusceptible to so many chloroplast genome rearrangements? How do normallyvery conserved chloroplast genomes change? The cause of rearrangements inthis group is unclear based on the limited resolution available withmapping techniques. Several mechanisms have been proposed to explain howrearrangements occur: recombination between repeats, transposition, ortemporary instability due to loss of the inverted repeat (Raubeson andJansen, 2005). Sequencing whole chloroplast genomes within theCampanulaceae offers a unique opportunity to examine both the extent andmechanisms of rearrangements within a phylogenetic framework.We reporthere the first complete chloroplast genome sequence of a member of theCampanulaceae, Trachelium caeruleum. This work will serve as a benchmarkfor subsequent, comparative sequencing and analysis of other members ofthis family and close relatives, with the goal of further understandingchloroplast genome evolution. We confirmed features previously identifiedthrough mapping, and discovered many additional structural changes,including several partial to entire gene duplications, deterioration ofat least four normally conserved chloroplast genes into gene fragments,and the nature and position of numerous repeat elements at or nearinversion endpoints. The focus of this paper is on analyses of sequencesat or near these rearrangements in Trachelium caeruleum. Inversions arebelieved to occur due to the presence of repeat elements subject tohomologous recombination (Palmer, 1991; Knox et al., 1993). Repeats mayfacilitate inversions or other genome rearrangements (Achaz et al.,2003), and higher incidences of repeats have been correlated with greaternumbers of rearrangements (Rocha, 2003). Alternatively, repeats mayproliferate within a genome asa result of DNA strand repair mechanismsfollowing a rearrangement event such as an inversion. Gene« less
Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong
2008-08-01
In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.
Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine.
Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent
2002-06-01
We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5' of Xist that was recently shown to attract histone modification early after the onset of X inactivation.
Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim
2011-01-01
Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable ‘UU172 element’ from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses. PMID:21255110
Repression of small toxic protein synthesis by the Sib and OhsC small RNAs.
Fozo, Elizabeth M; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S; Jones, Kristi L; Ocampo, Alejandro; Rudd, Kenneth E; Storz, Gisela
2008-12-01
The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, although the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five-sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18- to 19-amino-acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by coexpression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell.
Repression of small toxic protein synthesis by the Sib and OhsC small RNAs
Fozo, Elizabeth M.; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S.; Jones, Kristi L.; Ocampo, Alejandro; Rudd, Kenneth E.; Storz, Gisela
2008-01-01
Summary The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, though the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18–19 amino acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by co-expression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell. PMID:18710431
Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)
2013-01-01
Background Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability. The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. Results Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups. Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5´TGTTRNR…YNYAACA 3´); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region. The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening. The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a ‘Superviterbi’ alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. Conclusion The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events. PMID:23369192
Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.
Schuster, W; Unseld, M; Wissinger, B; Brennicke, A
1990-01-01
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162
NASA Astrophysics Data System (ADS)
Nordin, Norfarah; Samsudin, Mohd Ali; Hadi Harun, Abdul
2017-01-01
This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students’ behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning model. This study employed a single group quasi-experimental design to ascertain the changed in students’ behaviour towards energy conservation after underwent the intervention. The study involved 48 secondary school students in a Malaysian public school. ANOVA Repeated Measure technique was employed in order to compare scores of students’ behaviour towards energy conservation before and after the intervention. Based on the finding, students’ behaviour towards energy conservation improved after the intervention.
[Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].
Xia, Kai; Liang, Xin-le; Li, Yu-dong
2015-12-01
The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.
PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)
ERIC Educational Resources Information Center
Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony
2009-01-01
Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…
Jeong, Jae-Hee; Kim, Yi-Seul; Rojviriya, Catleya; Cha, Hyung Jin; Ha, Sung-Chul; Kim, Yeon-Gil
2013-10-01
The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1. The structure reveals a crescent-shaped molecule composed of a double layer of α-helices with seven anti-parallel α-helical repeats. A structure-based sequence alignment of the α-helical repeats identified a conserved pattern of hydrophobic or aliphatic residues reminiscent of the consensus sequence of eukaryotic HEAT repeats. The individual repeats of TON1937 also share high structural similarity with the canonical eukaryotic HEAT repeats. In addition, the concave surface of TON1937 is proposed to be its potential binding interface based on this structural comparison and its surface properties. These observations lead us to speculate that the archaeal HEAT-like repeats of TON1937 have evolved to engage in protein-protein interactions in the same manner as eukaryotic HEAT repeats. Copyright © 2013 Elsevier B.V. All rights reserved.
Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping
2014-01-01
The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in U crit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585
A TALE-inspired computational screen for proteins that contain approximate tandem repeats.
Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
A TALE-inspired computational screen for proteins that contain approximate tandem repeats
Krwawicz, Joanna
2017-01-01
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832
CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats.
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2008-07-01
Clustered regularly interspaced short palindromic repeat (CRISPR) elements are a particular family of tandem repeats present in prokaryotic genomes, in almost all archaea and in about half of bacteria, and which participate in a mechanism of acquired resistance against phages. They consist in a succession of direct repeats (DR) of 24-47 bp separated by similar sized unique sequences (spacers). In the large majority of cases, the direct repeats are highly conserved, while the number and nature of the spacers are often quite diverse, even among strains of a same species. Furthermore, the acquisition of new units (DR + spacer) was shown to happen almost exclusively on one side of the locus. Therefore, the CRISPR presents an interesting genetic marker for comparative and evolutionary analysis of closely related bacterial strains. CRISPRcompar is a web service created to assist biologists in the CRISPR typing process. Two tools facilitates the in silico investigation: CRISPRcomparison and CRISPRtionary. This website is freely accessible at http://crispr.u-psud.fr/CRISPRcompar/.
Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.
Salgueiro, Pedro A S; Borges, Carlos M F; Bettencourt da Silva, Ricardo J N
2012-09-28
The most popular procedures for the detection of residues of accelerants in fire debris are the ones published by the American Society for Testing and Materials (ASTM E1412-07 and E1618-10). The most critical stages of these tests are the conservation of fire debris from the sampling to the laboratory, the extraction of residues of accelerants from the debris to the activated charcoal strips (ACS) and from those to the final solvent, as well as the analysis of sample extract by gas chromatography-mass spectrometry (GC-MS) and the interpretation of the instrumental signal. This work proposes a strategy for checking the quality of the sample conservation, the accelerant residues transference to final solvent and GC-MS analysis, using internal standard additions. It is used internal standards ranging from a highly volatile compound for checking debris conservation to low volatile compound for checking GC-MS repeatability. The developed quality control (QC) parameters are not affected by GC-MS sensitivity variation and, specifically, the GC-MS performance control is not affected by ACS adsorption saturation that may mask test performance deviations. The proposed QC procedure proved to be adequate to check GC-MS repeatability, ACS extraction and sample conservation since: (1) standard additions are affected by negligible uncertainty and (2) observed dispersion of QC parameters are fit for its intended use. Copyright © 2012 Elsevier B.V. All rights reserved.
Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta
2012-11-07
Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.
2012-01-01
Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found. PMID:23134664
USDA-ARS?s Scientific Manuscript database
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres comprise of megabase-scale arrays of tandem repeats. The true prevalence of centromere tandem repeats, and whether they exhibit conserved seque...
Wei, Lin; Wu, Xian-Jin
2012-01-01
Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696
Wei, Lin; Wu, Xian-Jin
2012-01-01
Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.
Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F
2012-01-01
Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086
Cuadrado, A; Jouve, N
2007-01-01
Two simple sequence repeats (SSRs), AG and AC, were mapped directly in the metaphase chromosomes of man and barley (Hordeum vulgare L.), and in the metaphase and polytene chromosomes of Drosophila melanogaster. To this end, synthetic oligonucleotides corresponding to (AG)(12) and (AC)(8) were labelled by the random primer technique and used as probes in fluorescent in situ hybridisation (FISH) under high stringency and strict washing conditions. The distribution and intensity of the signals for the repeat sequences were found to be characteristic of the chromosomes and genomes of the three species analysed. The AC repeat sites were uniformly dispersed along the euchromatic segments of all three genomes; in fact, they were largely excluded from the heterochromatin. The Drosophila genome showed a high density of AC sequences on the X chromosome in both mitotic and polytene nuclei. In contrast, the AG repeats were associated with the euchromatic regions of the polytene chromosomes (and in high density on the X chromosome), but were only seen in specific heterochromatic regions in the mitotic chromosomes of all three species. In Drosophila, the AG repeats were exclusively distributed on the tips of the Y chromosome and near the centromere on both arms of chromosome 2. In barley and man, AG repeats were associated with the centromeres (of all chromosomes) and nucleolar organizer regions, respectively. The conserved chromosome distribution of AC within and between these three phylogenetically distant species, and the association of AG in specific chromosome regions with structural or functional properties, suggests that long clusters of these repeats may have some, as yet unknown, role. Copyright (c) 2007 S. Karger AG, Basel.
DRS is far less divergent than streptococcal inhibitor of complement of group A streptococcus.
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K; Menon, Thangam; Chakraborti, Anuradha
2007-04-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences.
DRS Is Far Less Divergent than Streptococcal Inhibitor of Complement of Group A Streptococcus▿
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K.; Menon, Thangam; Chakraborti, Anuradha
2007-01-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences. PMID:17237170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, A.J.; Burgess, D.L.; Kohrman, D.
1994-09-01
The Twirler mutation (Tw) causing cleft palate {plus_minus} cleft lip, vestibular defects and obesity is located within 0.5 cM of an ataxia locus (ax) on mouse chromosome 18. We identified a transgene-induced insertional mutation with vestibular and craniofacial defects that appears to be a new allele of Twirler. Mouse DNA flanking the transgene insertion site was isolated from a cosmid library. An evolutionarily conserved, zoo blot positive cosmid subclone was used to probe a human {lambda} genomic library. From the sequence of a highly homologous human {lambda} clone, we designed STS primers and screened a human P1 library. DNA frommore » two positive P1 clones was hybridized with simple sequence probes, and a (CTAT){sub 12} repeat was detected. Analysis of 62 CEPH parents with primers flanking the repeat identified six alleles containing 9 to 14 copies of the repeat, at frequencies of 0.17, 0.17, 0.17, 0.27, 0.15 and 0.07, respectively. The observed heterozygosity was 49/62 with a calculated PIC value of 0.76. This polymorphic microsatellite marker, designated Umi3, was mapped to the predicted conserved human linkage group by analysis of somatic cell hybrid panels. The anticipated short distance between Umi3 and the disease genes will facilitate detection of linkage in small families. We would like to type appropriate human pedigrees with Umi3 in order to identify patients with inherited disorders homologous to the mouse mutations Twirler and ataxia.« less
Prince, Linda M
2015-01-01
Inter-simple sequence repeat PCR (ISSR-PCR) is a fast, inexpensive genotyping technique based on length variation in the regions between microsatellites. The method requires no species-specific prior knowledge of microsatellite location or composition. Very small amounts of DNA are required, making this method ideal for organisms of conservation concern, or where the quantity of DNA is extremely limited due to organism size. ISSR-PCR can be highly reproducible but requires careful attention to detail. Optimization of DNA extraction, fragment amplification, and normalization of fragment peak heights during fluorescent detection are critical steps to minimizing the downstream time spent verifying and scoring the data.
Structural Analyses of the Ankyrin Repeat Domain of TRPV6 and Related TRPV Ion Channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, C.B.; Huang, R.J.; Lishko, P.V.
2008-06-03
Transient receptor potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 A crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the ARDs of TRPV proteins. First, a large twist between the fourth and fifth repeats is induced by residues conserved in all TRPV ARDs. Second, the third fingermore » loop is the most variable region in sequence, length and conformation. In TRPV6, a number of putative regulatory phosphorylation sites map to the base of this third finger. Size exclusion chromatography and crystal packing indicate that the TRPV6-ARD does not assemble as a tetramer and is monomeric in solution. Adenosine triphosphate-agarose and calmodulin-agarose pull-down assays show that the TRPV6-ARD does not interact with either ligand, indicating a different functional role for the TRPV6-ARD than in the paralogous thermosensitive TRPV1 channel. Similar biochemical findings are also presented for the highly homologous mammalian TRPV5-ARD. The implications of the structural and biochemical data on the role of the ankyrin repeats in different TRPV channels are discussed.« less
Okimoto, R; Chamberlin, H M; Macfarlane, J L; Wolstenholme, D R
1991-01-01
Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species. Images PMID:2027769
Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D
2007-01-01
Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505
Structural and biophysical properties of h-FANCI ARM repeat protein.
Siddiqui, Mohd Quadir; Choudhary, Rajan Kumar; Thapa, Pankaj; Kulkarni, Neha; Rajpurohit, Yogendra S; Misra, Hari S; Gadewal, Nikhil; Kumar, Satish; Hasan, Syed K; Varma, Ashok K
2017-11-01
Fanconi anemia complementation groups - I (FANCI) protein facilitates DNA ICL (Inter-Cross-link) repair and plays a crucial role in genomic integrity. FANCI is a 1328 amino acids protein which contains armadillo (ARM) repeats and EDGE motif at the C-terminus. ARM repeats are functionally diverse and evolutionarily conserved domain that plays a pivotal role in protein-protein and protein-DNA interactions. Considering the importance of ARM repeats, we have explored comprehensive in silico and in vitro approach to examine folding pattern. Size exclusion chromatography, dynamic light scattering (DLS) and glutaraldehyde crosslinking studies suggest that FANCI ARM repeat exist as monomer as well as in oligomeric forms. Circular dichroism (CD) and fluorescence spectroscopy results demonstrate that protein has predominantly α- helices and well-folded tertiary structure. DNA binding was analysed using electrophoretic mobility shift assay by autoradiography. Temperature-dependent CD, Fluorescence spectroscopy and DLS studies concluded that protein unfolds and start forming oligomer from 30°C. The existence of stable portion within FANCI ARM repeat was examined using limited proteolysis and mass spectrometry. The normal mode analysis, molecular dynamics and principal component analysis demonstrated that helix-turn-helix (HTH) motif present in ARM repeat is highly dynamic and has anti-correlated motion. Furthermore, FANCI ARM repeat has HTH structural motif which binds to double-stranded DNA.
Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Kumar, Lalit; Luthra, Kalpana; Agarwal, Sanjay Kumar; Sreenivas, Vishnubhatla
2013-01-01
Pneumocystis jirovecii is an opportunistic pathogen that causes severe pneumonia in immunocompromised patients. To study the genetic diversity of P. jirovecii in India the upstream conserved sequence (UCS) region of Pneumocystis genome was amplified, sequenced and genotyped from a set of respiratory specimens obtained from 50 patients with a positive result for nested mitochondrial large subunit ribosomal RNA (mtLSU rRNA) PCR during the years 2005-2008. Of these 50 cases, 45 showed a positive PCR for UCS region. Variations in the tandem repeats in UCS region were characterized by sequencing all the positive cases. Of the 45 cases, one case showed five repeats, 11 cases showed four repeats, 29 cases showed three repeats and four cases showed two repeats. By running amplified DNA from all these cases on a high-resolution gel, mixed infection was observed in 12 cases (26.7%, 12/45). Forty three of 45 cases included in this study had previously been typed at mtLSU rRNA and internal transcribed spacer (ITS) region by our group. In the present study, the genotypes at those two regions were combined with UCS repeat patterns to construct allelic profiles of 43 cases. A total of 36 allelic profiles were observed in 43 isolates indicating high genetic variability. A statistically significant association was observed between mtLSU rRNA genotype 1, ITS type Ea and UCS repeat pattern 4. Copyright © 2012 Elsevier B.V. All rights reserved.
Madliger, Christine L; Love, Oliver P
2016-01-01
Abstract Labile physiological variables, such as stress hormones [i.e. glucocorticoids (GCs)], allow individuals to react to perturbations in their environment and may therefore reflect the effect of disturbances or positive conservation initiatives in advance of population-level demographic measures. Although the application of GCs as conservation biomarkers has been of extensive interest, few studies have explicitly investigated whether baseline GC concentrations respond to disturbances consistently across individuals. However, confirmation of consistent responses is of paramount importance to assessing the ease of use of GCs in natural systems and to making valid interpretations regarding population-level change (or lack of change) in GC concentrations. We investigated whether free-ranging female tree swallows (Tachycineta bicolor) display individually specific changes in baseline glucocorticoid concentrations naturally over the breeding season (from incubation to offspring provisioning) and in response to a manipulation of foraging profitability (representing a decrease in access to food resources). We show that baseline GC concentrations are repeatable within individuals over reproduction in natural conditions. However, in response to a reduction in foraging ability, baseline GC concentrations increase at the population level but are not repeatable within individuals, indicating a high level of within-individual variation. Overall, we suggest that baseline GCs measured on a subset of individuals may not provide a representative indication of responses to environmental change at the population level, and multiple within-individual measures may be necessary to determine the fitness correlates of GC concentrations. Further validation should be completed across a variety of taxa and life-history stages. Moving beyond a traditional cross-sectional approach by incorporating repeated-measures methods will be necessary to assess the suitability of baseline GCs as biomarkers of environmental change and population persistence, particularly from a logistical and ease-of-use perspective for conservation managers. PMID:27757239
Killen, S S; Adriaenssens, B; Marras, S; Claireaux, G; Cooke, S J
2016-01-01
Abstract Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits. PMID:27382470
2013-01-01
Background Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient “off-the-shelf” markers that are suitable for genotyping a wide range of species would not only save resources but also uniquely enable new comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avian microsatellite markers with enhanced cross-species utility. Results We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utility by genotyping individuals belonging to eight passerine and four non-passerine species. The majority of the new Conserved Avian Microsatellite (CAM) markers amplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with a mean 68% of loci polymorphic per species, compared with 42% in non-passerine species. Conclusions When combined with previously described conserved loci, this new set of conserved markers will not only reduce the necessity and expense of microsatellite isolation for a wide range of genetic studies, including avian parentage and population analyses, but will also now enable comparisons of genetic diversity among different species (and populations) at the same set of loci, with no or reduced bias. Finally, the approach used here can be applied to other taxa in which appropriate genome sequences are available. PMID:23497230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.
ABSTRACT Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impactmore » on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2'O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN-induced proteins with tetratricopeptide repeats)-based mechanism, NSP16 mutants provide a suitable target for a live attenuated vaccine platform, as well as therapeutic development for both current and future emergent CoV strains. Importantly, other approaches targeting other conserved pan-CoV functions have not yet proven effective against MERS-CoV, illustrating the broad applicability of targeting viral 2'O-MTase function across CoVs.« less
Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.
2017-01-01
ABSTRACT Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2′O-methyltransferase (2′O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2′O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures and in vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2′O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting. IMPORTANCE Coronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that effectively targets the highly conserved 2′O-MTase activity of CoVs for attenuation. With clear understanding of the IFN/IFIT (IFN-induced proteins with tetratricopeptide repeats)-based mechanism, NSP16 mutants provide a suitable target for a live attenuated vaccine platform, as well as therapeutic development for both current and future emergent CoV strains. Importantly, other approaches targeting other conserved pan-CoV functions have not yet proven effective against MERS-CoV, illustrating the broad applicability of targeting viral 2′O-MTase function across CoVs. PMID:29152578
Han, Yonghua; Wang, Guixiang; Liu, Zhao; Liu, Jinhua; Yue, Wei; Song, Rentao; Zhang, Xueyong; Jin, Weiwei
2010-02-01
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.
Evolutionary conservation of sequence and secondary structures inCRISPR repeats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip
Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeatsmore » identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.« less
Yu, Jeong-Nam; Won, Changman; Jun, Jumin; Lim, YoungWoon; Kwak, Myounghai
2011-01-01
Background Microsatellites, a special class of repetitive DNA sequence, have become one of the most popular genetic markers for population/conservation genetic studies. However, its application to endangered species has been impeded by high development costs, a lack of available sequences, and technical difficulties. The water deer Hydropotes inermis is the sole existing endangered species of the subfamily Capreolinae. Although population genetics studies are urgently required for conservation management, no species-specific microsatellite marker has been reported. Methods We adopted next-generation sequencing (NGS) to elucidate the microsatellite markers of Korean water deer and overcome these impediments on marker developments. We performed genotyping to determine the efficiency of this method as applied to population genetics. Results We obtained 98 Mbp of nucleotide information from 260,467 sequence reads. A total of 20,101 di-/tri-nucleotide repeat motifs were identified; di-repeats were 5.9-fold more common than tri-repeats. [CA]n and [AAC]n/[AAT]n repeats were the most frequent di- and tri-repeats, respectively. Of the 17,206 di-repeats, 12,471 microsatellite primer pairs were derived. PCR amplification of 400 primer pairs yielded 106 amplicons and 79 polymorphic markers from 20 individual Korean water deer. Polymorphic rates of the 79 new microsatellites varied from 2 to 11 alleles per locus (He: 0.050–0.880; Ho: 0.000–1.000), while those of known microsatellite markers transferred from cattle to Chinese water deer ranged from 4 to 6 alleles per locus (He: 0.279–0.714; Ho: 0.300–0.400). Conclusions Polymorphic microsatellite markers from Korean water deer were successfully identified using NGS without any prior sequence information and deposited into the public database. Thus, the methods described herein represent a rapid and low-cost way to investigate the population genetics of endangered/non-model species. PMID:22069476
Comparative Sequence Analysis of the X-Inactivation Center Region in Mouse, Human, and Bovine
Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent
2002-01-01
We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5′ of Xist that was recently shown to attract histone modification early after the onset of X inactivation. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AJ421478, AJ421479, AJ421480, and AJ421481. Online supplemental data are available at http://pbil.univ-lyon1.fr/datasets/Xic2002/data.html and www.genome.org.] PMID:12045143
Hemalatha, G. R.; Rao, D. Satyanarayana; Guruprasad, L.
2007-01-01
We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure. PMID:17538688
The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.
2014-05-05
The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium,more » and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.« less
PUF Proteins: Cellular Functions and Potential Applications.
Kiani, Seyed Jalal; Taheri, Tahereh; Rafati, Sima; Samimi-Rad, Katayoun
2017-01-01
RNA-binding proteins play critical roles in the regulation of gene expression. Among several families of RNA-binding proteins, PUF (Pumilio and FBF) proteins have been the subject of extensive investigations, as they can bind RNA in a sequence-specific manner and they are evolutionarily conserved among a wide range of organisms. The outstanding feature of these proteins is a highly conserved RNA-binding domain, which is known as the Pumilio-homology domain (PUM-HD) that mostly consists of eight tandem repeats. Each repeat recognizes an RNA base with a simple three-letter code that can be programmed in order to change the sequence-specificity of the protein. Using this tailored architecture, researchers have been able to change the specificity of the PUM-HD and target desired transcripts in the cell, even in subcellular compartments. The potential applications of this versatile tool in molecular cell biology seem unbounded and the use of these factors in pharmaceutics might be an interesting field of study in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Seaman, Mike S.; Lutje Hulsik, David; Hinz, Andreas; Vanzetta, Fabrizia; Agatic, Gloria; Silacci, Chiara; Mainetti, Lara; Scarlatti, Gabriella; Sallusto, Federica; Weiss, Robin; Lanzavecchia, Antonio; Weissenhorn, Winfried
2010-01-01
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool. PMID:21124990
Sabin, Charles; Corti, Davide; Buzon, Victor; Seaman, Mike S; Lutje Hulsik, David; Hinz, Andreas; Vanzetta, Fabrizia; Agatic, Gloria; Silacci, Chiara; Mainetti, Lara; Scarlatti, Gabriella; Sallusto, Federica; Weiss, Robin; Lanzavecchia, Antonio; Weissenhorn, Winfried
2010-11-18
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.
Syed, Mudasir Ahmad; Bhat, Farooz Ahmad; Balkhi, Masood-ul Hassan; Bhat, Bilal Ahmad
2016-01-01
Schizothoracine fish commonly called snow trouts inhibit the entire network of snow and spring fed cool waters of Kashmir, India. Over 10 species reported earlier, only five species have been found, these include Schizothorax niger, Schizothorax esocinus, Schizothorax plagiostomus, Schizothorax curvifrons and Schizothorax labiatus. The relationship between these species is contradicting. To understand the evolutionary relation of these species, we examined the sequence information of mitochondrial D-loop of 25 individuals representing five species. Sequence alignment showed D-loop region highly variable and length variation was observed in di-nucleotide (TA)n microsatellite between and within species. Interestingly, all these species have (TA)n microsatellite not associated with longer tandem repeats at the 3' end of the mitochondrial control region and do not show heteroplasmy. Our analysis also indicates the presence of four conserved sequence blocks (CSB), CSB-D, CSB-1, CSB-II and CSB-III, four (Termination Associated Sequence) TAS motifs and 15bp pyrimidine block within the mitochondrial control region, that are highly conserved within genus Schizothorax when compared with other species. The phylogenetic analysis carried by Maximum likelihood (ML), Neighbor Joining (NJ) and Bayesian inference (BI) generated almost identical results. The resultant BI tree showed a close genetic relationship of all the five species and supports two distinct grouping of S. esocinus species. Besides the species relation, the presence of length variation in tandem repeats is attributed to differences in predicting the stability of secondary structures. The role of CSBs and TASs, reported so far as main regulatory signals, would explain the conservation of these elements in evolution.
Genetic variation and evolutionary stability of the FMR1 CGG repeat in six closed human populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichler, E.E.; Nelson, D.L.
1996-07-12
In an attempt to understand the allelic diversity and mutability of the human FMR1 CGG repeat, we have analyzed the AGG substructure of this locus within six genetically-closed populations (Mbuti pygmy, Baka pygmy, R. surui, Karitiana, Mayan, and Hutterite). Most alleles (61/92 or 66%) possessed two AGG interspersions occurring with a periodicity of one AGG every nine or ten CGG repeats, indicating that this pattern is highly conserved in all human populations. Significant differences in allele distribution were observed among the populations for rare variants possessing fewer or more AGG interruptions than the canonical FMR1 CGG repeat sequence. Comparisons ofmore » expected heterozygosity of the FMR1 CGG repeat locus with 30 other microsatellite loci, demonstrated remarkably similar levels of polymorphism within each population, suggesting that most FMR1 CGG repeat alleles mutate at rates indistinguishable from other microsatellite loci. A single allele (1 out of 92) was identified with a large uninterrupted tract of pure repeats (42 pure CGG triplets). Retrospective pedigree analysis indicated that this allele had been transmitted unstably. Although such alleles mutate rapidly and likely represent evolving premutations, our analysis suggests that in spite of the estimated frequency of their occurrence, these unstable alleles do not significantly alter the expected heterozygosity of the FMR1 CGG repeat in the human population. 45 refs., 1 fig., 2 tabs.« less
Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems
Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.
2015-01-01
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks. PMID:26057337
Lea, James S E; Wetherbee, Bradley M; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L; Mucientes, Gonzalo R; Humphries, Nicolas E; Harvey, Guy M; Sims, David W; Shivji, Mahmood S
2015-06-09
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.
Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems
NASA Astrophysics Data System (ADS)
Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.
2015-06-01
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.
Gubser, Caroline; Smith, Geoffrey L
2002-04-01
Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.
Gibbs motif sampling: detection of bacterial outer membrane protein repeats.
Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.
1995-01-01
The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488
Jinek, Martin; Eulalio, Ana; Lingel, Andreas; Helms, Sigrun; Conti, Elena; Izaurralde, Elisa
2008-10-01
The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.
Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg
2005-12-01
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.
Claverie, Michel; Dirlewanger, Elisabeth; Bosselut, Nathalie; Van Ghelder, Cyril; Voisin, Roger; Kleinhentz, Marc; Lafargue, Bernard; Abad, Pierre; Rosso, Marie-Noëlle; Chalhoub, Boulos; Esmenjaud, Daniel
2011-01-01
Root-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.2175 accession. High-resolution mapping totaling over 3,000 segregants reduced the Ma locus interval to a 32-kb cluster of three Toll/Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat (LRR) genes (TNL1–TNL3), including a pseudogene (TNL2) and a truncated gene (TNL3). The sole complete gene in this interval (TNL1) was validated as Ma, as it conferred the same complete-spectrum and high-level resistance (as in P.2175) using its genomic sequence and native promoter region in Agrobacterium rhizogenes-transformed hairy roots and composite plants. The full-length cDNA (2,048 amino acids) of Ma is the longest of all Resistance genes cloned to date. Its TNL structure is completed by a huge post-LRR (PL) sequence (1,088 amino acids) comprising five repeated carboxyl-terminal PL exons with two conserved motifs. The amino-terminal region (213 amino acids) of the LRR exon is conserved between alleles and contrasts with the high interallelic polymorphisms of its distal region (111 amino acids) and of PL domains. The Ma gene highlights the importance of these uncharacterized PL domains, which may be involved in pathogen recognition through the decoy hypothesis or in nuclear signaling. PMID:21482634
Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates
Baker, Zachary; Schumer, Molly; Haba, Yuki; Bashkirova, Lisa; Holland, Chris; Rosenthal, Gil G; Przeworski, Molly
2017-01-01
Studies of highly diverged species have revealed two mechanisms by which meiotic recombination is directed to the genome—through PRDM9 binding or by targeting promoter-like features—that lead to dramatically different evolutionary dynamics of hotspots. Here, we identify PRDM9 orthologs from genome and transcriptome data in 225 species. We find the complete PRDM9 ortholog across distantly related vertebrates but, despite this broad conservation, infer a minimum of six partial and three complete losses. Strikingly, taxa carrying the complete ortholog of PRDM9 are precisely those with rapid evolution of its predicted binding affinity, suggesting that all domains are necessary for directing recombination. Indeed, as we show, swordtail fish carrying only a partial but conserved ortholog share recombination properties with PRDM9 knock-outs. DOI: http://dx.doi.org/10.7554/eLife.24133.001 PMID:28590247
Development of a hydrologic connectivity dataset for SWAT assessments in the U.S.
USDA-ARS?s Scientific Manuscript database
Model based water quality assessments are as important informer of conservation and environmental policy in the US. The recently completed national scale Conservation Effects Assessment Project (CEAP) is being repeated using newer data, greater resolution, and enhanced models. National assessment...
Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novelli, G.; Sineo, L.; Pontieri, E.
Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PKmore » gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.« less
Real-time PCR using the 529 bp repeat element for the diagnosis of atypical ocular toxoplasmosis.
Steeples, Laura R; Guiver, Malcolm; Jones, Nicholas P
2016-02-01
Ocular toxoplasmosis may present in atypical fashion, particularly in immunosuppressed patients, and PCR is an important diagnostic tool especially when differentiating from other infectious causes. A descriptive case-series demonstrating the use of a novel real-time PCR protocol targeting 529 bp repeat element, a multicopy and highly conserved fragment, in Toxoplasma gondii genome. This was designed and established by our microbiology service following independent, external validation. Three immunosuppressed patients presenting to a tertiary uveitis referral centre with unilateral, severe, sight-threatening uveitis are described. One patient presented with a large focus of sight-threatening retinitis and occlusive vasculitis while on systemic immunosuppression with azathioprine and adalimumab for Crohn's disease. One patient with chronic lymphocytic leukaemia presented with severe posterior uveitis and total retinal detachment. Finally, the third patient presented with severe retinitis adjacent to the optic nerve and vitritis causing acute vision loss. HIV infection was subsequently identified. In all three cases, the cause of inflammation was not clear from clinical examination alone and prompt treatment was required to prevent permanent vision loss. Intraocular sampling and PCR testing was performed including testing for toxoplasmosis, herpesviruses and syphilis. The novel real-time PCR assay described is more sensitive than those targeting the Toxoplasma B1 gene owing to the higher number of repeats and highly conserved sequence level. This technique can be applied in clinical practice and provides a valuable tool for the rapid diagnosis of ocular toxoplasmosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Murch, Susan J.; Ragone, Diane; Shi, Wendy Lei; Alan, Ali R.; Saxena, Praveen K.
2008-02-01
Breadfruit ( Artocarpus altilis, Moraceae) is a traditionally cultivated, high-energy, high-yield crop, but widespread use of the plant for food is limited by poor quality and poor storage properties of the fruit. A unique field genebank of breadfruit species and cultivars exists at the National Tropical Botanical Garden in the Hawaiian Islands and is an important global resource for conservation and sustainable use of breadfruit. However, this plant collection could be damaged by a random natural disaster such as a hurricane. We have developed a highly efficient in vitro plant propagation system to maintain, conserve, mass propagate, and distribute elite varieties of this important tree species. Mature axillary shoot buds were collected from three different cultivars of breadfruit and proliferated using a cytokinin-supplemented medium. The multiple shoots were maintained as stock cultures and repeatedly used to develop whole plants after root differentiation on a basal or an auxin-containing medium. The plantlets were successfully grown under greenhouse conditions and were reused to initiate additional shoot cultures for sustained production of plants. Flow cytometry was used to determine the nuclear deoxyribonucleic acid content and the ploidy status of the in vitro grown population. The efficacy of the micropropagation protocols developed in this study represents a significant advancement in the conservation and sustained mass propagation of breadfruit germplasm in a controlled environment free from contamination.
Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R
2008-08-01
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
Dahlström, Käthe M; Salminen, Tiina A
2015-12-07
Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
5S rRNA gene arrangements in protists: a case of nonadaptive evolution.
Drouin, Guy; Tsang, Corey
2012-06-01
Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.
A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function
Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart
2013-01-01
Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739
Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua
2016-01-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805
Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India.
Mohanty, Sujata; Panda, Manoj Kumar; Acharya, Laxmikanta; Nayak, Sanghamitra
2014-08-01
In the present study, genetic fingerprints of ten species of Zingiberaceae from eastern India were developed using PCR-based markers. 19 RAPD (Rapid Amplified polymorphic DNA), 8 ISSR (Inter Simple Sequence Repeats) and 8 SSR (Simple Sequence Repeats) primers were used to elucidate genetic diversity important for utilization, management and conservation. These primers produced 789 loci, out of which 773 loci were polymorphic (including 220 unique loci) and 16 monomorphic loci. Highest number of bands amplified (263) in Curcuma caesia whereas lowest (209) in Zingiber cassumunar. Though all the markers discriminated the species effectively, analysis of combined data of all markers resulted in better distinction of individual species. Highest number of loci was amplified with SSR primers with resolving power in a range of 17.4-39. Dendrogram based on three molecular data using unweighted pair group method with arithmetic mean classified all the species into two clusters. Mantle matrix correspondence test revealed high matrix correlation in all the cases. Correlation values for RAPD, ISSR and SSR were 0.797, 0.84 and 0.8, respectively, with combined data. In both the genera wild and cultivated species were completely separated from each other at genomic level. It also revealed distinct genetic identity between species of Curcuma and Zingiber. High genetic diversity documented in the present study provides a baseline data for optimization of conservation and breeding programme of the studied zingiberacious species.
USDA-ARS?s Scientific Manuscript database
Using searches of the NCBI conserved domain database and SMART genomic architecture analysis, we identified three ankyrin repeat-containing genes in Anaplasma marginale: AM705, AM926 and AM638. Recombinant protein was used to immunize mice and generate fusion hybridomas secreting protein-specific mo...
Ebstein, Richard P.; Monakhov, Mikhail V.; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong
2015-01-01
Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal–conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555
Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong
2015-08-22
Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. © 2015 The Author(s).
Henderson, Ian R; Liu, Fuquan; Drea, Sinead; Simpson, Gordon G; Dean, Caroline
2005-08-01
The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Shuyan; Sun, Cancan; Tan, Kemin
Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less
Veach, Victoria; Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss.
Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss. PMID:29182662
A Potential Role for Drosophila Mucins in Development and Physiology
Syed, Zulfeqhar A.; Härd, Torleif; Uv, Anne; van Dijk-Härd, Iris F.
2008-01-01
Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS). We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300–23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis. PMID:18725942
Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.
Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George
2005-04-01
Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.
CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats.
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2007-07-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) constitute a particular family of tandem repeats found in a wide range of prokaryotic genomes (half of eubacteria and almost all archaea). They consist of a succession of highly conserved regions (DR) varying in size from 23 to 47 bp, separated by similarly sized unique sequences (spacer) of usually viral origin. A CRISPR cluster is flanked on one side by an AT-rich sequence called the leader and assumed to be a transcriptional promoter. Recent studies suggest that this structure represents a putative RNA-interference-based immune system. Here we describe CRISPRFinder, a web service offering tools to (i) detect CRISPRs including the shortest ones (one or two motifs); (ii) define DRs and extract spacers; (iii) get the flanking sequences to determine the leader; (iv) blast spacers against Genbank database and (v) check if the DR is found elsewhere in prokaryotic sequenced genomes. CRISPRFinder is freely accessible at http://crispr.u-psud.fr/Server/CRISPRfinder.php.
Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria
Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin
2011-01-01
Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem copies are found. PMID:22022374
Conserved DNA motifs in the type II-A CRISPR leader region.
Van Orden, Mason J; Klein, Peter; Babu, Kesavan; Najar, Fares Z; Rajan, Rakhi
2017-01-01
The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3' end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3' leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3' leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.
Conserved DNA motifs in the type II-A CRISPR leader region
Babu, Kesavan; Najar, Fares Z.
2017-01-01
The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci. PMID:28392985
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2004-01-01
A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for 3D requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes increasingly more difficult. Also, the number of interior facets required to subdivide non-planar faces, and the additional increase in the number of quadrature points for each facet, increases the computational cost greatly.
Kevin J. Gutzwiller; Samuel K. Riffell
2008-01-01
Intrusion by humans into wildlife habitat during recreational activities has become a worldwide conservation concern. Low levels of intrusion, which occur frequently in many wildlands, could influence use of sites by red squirrels (Tamiasciurus hudsonicus) and have important ramifications for conservation. Red squirrels can influence forest...
Sequence repeats and protein structure
NASA Astrophysics Data System (ADS)
Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos
2012-11-01
Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.
Schuster-Gossler, Karin; Cordes, Ralf; Müller, Julia; Geffers, Insa; Delany-Heiken, Patricia; Taft, Manuel; Preller, Matthias; Gossler, Achim
2016-01-01
The highly conserved Notch-signaling pathway mediates cell-to-cell communication and is pivotal for multiple developmental processes and tissue homeostasis in adult organisms. Notch receptors and their ligands are transmembrane proteins with multiple epidermal-growth-factor-like (EGF) repeats in their extracellular domains. In vitro the EGF repeats of mammalian ligands that are essential for Notch activation have been defined. However, in vivo the significance of the structural integrity of each EGF repeat in the ligand ectodomain for ligand function is still unclear. Here, we analyzed the mouse Notch ligand DLL1. We expressed DLL1 proteins with mutations disrupting disulfide bridges in each individual EGF repeat from single-copy transgenes in the HPRT locus of embryonic stem cells. In Notch transactivation assays all mutations impinged on DLL1 function and affected both NOTCH1 and NOTCH2 receptors similarly. An allelic series in mice that carried the same point mutations in endogenous Dll1, generated using a mini-gene strategy, showed that early developmental processes depending on DLL1-mediated NOTCH activation were differently sensitive to mutation of individual EGF repeats in DLL1. Notably, some mutations affected only somite patterning and resulted in vertebral column defects resembling spondylocostal dysostosis. In conclusion, the structural integrity of each individual EGF repeat in the extracellular domain of DLL1 is necessary for full DLL1 activity, and certain mutations in Dll1 might contribute to spondylocostal dysostosis in humans. PMID:26801181
Molecular Cloning of Secreted Luciferases from Marine Planktonic Copepods.
Takenaka, Yasuhiro; Ikeo, Kazuho; Shigeri, Yasushi
2016-01-01
Secreted luciferases isolated from copepod crustaceans are frequently used for nondisruptive reporter-gene assays, such as the continuous, automated and/or high-throughput monitoring of gene expression in living cells. All known copepod luciferases share highly conserved amino acid residues in two similar, repeated domains in the sequence. The similarity in the domains are ideal nature for designing PCR primers to amplify cDNA fragments of unidentified copepod luciferases from bioluminescent copepod crustaceans. Here, we introduce how to establish a cDNA encoding novel copepod luciferases from a copepod specimen by PCR with degenerated primers.
Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin
2015-01-01
We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes—rpoC2, ycf3, accD, and clpP—have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum. PMID:25966355
Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J
2011-04-01
Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.
Behavioural thermoregulation is highly repeatable and unaffected by digestive status in Agama atra.
van Berkel, Jenna; Clusella-Trullas, Susana
2018-05-03
The precision and the extent of behavioral thermoregulation are likely to provide fitness benefits to ectotherms. Yet the factors driving variation in selected or preferred body temperature (T set ) and its usefulness as a proxy for optimal physiological temperature (T opt ) are still debated. Although T set is often conserved among closely related species, substantial variation at the individual, population, and species level has also been reported but repeatability (sensu the intra-class correlation coefficient, ICC) of T set is generally low. One factor that influences T set is feeding status, with fed reptiles typically showing higher T set , a process thought to aid meal digestion. Here using experiments simulating realistic ranges of feeding and fasting regimes in Agama atra, a heliothermic lizard from southern Africa, we test if T set and its repeatability under these two states significantly differ. Daily T set ranged from 33.7 to 38.4° C, with a mean (± SE) of 36.7 ± 0.1° C for fed and 36.6 ± 0.1° C for unfed individuals. Comparisons of repeatability showed that females tend to be more consistent in the selection of body temperature than males, but not significantly so regardless of feeding status. We report some of the highest repeatability estimates of T set to date (full range: 0.229 - 0.642), and that the weak positive effects of feeding status on T set detected here do not hinder obtaining relatively high repeatability estimates. In conclusion, one of the major prerequisites for natural selection, consistent among-individual variation, is present, making the adaptive significance of T set considerably more plausible. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Technical considerations for surgical intervention of Jones fractures.
Mendicino, Robert W; Hentges, Matthew J; Mendicino, Michael R; Catanzariti, Alan R
2013-01-01
Jones fractures are a common injury treated by foot and ankle surgeons. Surgical intervention is recommended because of the high rate of delayed union, nonunion, and repeat fracture, when treated conservatively. Percutaneous intramedullary screw fixation is commonly used in the treatment of these fractures. We present techniques that can increase the surgical efficiency and decrease the complications associated with percutaneous delivery of internal fixation. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin.
Pinto, Rute D; Moreira, Ana R; Pereira, Pedro J B; dos Santos, Nuno M S
2013-06-01
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fanning, T; Singer, M
1987-01-01
Recent work suggests that one or more members of the highly repeated LINE-1 (L1) DNA family found in all mammals may encode one or more proteins. Here we report the sequence of a portion of an L1 cloned from the domestic cat (Felis catus). These data permit comparison of the L1 sequences in four mammalian orders (Carnivore, Lagomorph, Rodent and Primate) and the comparison supports the suggested coding potential. In two separate, noncontiguous regions in the carboxy terminal half of the proteins predicted from the DNA sequences, there are several strongly conserved segments. In one region, these share homology with known or suspected reverse transcriptases, as described by others in rodents and primates. In the second region, closer to the carboxy terminus, the strongly conserved segments are over 90% homologous among the four orders. One of the latter segments is cysteine rich and resembles the putative metal binding domains of nucleic acid binding proteins, including those of TFIIIA and retroviruses. PMID:3562227
Is mammalian chromosomal evolution driven by regions of genome fragility?
Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J
2006-01-01
Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441
NASA Astrophysics Data System (ADS)
Wong, Marian Y. L.; Beasley, Amanda L.; Douglass, Tasman; Whalan, Steve; Scott, Anna
2017-12-01
Determining the extent of repeatable differences in the behavior of animals and the factors that influence behavioral expression is important for understanding individual fitness and population processes, thereby aiding in species conservation. However, little is known about the causes of variation in the repeatability of behavioral differences among species because rarely have comparative studies been undertaken to examine the repeatability of behavioral differences among individuals within their natural ecological settings. Using two species of endemic subtropical anemonefishes, Amphiprion mccullochi and A. latezonatus at Lord Howe and North Solitary Islands, Australia, we conducted an in situ comparative analysis of personality traits, examining the repeatability of boldness, sociability and aggression as well as the potential role of environmental and social factors on behavioral expression. For A. mccullochi, only boldness and aggression were highly repeatable and these behaviors formed a behavioral syndrome. For A. latezonatus, none of the three behaviors were repeatable due to low-inter-individual variation in behavior. We suggest that the harsher and more variable environmental and social conditions experienced by A. latezonatus have resulted in reduced repeatability in behavior, in contrast to A. mccullochi which typically inhabits a more stable lagoonal reef environment. Additionally, group size and size rank, rather than nearest-neighbor distance and anemone size, influenced the expression of these behaviors in both species, suggesting that behavioral variation was more sensitive to social than environmental factors. Overall, differences in repeatability between these closely related species likely reflect adaptations to contrasting environmental and social conditions, although alternative explanations must be considered. The differences in behavioral consistency between these two endemic anemonefishes could lead to disparity in their resilience to environmental or social change in the future.
Analysis of sequence repeats of proteins in the PDB.
Mary Rajathei, David; Selvaraj, Samuel
2013-12-01
Internal repeats in protein sequences play a significant role in the evolution of protein structure and function. Applications of different bioinformatics tools help in the identification and characterization of these repeats. In the present study, we analyzed sequence repeats in a non-redundant set of proteins available in the Protein Data Bank (PDB). We used RADAR for detecting internal repeats in a protein, PDBeFOLD for assessing structural similarity, PDBsum for finding functional involvement and Pfam for domain assignment of the repeats in a protein. Through the analysis of sequence repeats, we found that identity of the sequence repeats falls in the range of 20-40% and, the superimposed structures of the most of the sequence repeats maintain similar overall folding. Analysis sequence repeats at the functional level reveals that most of the sequence repeats are involved in the function of the protein through functionally involved residues in the repeat regions. We also found that sequence repeats in single and two domain proteins often contained conserved sequence motifs for the function of the domain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gardner, Amanda E.; Dutch, Rebecca E.
2007-01-01
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F1 and F2. Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F1 (CBF1) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F2 subunit (CBF2). To analyze the functions of CBF2, alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF2 mutations resulted in folding and expression defects. However, the CBF2 mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF2 Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF2 I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF2 in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion. PMID:17507474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.
1994-09-01
Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less
Tiwari, Sandhya P.; Reuter, Nathalie
2016-01-01
The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design. PMID:27015412
Rittschof, Clare C; Bukhari, Syed Abbas; Sloofman, Laura G; Troy, Joseph M; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O; Weisner, Patricia A; Zhang, Huimin; Bell, Alison M; Ma, Jian; Sinha, Saurabh; Robinson, Gene E; Stubbs, Lisa
2014-12-16
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa
Morin, Ryan D.; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H. Alexander; Magrini, Vincent; Mardis, Elaine R.; Sahinalp, S. Cenk; Unrau, Peter J.
2008-01-01
The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21- and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/. PMID:18323537
Rosa, Juliana da; Weber, Gabriela Gomes; Cardoso, Rafaela; Górski, Felipe; Da-Silva, Paulo Roberto
2017-01-01
Better knowledge of medicinal plant species and their conservation is an urgent need worldwide. Decision making for conservation strategies can be based on the knowledge of the variability and population genetic structure of the species and on the events that may influence these genetic parameters. Achyrocline flaccida (Weinm.) DC. is a native plant from the grassy fields of South America with high value in folk medicine. In spite of its importance, no genetic and conservation studies are available for the species. In this work, microsatellite and ISSR (inter-simple sequence repeat) markers were used to estimate the genetic variability and structure of seven populations of A. flaccida from southern Brazil. The microsatellite markers were inefficient in A. flaccida owing to a high number of null alleles. After the evaluation of 42 ISSR primers on one population, 10 were selected for further analysis of seven A. flaccida populations. The results of ISSR showed that the high number of exclusive absence of loci might contribute to the inter-population differentiation. Genetic variability of the species was high (Nei's diversity of 0.23 and Shannon diversity of 0.37). AMOVA indicated higher genetic variability within (64.7%) than among (33.96%) populations, and the variability was unevenly distributed (FST 0.33). Gene flow among populations ranged from 1.68 to 5.2 migrants per generation, with an average of 1.39. The results of PCoA and Bayesian analyses corroborated and indicated that the populations are structured. The observed genetic variability and population structure of A. flaccida are discussed in the context of the vegetation formation history in southern Brazil, as well as the possible anthropogenic effects. Additionally, we discuss the implications of the results in the conservation of the species.
Ferguson, David J. P.; Bunting, Karen A.; Xu, Zhengyao; Bailes, Elizabeth; Sinden, Robert E.; Holder, Anthony A.; Smith, Elizabeth F.; Coates, Juliet C.; Rita Tewari
2010-01-01
Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite. PMID:20886115
Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen
2008-06-02
Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania genome organization. Sequence characteristics, genomic distribution and evolutionarily conservation of SIDER2s are suggestive of relevant functions for these elements in Leishmania. Apart from a proved involvement in post-transcriptional mechanisms of gene regulation, SIDER2 elements could be involved in DNA amplification processes and, perhaps, in chromosome segregation as centromeric sequences.
Mitochondrial genome of the tomato clownfish Amphiprion frenatus (Pomacentridae, Amphiprioninae).
Ye, Le; Hu, Jing; Wu, Kaichang; Wang, Yu; Li, Jianlong
2016-01-01
The complete mitochondrial (mt) genome of the tomato clownfish Amphiprion frenatus was obtained in this study. The circular mtDNA molecule was 16,774 bp in size and the overall nucleotide composition of the H-strand was 29.72% A, 25.81% T, 15.38% G and 29.09% C, with an A + T bias. The complete mitogenome encoded 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a control region (D-loop), with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. The D-loop included termination associated sequence (TAS), central conserved domain (CCD) and conserved sequence block (CSB), and was composed of 6 complete continuity tandem repeat units and an imperfect tandem repeat unit.
Machado, Filipe Brum; Machado, Fabricio Brum; Faria, Milena Amendro; Lovatel, Viviane Lamim; Alves da Silva, Antonio Francisco; Radic, Claudia Pamela; De Brasi, Carlos Daniel; Rios, Álvaro Fabricio Lopes; de Sousa Lopes, Susana Marina Chuva; da Silveira, Leonardo Serafim; Ruiz-Miranda, Carlos Ramon; Ramos, Ester Silveira; Medina-Acosta, Enrique
2014-01-01
X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic malignancies and the clonality of cancers in human and nonhuman primates.
Machado, Filipe Brum; Machado, Fabricio Brum; Faria, Milena Amendro; Lovatel, Viviane Lamim; Alves da Silva, Antonio Francisco; Radic, Claudia Pamela; De Brasi, Carlos Daniel; Rios, Álvaro Fabricio Lopes; de Sousa Lopes, Susana Marina Chuva; da Silveira, Leonardo Serafim; Ruiz-Miranda, Carlos Ramon; Ramos, Ester Silveira; Medina-Acosta, Enrique
2014-01-01
X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic malignancies and the clonality of cancers in human and nonhuman primates. PMID:25078280
Is Energy Conservation Education Effective? An Evaluation of the Powersave Schools Program
ERIC Educational Resources Information Center
DiMatteo, Julie; Radnitz, Cynthia; Zibulsky, Jamie; Brown, Jeffrey; Deleasa, Courtney; Jacobs, Stephanie
2014-01-01
To strengthen energy conservation knowledge and behaviors in youth, the PowerSave Schools Program (PSP) instructs students using hands-on projects. However, there is a lack of empirical support for the PSP. The present study is the first to use a repeated measures design to assess its effectiveness in two school districts. In District 1, there was…
ERIC Educational Resources Information Center
Nordin, Norfarah; Samsudin, Mohd Ali; Harun, Abdul Hadi
2017-01-01
This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students' behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning…
Circular RNAs are abundant, conserved, and associated with ALU repeats
Jeck, William R.; Sorrentino, Jessica A.; Wang, Kai; Slevin, Michael K.; Burd, Christin E.; Liu, Jinze; Marzluff, William F.; Sharpless, Norman E.
2013-01-01
Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression. PMID:23249747
Structure and stability of the ankyrin domain of the Drosophila Notch receptor.
Zweifel, Mark E; Leahy, Daniel J; Hughson, Frederick M; Barrick, Doug
2003-11-01
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.
Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori
Prasad, M. Dharma; Muthulakshmi, M.; Madhu, M.; Archak, Sunil; Mita, K.; Nagaraju, J.
2005-01-01
We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of ≥15 bases of mononucleotide repeats and ≥5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2–14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama. PMID:15371363
Tandemly repeated sequences in mtDNA control region of whitefish, Coregonus lavaretus.
Brzuzan, P
2000-06-01
Length variation of the mitochondrial DNA control region was observed with PCR amplification of a sample of 138 whitefish (Coregonus lavaretus). Nucleotide sequences of representative PCR products showed that the variation was due to the presence of an approximately 100-bp motif tandemly repeated two, three, or five times in the region between the conserved sequence block-3 (CSB-3) and the gene for phenylalanine tRNA. This is the first report on the tandem array composed of long repeat units in mitochondrial DNA of salmonids.
Biodegradation of artificial monolayers applied to water storages to reduce evaporative loss.
Pittaway, P; Herzig, M; Stuckey, N; Larsen, K
2015-01-01
Repeat applications of an artificial monolayer to the interfacial boundary layer of large agricultural water storages during periods of high evaporative demand remains the most commercially feasible water conservation strategy. However, the interfacial boundary layer (or microlayer) is ecologically distinct from subsurface water, and repeat monolayer applications may adversely affect microlayer processes. In this study, the natural cleansing mechanisms operating within the microlayer were investigated to compare the biodegradability of two fatty alcohol (C16OH and C18OH) and one glycol ether (C18E1) monolayer compound. The C16OH and C18OH compounds were more susceptible to microbial degradation, but the C18E1 compound was most susceptible to indirect photodegradation. On clean water the surface pressure and evaporation reduction achieved with a compressed C18E1 monolayer was superior to the C18OH monolayer, but on brown water the surface pressure dropped rapidly. These results suggest artificial monolayers are readily degraded by the synergy between photo and microbial degradation. The residence time of C18OH and C18E1 monolayers on clear water is sufficient for cost-effective water conservation. However, the susceptibility of C18E1 to photodegradation indicates the application of this monolayer to brown water may not be cost-effective.
Date Palm Genetic Diversity Analysis Using Microsatellite Polymorphism.
Khierallah, Hussam S M; Bader, Saleh M; Hamwieh, Alladin; Baum, Michael
2017-01-01
Date palm (Phoenix dactylifera L.) is considered one of the great socioeconomic resources in the Middle East and the Arab regions. The tree has been and still is at the center of the comprehensive agricultural development. The number of known date palm cultivars, distributed worldwide, is approximately 3000. The success of genetic diversity conservation or any breeding program depends on an understanding of the amount and distribution of the genetic variation already in existence in the genetic pool. Development of suitable DNA molecular markers for this tree may allow researchers to estimate genetic diversity, which will ultimately lead to the genetic conservation of date palm. Simple sequence repeats (SSRs) are DNA strands, consisting of tandemly repeated mono-, di-, tri-, tetra-, or penta-nucleotide units that are arranged throughout the genomes of most eukaryotic species. Microsatellite markers, developed from genomic libraries, belong to either the transcribed region or the non-transcribed region of the genome, and there is rarely available information on their functions. Microsatellite sequences are especially suited to distinguish closely related genotypes due to a high degree of variability making them ideally suitable in population studies and the identification of closely related cultivars. This chapter focuses on the methods employed to characterize date palm genotypes using SSR markers.
Koyama, Masako; Hirano, Hidemi; Shirai, Natsuki; Matsuura, Yoshiyuki
2017-10-01
Xpo1p (yeast CRM1) is the major nuclear export receptor that carries a plethora of proteins and ribonucleoproteins from the nucleus to cytoplasm. The passage of the Xpo1p nuclear export complex through nuclear pore complexes (NPCs) is facilitated by interactions with nucleoporins (Nups) containing extensive repeats of phenylalanine-glycine (so-called FG repeats), although the precise role of each Nup in the nuclear export reaction remains incompletely understood. Here we report structural and biochemical characterization of the interactions between the Xpo1p nuclear export complex and the FG repeats of Nup42p, a nucleoporin localized at the cytoplasmic face of yeast NPCs and has characteristic SxFG/PxFG sequence repeat motif. The crystal structure of Xpo1p-PKI-Nup42p-Gsp1p-GTP complex identified three binding sites for the SxFG/PxFG repeats on HEAT repeats 14-20 of Xpo1p. Mutational analyses of Nup42p showed that the conserved serines and prolines in the SxFG/PxFG repeats contribute to Xpo1p-Nup42p binding. Our structural and biochemical data suggest that SxFG/PxFG-Nups such as Nup42p and Nup159p at the cytoplasmic face of NPCs provide high-affinity docking sites for the Xpo1p nuclear export complex in the terminal stage of NPC passage and that subsequent disassembly of the nuclear export complex facilitates recycling of free Xpo1p back to the nucleus. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Seshadri, V.; Vaidya, V. C.; Vijayraghavan, U.
1996-01-01
The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the β transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the β transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is in the N terminal region of the protein. PMID:8722761
Repeated use of ion-exchange resin membranes in calcareous soils
Sherrod, S.K.; Belnap, Jayne; Miller, M.E.
2003-01-01
This study compared the consistency of nutrient extraction among repeated cycles of ion-exchange resin membrane use. Two sandy calcareous soils and different equilibration temperatures were tested. No single nutrient retained consistent values from cycle to cycle in all treatments, although both soil source and temperature conferred some influence. It was concluded that the most conservative use of resin membranes is single-use.
Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome
Kuznetsova, Inna S.; Thevasagayam, Natascha M.; Sridatta, Prakki S. R.; Komissarov, Aleksey S.; Saju, Jolly M.; Ngoh, Si Y.; Jiang, Junhui; Shen, Xueyan; Orbán, László
2014-01-01
As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates. PMID:25120555
Aarnes, Siv Grethe; Hagen, Snorre B; Andreassen, Rune; Schregel, Julia; Knappskog, Per M; Hailer, Frank; Stenhouse, Gordon; Janke, Axel; Eiken, Hans Geir
2015-11-01
High-resolution Y-chromosomal markers have been applied to humans and other primates to study population genetics, migration, social structures and reproduction. Y-linked markers allow the direct assessment of the genetic structure and gene flow of uniquely male inherited lineages and may also be useful for wildlife conservation and forensics, but have so far been available only for few wild species. Thus, we have developed two multiplex PCR reactions encompassing nine Y-STR markers identified from the brown bear (Ursus arctos) and tested them on hair, fecal and tissue samples. The multiplex PCR approach was optimized and analyzed for species specificity, sensitivity and stutter-peak ratios. The nine Y-STRs also showed specific STR-fragments for male black bears and male polar bears, while none of the nine markers produced any PCR products when using DNA from female bears or males from 12 other mammals. The multiplex PCR approach in two PCR reactions could be amplified with as low as 0.2 ng template input. Precision was high in DNA templates from hairs, fecal scats and tissues, with standard deviations less than 0.14 and median stutter ratios from 0.04 to 0.63. Among the eight di- and one tetra-nucleotide repeat markers, we detected simple repeat structures in seven of the nine markers with 9-25 repeat units. Allelic variation was found for eight of the nine Y-STRs, with 2-9 alleles for each marker and a total of 36 alleles among 453 male brown bears sampled mainly from Northern Europe. We conclude that the multiplex PCR approach with these nine Y-STRs would provide male bear Y-chromosomal specificity and evidence suited for samples from conservation and wildlife forensics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella.
Zurovec, Michal; Sehnal, Frantisek
2002-06-21
Proteins of silk fibers are characterized by reiterations of amino acid repeats. Physical properties of the fiber are determined by the amino acid composition, the complexity of repetitive units, and arrangement of these units into higher order arrays. Except for very short motifs of 6-10 residues, the length of repetitive units and the number of these units concatenated in higher order assemblies vary in all spider and lepidopteran silks analyzed so far. This paper describes an exceptional silk protein represented by the 500-kDa heavy chain fibroin (H-fibroin) of the waxmoth, Galleria mellonella. Its non-repetitive N-terminal (175 residues) and C-terminal (60 residues) parts, the overall gene organization, and the nucleotide sequence around the TATA box show that it is homologous to the H-fibroins of other Lepidoptera. However, over 95% of the protein consists of highly ordered repetitive structures that are unmatched in other species. The repetitive region includes 11 assemblies AB(1)AB(1)AB(1)AB(2)(AB(2))AB(2) of remarkably conserved polypeptide repeats A (63 amino acid residues), B(1) (43 residues), and B(2) (18 residues). The repeats contain a high proportion of Gly (31.6%), Ala (23.8%), Ser (18.1%), and of residues with long hydrophobic side chains (16% for Leu, Ile, and Val combined). The presence of the GLGGLG and SSAASAA(AA) motifs suggests formation of pleated beta-sheets and their stacking into crystallites. Conspicuous conservation of the apolar sequence VIVI followed by DD or ED is interpreted as indicating the importance of hydrophobicity and electrostatic charge in H-fibroin cross-linking. The environment of G. mellonella larvae within bee cultures requires continuous production of silk that must be both strong and elastic. The spectacular arrangement of the repetitive H-fibroin region apparently evolved to meet these requirements.
Samuel, Marcus A.; Mudgil, Yashwanti; Salt, Jennifer N.; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R.
2008-01-01
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses. PMID:18552232
Structure of the circumsporozoite protein gene in 18 strains of Plasmodium falciparum.
Weber, J L; Hockmeyer, W T
1985-06-01
Using the cloned circumsporozoite (CS) protein gene of a Brazilian strain of Plasmodium falciparum as probe, we have analyzed the structure of the CS protein gene from 17 other Asian, African, Central and South American parasite strains by nucleic acid hybridization. Each strain appears to have one CS protein gene which hybridizes readily to the Brazilian strain probe. The 5' and 3' thirds of the genes are invariant in size in all 18 strains whereas the central third containing the 12 base pair tandem repeats varies in size over a range of about 100 base pairs. Several differences were found in the locations of Sau3A sites in the genes. The Sau3A sites are significant because each of the minority Asn-Val-Asp-Pro repeats in the cloned gene has a Sau3A site. DNA melting of hybrids revealed a high degree of homology between the sequences of the cloned gene and genes from an Asian strain and an African strain. A 14 base oligodeoxynucleotide with a sequence from the central repeat region hybridized to all strains tested. We conclude that the CS protein gene is highly conserved among strains of P. falciparum and that malaria vaccine development with the CS protein is unlikely to be complicated by strain variation.
Inoue, D; Santiago, P; Horne, W C; Baron, R
1997-10-03
Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.
D'Auria, Giuseppe; Jiménez, Núria; Peris-Bondia, Francesc; Pelaz, Carmen; Latorre, Amparo; Moya, Andrés
2008-01-14
The repeats in toxin (Rtx) are an important pathogenicity factor involved in host cells invasion of Legionella pneumophila and other pathogenic bacteria. Its role in escaping the host immune system and cytotoxic activity is well known. Its repeated motives and modularity make Rtx a multifunctional factor in pathogenicity. The comparative analysis of rtx gene among 6 strains of L. pneumophila showed modularity in their structures. Among compared genomes, the N-terminal region of the protein presents highly dissimilar repeats with functionally similar domains. On the contrary, the C-terminal region is maintained with a fashionable modular configuration, which gives support to its proposed role in adhesion and pore formation. Despite the variability of rtx among the considered strains, the flanking genes are maintained in synteny and similarity. In contrast to the extracellular bacteria Vibrio cholerae, in which the rtx gene is highly conserved and flanking genes have lost synteny and similarity, the gene region coding for the Rtx toxin in the intracellular pathogen L. pneumophila shows a rapid evolution. Changes in the rtx could play a role in pathogenicity. The interplay of the Rtx toxin with host membranes might lead to the evolution of new variants that are able to escape host cell defences.
MACF1 gene structure: a hybrid of plectin and dystrophin.
Gong, T W; Besirli, C G; Lomax, M I
2001-11-01
Mammalian MACF1 (Macrophin1; previously named ACF7) is a giant cytoskeletal linker protein with three known isoforms that arise by alternative splicing. We isolated a 19.1-kb cDNA encoding a fourth isoform (MACF1-4) with a unique N-terminus. Instead of an N-terminal actin-binding domain found in the other three isoforms, MACF1-4 has eight plectin repeats. The MACF1 gene is located on human Chr 1p32, contains at least 102 exons, spans over 270 kb, and gives rise to four major isoforms with different N-termini. The genomic organization of the actin-binding domain is highly conserved in mammalian genes for both plectin and BPAG1. All eight plectin repeats are encoded by one large exon; this feature is similar to the genomic structure of plectin. The intron positions within spectrin repeats in MACF1 are very similar to those in the dystrophin gene. This demonstrates that MACF1 has characteristic features of genes for two classes of cytoskeletal proteins, i.e., plectin and dystrophin.
Maurer, Sara; Giess, Mario; Koch, Oliver; Summerer, Daniel
2016-12-16
Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.
Emergence of Xin Demarcates a Key Innovation in Heart Evolution
Grosskurth, Shaun E.; Bhattacharya, Debashish; Wang, Qinchuan; Lin, Jim Jung-Ching
2008-01-01
The mouse Xin repeat-containing proteins (mXinα and mXinβ) localize to the intercalated disc in the heart. mXinα is able to bundle actin filaments and to interact with β-catenin, suggesting a role in linking the actin cytoskeleton to N-cadherin/β-catenin adhesion. mXinα-null mouse hearts display progressively ultrastructural alterations at the intercalated discs, and develop cardiac hypertrophy and cardiomyopathy with conduction defects. The up-regulation of mXinβ in mXinα-deficient mice suggests a partial compensation for the loss of mXinα. To elucidate the evolutionary relationship between these proteins and to identify the origin of Xin, a phylogenetic analysis was done with 40 vertebrate Xins. Our results show that the ancestral Xin originated prior to the emergence of lamprey and subsequently underwent gene duplication early in the vertebrate lineage. A subsequent teleost-specific genome duplication resulted in most teleosts encoding at least three genes. All Xins contain a highly conserved β-catenin-binding domain within the Xin repeat region. Similar to mouse Xins, chicken, frog and zebrafish Xins also co-localized with β-catenin to structures that appear to be the intercalated disc. A putative DNA-binding domain in the N-terminus of all Xins is strongly conserved, whereas the previously characterized Mena/VASP-binding domain is a derived trait found only in Xinαs from placental mammals. In the C-terminus, Xinαs and Xinβs are more divergent relative to each other but each isoform from mammals shows a high degree of within-isoform sequence identity. This suggests different but conserved functions for mammalian Xinα and Xinβ. Interestingly, the origin of Xin ca. 550 million years ago coincides with the genesis of heart chambers with complete endothelial and myocardial layers. We postulate that the emergence of the Xin paralogs and their functional differentiation may have played a key role in the evolutionary development of the heart. PMID:18682726
Rathi, Preeti; Witte, Anna; Summerer, Daniel
2017-11-08
Transcription activator-like effectors (TALEs) are DNA major-groove binding proteins widely used for genome targeting. TALEs contain an N-terminal region (NTR) and a central repeat domain (CRD). Repeats of the CRD selectively recognize each one DNA nucleobase, offering programmability. Moreover, repeats with selectivity for 5-methylcytosine (5mC) and its oxidized derivatives can be designed for analytical applications. However, both TALE domains also nonspecifically interact with DNA phosphates via basic amino acids. To enhance the 5mC selectivity of TALEs, we aimed to decrease the nonselective binding energy of TALEs. We substituted basic amino acids with alanine in the NTR and identified TALE mutants with increased selectivity. We then analysed conserved, DNA phosphate-binding KQ diresidues in CRD repeats and identified further improved mutants. Combination of mutations in the NTR and CRD was highly synergetic and resulted in TALE scaffolds with up to 4.3-fold increased selectivity in genomic 5mC analysis via affinity enrichment. Moreover, transcriptional activation in HEK293T cells by a TALE-VP64 construct based on this scaffold design exhibited a 3.5-fold increased 5mC selectivity. This provides perspectives for improved 5mC analysis and for the 5mC-conditional control of TALE-based editing constructs in vivo.
Update on the Clinical Development of Candidate Malaria Vaccines
2004-01-01
with the diphtheria, tetanus, pertussis , Haemophi- lus influenzae type b vaccine (DTPw/Hib). ICC-1132 CS/hepatitis B core particle. Apovia Inc. (San...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified...primarily directed against the central conserved repeat region, with minor B cell epitopes mapped to non-repeat flanking regions. These flanking regions in
3D organization of synthetic and scrambled chromosomes.
Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnès; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Héloïse; Koszul, Romain
2017-03-10
Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution) strains. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harstad, E. N.; Harlow, Francis Harvey,; Schreyer, H. L.
Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. Tomore » extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.« less
Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S
1987-01-01
We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370
Santos, D N; Nunes, C F; Setotaw, T A; Pio, R; Pasqual, M; Cançado, G M A
2016-12-19
Cambuci (Campomanesia phaea) belongs to the Myrtaceae family and is native to the Atlantic Forest of Brazil. It has ecological and social appeal but is exposed to problems associated with environmental degradation and expansion of agricultural activities in the region. Comprehensive studies on this species are rare, making its conservation and genetic improvement difficult. Thus, it is important to develop research activities to understand the current situation of the species as well as to make recommendations for its conservation and use. This study was performed to characterize the cambuci accessions found in the germplasm bank of Coordenadoria de Assistência Técnica Integral using inter-simple sequence repeat markers, with the goal of understanding the plant's population structure. The results showed the existence of some level of genetic diversity among the cambuci accessions that could be exploited for the genetic improvement of the species. Principal coordinate analysis and discriminant analysis clustered the 80 accessions into three groups, whereas Bayesian model-based clustering analysis clustered them into two groups. The formation of two cluster groups and the high membership coefficients within the groups pointed out the importance of further collection to cover more areas and more genetic variability within the species. The study also showed the lack of conservation activities; therefore, more attention from the appropriate organizations is needed to plan and implement natural and ex situ conservation activities.
Faragher, S G; Dalgarno, L
1986-07-20
The 3' untranslated (UT) sequences of the genomic RNAs of five geographic variants of the alphavirus Ross River virus (RRV) were determined and compared with the 3' UT sequence of RRV T48, the prototype strain. Part of the 3' UT region of Getah virus, a close serological relative of RRV, was also sequenced. The RRV 3' UT region varies markedly in length between variants. Large deletions or insertions, sequence rearrangements and single nucleotide substitutions are observed. A sequence tract of 49 to 58 nucleotides, which is repeated as four blocks in the RRV T48 3' UT region, occurs only once in the 3' UT region of one RRV strain (NB5092), indicating that the existence of repeat sequence blocks is not essential for RRV replication. However, the precise sequence of the 3' proximal copy of the repeat block and its position relative to the poly(A) tail were identical in all RRV isolates examined, suggesting that it has an important role in RRV replication. Nucleotide substitutions between RRV variants are distributed non-randomly along the length of the 3' UT region. The sequence of 120 to 130 nucleotides adjacent to the poly(A) tail is strongly conserved. Getah virus RNA contains three repeat sequence blocks in the 3' UT region. These are similar in sequence to those in RRV RNA but differ in their arrangement. Homology between the RRV and Getah 3' UT sequences is greatest in the 3' proximal repeat sequence block that shows three differences in 49 nucleotides. The 3' proximal repeat in Getah RNA occurs at the same position, relative to the poly(A) tail, as in all RRV variants. The RRV and Getah virus 3' UT sequences show extensive homology in the region between the 3' proximal repeat and the poly(A) tail but, apart from the repeat blocks themselves, they show no significant homology elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, R.P.; Vielmetter, J.; Dreyer, W.J.
1996-08-01
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Igmore » domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescence in situ hybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1-q31.2. This chromosomal locus has been previously identified as containing a tumore suppressor candidate gene commonly deleted in certain human cancer tissues. 38 refs., 5 figs.« less
Repeat-Associated Plasticity in the Helicobacter pylori RD Gene Family▿ †
Shak, Joshua R.; Dick, Jonathan J.; Meinersmann, Richard J.; Perez-Perez, Guillermo I.; Blaser, Martin J.
2009-01-01
The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3′ region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5′ region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host. PMID:19749042
Repeat-associated plasticity in the Helicobacter pylori RD gene family.
Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J
2009-11-01
The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.
Zurawski, Gerard; Bohnert, Hans J.; Whitfeld, Paul R.; Bottomley, Warwick
1982-01-01
The gene for the so-called Mr 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is ≈ 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of Mr 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of Mr 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA. Images PMID:16593262
Conserved Gene Order and Expanded Inverted Repeats Characterize Plastid Genomes of Thalassiosirales
Ashworth, Matt P.; Baeshen, Nabih A.; Baeshen, Mohammad N.; Bahieldin, Ahmed; Theriot, Edward C.; Jansen, Robert K.
2014-01-01
Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Variable plastid genome sizes and extensive genome rearrangements have been observed across the diatom phylogeny, but little is known about plastid genome evolution within order- or family-level clades. The Thalassiosirales is one of the more comprehensively studied orders in terms of both genetics and morphology. Seven complete diatom plastid genomes are reported here including four Thalassiosirales: Thalassiosira weissflogii, Roundia cardiophora, Cyclotella sp. WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata. The sizes of the seven genomes vary from 116,459 to 129,498 bp, and their genomes are compact and lack introns. The larger size of the plastid genomes of Thalassiosirales compared to other diatoms is due primarily to expansion of the inverted repeat. Gene content within Thalassiosirales is more conserved compared to other diatom lineages. Gene order within Thalassiosirales is highly conserved except for the extensive genome rearrangement in Thalassiosira oceanica. Cyclotella nana, Thalassiosira weissflogii and Roundia cardiophora share an identical gene order, which is inferred to be the ancestral order for the Thalassiosirales, differing from that of the other two Cyclotella species by a single inversion. The genes ilvB and ilvH are missing in all six diatom plastid genomes except for Cerataulina daemon, suggesting an independent gain of these genes in this species. The acpP1 gene is missing in all Thalassiosirales, suggesting that its loss may be a synapomorphy for the order and this gene may have been functionally transferred to the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing in Rhizosolenia imbricata, which represents the first documented instance of the loss of photosynthetic genes in diatom plastid genomes. PMID:25233465
NASA Astrophysics Data System (ADS)
Ioanid, E. G.; Dunca, S.; Rusu, D.; Tǎnase, C.
2012-04-01
Documents decontamination using dry methods, less invasive than the wet ones implying toxic nocuous substances for cellulose-based materials, has been the object of numerous studies. In recent years mixed researchers teams have been studying the possibility of one-step document decontamination performed by a dry treatment, the risks of repeated wet manipulation thus being reduced. Among physical methods appropriate to this end, high-frequency cold plasma and corona effect can be mentioned. Our studies were carried out on samples taken from ancient books with no cultural heritage value. The decontamination efficiency and the impact on paper of the two types of treatments were determined by: microbiological analysis, scanning electron microscopy, FTIR, chromatic alterations and gloss determination. The above-mentioned procedures eliminate the use of chemical conservation substances, nocuous for the paper support. At the same time the health risk for conservators, restorers, archivists or archive's users is removed.
Hu, Yi; Sanders, Jon G; Łukasik, Piotr; D'Amelio, Catherine L; Millar, John S; Vann, David R; Lan, Yemin; Newton, Justin A; Schotanus, Mark; Kronauer, Daniel J C; Pierce, Naomi E; Moreau, Corrie S; Wertz, John T; Engel, Philipp; Russell, Jacob A
2018-03-06
Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.
Karyotype Analysis of Four Vicia Species using In Situ Hybridization with Repetitive Sequences
NAVRÁTILOVÁ, ALICE; NEUMANN, PAVEL; MACAS, JIŘÍ
2003-01-01
Mitotic chromosomes of four Vicia species (V. sativa, V. grandiflora, V. pannonica and V. narbonensis) were subjected to in situ hybridization with probes derived from conserved plant repetitive DNA sequences (18S–25S and 5S rDNA, telomeres) and genus‐specific satellite repeats (VicTR‐A and VicTR‐B). Numbers and positions of hybridization signals provided cytogenetic landmarks suitable for unambiguous identification of all chromosomes, and establishment of the karyotypes. The VicTR‐A and ‐B sequences, in particular, produced highly informative banding patterns that alone were sufficient for discrimination of all chromosomes. However, these patterns were not conserved among species and thus could not be employed for identification of homologous chromosomes. This fact, together with observed variations in positions and numbers of rDNA loci, suggests considerable divergence between karyotypes of the species studied. PMID:12770847
Butler, I R; Sommer, B; Zann, M; Zhao, J-X; Pandolfi, J M
2015-07-15
Terrestrial runoff and flooding have resulted in major impacts on coral communities worldwide, but we lack detailed understanding of flood plume conditions and their ecological effects. Over the course of repeated flooding between 2010 and 2013, we measured coral cover and water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. In 2013, salinity, total suspended solids, total nitrogen and total phosphorus were altered for up to six months post-flooding. Submarine groundwater caused hypo-saline conditions for a further four months. Despite the greater magnitude of flooding in 2013, declines in coral abundance (∼28%) from these floods were lower than the 2011 flood (∼40%), which occurred immediately after a decade of severe drought. There was an overall cumulative decrease of coral by ∼56% from 2010 to 2013. Our study highlights the need for local scale monitoring and research to facilitate informed management and conservation of catchments and marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Zhu-hua; Shi, Jisen; Xi, Meng-li; Jiang, Fu-xing; Deng, Ming-wen; Dayanandan, Selvadurai
2015-01-01
Lilium regale E.H. Wilson is endemic to a narrow geographic area in the Minjiang River valley in southwestern China, and is considered an important germplasm for breeding commercially valuable lily varieties, due to its vigorous growth, resistance to diseases and tolerance for low moisture. We analyzed the genetic diversity of eight populations of L. regale sampled across the entire natural distribution range of the species using Inter-Simple Sequence Repeat markers. The genetic diversity (expected heterozygosity= 0.3356) was higher than those reported for other narrowly distributed endemic plants. The levels of inbreeding (F st = 0.1897) were low, and most of the genetic variability was found to be within (80.91%) than amongpopulations (19.09%). An indirect estimate of historical levels of gene flow (N m =1.0678) indicated high levels of gene flow among populations. The eight analyzed populations clustered into three genetically distinct groups. Based on these results, we recommend conservation of large populations representing these three genetically distinct groups. PMID:25799495
Salim, D C; Akimoto, A A; Carvalho, C B; Oliveira, S F; Grisolia, C K; Moreira, J R; Klautau-Guimarães, M N
2007-06-20
The maned wolf (Chrysocyon brachyurus) is the largest South American canid. Habitat loss and fragmentation, due to agricultural expansion and predatory hunting, are the main threats to this species. It is included in the official list of threatened wildlife species in Brazil, and is also protected by IUCN and CITES. Highly variable genetic markers such as microsatellites have the potential to resolve genetic relationships at all levels of the population structure (among individuals, demes or metapopulations) and also to identify the evolutionary unit for strategies for the conservation of the species. Tests were carried out to verify whether a class of highly polymorphic tetranucleotide repeats described for the domestic dog effectively amplifies DNA in the maned wolf. All five loci studied were amplified; however, one of these, was shown to be monomorphic in 69 maned wolf samples. The average allele number and estimated heterozygosity per polymorphic locus were 4.3 and 67%, respectively. The genetic variability found for this species, which is considered threatened with extinction, showed similar results when compared to studies of other canids.
Saki, Sahar; Bagheri, Hedayat; Deljou, Ali; Zeinalabedini, Mehrshad
2016-01-01
Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.
Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg
2015-12-01
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Chillón, Isabel; Pyle, Anna M.
2016-01-01
LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response. PMID:27378782
Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na
2014-01-01
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.
Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na
2014-01-01
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation. PMID:25333788
Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone
NASA Astrophysics Data System (ADS)
Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.
2017-05-01
The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.
Boussardon, Clément; Avon, Alexandra; Kindgren, Peter; Bond, Charles S; Challenor, Michael; Lurin, Claire; Small, Ian
2014-09-01
In flowering plants, RNA editing involves deamination of specific cytidines to uridines in both mitochondrial and chloroplast transcripts. Pentatricopeptide repeat (PPR) proteins and multiple organellar RNA editing factor (MORF) proteins have been shown to be involved in RNA editing but none have been shown to possess cytidine deaminase activity. The DYW domain of some PPR proteins contains a highly conserved signature resembling the zinc-binding active site motif of known nucleotide deaminases. We modified these highly conserved amino acids in the DYW motif of DYW1, an editing factor required for editing of the ndhD-1 site in Arabidopsis chloroplasts. We demonstrate that several amino acids of this signature motif are required for RNA editing in vivo and for zinc binding in vitro. We conclude that the DYW domain of DYW1 has features in common with cytidine deaminases, reinforcing the hypothesis that this domain forms part of the active enzyme that carries out RNA editing in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes
Zhang, Wenheng; Kramer, Elena M.; Davis, Charles C.
2012-01-01
The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program. PMID:22558314
Radiotherapy of Ductal Carcinoma In Situ
Krug, David; Souchon, Rainer
2015-01-01
Summary Ductal carcinoma in situ (DCIS) is a heterogeneous disease in both its biology and clinical course. In the past, recurrence rates after breast-conserving surgery have been as high as 30% after 10 years. The introduction of mammography screening and advances in imaging have led to an increase in the detection of DCIS. The focus of this review is on the role of radiotherapy in the multidisciplinary treatment, including current developments in hypofractionation and boost delivery, and attempts to define low-risk subsets of DCIS for which the need for adjuvant radiation is repeatedly questioned. PMID:26600762
Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter
2004-01-01
We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469
2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association
Maenner, Sylvain; Blaud, Magali; Fouillen, Laetitia; Savoye, Anne; Marchand, Virginie; Dubois, Agnès; Sanglier-Cianférani, Sarah; Van Dorsselaer, Alain; Clerc, Philippe; Avner, Philip; Visvikis, Athanase; Branlant, Christiane
2010-01-01
In placental mammals, inactivation of one of the X chromosomes in female cells ensures sex chromosome dosage compensation. The 17 kb non-coding Xist RNA is crucial to this process and accumulates on the future inactive X chromosome. The most conserved Xist RNA region, the A region, contains eight or nine repeats separated by U-rich spacers. It is implicated in the recruitment of late inactivated X genes to the silencing compartment and likely in the recruitment of complex PRC2. Little is known about the structure of the A region and more generally about Xist RNA structure. Knowledge of its structure is restricted to an NMR study of a single A repeat element. Our study is the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we resolved problems linked to sequence redundancies and established a 2-D structure for the A region that contains two long stem-loop structures each including four repeats. Interactions formed between repeats and between repeats and spacers stabilize these structures. Conservation of the spacer terminal sequences allows formation of such structures in all sequenced Xist RNAs. By combination of RNP affinity chromatography, immunoprecipitation assays, mass spectrometry, and Western blot analysis, we demonstrate that the A region can associate with components of the PRC2 complex in mouse ES cell nuclear extracts. Whilst a single four-repeat motif is able to associate with components of this complex, recruitment of Suz12 is clearly more efficient when the entire A region is present. Our data with their emphasis on the importance of inter-repeat pairing change fundamentally our conception of the 2-D structure of the A region of Xist RNA and support its possible implication in recruitment of the PRC2 complex. PMID:20052282
Sperschneider, Jana; Garnica, Diana P.; Miller, Marisa E.; Taylor, Jennifer M.; Dodds, Peter N.; Park, Robert F.
2018-01-01
ABSTRACT A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N50 of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales. In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies. PMID:29463659
Research Update: A minimal region of squid reflectin for vapor-induced light scattering
NASA Astrophysics Data System (ADS)
Dennis, Patrick B.; Singh, Kristi M.; Vasudev, Milana C.; Naik, Rajesh R.; Crookes-Goodson, Wendy J.
2017-12-01
Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.
Casas-Vila, Núria; Scheibe, Marion; Freiwald, Anja; Kappei, Dennis; Butter, Falk
2015-11-17
To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.
Coelho-Finamore, J M; Freitas, V C; Assis, R R; Melo, M N; Novozhilova, N; Secundino, N F; Pimenta, P F; Turco, S J; Soares, R P
2011-03-01
Interspecies variations in lipophosphoglycan (LPG) have been the focus of intense study over the years due its role in specificity during sand fly-Leishmania interaction. This cell surface glycoconjugate is highly polymorphic among species with variations in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO(4) backbone of repeat units. However, the degree of intraspecies polymorphism in LPG of Leishmania infantum (syn. Leishmania chagasi) is not known. In this study, intraspecific variation in the repeat units of LPG was evaluated in 16 strains of L. infantum from Brazil, France, Algeria and Tunisia. The structural polymorphism in the L. infantum LPG repeat units was relatively slight and consisted of three types: type I does not have side chains; type II has one β-glucose residue that branches off the disaccharide-phosphate repeat units and type III has up to three glucose residues (oligo-glucosylated). The significance of these modifications was investigated during in vivo interaction of L. infantum with Lutzomyia longipalpis, and in vitro interaction of the parasites and respective LPGs with murine macrophages. There were no consequential differences in the parasite densities in sand fly midguts infected with Leishmania strains exhibiting type I, II and III LPGs. However, higher nitric oxide production was observed in macrophages exposed to glucosylated type II LPG. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng
2017-01-01
Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.
Crystal structure of yeast allantoicase reveals a repeated jelly roll motif.
Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Sorel, Isabelle; Graille, Marc; Meyer, Philippe; Liger, Dominique; Blondeau, Karine; Janin, Joël; van Tilbeurgh, Herman
2004-05-28
Allantoicase (EC 3.5.3.4) catalyzes the conversion of allantoate into ureidoglycolate and urea, one of the final steps in the degradation of purines to urea. The mechanism of most enzymes involved in this pathway, which has been known for a long time, is unknown. In this paper we describe the three-dimensional crystal structure of the yeast allantoicase determined at a resolution of 2.6 A by single anomalous diffraction. This constitutes the first structure for an enzyme of this pathway. The structure reveals a repeated jelly roll beta-sheet motif, also present in proteins of unrelated biochemical function. Allantoicase has a hexameric arrangement in the crystal (dimer of trimers). Analysis of the protein sequence against the structural data reveals the presence of two totally conserved surface patches, one on each jelly roll motif. The hexameric packing concentrates these patches into conserved pockets that probably constitute the active site.
Hou, Lu; Cui, Yanhong; Li, Xiang; Chen, Wu; Zhang, Zhiyong; Pang, Xiaoming; Li, Yingyue
2018-01-01
Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR) were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD) approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548) and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958) were found in this species. Molecular variance analysis suggested that most of the variation (83%) existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species. PMID:29673217
Ji, Qiongmei; Huang, Cheng-Han; Peng, Jianbin; Hashmi, Sarwar; Ye, Tianzhang; Chen, Ying
2007-04-15
We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.
Brkljac, Milos; Kumar, Shyam; Kalloo, Dale; Hirehal, Kiran
2015-12-01
We assessed the effect PRP injection on pain and function in patients with lateral epicondylitis where conservative management had failed. We prospectively reviewed 34 patients. The mean follow-up was 26 weeks (range 6-114 weeks). We used the Oxford Elbow Score (OES) and progression to surgery to assess outcomes. 88.2% improved their OES. 8.8% reported symptom progression. One patient had no change. No patients suffered adverse reactions. Two patients underwent an open release procedure. One had the injection repeated. An injection of PRP improves pain and function in patients suffering from LE where conservative management has failed.
Evolution and Conservation of Plant NLR Functions
Jacob, Florence; Vernaldi, Saskia; Maekawa, Takaki
2013-01-01
In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms. PMID:24093022
de Cambiaire, Jean-Charles; Otis, Christian; Turmel, Monique; Lemieux, Claude
2007-01-01
Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages. PMID:17610731
Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L
2009-11-01
Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance: complexes containing Mop2-1 subunits are non-functional and compete with wild-type complexes.
Clapp, Jannine ; Mitchell, Laura M. ; Bolland, Daniel J. ; Fantes, Judy ; Corcoran, Anne E. ; Scotting, Paul J. ; Armour, John A. L. ; Hewitt, Jane E.
2007-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed “DUX4,” containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism. PMID:17668377
Xia, Rui; Meyers, Blake C.; Liu, Zhongchi; Beers, Eric P.; Ye, Songqing; Liu, Zongrang
2013-01-01
Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported tasiRNA pathway, that of miR173-TAS1/2, produces tasiRNAs regulating a set of pentatricopeptide repeat (PPR) genes and has been characterized only in Arabidopsis thaliana to date. Here, we demonstrate that the microRNA (miRNA)-trans-acting small interfering RNA gene (TAS)-pentatricopeptide repeat-containing gene (PPR)-small interfering RNA pathway is a highly dynamic and widespread feature of eudicots. Nine eudicot plants, representing six different plant families, have evolved similar tasiRNA pathways to initiate phased small interfering RNA (phasiRNA) production from PPR genes. The PPR phasiRNA production is triggered by different 22-nucleotide miRNAs, including miR7122, miR1509, and fve-PPRtri1/2, and through distinct mechanistic strategies exploiting miRNA direct targeting or indirect targeting through TAS-like genes (TASL), one-hit or two-hit, or even two layers of tasiRNA–TASL interactions. Intriguingly, although those miRNA triggers display high sequence divergence caused by the occurrence of frequent point mutations and splicing shifts, their corresponding MIRNA genes show pronounced identity to the Arabidopsis MIR173, implying a common origin of this group of miRNAs (super-miR7122). Further analyses reveal that super-miR7122 may have evolved from a newly defined miR4376 superfamily, which probably originated from the widely conserved miR390. The elucidation of this evolutionary path expands our understanding of the course of miRNA evolution, especially for relatively conserved miRNA families. PMID:23695981
Natural selection promotes antigenic evolvability.
Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin
2013-01-01
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.
Natural Selection Promotes Antigenic Evolvability
Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin
2013-01-01
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections. PMID:24244173
Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence
2017-01-01
During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana. We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. PMID:28223399
The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats
Pasquali, Camila Cristina; Islam, Zeyaul; Adamoski, Douglas; ...
2017-05-19
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. But, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform,more » glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. In order to obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We also found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.« less
The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquali, Camila Cristina; Islam, Zeyaul; Adamoski, Douglas
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. But, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform,more » glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. In order to obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We also found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.« less
Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J
2017-08-29
The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia
2014-12-01
Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.
Létoffé, S; Wandersman, C
1992-01-01
Protease B from Erwinia chrysanthemi was shown previously to have a C-terminal secretion signal located downstream of a domain that contains six glycine-rich repeats. This domain is conserved in all known bacterial proteins secreted by the signal peptide-independent pathway. The role of these repeats in the secretion process is controversial. We compared the secretion processes of various heterologous polypeptides fused either directly to the signal or separated from it by the glycine-rich domain. Although the repeats are not involved in the secretion of small truncated protease B carboxy-terminal peptides, they are required for the secretion of higher-molecular-weight fusion proteins. Secretion efficiency was also dependent on the size of the passenger polypeptide. Images PMID:1629152
Denesyuk, Alexander; Denessiouk, Konstantin; Johnson, Mark S
2018-02-01
An integrin-like β-propeller domain contains seven repeats of a four-stranded antiparallel β-sheet motif (blades). Previously we described a 3D structural motif within each blade of the integrin-type β-propeller. Here, we show unique structural links that join different blades of the β-propeller structure, which together with the structural motif for a single blade are repeated in a β-propeller to provide the functional top face of the barrel, found to be involved in protein-protein interactions and substrate recognition. We compare functional top face diagrams of the integrin-type β-propeller domain and two non-integrin type β-propeller domains of virginiamycin B lyase and WD Repeat-Containing Protein 5. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.
2014-01-01
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324
Maternal lineages of peach genotypes
USDA-ARS?s Scientific Manuscript database
Simple sequence repeats (SSRs) in chloroplast genomes are useful markers to determine maternal lineages. The SSR mining results revealed that most chloroplast SSRs among three Prunus chloroplast genomes were conserved in locations and motif types, but polymorphic in motif and/or amplicon lengths. Fi...
Microsatellites for Lindera species
Craig S. Echt; D. Deemer; T.L. Kubisiak; C.D. Nelson
2006-01-01
Microsatellite markers were developed for conservation genetic studies of Lindera melissifolia (pondberry), a federally endangered shrub of southern bottomland ecosystems. Microsatellite sequences were obtained from DNA libraries that were enriched for the (AC)n simple sequence repeat motif. From 35 clone sequences, 20 primer...
Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F
2018-05-15
The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. The structure and importance of such repeats in protein binding, transcriptional activation, and polyene production have been investigated. These findings should provide important clues to understand the regulatory machinery that modulates antibiotic biosynthesis in Streptomyces and open new possibilities for the manipulation of metabolite production. The presence of PimR orthologues encoded by gene clusters for different secondary metabolites and the conservation of their operators suggest that the improvements observed in the activation of pimaricin biosynthesis by Streptomyces natalensis could be extrapolated to the production of different compounds by other species. Copyright © 2018 Barreales et al.
Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas
2009-01-01
Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species. PMID:19635741
Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna.
Volkov, Roman A; Panchuk, Irina I; Borisjuk, Nikolai V; Hosiawa-Baranska, Marta; Maluszynska, Jolanta; Hemleben, Vera
2017-01-23
Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental inheritance from the tetraploid progenitor. The obtained molecular, cytogenetic and phylogenetic data demonstrate complex evolutionary dynamics of rDNA loci in allohexaploid species of Atropa belladonna. The high level of sequence unification revealed in 45S and 5S rDNA loci of this ancient hybrid species have been seemingly achieved by different molecular mechanisms.
Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T
2014-07-01
Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless, negative impacts on CWD of repeated low-intensity prescribed fires could be lessened by fire intervals of 10 rather than three years (to decrease losses of decayed CWD), and fires in moist rather than dry conditions (to conserve large CWD).
Gonzales, Bianca; Yang, Hushan; Henning, Dale; Valdez, Benigno C
2005-10-10
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.
Vertebrate sex-determining genes play musical chairs
Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H.; Schartl, Manfred; Guiguen, Yann
2017-01-01
Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...
2017-07-18
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Chen, Xuewei; Ronald, Pamela C.
2011-01-01
Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092
Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R
1998-05-28
The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.
Redwan, R M; Saidin, A; Kumar, S V
2015-08-12
Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus. The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.
Music, Nedzad; Reber, Adrian J; Kim, Min-Chul; York, Ian A; Kang, Sang-Moo
2016-01-20
Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine ("Split") alone, influenza split vaccine supplemented with M2e5x VLP ("Split+M2e5x"), M2e5x VLP alone ("M2e5x"), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. Published by Elsevier Ltd.
Music, Nedzad; Reber, Adrian J.; Kim, Min-Chul; York, Ian A.; Kang, Sang-Moo
2015-01-01
Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone, influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. PMID:26709639
Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin
2015-04-01
This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubman, Olga Y.; Kopan, Raphael; Waksman, Gabriel
Folding and stability of proteins containing ankyrin repeats (ARs) is of great interest because they mediate numerous protein-protein interactions involved in a wide range of regulatory cellular processes. Notch, an ankyrin domain containing protein, signals by converting a transcriptional repression complex into an activation complex. The Notch ANK domain is essential for Notch function and contains seven ARs. Here, we present the 2.2 {angstrom} crystal structure of ARs 4-7 from mouse Notch 1 (m1ANK). These C-terminal repeats were resistant to degradation during crystallization, and their secondary and tertiary structures are maintained in the absence of repeats 1-3. The crystallized fragmentmore » adopts a typical ankyrin fold including the poorly conserved seventh AR, as seen in the Drosophila Notch ANK domain (dANK). The structural preservation and stability of the C-terminal repeats shed a new light onto the mechanism of hetero-oligomeric assembly during Notch-mediated transcriptional activation.« less
Sacco, James; Ruplin, Andrew; Skonieczny, Paul; Ohman, Michael
2017-01-01
In humans, reduced activity of the enzyme monoamine oxidase type A (MAOA) due to genetic polymorphisms within the MAOA gene leads to increased brain neurotransmitter levels associated with aggression. In order to study MAOA genetic diversity in dogs, we designed a preliminary study whose objectives were to identify novel alleles in functionally important regions of the canine MAOA gene, and to investigate whether the frequencies of these polymorphisms varied between five broad breed groups (ancient, herding, mastiff, modern European, and mountain). Fifty dogs representing these five breed groups were sequenced. A total of eleven polymorphisms were found. Seven were single nucleotide polymorphisms (SNPs; two exonic, two intronic and three in the promoter), while four were repeat intronic variations. The most polymorphic loci were repeat regions in introns 1, 2 (7 alleles) and 10 (3 alleles), while the exonic and the promoter regions were highly conserved. Comparison of the allele frequencies of certain microsatellite polymorphisms among the breed groups indicated a decreasing or increasing trend in the number of repeats at different microsatellite loci, as well as the highest genetic diversity for the ancient breeds and the lowest for the most recent mountain breeds, perhaps attributable to canine domestication and recent breed formation. While a specific promoter SNP (-212A > G) is rare in the dog, it is the major allele in wolves. Replacement of this ancestral allele in domestic dogs may lead to the deletion of heat shock factor binding sites on the MAOA promoter. Dogs exhibit significant variation in certain intronic regions of the MAOA gene, while the coding and promoter regions are well-conserved. Distinct genetic differences were observed between breed groups. Further studies are now required to establish whether such polymorphisms are associated in any way with MAOA level and canine behaviour including aggression.
Lindsay, Rhona; Burton, Kevin; Shanbhag, Smruta; Tolhurst, Jenny; Millan, David; Siddiqui, Nadeem
2014-01-01
Presently, for those diagnosed with early cervical cancer who wish to conserve their fertility, there is the option of radical trachelectomy. Although successful, this procedure is associated with significant obstetric morbidity. The recurrence risk of early cervical cancer is low and in tumors measuring less than 2 cm; if the lymphatics are negative, the likelihood of parametrial involvement is less than 1%. Therefore, pelvic lymph nodes are a surrogate marker of parametrial involvement and radical excision of the parametrium can be omitted if they are negative. The aim of this study was to report our experience of the fertility conserving management of early cervical cancer with repeat large loop excision of the transformation zone and laparoscopic pelvic lymph node dissection. Between 2004 and 2011, a retrospective review of cases of early cervical cancer who had fertility conserving management within Glasgow Royal Infirmary was done. Forty-three patients underwent fertility conserving management of early cervical cancer. Forty were screen-detected cancers; 2 were stage IA1, 4 were stage IA2, and 37 were stage IB1. There were 2 central recurrences during the follow-up period. There have been 15 live children to 12 women and there are 4 ongoing pregnancies. To our knowledge, this is the largest case series described and confirms the low morbidity and mortality of this procedure. However, even within our highly select group, there have been 2 cases of central recurrent disease. We, therefore, are urging caution in the global adoption of this technique and would welcome a multicenter multinational randomized controlled trial.
NASA Astrophysics Data System (ADS)
Johnson, M.-V. V.; Norfleet, M. L.; Atwood, J. D.; Behrman, K. D.; Kiniry, J. R.; Arnold, J. G.; White, M. J.; Williams, J.
2015-07-01
The Conservation Effects Assessment Project (CEAP) was initiated to quantify the impacts of agricultural conservation practices at the watershed, regional, and national scales across the United States. Representative cropland acres in all major U.S. watersheds were surveyed in 2003-2006 as part of the seminal CEAP Cropland National Assessment. Two process-based models, the Agricultural Policy Environmental eXtender(APEX) and the Soil Water Assessment Tool (SWAT), were applied to the survey data to provide a quantitative assessment of current conservation practice impacts, establish a benchmark against which future conservation trends and efforts could be measured, and identify outstanding conservation concerns. The flexibility of these models and the unprecedented amount of data on current conservation practices across the country enabled Cropland CEAP to meet its Congressional mandate of quantifying the value of current conservation practices. It also enabled scientifically grounded exploration of a variety of conservation scenarios, empowering CEAP to not only inform on past successes and additional needs, but to also provide a decision support tool to help guide future policy development and conservation practice decision making. The CEAP effort will repeat the national survey in 2015-2016, enabling CEAP to provide analyses of emergent conservation trends, outstanding needs, and potential costs and benefits of pursuing various treatment scenarios for all agricultural watersheds across the United States.
Park, Jihye; Zhang, Ying; Chen, Chun; Dudley, Edward G; Harvill, Eric T
2015-12-01
Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1-6; T1SS-T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical Bordetella bronchiseptica strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, Bordetella parapertussis and Bordetella pertussis, have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS 'autotransporters', which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.
Sperm Bindin Divergence under Sexual Selection and Concerted Evolution in Sea Stars.
Patiño, Susana; Keever, Carson C; Sunday, Jennifer M; Popovic, Iva; Byrne, Maria; Hart, Michael W
2016-08-01
Selection associated with competition among males or sexual conflict between mates can create positive selection for high rates of molecular evolution of gamete recognition genes and lead to reproductive isolation between species. We analyzed coding sequence and repetitive domain variation in the gene encoding the sperm acrosomal protein bindin in 13 diverse sea star species. We found that bindin has a conserved coding sequence domain structure in all 13 species, with several repeated motifs in a large central region that is similar among all sea stars in organization but highly divergent among genera in nucleotide and predicted amino acid sequence. More bindin codons and lineages showed positive selection for high relative rates of amino acid substitution in genera with gonochoric outcrossing adults (and greater expected strength of sexual selection) than in selfing hermaphrodites. That difference is consistent with the expectation that selfing (a highly derived mating system) may moderate the strength of sexual selection and limit the accumulation of bindin amino acid differences. The results implicate both positive selection on single codons and concerted evolution within the repetitive region in bindin divergence, and suggest that both single amino acid differences and repeat differences may affect sperm-egg binding and reproductive compatibility. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama.
Gupta, Adarsh K; Mita, Kazuei; Arunkumar, Kallare P; Nagaraju, Javaregowda
2015-08-03
The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight β-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel β-sheets, β-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter β-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweifel,M.; Leahy, D.; Barrick, D.
Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal tomore » the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adekunle, S.S.A.; Wyandt, H.; Mark, H.F.L.
1994-09-01
Recently we mapped the telomeric repeat sequences to 111 interstitial sites in the human genome and to sites of gaps and breaks induced by aphidicolin and sister chromatid exchange sites detected by BrdU. Many of these sites correspond to conserved fragile sites in man, gorilla and chimpazee, to sites of conserved sister chromatid exchange in the mammalian X chromosome, to mutagenic sensitive sites, mapped locations of proto-oncogenes, breakpoints implicated in primate evolution and to breakpoints indicated as the sole anomaly in neoplasia. This observation prompted us to investigate if the interstitial telomeric sites cluster with these sites. An extensive literaturemore » search was carried out to find all the available published sites mentioned above. For comparison, we also carried out a statistical analysis of the clustering of the sites of the telomeric repeats with the gene locations where only nucleotide mutations have been observed as the only chromosomal abnormality. Our results indicate that the telomeric repeats cluster most with fragile sites, mutagenic sensitive sites and breakpoints implicated in primate evolution and least with cancer breakpoints, mapped locations of proto-oncogenes and other genes with nucleotide mutations.« less
Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas
2016-01-01
Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruus, K.; Wu, J.H.D.; Lua, A.C.
1995-09-26
Enzymatic cellulose degradation is a heterogeneous reaction requiring binding of soluble cellulase molecules to the solid substrate. Based on our studies of the cellulase complex of Clostridium thermocellum (the cellulosome), we have previously proposed that such binding can be brought about by a special {open_quotes}anchorage subunit.{close_quotes} In this {open_quotes}anchor-enzyme{close_quotes} model, CipA (a major subunit of the cellulosome) enhances the activity of CelS (the most abundant catalytic subunit of the cellulosome) by anchoring it to the cellulose surface. We have subsequently reported that CelS contains a conserved duplicated sequence at its C terminus and the CipA contains nine repeated sequences withmore » a cellulose binding domain (CBD) in between the second and third repeats. In this work, we reexamined the anchor-enzyme mechanism by using recombinant CelS (rCelS) and various CipA domains, CBD, R3 (the repeat next to CBD), and CBD/R3, expressed in Escherichia coli. As analyzed by non-denaturing gel electrophoresis, rCelS, through its conserved duplicated sequence, formed a stable complex with R3 or CBD/R3 but not with CBD. Although R3 or CBD alone did not affect the binding of rCelS to cellulose, such binding was dependent on CBD/R3, indicating the anchorage role of CBD/R3. Such anchorage apparently increased the rCelS activity toward crystalline cellulose. These results substantiate the proposed anchor-enzyme model and the expected roles of individual CipA domains and the conserved duplicated sequence of CelS.« less
Yang, Kwan Mo; Yu, Chang Sik; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, In Ja; Lim, Seok-Byung; Kim, Jin Cheon
2017-10-01
An adhesive small bowel obstruction (ASBO) is generally caused by postoperative adhesions and is more frequently associated with colorectal surgeries than other procedures. We compared the outcomes of operative and conservative management of ASBO after primary colorectal cancer surgery.We retrospectively reviewed 5060 patients who underwent curative surgery for primary colorectal cancer; 388 of these patients (7.7%) were readmitted with a diagnosis of SBO. We analyzed the clinical course of these patients with reference to the cause of their surgery.Of the 388 SBO patients analyzed, 170 were diagnosed with ASBO. Their 3-, 5-, and 7-year recurrence-free survival rates were 86.1%, 72.8%, and 61.5%, respectively. The median follow-up period was 59.2 months. Repeated conservative management for ASBO without surgical management led to higher recurrence rates: 21.0% after the first admission, 41.7% after the second, 60.0% after the third, and 100% after the fourth (P = .006). Surgical management was needed for 19.2%, 22.2%, 50%, and 66.7% of patients admitted with ASBO on the first to fourth hospitalizations, respectively. Repeated hospitalization for obstruction led to a greater possibility of surgical management (P = .001). Of 27 patients with surgical management at the first admission, 6 (17.6%) were readmitted with a diagnosis of SBO, but there were no further episodes of SBO in the surgically managed patients.Patients who undergo operative management for ASBO have a reduced risk of recurrence requiring hospitalization, whereas those with repeated conservative management have an increased risk of recurrence and require operative management. Operative management should be considered for recurrent SBO.
Geleta, Mulatu; Herrera, Isabel; Monzón, Arnulfo; Bryngelsson, Tomas
2012-01-01
Coffea arabica L. (arabica coffee), the only tetraploid species in the genus Coffea, represents the majority of the world's coffee production and has a significant contribution to Nicaragua's economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR) markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei's gene diversity (H T) and the within-population gene diversity (H S) were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA) revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (F ST = 0.13; P < 0.001). The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety. PMID:22701376
Coincidence of synteny breakpoints with malignancy-related deletions on human chromosome 3
Kost-Alimova, Maria; Kiss, Hajnalka; Fedorova, Ludmila; Yang, Ying; Dumanski, Jan P.; Klein, George; Imreh, Stefan
2003-01-01
We have found previously that during tumor growth intact human chromosome 3 transferred into tumor cells regularly looses certain 3p regions, among them the ≈1.4-Mb common eliminated region 1 (CER1) at 3p21.3. Fluorescence in situ hybridization analysis of 12 mouse orthologous loci revealed that CER1 splits into two segments in mouse and therefore contains a murine/human conservation breakpoint region (CBR). Several breaks occurred in tumors within the region surrounding the CBR, and this sequence has features that characterize unstable chromosomal regions: deletions in yeast artificial chromosome clones, late replication, gene and segment duplications, and pseudogene insertions. Sequence analysis of the entire 3p12-22 revealed that other cancer-associated deletions (regions eliminated from monochromosomal hybrids carrying an intact chromosome 3 during tumor growth and homozygous deletions found in human tumors) colocalized nonrandomly with murine/human CBRs and were characterized by an increased number of local gene duplications and murine/human conservation mismatches (single genes that do not match into the conserved chromosomal segment). The CBR within CER1 contains a simple tandem TATAGA repeat capable of forming a 40-bp-long secondary hairpin-like structure. This repeat is nonrandomly localized within the other tumor-associated deletions and in the vicinity of 3p12-22 CBRs. PMID:12738884
Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence.
Maheshwari, Shamoni; Ishii, Takayoshi; Brown, C Titus; Houben, Andreas; Comai, Luca
2017-03-01
During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays , although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. © 2017 Maheshwari et al.; Published by Cold Spring Harbor Laboratory Press.
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.
Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern
2014-01-01
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales. PMID:25058307
Warfare in biodiversity hotspots.
Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D
2009-06-01
Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. ©2009 Society for Conservation Biology.
No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo.
Wharton, Tammy H; Nomie, Krystle J; Wharton, Robin P
2018-01-01
Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3'-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described-repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3'-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.
The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants
Woodcock, Paul; Edwards, David P.; Fayle, Tom M.; Newton, Rob J.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.
2011-01-01
South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority. PMID:22006966
Bonen, Linda; Boer, Poppo H.; Gray, Michael W.
1984-01-01
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565
Webber, Whitney M.; Li, Ya-Wei
2016-01-01
Managers of large, complex wildlife conservation programs need information on the conservation status of each of many species to help strategically allocate limited resources. Oversimplifying status data, however, runs the risk of missing information essential to strategic allocation. Conservation status consists of two components, the status of threats a species faces and the species’ demographic status. Neither component alone is sufficient to characterize conservation status. Here we present a simple key for scoring threat and demographic changes for species using detailed information provided in free-form textual descriptions of conservation status. This key is easy to use (simple), captures the two components of conservation status without the cost of more detailed measures (sufficient), and can be applied by different personnel to any taxon (consistent). To evaluate the key’s utility, we performed two analyses. First, we scored the threat and demographic status of 37 species recently recommended for reclassification under the Endangered Species Act (ESA) and 15 control species, then compared our scores to two metrics used for decision-making and reports to Congress. Second, we scored the threat and demographic status of all non-plant ESA-listed species from Florida (54 spp.), and evaluated scoring repeatability for a subset of those. While the metrics reported by the U.S. Fish and Wildlife Service (FWS) are often consistent with our scores in the first analysis, the results highlight two problems with the oversimplified metrics. First, we show that both metrics can mask underlying demographic declines or threat increases; for example, ∼40% of species not recommended for reclassification had changes in threats or demography. Second, we show that neither metric is consistent with either threats or demography alone, but conflates the two. The second analysis illustrates how the scoring key can be applied to a substantial set of species to understand overall patterns of ESA implementation. The scoring repeatability analysis shows promise, but indicates thorough training will be needed to ensure consistency. We propose that large conservation programs adopt our simple scoring system for threats and demography. By doing so, program administrators will have better information to monitor program effectiveness and guide their decisions. PMID:27478713
Malcom, Jacob W; Webber, Whitney M; Li, Ya-Wei
2016-01-01
Managers of large, complex wildlife conservation programs need information on the conservation status of each of many species to help strategically allocate limited resources. Oversimplifying status data, however, runs the risk of missing information essential to strategic allocation. Conservation status consists of two components, the status of threats a species faces and the species' demographic status. Neither component alone is sufficient to characterize conservation status. Here we present a simple key for scoring threat and demographic changes for species using detailed information provided in free-form textual descriptions of conservation status. This key is easy to use (simple), captures the two components of conservation status without the cost of more detailed measures (sufficient), and can be applied by different personnel to any taxon (consistent). To evaluate the key's utility, we performed two analyses. First, we scored the threat and demographic status of 37 species recently recommended for reclassification under the Endangered Species Act (ESA) and 15 control species, then compared our scores to two metrics used for decision-making and reports to Congress. Second, we scored the threat and demographic status of all non-plant ESA-listed species from Florida (54 spp.), and evaluated scoring repeatability for a subset of those. While the metrics reported by the U.S. Fish and Wildlife Service (FWS) are often consistent with our scores in the first analysis, the results highlight two problems with the oversimplified metrics. First, we show that both metrics can mask underlying demographic declines or threat increases; for example, ∼40% of species not recommended for reclassification had changes in threats or demography. Second, we show that neither metric is consistent with either threats or demography alone, but conflates the two. The second analysis illustrates how the scoring key can be applied to a substantial set of species to understand overall patterns of ESA implementation. The scoring repeatability analysis shows promise, but indicates thorough training will be needed to ensure consistency. We propose that large conservation programs adopt our simple scoring system for threats and demography. By doing so, program administrators will have better information to monitor program effectiveness and guide their decisions.
Essentials of Conservation Biotechnology: A mini review
NASA Astrophysics Data System (ADS)
Merlyn Keziah, S.; Subathra Devi, C.
2017-11-01
Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.
Smith, Moya M.; Johanson, Zerina; Butts, Thomas; Ericsson, Rolf; Modrell, Melinda; Tulenko, Frank J.; Davis, Marcus C.; Fraser, Gareth J.
2015-01-01
Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding. PMID:25788604
Tandem-repeat protein domains across the tree of life.
Jernigan, Kristin K; Bordenstein, Seth R
2015-01-01
Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20-40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species.
Sustainability issues for resource managers.
Daniel L. Bottom; Gordon H. Reeves; Martha H. Brookes
1996-01-01
Throughout their history, conservation science and sustainable-yield management have failed to maintain the productivity of living resources. Repeated overexploitation of economic species, loss of biological diversity, and degradation of regional environments now call into question the economic ideas and values that have formed the foundation of scientific management...
Analysis of SSR information in EST resources of sugarcane
USDA-ARS?s Scientific Manuscript database
Expressed sequence tags ( ESTs) offer the opportunity to exploit single, low -copy, conserved sequence motifs for the development of simple sequence repeats ( SSRs). The total of 262 113 ESTs of sugarcane (Saccharum officinarum) in the database of NCBI were downloaded and analyzed, which resulted in...
An 'injury-time integral' model for extrapolating from acute to chronic effects of phosgene.
Hatch, G; Kodavanti, U; Crissman, K; Slade, R; Costa, D
2001-06-01
The present study compares acute and subchronic episodic exposures to phosgene to test the applicability of the 'concentrationxtime' (CxT) product as a measure of exposure dose, and to relate acute toxicity and adaptive responses to chronic toxicity. Rats (male Fischer 344) were exposed (six hours/day) to air or 0.1, 0.2, 0.5 and 1.0 ppm of phosgene one time or on a repeated regimen for up to 12 weeks as follows: 0.1 ppm (five days/week), 0.2 ppm (five days/week), 0.5 ppm (two days/week), or 1.0 ppm (one day/week) (note that the CxT for the three highest exposures was the same). Animals were sacrificed at 4, 8, and 12 weeks during the exposure and after four weeks recovery. Bronchoalveolar lavage (BAL) was performed 18 hours after the last exposure for each time period and the BAL supernatant assayed for protein. Elevated BAL fluid protein was defined as 'acute injury', diminished response after repeated exposure was defined as 'adaptation', and increased lung hydroxyproline or trichrome staining for collagen was defined as 'chronic injury'. Results indicated that exposures that cause maximal chronic injury involve high exposure concentrations and longer times between exposures, not high CxT products. A conceptual model is presented that explains the lack of CxT correlation by the fact that adaptation reduces an 'injury-time integral' as phosgene exposure is lengthened from acute to subchronic. At high exposure concentrations, the adaptive response appears to be overwhelmed, causing a continued injury-time integral, which appears to be related to appearance of chronic injury. The adaptive response is predicted to disappear if the time between exposures is lengthened, leading to a continued high injury-time integral and chronic injury. It has generally been assumed that long, continuous exposures of rodents is a conservative approach for detecting possible chronic effects. The present study suggests that such an approach my not be conservative, but might actually mask effects that could occur under intermittent exposure conditions.
NASA Astrophysics Data System (ADS)
Zahr, M. J.; Persson, P.-O.
2018-07-01
This work introduces a novel discontinuity-tracking framework for resolving discontinuous solutions of conservation laws with high-order numerical discretizations that support inter-element solution discontinuities, such as discontinuous Galerkin or finite volume methods. The proposed method aims to align inter-element boundaries with discontinuities in the solution by deforming the computational mesh. A discontinuity-aligned mesh ensures the discontinuity is represented through inter-element jumps while smooth basis functions interior to elements are only used to approximate smooth regions of the solution, thereby avoiding Gibbs' phenomena that create well-known stability issues. Therefore, very coarse high-order discretizations accurately resolve the piecewise smooth solution throughout the domain, provided the discontinuity is tracked. Central to the proposed discontinuity-tracking framework is a discrete PDE-constrained optimization formulation that simultaneously aligns the computational mesh with discontinuities in the solution and solves the discretized conservation law on this mesh. The optimization objective is taken as a combination of the deviation of the finite-dimensional solution from its element-wise average and a mesh distortion metric to simultaneously penalize Gibbs' phenomena and distorted meshes. It will be shown that our objective function satisfies two critical properties that are required for this discontinuity-tracking framework to be practical: (1) possesses a local minima at a discontinuity-aligned mesh and (2) decreases monotonically to this minimum in a neighborhood of radius approximately h / 2, whereas other popular discontinuity indicators fail to satisfy the latter. Another important contribution of this work is the observation that traditional reduced space PDE-constrained optimization solvers that repeatedly solve the conservation law at various mesh configurations are not viable in this context since severe overshoot and undershoot in the solution, i.e., Gibbs' phenomena, may make it impossible to solve the discrete conservation law on non-aligned meshes. Therefore, we advocate a gradient-based, full space solver where the mesh and conservation law solution converge to their optimal values simultaneously and therefore never require the solution of the discrete conservation law on a non-aligned mesh. The merit of the proposed method is demonstrated on a number of one- and two-dimensional model problems including the L2 projection of discontinuous functions, Burgers' equation with a discontinuous source term, transonic flow through a nozzle, and supersonic flow around a bluff body. We demonstrate optimal O (h p + 1) convergence rates in the L1 norm for up to polynomial order p = 6 and show that accurate solutions can be obtained on extremely coarse meshes.
Evidence for transgenerational metabolic programming in Drosophila
Buescher, Jessica L.; Musselman, Laura P.; Wilson, Christina A.; Lang, Tieming; Keleher, Madeline; Baranski, Thomas J.; Duncan, Jennifer G.
2013-01-01
SUMMARY Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon. PMID:23649823
TALE: a tale of genome editing.
Zhang, Mingjie; Wang, Feng; Li, Shifei; Wang, Yan; Bai, Yun; Xu, Xueqing
2014-01-01
Transcription activator-like effectors (TALEs), first identified in Xanthomonas bacteria, are naturally occurring or artificially designed proteins that modulate gene transcription. These proteins recognize and bind DNA sequences based on a variable numbers of tandem repeats. Each repeat is comprised of a set of ∼ 34 conserved amino acids; within this conserved domain, there are usually two amino acids that distinguish one TALE from another. Interestingly, TALEs have revealed a simple cipher for the one-to-one recognition of proteins for DNA bases. Synthetic TALEs have been used to successfully target genes in a variety of species, including humans. Depending on the type of functional domain that is fused to the TALE of interest, these proteins can have diverse biological effects. For example, after binding DNA, TALEs fused to transcriptional activation domains can function as robust transcription factors (TALE-TFs), while fused to restriction endonucleases (TALENs) can cut DNA. Targeted genome editing, in theory, is capable of modifying any endogenous gene sequence of interest; this can be performed in cells or organisms, and may be applied to clinical gene-based therapies in the future. With current technologies, highly accurate, specific, and reliable gene editing cannot be achieved. Thus, recognition and binding mechanisms governing TALE biology are currently hot research areas. In this review, we summarize the major advances in TALE technology over the past several years with a focus on the interaction between TALEs and DNA, TALE design and construction, potential applications for this technology, and unique characteristics that make TALEs superior to zinc finger endonucleases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mu, Chunyu; Su, Yanhui; Liu, Ran; Huang, Zhengyang; Li, Yang; Yu, Qingming; Chang, Guobin; Xu, Qi; Chen, Guohong
2015-01-01
The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN) dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribocytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5. PMID:25816333
The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang; Venugopal, Vandavasi; Murray, Beverly
{alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha}more » carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.« less
Zoll, Sebastian; Schlag, Martin; Shkumatov, Alexander V.; Rautenberg, Maren; Svergun, Dmitri I.; Götz, Friedrich
2012-01-01
The bifunctional major autolysin Atl plays a key role in staphylococcal cell separation. Processing of Atl yields catalytically active amidase (AM) and glucosaminidase (GL) domains that are each fused to repeating units. The two repeats of AM (R1 and R2) target the enzyme to the septum, where it cleaves murein between dividing cells. We have determined the crystal structure of R2, which reveals that each repeat folds into two half-open β-barrel subunits. We further demonstrate that lipoteichoic acid serves as a receptor for the repeats and that this interaction depends on conserved surfaces in each subunit. Small-angle X-ray scattering of the mature amidase reveals the presence of flexible linkers separating the AM, R1, and R2 units. Different levels of flexibility for each linker provide mechanistic insights into the conformational dynamics of the full-length protein and the roles of its components in cell wall association and catalysis. Our analysis supports a model in which the repeats direct the catalytic AM domain to the septum, where it can optimally perform the final step of cell division. PMID:22609916
1.688 g/cm(3) satellite-related repeats: a missing link to dosage compensation and speciation.
Gallach, Miguel
2015-09-01
Despite the important progress that has been made on dosage compensation (DC), a critical link in our understanding of the X chromosome recognition mechanisms is still missing. Recent studies in Drosophila indicate that the missing link could be a family of DNA repeats populating the euchromatin of the X chromosome. In this opinion article, I discuss how these findings add a new fresh twist on the DC problem. In the following sections, I first summarize our understanding of DC in Drosophila and integrate these recent discoveries into our knowledge of the X chromosome recognition problem. Next, I introduce a model according to which, 1.688 g/cm(3) satellite-related (SR) repeats would be the primary recognition elements for the dosage compensation complex. Contrary to the current belief, I suggest that the DC system in Drosophila is not conserved and static, but it is continuously co-evolving with the target SR repeats. The potential role of the SR repeats in hybrid incompatibilities and speciation is also discussed. © 2015 John Wiley & Sons Ltd.
Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka
2011-11-01
The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.
Sadinski, Walter; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa
2014-01-01
Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex.
Zattas, Dimitrios; Berk, Jason M.; Kreft, Stefan G.; Hochstrasser, Mark
2016-01-01
Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. PMID:27068744
Sadinski, Walt; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa
2014-01-01
Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex. PMID:25216249
ERIC Educational Resources Information Center
Sterling, Eleanor; Bravo, Adriana; Porzecanski, Ana Luz; Burks, Romi L.; Linder, Joshua; Langen, Tom; Fernandez, Denny; Ruby, Douglas; Bynum, Nora
2016-01-01
In this study, conservation biology faculty and practitioners from across the United States designed classroom exercises and teaching interventions intended to bolster oral communication skills. Through repeated oral presentation assignments integrated into course requirements, the authors examined individual student learning gains via…
Music and Piaget: Spinning a Slender Thread.
ERIC Educational Resources Information Center
Wohlwill, Joachim F.
Repeated but unadvised attempts have been made by music educators to relate the Piagetian concept of concrete operational thought to children's understanding of music. The attempts have been focused on the apparent link between the child's detection of invariance in musical patterns and the concept of conservation. These attempts are unadvised…
The rolling-circle melting-pot model for porcine circovirus DNA replication
USDA-ARS?s Scientific Manuscript database
A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...
Undocumented Students in the West. Policy Insights
ERIC Educational Resources Information Center
Krueger, Carl
2012-01-01
Viewers tuning into the Republican presidential debate on September 22, 2011, witnessed Texas Governor Rick Perry repeatedly defend his state's policy of offering in-state tuition to some undocumented students against a wave of criticism from the other candidates. The sight of a staunchly conservative governor, a champion of small government,…
Colorado Canyons National Conservation Area 2003 visitor use survey: Completion report
Ponds, Phadrea; Gillette, Shana C.; Koontz, Lynne
2004-01-01
Trail activities are often those that people participate in on a regular basis as a way to exercise. This can make trail related activities more attractive from a management standpoint because people who participate in an activity may be more likely to be repeat visitors.
Xiao, Yi; Ma, Haixia; Wan, Ping; Qin, Dandan; Wang, Xiaoxiao; Zhang, Xiaoxin; Xiang, Yunlong; Liu, Wenbo; Chen, Jiong; Yi, Zhaohong; Li, Lei
2017-01-27
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae
Erkes, Annett; Reschke, Maik; Boch, Jens
2017-01-01
Abstract Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity. PMID:28637323
Gibbons, R J; McDowell, T L; Raman, S; O'Rourke, D M; Garrick, D; Ayyub, H; Higgs, D R
2000-04-01
A goal of molecular genetics is to understand the relationship between basic nuclear processes, epigenetic changes and the numerous proteins that orchestrate these effects. One such protein, ATRX, contains a highly conserved plant homeodomain (PHD)-like domain, present in many chromatin-associated proteins, and a carboxy-terminal domain which identifies it as a member of the SNF2 family of helicase/ATPases. Mutations in ATRX give rise to characteristic developmental abnormalities including severe mental retardation, facial dysmorphism, urogenital abnormalities and alpha-thalassaemia. This circumstantial evidence suggests that ATRX may act as a transcriptional regulator through an effect on chromatin. We have recently shown that ATRX is localized to pericentromeric heterochromatin during interphase and mitosis, suggesting that ATRX might exert other chromatin-mediated effects in the nucleus. Moreover, at metaphase, some ATRX is localized at or close to the ribosomal DNA (rDNA) arrays on the short arms of human acrocentric chromosomes. Here we show that mutations in ATRX give rise to changes in the pattern of methylation of several highly repeated sequences including the rDNA arrays, a Y-specific satellite and subtelomeric repeats. Our findings provide a potential link between the processes of chromatin remodelling, DNA methylation and gene expression in mammalian development.
A massively parallel strategy for STR marker development, capture, and genotyping.
Kistler, Logan; Johnson, Stephen M; Irwin, Mitchell T; Louis, Edward E; Ratan, Aakrosh; Perry, George H
2017-09-06
Short tandem repeat (STR) variants are highly polymorphic markers that facilitate powerful population genetic analyses. STRs are especially valuable in conservation and ecological genetic research, yielding detailed information on population structure and short-term demographic fluctuations. Massively parallel sequencing has not previously been leveraged for scalable, efficient STR recovery. Here, we present a pipeline for developing STR markers directly from high-throughput shotgun sequencing data without a reference genome, and an approach for highly parallel target STR recovery. We employed our approach to capture a panel of 5000 STRs from a test group of diademed sifakas (Propithecus diadema, n = 3), endangered Malagasy rainforest lemurs, and we report extremely efficient recovery of targeted loci-97.3-99.6% of STRs characterized with ≥10x non-redundant sequence coverage. We then tested our STR capture strategy on P. diadema fecal DNA, and report robust initial results and suggestions for future implementations. In addition to STR targets, this approach also generates large, genome-wide single nucleotide polymorphism (SNP) panels from flanking regions. Our method provides a cost-effective and scalable solution for rapid recovery of large STR and SNP datasets in any species without needing a reference genome, and can be used even with suboptimal DNA more easily acquired in conservation and ecological studies. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, K.E.; Morrison, K.E.; Daniels, R.I.
1994-09-01
We previously reported that the 400 kb interval flanked the polymorphic loci D5S435 and D5S557 contains blocks of a chromosome 5 specific repeat. This interval also defines the SMA candidate region by genetic analysis of recombinant families. A YAC contig of 2-3 Mb encompassing this area has been constructed and a 5.5 kb conserved fragment, isolated from a YAC end clone within the above interval, was used to obtain cDNAs from both fetal and adult brain libraries. We describe the identification of cDNAs with stretches of high DNA sequence homology to exons of {beta} glucuronidase on human chromosome 7. Themore » cDNAs map both to the candidate region and to an area of 5p using FISH and deletion hybrid analysis. Hybridization to bacteriophage and cosmid clones from the YACs localizes the {beta} glucuronidase related sequences within the 400 kb region of the YAC contig. The cDNAs show a polymorphic pattern on hybridization to genomic BamH1 fragments in the size range of 10-250 kb. Further analysis using YAC fragmentation vectors is being used to determine how these {beta} glucuronidase related cDNAs are distributed within 5q13. Dinucleotide repeats within the region are being investigated to determine linkage disequilibrium with the disease locus.« less
NASA Astrophysics Data System (ADS)
Louros, Nikolaos N.; Baltoumas, Fotis A.; Hamodrakas, Stavros J.; Iconomidou, Vassiliki A.
2016-02-01
Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.
Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae).
Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo
2013-12-01
The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A + T-rich region. The 15,299-bp-long genome consisted of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp-long A + T-rich region located between srRNA and tRNA(Met) harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A + T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp-long tandem repeat, and six nearly identical 5-6 bp long repeat sequences.
Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro
2012-01-01
Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.
[Pancreatic injuries: diagnosis and management].
Chèvre, F; Tschantz, P
2001-05-01
Traumatic lesions of the pancreas are rare (3-12% of abdominal trauma). In Central Europe most of them are due to blunt trauma. We reviewed the series from four university and one central hospitals in Switzerland over a period of ten to twenty years. Among these 75 cases, 84% were consecutive to blunt trauma. All the cases with an open injury were operated on rapidly. 15 patients with blunt trauma were treated conservatively. Out of the 58 operated patients, 20 had a caudal resection, 3 a pancreatico-jejunal anastomosis and 1 a duodeno-pancreatectomy. The others were drained. Nine patients died, 5 of them as a direct consequence of the pancreatic lesions. The morbidity was high (48%). After an open abdominal trauma, or when the patient remains unstable after blunt trauma an emergency laparotomy should be undertaken. It can lead to damage control surgery as a first step when the general and local conditions are bad. When the patient is hemodynamicaly stable, a conservative approach should be considered. The best diagnostic tools are repeated CT-scan and amylasemia. A differed operation is indicated only if the general and local condition deteriorate.
Vertebrate sex-determining genes play musical chairs.
Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann
2016-01-01
Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.
Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun
2005-04-01
Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.
Dynamic expression of the LAP family of genes during early development of Xenopus tropicalis.
Yang, Qiutan; Lv, Xiaoyan; Kong, Qinghua; Li, Chaocui; Zhou, Qin; Mao, Bingyu
2011-10-01
The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.
Xu, Xiang; Choi, Sung Hee; Hu, Tiancen; Tiyanont, Kittichoat; Habets, Roger; Groot, Arjan J; Vooijs, Marc; Aster, Jon C; Chopra, Rajiv; Fryer, Christy; Blacklow, Stephen C
2015-07-07
Notch receptors are transmembrane proteins that undergo activating proteolysis in response to ligand stimulation. A negative regulatory region (NRR) maintains receptor quiescence by preventing protease cleavage prior to ligand binding. We report here the X-ray structure of the NRR of autoinhibited human Notch3, and compare it with the Notch1 and Notch2 NRRs. The overall architecture of the autoinhibited conformation, in which three LIN12-Notch repeat (LNR) modules wrap around a heterodimerization domain, is preserved in Notch3, but the autoinhibited conformation of the Notch3 NRR is less stable. The Notch3 NRR uses a highly conserved surface on the third LNR module to form a dimer in the crystal. Similar homotypic interfaces exist in Notch1 and Notch2. Together, these studies reveal distinguishing structural features associated with increased basal activity of Notch3, demonstrate increased ligand-independent signaling for disease-associated mutations that map to the Notch3 NRR, and identify a conserved dimerization interface present in multiple Notch receptors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tandem-repeat protein domains across the tree of life
Jernigan, Kristin K.
2015-01-01
Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species. PMID:25653910
Liang, Yaosi; Ding, Xu; Yu, Xue; Wang, Yu; Zhou, Ying; He, Jianan; Shi, Yu; Zhang, Yong; Lin, Haoran; Lu, Danqi
2018-03-01
Toll-like receptors (TLRs) are one of the most important innate immune receptors, which recognize various pathogen-associated molecular patterns and activate the downstream immune response. Mouse TLR13 has been found to recognize a highly conserved sequence from bacterial or viral RNA and activate the myeloid differentiation primary response gene 88-dependent signaling response. The function of teleost tlr13 is still not fully understood, especially its relationship with bacterial RNA. In our study, we identified and characterized a tlr13 from Epinephelus coioides (orange-spotted grouper). The full-length cDNA of Eco. tlr13 contained a 2844 bp open reading frame, encoding 947 amino acids. The polypeptide was constitutive of a signal peptide, 13 leucine-rich repeats domains, a C-terminal leucine-rich repeats, a transmembrane domain and a conserved Toll/interleukin (IL)-1 receptor domain, indicating that Eco. Tlr13 exhibited a typical TLR structure. Multiple alignments showed that the Toll/IL-1 receptor domain of Eco. Tlr13 was identical with other homologues, and the phylogenetic tree suggested that Eco. Tlr13 was clustered with other TLR13s and had the closest relationship with predicted Lates calcarifer (sea bass) Tlr13. Subcellular localization analysis revealed that Eco. Tlr13 colocalized with the endoplasmic reticulum and early endosome. Moreover, Eco. tlr13 was broadly observed in all tested tissues with the relatively high expressions in the brain and immune-related tissues. After challenged with 19-mer Staphylococcus aureus 23S ribosomal RNA-derived oligoribonucleotide (ORN Sa19), the expression of Eco. tlr13 was significantly up-regulated in grouper spleen cells. Also, the luciferase assay further revealed that with the overexpression of Eco. Tlr13 in human embryonic kidney 293T cells, ORN Sa19 activated the promoter activity of interferon-β in a dose-dependent pattern. These results indicate that Eco. tlr13 may involve in the recognition of bacterial RNA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conserved Asp-137 imparts flexibility to tropomyosin and affects function.
Sumida, John P; Wu, Eleanor; Lehrer, Sherwin S
2008-03-14
Tropomyosin (Tm) is an alpha-helical coiled-coil that controls muscle contraction by sterically regulating the myosin-actin interaction. Tm moves between three states on F-actin as either a uniform or a non-uniform semi-flexible rod. Tm is stabilized by hydrophobic residues in the "a" and "d" positions of the heptad repeat. The highly conserved Asp-137 is unusual in that it introduces a negative charge on each chain in a position typically occupied by hydrophobic residues. The occurrence of two charged residues in the hydrophobic region is expected to destabilize the region and impart flexibility. To determine whether this region is unstable, we have substituted hydrophobic Leu for Asp-137 and studied changes in Tm susceptibility to limited proteolysis by trypsin and changes in regulation. We found that native and Tm controls that contain Asp-137 were readily cleaved at Arg-133 with t 1/2 of 5 min. In contrast, the Leu-137 mutant was not cleaved under the same conditions. Actin stabilized Tm, causing a 10-fold reduction in the rate of cleavage at Arg-133. The actin-myosin subfragment S1 ATPase activity was greater for the Leu mutant compared with controls in the absence of troponin and in the presence of troponin and Ca2+. We conclude that the highly conserved Asp-137 destabilizes the middle of Tm, resulting in a more flexible region that is important for the cooperative activation of the thin filament by myosin. We thus have shown a link between the dynamic properties of Tm and its function.
Skagen, Susan K.; Granfors, Diane A.; Melcher, Cynthia P.
2008-01-01
Conservation challenges enhance the need for quantitative information on dispersed bird populations in extensive landscapes, for techniques to monitor populations and assess environmental effects, and for conservation strategies at appropriate temporal and spatial scales. By estimating population sizes of shorebirds in the U.S. portion of the prairie pothole landscape in central North America, where most migrating shorebirds exhibit a highly dispersed spatial pattern, we determined that the region may play a vital role in the conservation of shorebirds. During northward and southward migration, 7.3 million shorebirds (95% CI: 4.3–10.3 million) and 3.9 million shorebirds (95% CI: 1.7–6.0 million) stopped to rest and refuel in the study area; inclusion of locally breeding species increases the estimates by 0.1 million and 0.07 million shorebirds, respectively. Seven species of calidridine sandpipers, including Semipalmated Sandpipers (Calidris pusilla), White-rumped Sandpipers (C. fuscicollis), and Stilt Sandpipers (C. himantopus), constituted 50% of northbound migrants in our study area. We present an approach to population estimation and monitoring, based on stratified random selection of townships as sample units, that is well suited to 11 migratory shorebird species. For extensive and dynamic wetland systems, we strongly caution against a monitoring program based solely on repeated counts of known stopover sites with historically high numbers of shorebirds. We recommend refinements in methodology to address sample-size requirements and potential sources of bias so that our approach may form the basis of a rigorous migration monitoring program in this and other prairie wetland regions.
Mayer-Jaekel, R E; Baumgartner, S; Bilbe, G; Ohkura, H; Glover, D M; Hemmings, B A
1992-01-01
cDNA clones encoding the catalytic subunit and the 65-kDa regulatory subunit of protein phosphatase 2A (PR65) from Drosophila melanogaster have been isolated by homology screening with the corresponding human cDNAs. The Drosophila clones were used to analyze the spatial and temporal expression of the transcripts encoding these two proteins. The Drosophila PR65 cDNA clones contained an open reading frame of 1773 nucleotides encoding a protein of 65.5 kDa. The predicted amino acid sequence showed 75 and 71% identity to the human PR65 alpha and beta isoforms, respectively. As previously reported for the mammalian PR65 isoforms, Drosophila PR65 is composed of 15 imperfect repeating units of approximately 39 amino acids. The residues contributing to this repeat structure show also the highest sequence conservation between species, indicating a functional importance for these repeats. The gene encoding Drosophila PR65 was located at 29B1,2 on the second chromosome. A major transcript of 2.8 kilobase (kb) encoding the PR65 subunit and two transcripts of 1.6 and 2.5 kb encoding the catalytic subunit could be detected throughout Drosophila development. All of these mRNAs were most abundant during early embryogenesis and were expressed at lower levels in larvae and adult flies. In situ hybridization of different developmental stages showed a colocalization of the PR65 and catalytic subunit transcripts. The mRNA expression is high in the nurse cells and oocytes, consistent with a high equally distributed expression in early embryos. In later embryonal development, the expression remains high in the nervous system and the gonads but the overall transcript levels decrease. In third instar larvae, high levels of mRNA could be observed in brain, imaginal discs, and in salivary glands. These results indicate that protein phosphatase 2A transcript levels change during development in a tissue and in a time-specific manner. Images PMID:1320961
Haider, Nadia
2017-01-01
Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.
Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E
1995-05-01
Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.
77 FR 33106 - Energy Conservation Program: Test Procedure for Microwave Ovens
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... due to the different masses and shapes of the potatoes. DOE observed, similar to the tests for... consumer use, (2) the repeatability of energy use measurements using different food loads, and (3) consumer... ``normal usage'' and the water temperature rise of 50 degrees Celsius ([deg]C) achieves eating temperature...
Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in Northern Minnesota, USA
Michael Reinikainen; Anthony W. D' Amato; Shawn. Fraver
2012-01-01
Characterizing the timing, severity, and agents of historic forest disturbances is critical to developing management and conservation strategies based on natural processes. Typically such information is derived from retrospective studies of remnant old-growth forests; however, this approach has limited application in regions dominated by secondary forests heavily...
Bird response to fire severity and repeated burning in upland hardwood forest
Cathryn H. Greenberg; Thomas A. Waldrop; Joseph Tomcho; Ross J. Phillips; Dean Simon
2012-01-01
Prescribed burning is a common management tool for upland hardwood forests, with wildlife habitat improvement an often cited goal. Fire management for wildlife conservation requires understanding how species respond to burning at different frequencies, severities, and over time. In an earlier study, we experimentally assessed how breeding bird communities and species...
Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise
ERIC Educational Resources Information Center
Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San
2018-01-01
Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
.... However, two issues-- climate change adaptation and socio-economic monitoring--were repeatedly raised. The... with climate change. The Council will use climate adaptation as a priority- setting tool, while still... stressors associated with climate change, (2) build conservation partnerships, (3) provide incentives to...
Surfer's exostosis in a child who does not surf.
Paddock, Michael; Lau, Kimberley; Raghavan, Ashok; Dritsoula, Aikaterini
2018-06-01
Surfer's exostoses are more commonly seen in adults who frequently participate in aquatic activities with repeated exposed to cold water and wind. However, this entity has not been previously reported in the pediatric population. Most patients can be managed conservatively, particularly considering that surgical removal of external auditory canal exostosis can be challenging.
Femoral artery pseudoaneurysm as a complication of angioplasty. How can it be prevented?
Gupta, Prabha Nini; Salam Basheer, Abdul; Sukumaran, Gireesh Gomaty; Padmajan, Sabin; Praveen, Satheesan; Velappan, Praveen; Nair, Bigesh Unnikrishnan; Nair, Sandeep Govindan; Kunjuraman, Usha Kumari; Madthipat, Unnikrishnan; R, Jayadevan
2013-01-01
Femoral pseudoaneurysm is a common complication of repeated femoral puncture during cardiac catheterisation. We describe here the development of femoral pseudoaneurysms in a patient with Takayasu's arteritis, which healed in response to conservative treatment, and review the literature on the prevention and treatment of femoral pseudoaneurysm. PMID:27326111
New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms
Dufayard, Jean-François; Bettembourg, Mathilde; Fischer, Iris; Droc, Gaetan; Guiderdoni, Emmanuel; Périn, Christophe; Chantret, Nathalie; Diévart, Anne
2017-01-01
Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots). We identified 101 orthologous groups (OGs) of genes being conserved among almost all monocot and dicot species analyzed. We observed that more than 10% of these OGs are absent in the Brassicaceae species studied. We show that the ECD structural features are not always conserved among orthologs, suggesting that functions may have diverged in some OG sets. Moreover, we looked at targets of positive selection footprints in 12 pairs of OGs and noticed that depending on the subgroups, positive selection occurred more frequently either in the ECDs or in the KDs. PMID:28424707
CRISPR Diversity and Microevolution in Clostridium difficile
Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe
2016-01-01
Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538
Bhatia, S; Singh Negi, M; Lakshmikumaran, M
1996-11-01
EcoRI restriction of the B. nigra rDNA recombinants, isolated from a lambda genomic library, showed that the 3.9-kb fragment corresponded to the Intergenic Spacer (IGS), which was sequenced and found to be 3,928 bp in size. Sequence and dot-matrix analyses showed that the organization of the B. nigra rDNA IGS was typical of most rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. The repetitive region was composed of two repeat families-RF 'A' and RF 'B.' The B. nigra RF 'A' consisted of a tandem array of three full-length copies of a 106-bp sequence element. RF 'B' was composed of 66 tandemly repeated elements. Each 'B' element was only 21-bp in size and this is the smallest repeat unit identified in plant rDNA to date. The putative transcription initiation site (TIS) was identified as nucleotide position 3,110. Based on the sequence analysis it was suggested that the present organization of the repeat families was generated by successive cycles of deletions and amplifications and was being maintained by homogenization processes such as gene conversion and crossing-over.A detailed comparison of the rDNA IGS sequences of the three diploid Brassica species-namely, B. nigra, B. campestris, and B. oleracea-was carried out. First, comparisons revealed that B. campestris and B. oleracea were close to each other as the repeat families in both showed high sequence homology between each other. Second, the repeat elements in both the species were organized in an interspersed manner. Third, a 52-bp sequence, present just downstream of the repeats in B. campestris, was found to be identical to the B. oleracea repeats, thereby suggesting a common progenitor. On the other hand, in B. nigra no interspersion pattern of organization of repeats was observed. Further, the B. nigra RF 'A' was identified as distinct from the repeat families of B. campestris and B. oleracea. Based on this analysis, it was suggested that during speciation B. campestris and B. oleracea evolved in one lineage whereas B. nigra diverged into a separate lineage. The comparative analysis of the IGS helped in identifying not only conserved ancestral sequence motifs of possible functional significance such as promoters and enhancers, but also sequences which showed variation between the three diploid species and were therefore identified as species-specific sequences.
Scheer, Elisabeth; Delbac, Frédéric; Tora, Laszlo; Moras, Dino; Romier, Christophe
2012-01-01
The general transcription factor TFIID recognizes specifically the core promoter of genes transcribed by eukaryotic RNA polymerase II, nucleating the assembly of the preinitiation complex at the transcription start site. However, the understanding in molecular terms of TFIID assembly and function remains poorly understood. Histone fold motifs have been shown to be extremely important for the heterodimerization of many TFIID subunits. However, these subunits display several evolutionary conserved noncanonical features when compared with histones, including additional regions whose role is unknown. Here we show that the conserved additional C-terminal region of TFIID subunit TAF6 can be divided into two domains: a small middle domain (TAF6M) and a large C-terminal domain (TAF6C). Our crystal structure of the TAF6C domain from Antonospora locustae at 1.9 Å resolution reveals the presence of five conserved HEAT repeats. Based on these data, we designed several mutants that were introduced into full-length human TAF6. Surprisingly, the mutants affect the interaction between TAF6 and TAF9, suggesting that the formation of the complex between these two TFIID subunits do not only depend on their histone fold motifs. In addition, the same mutants affect even more strongly the interaction between TAF6 and TAF9 in the context of a TAF5-TAF6-TAF9 complex. Expression of these mutants in HeLa cells reveals that most of them are unstable, suggesting their poor incorporation within endogenous TFIID. Taken together, our results suggest that the conserved additional domains in histone fold-containing subunits of TFIID and of co-activator SAGA are important for the assembly of these complexes. PMID:22696218
Holm, J; Hillenbrand, R; Steuber, V; Bartsch, U; Moos, M; Lübbert, H; Montag, D; Schachner, M
1996-08-01
We have identified a close homologue of L1 (CHL1) in the mouse. CHL1 comprises an N-terminal signal sequence, six immunoglobulin (Ig)-like domains, 4.5 fibronectin type III (FN)-like repeats, a transmembrane domain and a C-terminal, most likely intracellular domain of approximately 100 amino acids. CHL1 is most similar in its extracellular domain to chicken Ng-CAM (approximately 40% amino acid identity), followed by mouse L1, chicken neurofascin, chicken Nr-CAM, Drosophila neuroglian and zebrafish L1.1 (37-28% amino acid identity), and mouse F3, rat TAG-1 and rat BIG-1 (approximately 27% amino acid identity). The similarity with other members of the Ig superfamily [e.g. neural cell adhesion molecule (N-CAM), DCC, HLAR, rse] is 16-11%. The intracellular domain is most similar to mouse and chicken Nr-CAM, mouse and rat neurofascin (approximately 60% amino acid identity) followed by chicken neurofascin and Ng-CAM, Drosophila neuroglian and zebrafish L1.1 and L1.2 (approximately 40% amino acid identity). Besides the high overall homology and conserved modular structure among previously recognized members of the L1 family (mouse/human L1/rat NILE; chicken Ng-CAM; chicken/mouse Nr-CAM; Drosophila neuroglian; zebrafish L1.1 and L1.2; chicken/mouse neurofascin/rat ankyrin-binding glycoprotein), criteria characteristic of L1 were identified with regard to the number of amino acids between positions of conserved amino acid residues defining distances within and between two adjacent Ig-like domains and FN-like repeats. These show a collinearity in the six Ig-like domains and four adjacent FN-like repeats that is remarkably conserved between L1 and molecules containing these modules (designated the L1 family cassette), including the GPI-linked forms of the F3 subgroup (mouse F3/chicken F11/human CNTN1; rat BIG-1/mouse PANG; rat TAG-1/mouse TAX-1/chicken axonin-1). The colorectal cancer molecule (DCC), previously introduced as an N-CAM-like molecule, conforms to the L1 family cassette. Other structural features of CHL 1 shared between members of the L1 family are a high degree of N-glycosidically linked carbohydrates (approximately 20% of its molecular mass), which include the HNK-1 carbohydrate structure, and a pattern of protein fragments comprising a major 185 kDa band and smaller fragments of 165 and 125 kDa. As for the other L1 family members, predominant expression of CHL1 is observed in the nervous system and at later developmental stages. In the central nervous system CHL1 is expressed by neurons, but, in contrast to L1, also by glial cells. Our findings suggest a common ancestral L1-like molecule which evolved via gene duplication to generate a diversity of structurally and functionally distinct yet similar molecules.
Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc
2014-01-01
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805
Flyak, Andrew I; Kuzmina, Natalia; Murin, Charles D; Bryan, Christopher; Davidson, Edgar; Gilchuk, Pavlo; Gulka, Christopher P; Ilinykh, Philipp A; Shen, Xiaoli; Huang, Kai; Ramanathan, Palaniappan; Turner, Hannah; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; King, Hannah; Sapparapu, Gopal; Doranz, Benjamin J; Ksiazek, Thomas G; Wright, David W; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E
2018-05-07
Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection 1 and has been used under compassionate-treatment protocols in humans 2 . ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs) 3-6 that target EBOV-specific epitopes on the surface glycoprotein 7,8 . However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2-MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.
Parks, Kelly; Leung, Lawrence
2013-01-01
Hydrocele is a common cause of scrotal swelling in general practice and is caused by a patent space in the tunica vaginalis. Treatment is often conservative unless the hydrocele grows to a critical size that leads to discomfort or difficulty in walking, in which case drainage is necessary. Depending on the communication of the tunica vaginalis with the peritoneal cavity and other coexistent morbidities, hydrocoele may recur despite repeated drainage posing a problem to management in general practice. We hereby presented a 72-year male with a huge hydrocoele that recurred despite repeated drainage and hernia sac repair, arousing thoughts on this subject and discussions as to the most appropriate management. PMID:24479061
spa typing for epidemiological surveillance of Staphylococcus aureus.
Hallin, Marie; Friedrich, Alexander W; Struelens, Marc J
2009-01-01
The spa typing method is based on sequencing of the polymorphic X region of the protein A gene (spa), present in all strains of Staphylococcus aureus. The X region is constituted of a variable number of 24-bp repeats flanked by well-conserved regions. This single-locus sequence-based typing method combines a number of technical advantages, such as rapidity, reproducibility, and portability. Moreover, due to its repeat structure, the spa locus simultaneously indexes micro- and macrovariations, enabling the use of spa typing in both local and global epidemiological studies. These studies are facilitated by the establishment of standardized spa type nomenclature and Internet shared databases.
NASA Astrophysics Data System (ADS)
He, Jiankui; Deem, Michael W.
2010-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of antiviral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face.
He, Jiankui; Deem, Michael W
2010-09-17
Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of antiviral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face.
RIFM fragrance ingredient safety assessment, α-Ionone, CAS Registry Number 127-41-3.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 10 mg/kg/day. A dietary 90-day subchronic toxicity study conducted in rats resulted in a MOE of 182 while assuming 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.
RIFM fragrance ingredient safety assessment, isoeugenol, CAS Registry Number 97-54-1.
Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K
2016-11-01
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 37.5 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in mice resulted in a MOE of 5769 while considering 38.4% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping
2018-06-01
The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.
The posterior reversible encephalopathy syndrome.
Sanjay, K Mandal; Partha, P Chakraborty
2008-09-01
The posterior/potentially reversible encephalopathy syndrome is a unique syndrome encountered commonly in hypertensive encephalopathy. A 13-year-old boy presented with of intermittent high grade fever, throbbing headache and non-projective vomiting for 5 days. The patient had a blood pressure of 120/80 mmHg but fundoscopy documented grade 3 hypertensive retinopathy. The patient improved symptomatically following conservative management. However, on the 5(th) post-admission day headache reappeared, and blood pressure measured at that time was 240/120 mmHg. Neuroimaging suggested white matter abnormalities. Search for the etiology of secondary hypertension led to the diagnosis of pheochromocytoma. Repeated MRI after successful surgical excision of the tumor patient showed reversal of white matter abnormalities. Reversible leucoencephalopathy due to pheochromocytoma have not been documented in literature previously.
May, Karen M.; Reynolds, Nicola; Cullen, C. Fiona; Yanagida, Mitsuhiro; Ohkura, Hiroyuki
2002-01-01
The fission yeast plo1 + gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new cut23 mutation, which specifically disrupts the interaction with Plo1, results in a metaphase arrest. This arrest can be rescued by high expression of Plo1 kinase. We suggest that this physical interaction is crucial for mitotic progression by targeting polo kinase activity toward the APC. PMID:11777938
Bao, Wenquan; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-e
2017-01-01
Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%–36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau. PMID:29186199
Bao, Wenquan; Wuyun, Tana; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-E
2017-01-01
Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.
Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M
2016-10-19
The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.
Gladyshev, Eugene; Kleckner, Nancy
2017-01-01
Eukaryotic genomes contain substantial amounts of repetitive DNA organized in the form of constitutive heterochromatin and associated with repressive epigenetic modifications, such as H3K9me3 and C5-cytosine methylation (5mC). In the fungus Neurospora crassa, H3K9me3 and 5mC are catalyzed, respectively, by a conserved SUV39 histone methyltransferase DIM-5 and a DNMT1-like cytosine methyltransferase DIM-2. Here we show that DIM-2 can also mediate Repeat-Induced Point mutation (RIP) of repetitive DNA in N. crassa. We further show that DIM-2-dependent RIP requires DIM-5, HP1, and other known heterochromatin factors, implying the role of a repeat-induced heterochromatin-related process. Our previous findings suggest that the mechanism of repeat recognition for RIP involves direct interactions between homologous double-stranded (ds) DNA segments. We thus now propose that, in somatic cells, homologous dsDNA/dsDNA interactions between a small number of repeat copies can nucleate a transient heterochromatic state, which, on longer repeat arrays, may lead to the formation of constitutive heterochromatin. PMID:28459455
The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.
Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin
2013-01-01
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
The multiple roles of epidermal growth factor repeat O-glycans in animal development
Haltom, Amanda R; Jafar-Nejad, Hamed
2015-01-01
The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457
Li, Xin-Cang; Zhang, Xiao-Wen; Zhou, Jun-Fang; Ma, Hong-Yu; Liu, Zhi-Dong; Zhu, Lei; Yao, Xiao-Juan; Li, Lin-Gui; Fang, Wen-Hong
2013-01-01
Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria.
Zhou, Jun-Fang; Ma, Hong-Yu; Liu, Zhi-Dong; Zhu, Lei; Yao, Xiao-Juan; Li, Lin-Gui; Fang, Wen-Hong
2013-01-01
Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria. PMID:24116143
Plant centromere organization: a dynamic structure with conserved functions.
Ma, Jianxin; Wing, Rod A; Bennetzen, Jeffrey L; Jackson, Scott A
2007-03-01
Although the structural features of centromeres from most multicellular eukaryotes remain to be characterized, recent analyses of the complete sequences of two centromeric regions of rice, together with data from Arabidopsis thaliana and maize, have illuminated the considerable size variation and sequence divergence of plant centromeres. Despite the severe suppression of meiotic chromosomal exchange in centromeric and pericentromeric regions of rice, the centromere core shows high rates of unequal homologous recombination in the absence of chromosomal exchange, resulting in frequent and extensive DNA rearrangement. Not only is the sequence of centromeric tandem and non-tandem repeats highly variable but also the copy number, spacing, order and orientation, providing ample natural variation as the basis for selection of superior centromere performance. This review article focuses on the structural and evolutionary dynamics of plant centromere organization and the potential molecular mechanisms responsible for the rapid changes of centromeric components.
Necrotizing fasciitis of the breast: a case managed without mastectomy.
Soliman, M O; Ayyash, E H; Aldahham, A; Asfar, S
2011-01-01
To report a rare presentation of necrotizing fasciitis (NF) in the breast and its management. A 61-year-old non-diabetic lady presented with a painful swollen right breast and yellowish discharge associated with fever for the last few days. Based on clinical examination and haematological parameters, a provisional diagnosis of breast abscess was made that later proved to be a case of NF. She was managed conservatively with repeated debridement followed by split-skin grafting with preservation of the breast. This case showed that NF of the breast can present as a simple breast abscess which was managed conservatively. Copyright © 2011 S. Karger AG, Basel.
Liu, San-Xu; Hou, Wei; Zhang, Xue-Yan; Peng, Chang-Jun; Yue, Bi-Song; Fan, Zhen-Xin; Li, Jing
2018-07-18
The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (lobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (P<0.05, t-test). We also found a greater number of homozygous STRs than heterozygous STRs (P<0.05, t-test), with the Emei and Jianyang Tibetan macaques showing more heterozygous loci than Huangshan Tibetan macaques. The proportion of insertions and mean variation of alleles in the Emei and Jianyang individuals were slightly higher than those in the Huangshan individuals, thus revealing differences in STR allele size between the two populations. The polymorphic STR loci identified based on the reference genome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.
MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.
Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I; Shay, Jerry W; Gerner, Christopher; Gasche, Christoph
2012-01-01
Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4)) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis.
MSH3-Deficiency Initiates EMAST without Oncogenic Transformation of Human Colon Epithelial Cells
Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I.; Shay, Jerry W.; Gerner, Christopher; Gasche, Christoph
2012-01-01
Background/Aim Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. Methods HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Results Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10−4) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. Conclusions MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis. PMID:23209772
USDA-ARS?s Scientific Manuscript database
Background: Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at ...
Genetic variation patterns of American chestnut populations at EST-SSRs
Oliver Gailing; C. Dana Nelson
2017-01-01
The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...
LaGrange, Seth M; Kimble, Steven J A; MacGowan, Brian J; Williams, Rod N
2014-10-01
Hematology, biochemical analyses, and body condition indices are useful tools for describing animal health, especially when making management decisions for species of conservation concern. We report hematologic, biochemical, and body condition index data for 13 free-ranging timber rattlesnakes (Crotalus horridus) sampled repeatedly over an active season in Indiana, USA.
Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L
2017-01-01
A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.
Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?
NASA Astrophysics Data System (ADS)
Menezes, Rodolpho S. T.; Bardella, Vanessa B.; Cabral-de-Mello, Diogo C.; Lucena, Daercio A. A.; Almeida, Eduardo A. B.
2017-10-01
Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).
The genome sequence of the model ascomycete fungus Podospora anserina.
Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Ségurens, Béatrice; Poulain, Julie; Anthouard, Véronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Déquard-Chablat, Michelle; Picard, Marguerite; Contamine, Véronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Véronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne Gj; Henrissat, Bernard; Khoury, Riyad El; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarré, Bérangère; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe
2008-01-01
The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
Delannoy, Sabine; Beutin, Lothar; Fach, Patrick
2016-05-01
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.
Pelsy, F.; Merdinoglu, D.
2002-09-01
A chromosome-walking strategy was used to sequence and characterize retrotransposons in the grapevine genome. The reconstitution of a family of retroelements, named Tvv1, was achieved by six successive steps. These elements share a single, highly conserved open reading frame 4,153 nucleotides-long, putatively encoding the gag, pro, int, rt and rh proteins. Comparison of the Tvv1 open reading frame coding potential with those of drosophila copia and tobacco Tnt1, revealed that Tvv1 is closely related to Ty 1 copia-like retrotransposons. A highly variable untranslated leader region, upstream of the open reading frame, allowed us to differentiate Tvv1 variants, which represent a family of at least 28 copies, in varying sizes. This internal region is flanked by two long terminal repeats in direct orientation, sized between 149 and 157 bp. Among elements theoretically sized from 4,970 to 5,550 bp, we describe the full-length sequence of a reference element Tvv1-1, 5,343 nucleotides-long. The full-length sequence of Tvv1-1 compared to pea PDR1 shows a 53.3% identity. In addition, both elements contain long terminal repeats of nearly the same size in which the U5 region could be entirely absent. Therefore, we assume that Tvv1 and PDR1 could constitute a particular class of short LTRs retroelements.
Quality assessment of the TLS data in conservation of monuments
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub S.; Zawieska, Dorota
2015-06-01
Laser scanning has been recently confirming its high potential in the field of acquiring 3D data for architectural and engineering objects. The objective of this paper is to analyse the quality of the TLS data acquired for different surfaces of monumental objects, with consideration of distances and the scanning angles. Tests concerning the quality of the survey data and shapes of architectural objects, characterised by diversified curvature, structure and the uniformity of the surface, were performed. The obtained results proved that utilisation of terrestrial laser scanning techniques does not allow to achieve expected accuracy for some historical surfaces and it should be substituted by alternative, photogrammetric techniques. Therefore, the typology of constructions of historical objects is important not only for selection of the optimum technique of surveys, but also for its appropriate utilisation. The test objects were architectural details of the Main Hall of the Warsaw University of Technology. Scans were acquired using the 5006h scanner. Diversified geometry of scans was tested, and the relations between the distance and obtained accuracy were specified. In the case of numerous conservational works the precise surface reconstruction is often important, in order to specify damages. Therefore, the repeatability of obtained TLS results for selected surfaces was also tested. Different surfaces were analysed, which are composed of different materials having glittery elements and inhomogeneous structure. The obtained results and performed analyses revealed the high imperfections of the TLS technique applied for measuring surfaces of historical objects. The presented accuracy of measurements of projection of historical surfaces, obtained using the TLS technique may be applied by art conservators, museum professionals, archaeologists and other specialists, to perform wide analyses of historical heritage objects.
Conservation genetics of the rare Pyreneo-Cantabrian endemic Aster pyrenaeus (Asteraceae)
Escaravage, Nathalie; Cambecèdes, Jocelyne; Largier, Gérard; Pornon, André
2011-01-01
Background and aims Aster pyrenaeus (Asteraceae) is an endangered species, endemic to the Pyrenees and Cantabrian Mountain ranges (Spain). For its long-term persistence, this taxon needs an appropriate conservation strategy to be implemented. In this context, we studied the genetic structure over the entire geographical range of the species and then inferred the genetic relationships between populations. Methodology Molecular diversity was analysed for 290 individuals from 12 populations in the Pyrenees and the Cantabrian Mountains using inter simple sequence repeats (ISSRs). Bayesian-based analysis was applied to examine population structure. Principal results Analysis of genetic similarity and diversity, based on 87 polymorphic ISSR markers, suggests that despite being small and isolated, populations have an intermediate genetic diversity level (P % = 52.8 %, HE = 0.21 ± 0.01, genetic similarity between individuals = 49.6 %). Genetic variation was mainly found within populations (80–84 %), independently of mountain ranges, whereas 16–18 % was found between populations and <5 % between mountain ranges. Analyses of molecular variance indicated that population differentiation was highly significant. However, no significant correlation was found between the genetic and geographical distances among populations (Rs = 0.359, P = 0.140). Geographical structure based on assignment tests identified five different gene pools that were independent of any particular structure in the landscape. Conclusions The results suggest that population isolation is probably relatively recent, and that the outbreeding behaviour of the species maintains a high within-population genetic diversity. We assume that some long-distance dispersal, even among topographically remote populations, may be determinant for the pattern of genetic variation found in populations. Based on these findings, strategies are proposed for genetic conservation and management of the species. PMID:22476499
Xue, Yufei; Chen, Baojun; Wang, Rui; Win, Aung Naing; Li, Jiana; Chai, Yourong
2018-02-01
Rapeseed (Brassica napus) is an important oilseed crop worldwide, and fatty acid (FA) compositions determine the nutritional and economic value of its seed oil. Fatty acid desaturases (FADs) play a pivotal role in regulating FA compositions, but to date, no comprehensive genome-wide analysis of FAD gene family in rapeseed and its parent species has been reported. In this study, using homology searches, 84, 45, and 44 FAD genes were identified in rapeseed, Brassica rapa, and Brassica oleracea genomes, respectively. These FAD genes were unevenly located in 17 chromosomes and 2 scaffolds of rapeseed, 9 chromosomes and 1 scaffold of B. rapa, and all the chromosomes of B. oleracea. Phylogenetic analysis showed that the soluble and membrane-bound FADs in the three Brassica species were divided into four and six subfamilies, respectively. Generally, the soluble FADs contained two conserved histidine boxes, while three highly conserved histidine boxes were harbored in membrane-bound FADs. Exon-intron structure, intron phase, and motif composition and position were highly conserved in each FAD subfamily. Putative subcellular locations of FAD proteins in three Brassica species were consistent with those of corresponding known FADs. In total, 25 of simple sequence repeat (SSR) loci were found in FAD genes of the three Brassica species. Transcripts of selected FAD genes in the three species were examined in various organs/tissues or stress treatments from NCBI expressed sequence tag (EST) database. This study provides a critical molecular basis for quality improvement of rapeseed oil and facilitates our understanding of key roles of FAD genes in plant growth and development and stress response.
Cassandra retrotransposons carry independently transcribed 5S RNA
Kalendar, Ruslan; Tanskanen, Jaakko; Chang, Wei; Antonius, Kristiina; Sela, Hanan; Peleg, Ofer; Schulman, Alan H.
2008-01-01
We report a group of TRIMs (terminal-repeat retrotransposons in miniature), which are small nonautonomous retrotransposons. These elements, named Cassandra, universally carry conserved 5S RNA sequences and associated RNA polymerase (pol) III promoters and terminators in their long terminal repeats (LTRs). They were found in all vascular plants investigated. Uniquely for LTR retrotransposons, Cassandra produces noncapped, polyadenylated transcripts from the 5S pol III promoter. Capped, read-through transcripts containing Cassandra sequences can also be detected in RNA and in EST databases. The predicted Cassandra RNA 5S secondary structures resemble those for cellular 5S rRNA, with high information content specifically in the pol III promoter region. Genic integration sites are common for Cassandra, an unusual feature for abundant retrotransposons. The 5S in each LTR produces a tandem 5S arrangement with an inter-5S spacing resembling that of cellular 5S. The distribution of 5S genes is very variable in flowering plants and may be partially explained by Cassandra activity. Cassandra thus appears both to have adapted a ubiquitous cellular gene for ribosomal RNA for use as a promoter and to parasitize an as-yet-unidentified group of retrotransposons for the proteins needed in its lifecycle. PMID:18408163
Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism
NASA Astrophysics Data System (ADS)
Cagno, Valeria; Andreozzi, Patrizia; D'Alicarnasso, Marco; Jacob Silva, Paulo; Mueller, Marie; Galloux, Marie; Le Goffic, Ronan; Jones, Samuel T.; Vallino, Marta; Hodek, Jan; Weber, Jan; Sen, Soumyo; Janeček, Emma-Rose; Bekdemir, Ahmet; Sanavio, Barbara; Martinelli, Chiara; Donalisio, Manuela; Rameix Welti, Marie-Anne; Eleouet, Jean-Francois; Han, Yanxiao; Kaiser, Laurent; Vukovic, Lela; Tapparel, Caroline; Král, Petr; Krol, Silke; Lembo, David; Stellacci, Francesco
2018-02-01
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (~190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
Shwartz, Assaf; Cosquer, Alix; Jaillon, Alexandre; Piron, Armony; Julliard, Romain; Raymond, Richard; Simon, Laurent; Prévot-Julliard, Anne-Caroline
2012-01-01
Urban conservation education programs aim to increase knowledge and awareness towards biodiversity and to change attitudes and behaviour towards the environment. However, to date, few urban conservation education studies have evaluated to what extent these programs have managed to achieve their goals. In this study, we experimentally explored the influence of an urban conservation activity day on individual knowledge, awareness and actions towards biodiversity, in both the short and longer term.We organised three activity days in Paris (France), during which people were invited to participate in urban conservation efforts. Both quantitative (questionnaire) and qualitative (interviews) methods were employed to investigate the influence of this short urban nature experience on the relationships that city-dwellers develop with nearby biodiversity. We found a strong positive correlation between the levels of participation and an immediate interest towards local urban biodiversity. In the longer term, however, although participants claimed to have gained more knowledge, local awareness and interest for species in their daily environment, they did not seem to extend this interest to participating in other related activities. These results highlight the complexity of validating the effectiveness of this type of education program for achieving conservation goals. Although such a short activity may only have a limited environmental impact, it nevertheless seems to increase people's knowledge, awareness, interest and concern. We therefore believe that when repeated locally, these short conservation education programs could enhance people's experience with nature in cities and achieve conservation goals more fully.
Jaillon, Alexandre; Piron, Armony; Julliard, Romain; Raymond, Richard; Simon, Laurent; Prévot-Julliard, Anne-Caroline
2012-01-01
Urban conservation education programs aim to increase knowledge and awareness towards biodiversity and to change attitudes and behaviour towards the environment. However, to date, few urban conservation education studies have evaluated to what extent these programs have managed to achieve their goals. In this study, we experimentally explored the influence of an urban conservation activity day on individual knowledge, awareness and actions towards biodiversity, in both the short and longer term. We organised three activity days in Paris (France), during which people were invited to participate in urban conservation efforts. Both quantitative (questionnaire) and qualitative (interviews) methods were employed to investigate the influence of this short urban nature experience on the relationships that city-dwellers develop with nearby biodiversity. We found a strong positive correlation between the levels of participation and an immediate interest towards local urban biodiversity. In the longer term, however, although participants claimed to have gained more knowledge, local awareness and interest for species in their daily environment, they did not seem to extend this interest to participating in other related activities. These results highlight the complexity of validating the effectiveness of this type of education program for achieving conservation goals. Although such a short activity may only have a limited environmental impact, it nevertheless seems to increase people's knowledge, awareness, interest and concern. We therefore believe that when repeated locally, these short conservation education programs could enhance people's experience with nature in cities and achieve conservation goals more fully. PMID:22715403
Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge
2016-04-01
The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.
The changing fates of the world's mammals
Hoffmann, Michael; Belant, Jerrold L.; Chanson, Janice S.; Cox, Neil A.; Lamoreux, John; Rodrigues, Ana S. L.; Schipper, Jan; Stuart, Simon N.
2011-01-01
A recent complete assessment of the conservation status of 5487 mammal species demonstrated that at least one-fifth are at risk of extinction in the wild. We retrospectively identified genuine changes in extinction risk for mammals between 1996 and 2008 to calculate changes in the International Union for Conservation of Nature (IUCN) Red List Index (RLI). Species-level trends in the conservation status of mammalian diversity reveal that extinction risk in large-bodied species is increasing, and that the rate of deterioration has been most accelerated in the Indomalayan and Australasian realms. Expanding agriculture and hunting have been the main drivers of increased extinction risk in mammals. Site-based protection and management, legislation, and captive-breeding and reintroduction programmes have led to improvements in 24 species. We contextualize these changes, and explain why both deteriorations and improvements may be under-reported. Although this study highlights where conservation actions are leading to improvements, it fails to account for instances where conservation has prevented further deteriorations in the status of the world's mammals. The continued utility of the RLI is dependent on sustained investment to ensure repeated assessments of mammals over time and to facilitate future calculations of the RLI and measurement against global targets. PMID:21844039
Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source
NASA Astrophysics Data System (ADS)
Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.
2009-06-01
By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.
Energy and maximum norm estimates for nonlinear conservation laws
NASA Technical Reports Server (NTRS)
Olsson, Pelle; Oliger, Joseph
1994-01-01
We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.
Calhoun, Aram J K; Jansujwicz, Jessica S; Bell, Kathleen P; Hunter, Malcolm L
2014-07-29
Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary.
CRISPR Diversity and Microevolution in Clostridium difficile.
Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe
2016-09-19
Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes.
Kawaguchi, Mari; Yasumasu, Shigeki; Shimizu, Akio; Sano, Kaori; Iuchi, Ichiro; Nishida, Mutsumi
2010-12-01
We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved. © 2010 The Authors Journal compilation © 2010 FEBS.
Nunes, C F; Setotaw, T A; Pasqual, M; Chagas, E A; Santos, E G; Santos, D N; Lima, C G B; Cançado, G M A
2017-03-22
Myrciaria dubia (camu-camu) is an Amazon tree that produces a tart fruit with high vitamin C content. It is probably the fruit with the highest vitamin C content among all Brazilian fruit crops and it can be used to supplement daily vitamin C dose. This property has attracted the attention of consumers and, consequently, encouraged fruit farmers to produce it. In order to identify and select potential accessions for commercial exploitation and breeding programs, M. dubia has received considerable research attention. The identification and characterization of genetic diversity, as well as identification of the population structure of accessions preserved in germplasm banks are fundamental for the success of any breeding program. The objective of this study was to evaluate the genetic variability of 10 M. dubia populations obtained from the shores of Reis Lake, located in the municipality of Caracaraí, Roraima, Brazil. Fourteen polymorphic inter simple sequence repeat (ISSR) markers were used to study the population genetic diversity, which resulted in 108 identified alleles. Among the 14 primers, GCV, UBC810, and UBC827 produced the highest number of alleles. The study illustrated the suitability and efficiency of ISSR markers to study the genetic diversity of M. dubia accessions. We also revealed the existence of high genetic variability among both accessions and populations that can be exploited in future breeding programs and conservation activities of this species.
Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.
Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X
2016-06-10
Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity.
van der Vossen, E A; van der Voort, J N; Kanyuka, K; Bendahmane, A; Sandbrink, H; Baulcombe, D C; Bakker, J; Stiekema, W J; Klein-Lankhorst, R M
2000-09-01
The isolation of the nematode-resistance gene Gpa2 in potato is described, and it is demonstrated that highly homologous resistance genes of a single resistance-gene cluster can confer resistance to distinct pathogen species. Molecular analysis of the Gpa2 locus resulted in the identification of an R-gene cluster of four highly homologous genes in a region of approximately 115 kb. At least two of these genes are active: one corresponds to the previously isolated Rx1 gene that confers resistance to potato virus X, while the other corresponds to the Gpa2 gene that confers resistance to the potato cyst nematode Globodera pallida. The proteins encoded by the Gpa2 and the Rx1 genes share an overall homology of over 88% (amino-acid identity) and belong to the leucine-zipper, nucleotide-binding site, leucine-rich repeat (LZ-NBS-LRR)-containing class of plant resistance genes. From the sequence conservation between Gpa2 and Rx1 it is clear that there is a direct evolutionary relationship between the two proteins. Sequence diversity is concentrated in the LRR region and in the C-terminus. The putative effector domains are more conserved suggesting that, at least in this case, nematode and virus resistance cascades could share common components. These findings underline the potential of protein breeding for engineering new resistance specificities against plant pathogens in vitro.
DYF-1 Is Required for Assembly of the Axoneme in Tetrahymena thermophila▿ †
Dave, Drashti; Wloga, Dorota; Sharma, Neeraj; Gaertig, Jacek
2009-01-01
In most cilia, the axoneme can be subdivided into three segments: proximal (the transition zone), middle (with outer doublet microtubules), and distal (with singlet extensions of outer doublet microtubules). How the functionally distinct segments of the axoneme are assembled and maintained is not well understood. DYF-1 is a highly conserved ciliary protein containing tetratricopeptide repeats. In Caenorhabditis elegans, DYF-1 is specifically needed for assembly of the distal segment (G. Ou, O. E. Blacque, J. J. Snow, M. R. Leroux, and J. M. Scholey. Nature. 436:583-587, 2005). We show that Tetrahymena cells lacking an ortholog of DYF-1, Dyf1p, can assemble only extremely short axoneme remnants that have structural defects of diverse natures, including the absence of central pair and outer doublet microtubules and incomplete or absent B tubules on the outer microtubules. Thus, in Tetrahymena, DYF-1 is needed for either assembly or stability of the entire axoneme. Our observations support the conserved function for DYF-1 in axoneme assembly or stability but also show that the consequences of loss of DYF-1 for axoneme segments are organism specific. PMID:19581442
XIE, GUO-WEN; WANG, DE-LIAN; YUAN, YONG-MING; GE, XUE-JUN
2005-01-01
• Background and Aims Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. • Methods One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). • Key Results A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp = 0·183) and at the population level (Ipop = 0·083). High clonal diversity (D = 0·997) was found, and strong genetic differentiation among populations was detected (49·06 %). • Conclusions Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species. PMID:15710646
Dollet, M; Sturm, N R; Sánchez-Moreno, M; Campbell, D A
2000-01-01
Trypanosomatids isolated from plants have been assigned typically into the genus Phytomonas. Such designations do not reflect the biology of the diverse isolates; confusion may arise due to the transient presence in plants of monogenetic (insect) trypanosomatids deposited by phytophagous bugs. To develop further molecular markers for the plant kinetoplastids, we have obtained the DNA sequence of the 5S ribosomal RNA gene from 24 isolates harvested from phloem, latex, and fruit. Small, distinct sequence differences were found at the 3'-ends of the transcribed regions; substantial sequence and size differences were found in the non-transcribed regions. Alignment of the gene sequences from all the isolates suggested the presence of eight groupings. While six groups contained isolates from single plant tissues, groups C and A contained isolates from both fruit and latex. The DNA sequences of the 10 phloem-restricted pathogenic isolates from South America and the Carribean were highly conserved and thus comprised a single group (H). The conserved nature of the 5S ribosomal RNA genes in these plant pathogens supports the proposal that they be considered as a distinct section, the phloemicola.
Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji
2007-01-01
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions
Freites, J. Alfredo; Tobias, Douglas J.
2015-01-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na+, K+, Ca2+, and H+ selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1–S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here. PMID:25972106
Lopes, Maria S; Mendonça, Duarte; Bettencourt, Sílvia X; Borba, Ana R; Melo, Catarina; Baptista, Cláudio; da Câmara Machado, Artur
2014-06-26
Knowledge of the levels and distribution of genetic diversity is important for designing conservation strategies for threatened and endangered species so as to guarantee sustainable survival of populations and to preserve their evolutionary potential. Picconia azorica is a valuable Azorean endemic species recently classified as endangered. To contribute with information useful for the establishment of conservation programmes, the genetic variability and differentiation among 230 samples from 11 populations collected in three Azorean islands was accessed with eight inter-simple sequence repeat markers. A total of 64 polymorphic loci were detected. The majority of genetic variability was found within populations and no genetic structure was detected between populations and between islands. Also the coefficient of genetic differentiation and the level of gene flow indicate that geographical distances do not act as barriers for gene flow. In order to ensure the survival of populations in situ and ex situ management practices should be considered, including artificial propagation through the use of plant tissue culture techniques, not only for the restoration of habitat but also for the sustainable use of its valuable wood. Published by Oxford University Press on behalf of the Annals of Botany Company.
Centromeres: long intergenic spaces with adaptive features.
Kanizay, Lisa; Dawe, R Kelly
2009-08-01
Centromeres are composed of inner kinetochore proteins, which are largely conserved across species, and repetitive DNA, which shows comparatively little sequence conservation. Due to this fundamental paradox the formation and maintenance of centromeres remains largely a mystery. However, it has become increasingly clear that a long-standing balance between epigenetic and genetic control governs the interactions of centromeric DNA and inner kinetochore proteins. The comparison of classical neocentromeres in plants, which are entirely genetic in their mode of operation, and clinical neocentromeres, which are sequence-independent, illustrates the conflict between genetics and epigenetics in regions that control their own transmission to progeny. Tandem repeat arrays present in centromeres may have an origin in meiotic drive or other selfish patterns of evolution, as is the case for the CENP-B box and CENP-B protein in human. In grasses retrotransposons have invaded centromeres to the point of complete domination, consequently breaking genetic regulation at these centromeres. The accumulation of tandem repeats and transposons causes centromeres to expand in size, effectively pushing genes to the sides and opening the centromere to ever fewer constraints on the DNA sequence. On genetic maps centromeres appear as long intergenic spaces that evolve rapidly and apparently without regard to host fitness.
Conservation of Protists: The Krauthügel Pond in Austria.
Cotterill, Fenton P D; Augustin, Hannes; Medicus, Reinhard; Foissner, Wilhelm
2013-06-01
Although constituting more than 100,000 described species, protists are virtually ignored within the arena of biodiversity conservation. One reason is the widespread belief that the majority of protists have cosmopolitan distributions, in contrast to the highly hetereogenous biogeography of the "mega-Metazoa". However, modern research reveals that about one third of the known protists have restricted distributions, which endorses their conservation, at least in special cases. Here, we report what probably ranks as the first successful conservation intervention focused directly on known protist diversity. It is justified by unique species, type localities, and landscape maintenance as evidence for legislation. The protected habitat comprises an ephemeral pond, which is now a "Natural Monument" for ciliated protozoa. This wetland occupies a natural depression on the Krauthügel ("cabbage hill") south of the fortress of Salzburg City. When filled, the claviform pond has a size of ~30 × 15 m and a depth rarely surpassing 30 cm. Water is present only for some days or weeks, depending on heavy and/or prolonged rain. The pond occupied an agricultural field where root and leafy vegetables were cultivated for possibly more than 200 years. In the 1960s, this area became a grassland utilized as an autumn pasture, but was abandoned in the 1990s. Repeated sampling between 1982 and 2012 recovered a total of at least 150 ciliate taxa, of which 121 were identified to species level. Eight species were new to science, and an additional 10 poorly known species were reinvestigated and neotypified with populations from the Krauthügel pond. Both endemism and type localities justify the argument that the "integrative approach" in biodiversity and conservation issues should include protists and micro-metazoans. We argue that Krauthügel holds a unique reference node for biodiversity inventories to obtain the baseline knowledge-which is the prerequisite to monitor ecosystem integrity-and detect and evaluate impacts of natural and anthropogenic disturbances.
Zattas, Dimitrios; Berk, Jason M; Kreft, Stefan G; Hochstrasser, Mark
2016-06-03
Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Global protected area expansion is compromised by projected land-use and parochialism.
Montesino Pouzols, Federico; Toivonen, Tuuli; Di Minin, Enrico; Kukkala, Aija S; Kullberg, Peter; Kuusterä, Johanna; Lehtomäki, Joona; Tenkanen, Henrikki; Verburg, Peter H; Moilanen, Atte
2014-12-18
Protected areas are one of the main tools for halting the continuing global biodiversity crisis caused by habitat loss, fragmentation and other anthropogenic pressures. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To maximize conservation outcomes, it is crucial to identify the best expansion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the protected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) 'red list of threatened species', and terrestrial ecoregions (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial conservation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evidence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering current and projected land-use pressures.
Fourteen polymorphic microsatellite markers for the threatened Arnica montana (Asteraceae)1
Duwe, Virginia K.; Ismail, Sascha A.; Buser, Andres; Sossai, Esther; Borsch, Thomas; Muller, Ludo A. H.
2015-01-01
• Premise of the study: Microsatellite markers were developed to investigate population genetic structure in the threatened species Arnica montana. • Methods and Results: Fourteen microsatellite markers with di-, tetra-, and hexanucleotide repeat motifs were developed for A. montana using 454 pyrosequencing without and with library-enrichment methods, resulting in 56,545 sequence reads and 14,467 sequence reads, respectively. All loci showed a high level of polymorphism, with allele numbers ranging from four to 11 in five individuals from five populations (25 samples) and an expected heterozygosity ranging from 0.192 to 0.648 across the loci. • Conclusions: This set of microsatellite markers is the first one described for A. montana and will facilitate conservation genetic applications as well as the understanding of phylogeographic patterns in this species. PMID:25606354
Reducing the uncertainty in robotic machining by modal analysis
NASA Astrophysics Data System (ADS)
Alberdi, Iñigo; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde
2017-10-01
The use of industrial robots for machining could lead to high cost and energy savings for the manufacturing industry. Machining robots offer several advantages respect to CNC machines such as flexibility, wide working space, adaptability and relatively low cost. However, there are some drawbacks that are preventing a widespread adoption of robotic solutions namely lower stiffness, vibration/chatter problems and lower accuracy and repeatability. Normally due to these issues conservative cutting parameters are chosen, resulting in a low material removal rate (MRR). In this article, an example of a modal analysis of a robot is presented. For that purpose the Tap-testing technology is introduced, which aims at maximizing productivity, reducing the uncertainty in the selection of cutting parameters and offering a stable process free from chatter vibrations.
The many blades of the β-propeller proteins: conserved but versatile.
Chen, Cammy K-M; Chan, Nei-Li; Wang, Andrew H-J
2011-10-01
The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nipah virus matrix protein: expert hacker of cellular machines.
Watkinson, Ruth E; Lee, Benhur
2016-08-01
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.
Wan, Jizhong; Wang, Chunjing; Yu, Jinghua; Nie, Siming; Han, Shijie; Zu, Yuangang; Chen, Changmei; Yuan, Shusheng; Wang, Qinggui
2014-01-01
Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change. PMID:25165526
Wiemeyer, Guillermo M; Pérez, Miguel A; Torres Bianchini, Laura; Sampietro, Luciano; Bravo, Guillermo F; Jácome, N Luis; Astore, Vanesa; Lambertucci, Sergio A
2017-01-01
Wildlife lead exposure is an increasing conservation threat that is being widely investigated. However, for some areas of the world (e.g., South America) and certain species, research on this subject is still scarce or only local information is available. We analyzed the extent and intensity of lead exposure for a widely distributed threatened species, the Andean Condor (Vultur gryphus). We conducted the study at two different scales: 1) sampling of birds received for rehabilitation or necropsy in Argentina, and 2) bibliographic review and extensive survey considering exposure event for the species' distribution in South America. Wild condors from Argentina (n = 76) presented high lead levels consistent with both recent and previous exposure (up to 104 μg/dL blood level, mean 15.47 ± 21.21 μg/dL and up to 148.20 ppm bone level, mean 23.08 ± 31.39 ppm). In contrast, captive bred individuals -not exposed to lead contamination- had much lower lead levels (mean blood level 5.63 ± 3.08 μg/dL, and mean bone level 2.76 ± 3.06 ppm). Condors were exposed to lead throughout their entire range in continental Argentina, which represents almost sixty percent (>4000 km) of their geographical distribution. We also present evidence of lead exposure events in Chile, Ecuador, and Peru. Lead poisoning is a widespread major conservation threat for the Andean Condor, and probably other sympatric carnivores from South America. The high number and wide range of Andean Condors with lead values complement the results for the California Condor and other scavengers in North America suggesting lead poisoning is a continental threat. Urgent actions are needed to reduce this poison in the wild. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plucienniczak, A; Schroeder, E; Zettlmeissl, G; Streeck, R E
1985-01-01
The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription. PMID:2987815
Zuccolo, Andrea; Scofield, Douglas G; De Paoli, Emanuele; Morgante, Michele
2015-08-15
Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms. Copyright © 2015 Elsevier B.V. All rights reserved.
If cytology of Warthin tumor is accurate, can management be conservative?
Vlantis, Alexander C; Ng, Siu Kwan; Mak, Chi Keung; Cheung, Jackie M; Chan, Amy B; van Hasselt, C Andrew
2016-01-01
We conducted a retrospective study to assess the accuracy of fine-needle aspiration cytology (FNAC) in the diagnosis of Warthin tumor and to evaluate the subsequent risk of conservative nonsurgical management. We reviewed the records of 75 patients (76 tumors) with a parotid mass that had been diagnosed as a Warthin tumor by FNAC. This patient population was made up of 64 men and 11 women, aged 46 to 93 years (mean: 67). Of the 76 tumors, 40 were treated with surgical excision and 36 with conservative measures. Histology of the 40 excised parotid masses revealed that 38 (95%) were indeed Warthin tumors, 1 (2.5%) was a low-grade adenocarcinoma, and 1 was benign-not otherwise specified. None of the 36 tumors underwent malignant transformation either clinically or on repeat FNAC (if performed) during a follow-up of 4 to 120 months (mean: 55.5 ± 32.2). We conclude that conservative management of Warthin tumors confidently diagnosed on FNAC may be an option for patients who are unwilling or unable to undergo surgical excision.
Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai
2013-08-01
To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.
Divergence and evolution of homologous regions of Bombyx mori nuclear polyhedrosis virus.
Majima, K; Kobara, R; Maeda, S
1993-01-01
Homologous regions (hrs) (hr1,hr2-left,hr2-right,hr3,hr4-left,hr 4-right, and hr5) similar to those found in the Autographa californica nuclear polyhedrosis virus (AcNPV) genome were found in the Bombyx mori NPV (BmNPV) genome. The BmNPV hrs contained two to eight repeats of a homologous nucleotide sequence which were on average about 75 bp long. All of these homologous sequence repeats contained a 26-bp-long palindrome motif with an EcoRI or EcoRI-like site at its core. The consensus sequence of the BmNPV hrs showed 95% conservation with respect to those found in AcNPV. Nucleotide sequence analysis indicated that hr2-left and hr2-right of BmNPV evolved from an ancestor similar to hr2 of AcNPV by inversion, cleavage, and ligation. The polarities of the BmNPV and AcNPV hrs were conserved except for that of hr4-left. Within hr4-right of BmNPV, four repeats of a previously underscribed palindrome motif were found. Bmhr5D, a BmNPV mutant which lacked hr5, replicated at a rate similar to that of wild-type BmNPV in BmN cells and silkworm larvae, indicating that hr5 was not essential for viral replication. After ten passages of Bmhr5D in BmN cells, no detectable changes in its genome were observed by restriction endonuclease analysis. The evolution and divergence of the BmNPV genome are also discussed. Images PMID:8230471
The neural correlates of trait resilience when anticipating and recovering from threat
Waugh, Christian E.; Wager, Tor D.; Fredrickson, Barbara L.; Noll, Doug C.; Taylor, Stephan F.
2008-01-01
A facet of emotional resilience critical for adapting to adversity is flexible use of emotional resources. We hypothesized that in threatening situations, this emotional flexibility enables resilient people to use emotional resources during appropriately emotional events, and conserve emotional resources during innocuous events. We tested this hypothesis using functional magnetic resonance imaging in a repeated recovery from threat task with low- and high-trait resilient individuals (LowR and HighR, respectively, as measured by ER89). In an event-related design, 13 HighR and 13 LowR participants viewed ‘threat’ cues, which signaled either an aversive or neutral picture with equal probabilities, or ‘nonthreat’ cues, which signaled a neutral picture. Results show that when under threat, LowR individuals exhibited prolonged activation in the anterior insula to both the aversive and neutral pictures, whereas HighR individuals exhibited insula activation only to the aversive pictures. These data provide neural evidence that in threatening situations, resilient people flexibly and appropriately adjust the level of emotional resources needed to meet the demands of the situation. PMID:19015078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchman, M.; Lin, B.; Nasir, J.
1994-09-01
The mouse homologue of the Huntington disease gene (Hdh) has recently been cloned and mapped to a region of synteny with the human, on mouse chromosome 5. The two genes share a high degree of both coding (90% amino acid) and nucleotide (86.2%) identity. We have subsequently performed a detailed comparison of the genomic organization of the 5{prime} region of the two genes encompassing the promoter region and first five exons of both the human and mouse genes. The comparative sequence analysis of the promoter region between HD and Hdh reveals two highly conserved regions. One region (-56 to -118)more » (+1 is the ATG start codon), shared 84% nucleotide identity and another region (-130 to -206) had 81% nucleotide identity. Nine putative Sp1 sites appear in the human promoter region contrasted with only 3 in a similar region in the mouse. Furthermore, 17 and 20 base pair direct repeats present in the HD 5{prime} region are absent in the similar Hdh region. Although both the mouse and human intron/exon boundaries conform to the GT/AG rule, the intron sizes between HD and Hdh are markedly different. The first four introns in Hdh are 15, 7, 5 and 0.5 kb compared to sizes of 10, 15, 7 and 0.5 kb, respectively. Comparison between the mouse and human intronic sequences immediately adjacent to the first five exons (excluding exon 1) reveals only about 46 to 50% identity within the first 60 bp of intronic sequence. Furthermore, we have identified novel polymorphic di-, tri- and tetra-nucleotide repeats in Hdh introns of various mouse strains that are not present in the human. For example, polymorphic CT repeats are present in introns 2 and 4 of Hdh and a novel mouse 56 AAG trinucleotide repeat (interrupted by an AAGG) is also located within intron 2. This information concerning the promoter and genomic organization of both HD and Hdh is critical for designing appropriate gene targetting vectors for studying the normal function of the HD and Hdh genes in model systems.« less
Timing of surgery for sciatica: subgroup analysis alongside a randomized trial
Arts, Mark P.; Brand, Ronald; Koes, Bart W.
2009-01-01
Surgery speeds up recovery for sciatica. Prolonged conservative care with surgery for those patients with persistent sciatica however, yields similar results at 1 year. To investigate whether baseline variables modify the difference in recovery rates between these treatment strategies, baseline data of 283 patients enrolled in a randomized trial, comparing early surgery with prolonged conservative care, were used to analyse effect modification of the allotted treatment strategy. For predictors shown to modify the effect of the treatment strategy, repeated measurement analyses with the Roland Disability Questionnaire and visual analogue scale pain as continuous outcomes were performed for every level of that predictor. Presumed predictive variables did not have any interaction with treatment, while “sciatica provoked by sitting” showed to be a significant effect modifier (P = 0.07). In a Cox model we estimated a hazard ratio (HR, surgery versus conservative) of 2.2 (95% CI 1.7–3.0) in favour of surgery when sciatica was provoked by sitting, while the HR was 1.3 (95% CI 0.8–2.2) when this sign was absent. The interaction effect is marginally significant (interactions are usually tested at the 10% level) but the patterns generated by the repeated measurement analyses of all primary outcomes are completely consistent with the inferred pattern from the survival analysis. Classical signs did not show any contribution as decision support tools in deciding when to operate for sciatica, whereas treatment effects of early surgery are emphasized when sciatica is provoked by sitting and negligible when this symptom is absent. PMID:19132412
Designing marine reserve networks for both conservation and fisheries management.
Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R
2010-10-26
Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.
Wei, Li; Xin, Yi; Wang, Dongmei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Jia, Jing; Ning, Kang; Chen, Feng; Hu, Qiang; Xu, Jian
2013-08-05
Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes. Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species. This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.
Calhoun, Aram J. K.; Jansujwicz, Jessica S.; Bell, Kathleen P.; Hunter, Malcolm L.
2014-01-01
Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social–ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science–policy boundary. PMID:25002496
High-speed and low-power repeater for VLSI interconnects
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Mallick, P. S.
2017-10-01
This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.
Genetic characterization of the UCS and Kex1 loci of Pneumocystis jirovecii.
Esteves, F; Tavares, A; Costa, M C; Gaspar, J; Antunes, F; Matos, O
2009-02-01
Nucleotide variation in the Pneumocystis jirovecii upstream conserved sequence (UCS) and kexin-like serine protease (Kex1) loci was studied in pulmonary specimens from Portuguese HIV-positive patients. DNA was extracted and used for specific molecular sequence analysis. The number of UCS tandem repeats detected in 13 successfully sequenced isolates ranged from three (9 isolates, 69%) to four (4 isolates, 31%). A novel tandem repeat pattern and two novel polymorphisms were detected in the UCS region. For the Kex1 gene, the wild-type (24 isolates, 86%) was the most frequent sequence detected among the 28 sequenced isolates. Nevertheless, a nonsynonymous (1 isolate, 3%) and three synonymous (3 isolates, 11%) polymorphisms were detected and are described here for the first time.
Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae).
Klabunde, Gustavo H F; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I; Nodari, Rubens O
2014-06-01
Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)-enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana.
Sequence and Analysis of the Tomato JOINTLESS Locus1
Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.
2001-01-01
A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984
Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations
Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi; ...
2016-07-18
We present Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and amore » conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling–Degos disease are clustered around the enzyme active site and adversely affect its activity. In conclusion, our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.« less
Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations
Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi; Liu, Qun; Kantharia, Joshua; Haltiwanger, Robert S.; Li, Huilin
2016-01-01
Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi’s critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary or ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism, and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling-Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling. PMID:27428513
A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102
NASA Astrophysics Data System (ADS)
Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng
2016-06-01
We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.
Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hongjun; Takeuchi, Hideyuki; Takeuchi, Megumi
We present Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and amore » conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling–Degos disease are clustered around the enzyme active site and adversely affect its activity. In conclusion, our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.« less
Evidence for an uncommon alpha-actinin protein in Trichomonas vaginalis.
Bricheux, G; Coffe, G; Pradel, N; Brugerolle, G
1998-09-15
As part of our ongoing project of identification of actin-binding proteins implicated in the cell transition (flagellate to amoeboid/adherent) of Trichomonas vaginalis, we have characterized an alpha-actinin-related protein in this parasite. The protein (P100) has a molecular mass of 100 kDa and an isoelectric point of 5.5. A monoclonal antibody raised against this protein co-localizes with the actin network. P100 gene transcripts are co-expressed with actin throughout the cell cycle. Analysis of the deduced protein sequence reveals three domains: an N-terminal actin-binding region; a central region rich in alpha-helix; and a C-terminal domain with Ca(2+)-binding capacity. Whereas the N- and C-terminal regions are well-conserved as compared to other alpha-actinins, we observe in the central region an atypical distribution of residues in five repeats. The sequence of the repeats does not show any homology with the rod domain of the other alpha-actinins, except for the first repeat which shows some similarity. The four other repeats of T. vaginalis P100 appear to result from a duplication event which is not detectable in the other sequences.
Restoring Forest Landscapes: Important Lessons Learnt
NASA Astrophysics Data System (ADS)
Mansourian, Stephanie; Vallauri, Daniel
2014-02-01
Forest restoration at large scales, or landscapes, is an approach that is increasingly relevant to the practice of environmental conservation. However, implementation remains a challenge; poor monitoring and lesson learning lead to similar mistakes being repeated. The World Wildlife Fund (WWF), the global conservation organization, recently took stock of its 10 years of implementation of forest landscape restoration. A significant body of knowledge has emerged from the work of the WWF and its partners in the different countries, which can be of use to the wider conservation community, but for this to happen, lessons need to be systematically collected and disseminated in a coherent manner to the broader conservation and development communities and, importantly, to policy makers. We use this review of the WWF's experiences and compare and contrast it with other relevant and recent literature to highlight 11 important lessons for future large-scale forest restoration interventions. These lessons are presented using a stepwise approach to the restoration of forested landscapes. We identify the need for long-term commitment and funding, and a concerted and collaborative effort for successful forest landscape restoration. Our review highlights that monitoring impact within landscape-scale forest restoration remains inadequate. We conclude that forest restoration within landscapes is a challenging yet important proposition that has a real but undervalued place in environmental conservation in the twenty-first century.
Wagner, Ulrike; Hirzmann, Jörg; Hintz, Martin; Beck, Ewald; Geyer, Rudolf; Hobom, Gerd; Taubert, Anja; Zahner, Horst
2011-04-01
Juv-p120 is an excretory-secretory 160 kDa glycoprotein of juvenile female Litomosoides sigmodontis and exhibits features typical for mucins. 50% of its molecular mass is attributed to posttranslational modifications with the unusual substituent dimethylaminoethanol (DMAE). By that Juv-p120 corresponds to the surface proteins of the microfilarial sheath, Shp3 and Shp3a. The secreted protein consists of 697 amino acids, organized in two different domains of repeat elements separated by a stretch of polar residues. The N-terminal domain shows fourteen P/S/T/F-rich repeat elements highly modified with phospho-DMAE substituted O-glycans confering a negative charge to the protein. The C-terminal domain is extremely rich in glutamine (35%) and leucine (25%) in less organized repeats and may play a role in oligomerization of Juv-p120 monomers. A protein family with a similar Q/L-rich region and conserved core promoter region was identified in Brugia malayi by homology screening and in Wuchereria bancrofti and Loa loa by database similarity search. One of the Q/L-rich proteins in each genus has an extended S/T-rich region and due to this feature is supposed to be a putative Juv-p120 ortholog. The corresponding modification of Juv-p120 and the microfilarial sheath surface antigens Shp3/3a explains the appearance of anti-sheath antibodies before the release of microfilariae. The function of Juv-p120 is unknown. Copyright © 2011 Elsevier B.V. All rights reserved.
Favaro, Francine P.; Alvizi, Lucas; Zechi-Ceide, Roseli M.; Bertola, Debora; Felix, Temis M.; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R.F.; Weiner, Andrea M.J.; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B.; Andersen, Gregers R.; McGowan, Simon J.; Wilkie, Andrew O.M.; Richieri-Costa, Antonio; de Almeida, Maria L.G.; Passos-Bueno, Maria Rita
2014-01-01
Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5′ untranslated region (5′ UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis. PMID:24360810
2010-01-01
Background RNA-binding proteins of the PUF family share a conserved domain consisting of tandemly repeated 36-40 amino acid motifs (typically eight) known as Puf repeats. Proteins containing tandem repeats are often dominant targets of humoral responses during infectious diseases. Thus, we considered of interest to analyze whether Leishmania PUF proteins result antigenic during visceral leishmaniasis (VL). Findings Here, employing whole-genome databases, we report the composition, and structural features, of the PUF family in Leishmania infantum. Additionally, the 10 genes of the L. infantum PUF family were cloned and used to express the Leishmania PUFs in bacteria as recombinant proteins. Finally, the antigenicity of these PUF proteins was evaluated by determining levels of specific antibodies in sera from experimentally infected hamsters. The Leishmania PUFs were all recognized by the sera, even though with different degree of reactivity and/or frequency of recognition. The reactivity of hamster sera against recombinant LiPUF1 and LiPUF2 was particularly prominent, and these proteins were subsequently assayed against sera from human patients. High antibody responses against rLiPUF1 and rLiPUF2 were found in sera from VL patients, but these proteins resulted also recognized by sera from Chagas' disease patients. Conclusion Our results suggest that Leishmania PUFs are targets of the humoral response during L. infantum infection and may represent candidates for serodiagnosis and/or vaccine reagents; however, it should be kept in mind the cross-reactivity of LiPUFs with antibodies induced against other trypanosomatids such as Trypanosoma cruzi. PMID:20180988
Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne
2018-06-01
Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.
Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana
2014-01-01
Background Pre-exposing plants to diverse abiotic stresses may alter their physiological and transcriptional responses to a subsequent stress, suggesting a form of “stress memory”. Arabidopsis thaliana plants that have experienced multiple exposures to dehydration stress display transcriptional behavior suggesting “memory” from an earlier stress. Genes that respond to a first stress by up-regulating or down-regulating their transcription but in a subsequent stress provide a significantly different response define the ‘memory genes’ category. Genes responding similarly to each stress form the ‘non-memory’ category. It is unknown whether such memory responses exists in other Angiosperm lineages and whether memory is an evolutionarily conserved response to repeated dehydration stresses. Results Here, we determine the transcriptional responses of maize (Zea mays L.) plants that have experienced repeated exposures to dehydration stress in comparison with plants encountering the stress for the first time. Four distinct transcription memory response patterns similar to those displayed by A. thaliana were revealed. The most important contribution is the evidence that monocot and eudicot plants, two lineages that have diverged 140 to 200 M years ago, display similar abilities to ‘remember’ a dehydration stress and to modify their transcriptional responses, accordingly. The highly sensitive RNA-Seq analyses allowed to identify genes that function similarly in the two lineages, as well as genes that function in species-specific ways. Memory transcription patterns indicate that the transcriptional behavior of responding genes under repeated stresses is different from the behavior during an initial dehydration stress, suggesting that stress memory is a complex phenotype resulting from coordinated responses of multiple signaling pathways. Conclusions Structurally related genes displaying the same memory responses in the two species would suggest conservation of the genes’ memory during the evolution of plants’ dehydration stress response systems. On the other hand, divergent transcription memory responses by genes encoding similar functions would suggest occurrence of species-specific memory responses. The results provide novel insights into our current knowledge of how plants respond to multiple dehydration stresses, as compared to a single exposure, and may serve as a reference platform to study the functions of memory genes in adaptive responses to water deficit in monocot and eudicot plants. PMID:24885787
Randall, Lea A; Smith, Des H V; Jones, Breana L; Prescott, David R C; Moehrenschlager, Axel
2015-01-01
A detailed understanding of the population dynamics of many amphibian species is lacking despite concerns about declining amphibian biodiversity and abundance. This paper explores temporal patterns of occupancy and underlying extinction and colonization dynamics in a regionally imperiled amphibian species, the Northern leopard frog (Lithobates pipiens) in Alberta. Our study contributes to elucidating regional occupancy dynamics at northern latitudes, where climate extremes likely have a profound effect on seasonal occupancy. The primary advantage of our study is its wide geographic scale (60,000 km2) and the use of repeat visual surveys each spring and summer from 2009-2013. We find that occupancy varied more dramatically between seasons than years, with low spring and higher summer occupancy. Between spring and summer, colonization was high and extinction low; inversely, colonization was low and extinction high over the winter. The dynamics of extinction and colonization are complex, making conservation management challenging. Our results reveal that Northern leopard frog occupancy was constant over the last five years and thus there is no evidence of decline or recovery within our study area. Changes to equilibrium occupancy are most sensitive to increasing colonization in the spring or declining extinction in the summer. Therefore, conservation and management efforts should target actions that are likely to increase spring colonization; this could be achieved through translocations or improving the quality or access to breeding habitat. Because summer occupancy is already high, it may be difficult to improve further. Nevertheless, summer extinction could be reduced by predator control, increasing water quality or hydroperiod of wetlands, or increasing the quality or quantity of summer habitat.
The genome sequence of the model ascomycete fungus Podospora anserina
Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Ségurens, Béatrice; Poulain, Julie; Anthouard, Véronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Déquard-Chablat, Michelle; Picard, Marguerite; Contamine, Véronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Véronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne GJ; Henrissat, Bernard; Khoury, Riyad EL; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarré, Bérangère; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe
2008-01-01
Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope. PMID:18460219
van der Ploeg, Jan R.
2005-01-01
In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160
An experimental analysis of electricity conservation procedures1
Palmer, Michael H.; Lloyd, Margaret E.; Lloyd, Kenneth E.
1977-01-01
Daily electricity consumption of four families was recorded for 106 days. A reversal design, consisting of various experimental conditions interspersed between repeated baseline conditions, was used. During experimental conditions, daily prompts (written conservation slogans attached to front doors) and/or daily feedback (daily kilowatts consumed and daily cost information) were in effect. Maximum consumption occurred during the initial baseline; minimum consumption occurred during different experimental conditions for different families. The mean decrease from the maximum to the minimum for all families was 35%. Reversals in consumption were demonstrated in three families, although successive baselines tended to decrease. No clear differences in effectiveness between prompting and feedback conditions were apparent. The procedures used resulted in considerable dollar savings for the families. PMID:16795572
Yang, Xiping; Wang, Jianping
2016-01-01
The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classification, genome organization, evolution, expression, and regulation of these NBS-LRR genes using sorghum as a representative of grass species. In general, the full-length NBS-LRR genes are highly clustered and duplicated in sorghum genome mainly due to local duplications. NBS-LRR genes have basal expression levels and are highly potentially targeted by miRNA. The number of NBS-LRR genes in the four grass species is positively correlated with the gene clustering rate. The results provided a valuable genomic resource and insights for functional and evolutionary studies of NBS-LRR genes in grass species. PMID:26792976
Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong
2016-01-01
The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.
Complete cure of persistent virus infections by antiviral siRNAs.
Saulnier, Aure; Pelletier, Isabelle; Labadie, Karine; Colbère-Garapin, Florence
2006-01-01
Small interfering RNAs (siRNAs) have been developed as antiviral agents for mammalian cells. The capacity of specific siRNAs to prevent virus infections has been demonstrated, and there is evidence that these new antiviral agents could have a partial therapeutic effect a few days after infection. We investigated the possibility of curing a persistent infection, several months after becoming established, using an in vitro model of persistent poliovirus (PV) infection in HEp-2 cells. Despite high virus titers and the presence of PV mutants, repeated treatment with a mixture of two siRNAs targeting both noncoding and coding regions, one of them in a highly conserved region, resulted in the complete cure of the majority of persistently infected cultures. No escape mutants emerged in treated cultures. The antiviral effect of specific siRNAs, consistent with a mechanism of RNA interference, correlated with a decrease in the amount of viral RNA, until its complete disappearance, resulting in cultures cured of virions and viral RNA.
Chung, Chungwon J; Clavijo, Alfonso; Bounpheng, Mangkey A; Uddowla, Sabena; Sayed, Abu; Dancho, Brooke; Olesen, Ian C; Pacheco, Juan; Kamicker, Barbara J; Brake, David A; Bandaranayaka-Mudiyanselage, Carey L; Lee, Stephen S; Rai, Devendra K; Rieder, Elizabeth
2018-06-01
The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20-25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent-free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.
Planning and setting objectives in field studies: Chapter 2
Fisher, Robert N.; Dodd, C. Kenneth
2016-01-01
This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.
Li, Zhi-Zhong; Lu, Meng-Xue; Saina, Josphat K; Gichira, Andrew W; Wang, Qing-Feng; Chen, Jin-Ming
2017-11-01
Simple sequence repeat (SSR) markers were derived from transcriptomic data for Ottelia acuminata (Hydrocharitaceae), a species comprising five endemic and highly endangered varieties in China. Sixteen novel SSR markers were developed for O. acuminata var. jingxiensis . One to eight alleles per locus were found, with a mean of 2.896. The observed and expected heterozygosity ranged from 0.000 to 1.000 and 0.000 to 0.793, respectively. Interestingly, in cross-varietal amplification, 13 out of the 16 loci were successfully amplified in O. acuminata var. acuminata , and 12 amplified in each of the other three varieties of O. acuminata . These newly developed SSR markers will facilitate further study of genetic variation and provide important genetic data needed for appropriate conservation of natural populations of all varieties of O. acuminata .
Schnare, Murray N.; Collings, James C.; Spencer, David F.; Gray, Michael W.
2000-01-01
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from ∼11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an ∼55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A′ pre-rRNA processing sites within the 5′ external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5′ ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C.fasciculata and Trypanosoma brucei involves 3′-terminal addition of three A residues that are not present in the corresponding DNA sequences. PMID:10982863
Ha, Young-Ho; Kim, Changkyun; Choi, Kyung; Kim, Joo-Hwan
2018-01-01
Tribe Forsythieae (Oleaceae), containing two genera ( Abeliophyllum and Forsythia ) and 13 species, is economically important plants used as ornamentals and in traditional medicine. This tribe species occur primarily in mountainous regions of Eurasia with the highest species diversity in East Asia. Here, we examine 11 complete chloroplast genome and nuclear cycloidea2 ( cyc2 ) DNA sequences of 10 Forsythia species and Abeliophyllum distichum using Illumina platform to provide the phylogeny and biogeographic history of the tribe. The chloroplast genomes of the 11 Forsythieae species are highly conserved, except for a deletion of about 400 bp in the accD - psaI region detected only in Abeliophyllum . Within Forsythieae species, analysis of repetitive sequences revealed a total of 51 repeats comprising 26 forward repeats, 22 palindromic repeats, and 3 reverse repeats. Of those, 19 repeats were common and 32 were unique to one or more Forsythieae species. Our phylogenetic analyses supported the monophyly of Forsythia and its sister group is Abeliophyllum using the concatenated dataset of 78 chloroplast genes. Within Forsythia , Forsythia likiangensis and F. giraldiana were basal lineages followed by F. europaea ; the three species are characterized by minutely serrate or entire leaf margins. The remaining species, which are distributed in East Asia, formed two major clades. One clade included F. ovata , F. velutina , and F. japonica ; they are morphologically supported by broadly ovate leaves. Another clade of F. suspensa , F. saxatilis , F. viridissima , and F. koreana characterized by lanceolate leaves (except F. suspensa which have broad ovate leaves). Although cyc2 phylogeny is largely congruent to chloroplast genome phylogeny, we find the discordance between two phylogenies in the position of F. ovata suggesting that introgression of the chloroplast genome from one species into the nuclear background of another by interspecific hybridization in East Asian Forsythia species. Molecular dating and biogeographic reconstructions suggest an origin of the Forsythieae species in East China in the Miocene. Distribution patterns in Forsythia indicated that the species were radially differentiated from East China, and the speciation of the European F. europaea was the result of both vicariance and dispersal in the late Miocene to Pliocene.
Production of Viable Gametes without Meiosis in Maize Deficient for an ARGONAUTE Protein[W
Singh, Manjit; Goel, Shalendra; Meeley, Robert B.; Dantec, Christelle; Parrinello, Hugues; Michaud, Caroline; Leblanc, Olivier; Grimanelli, Daniel
2011-01-01
Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize. PMID:21325139
Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael
2013-12-20
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Ngo, Quy A.; Baroux, Celia; Guthörl, Daniela; Mozerov, Peter; Collinge, Margaret A.; Sundaresan, Venkatesan; Grossniklaus, Ueli
2012-01-01
The proper balance of parental genomic contributions to the fertilized embryo and endosperm is essential for their normal growth and development. The characterization of many gametophytic maternal effect (GME) mutants affecting seed development indicates that there are certain classes of genes with a predominant maternal contribution. We present a detailed analysis of the GME mutant zak ixik (zix), which displays delayed and arrested growth at the earliest stages of embryo and endosperm development. ZIX encodes an Armadillo repeat (Arm) protein highly conserved across eukaryotes. Expression studies revealed that ZIX manifests a GME through preferential maternal expression in the early embryo and endosperm. This parent-of-origin–dependent expression is regulated by neither the histone and DNA methylation nor the DNA demethylation pathways known to regulate some other GME mutants. The ZIX protein is localized in the cytoplasm and nucleus of cells in reproductive tissues and actively dividing root zones. The maternal ZIX allele is required for the maternal expression of MINISEED3. Collectively, our results reveal a reproductive function of plant Arm proteins in promoting early seed growth, which is achieved through a distinct GME of ZIX that involves mechanisms for maternal allele-specific expression that are independent of the well-established pathways. PMID:23064319
Probing Xist RNA Structure in Cells Using Targeted Structure-Seq
Rutenberg-Schoenberg, Michael; Simon, Matthew D.
2015-01-01
The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function. PMID:26646615
Ugelvig, Line V; Nielsen, Per S; Boomsma, Jacobus J; Nash, David R
2011-07-11
Fragmentation of terrestrial ecosystems has had detrimental effects on metapopulations of habitat specialists. Maculinea butterflies have been particularly affected because of their specialized lifecycles, requiring both specific food-plants and host-ants. However, the interaction between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown. Using non-destructive sampling, we investigated the genetic diversity of the last extant population of M. arion in Denmark, which experienced critically low numbers in the 1980s. Using nine microsatellite markers, we show that the population is genetically impoverished compared to nearby populations in Sweden, but less so than monitoring programs suggested. Ten additional short repeat microsatellites were used to reconstruct changes in genetic diversity and population structure over the last 77 years from museum specimens. We also tested amplification efficiency in such historical samples as a function of repeat length and sample age. Low population numbers in the 1980s did not affect genetic diversity, but considerable turnover of alleles has characterized this population throughout the time-span of our analysis. Our results suggest that M. arion is less sensitive to genetic erosion via population bottlenecks than previously thought, and that managing clusters of high quality habitat may be key for long-term conservation.
Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang
2016-01-01
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701
Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.
1996-01-01
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850
Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2
Palmer, William H.; Obbard, Darren J.
2016-01-01
RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel. PMID:27317784
McCallum, Erin S; Bose, Aneesh P H; Warriner, Theresa R; Balshine, Sigal
2017-05-01
Fluoxetine (Prozac™) is designed to alter human behaviour; however, because many physiological pathways are conserved across vertebrates, this drug may affect the behaviour of fish living in fluoxetine-polluted environments. Although a number of studies have used behaviour to document the sub-lethal effects of fluoxetine, the repeatability of these effects across experiments, across behavioural contexts, and over different exposure durations are rarely considered. Here, we conducted two experiments and assessed how fluoxetine exposure affected a range of fitness-related behaviours in wild round goby (Neogobius melanostomus). We found that fluoxetine impacts round goby behaviour at high (40 μg/l) doses, but not at environmentally relevant low doses (1 μg/l). In both experiments, an acute 3-day exposure to fluoxetine reduced round goby aggression in multiple behavioural contexts, but had no detectable effect on overall activity or social affiliative behaviour. While a chronic 28-day exposure to fluoxetine exposure still reduced aggression, this reduction was only detectable in one behavioural context. Our findings demonstrate the importance of repeated behavioural testing (both between and within experiments) and contribute to a growing body of literature evaluating the effects of fluoxetine and other pharmaceuticals on animal behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Takács, Péter
2016-01-01
We compared the repeatability, reproducibility (intra- and inter-measurer similarity), separative power and subjectivity (measurer effect on results) of four morphometric methods frequently used in ichthyological research, the “traditional” caliper-based (TRA) and truss-network (TRU) distance methods and two geometric methods that compare landmark coordinates on the body (GMB) and scales (GMS). In each case, measurements were performed three times by three measurers on the same specimen of three common cyprinid species (roach Rutilus rutilus (Linnaeus, 1758), bleak Alburnus alburnus (Linnaeus, 1758) and Prussian carp Carassius gibelio (Bloch, 1782)) collected from three closely-situated sites in the Lake Balaton catchment (Hungary) in 2014. TRA measurements were made on conserved specimens using a digital caliper, while TRU, GMB and GMS measurements were undertaken on digital images of the bodies and scales. In most cases, intra-measurer repeatability was similar. While all four methods were able to differentiate the source populations, significant differences were observed in their repeatability, reproducibility and subjectivity. GMB displayed highest overall repeatability and reproducibility and was least burdened by measurer effect. While GMS showed similar repeatability to GMB when fish scales had a characteristic shape, it showed significantly lower reproducability (compared with its repeatability) for each species than the other methods. TRU showed similar repeatability as the GMS. TRA was the least applicable method as measurements were obtained from the fish itself, resulting in poor repeatability and reproducibility. Although all four methods showed some degree of subjectivity, TRA was the only method where population-level detachment was entirely overwritten by measurer effect. Based on these results, we recommend a) avoidance of aggregating different measurer’s datasets when using TRA and GMS methods; and b) use of image-based methods for morphometric surveys. Automation of the morphometric workflow would also reduce any measurer effect and eliminate measurement and data-input errors. PMID:27327896
Zhaofei Fan; Zhongqiu Ma; Daniel C. Dey; Scott D. Roberts
2012-01-01
The Chilton Creek prescribed burn project was initiated in 1996 by The Nature Conservancy (TNC) to restore native oak woodlands and test the effect of frequent, low intensity surface fires conducted in the dormant season (March-April) on upland oak-hickory forests in the Ozarks of Missouri. Burning treatments on five sites totaling 1000 ha were initiated in 1998. The...
Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann
2014-01-01
• Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625
The 2-year cost-effectiveness of 3 options to treat lumbar spinal stenosis patients.
Udeh, Belinda L; Costandi, Shrif; Dalton, Jarrod E; Ghosh, Raktim; Yousef, Hani; Mekhail, Nagy
2015-02-01
Lumbar spinal stenosis (LSS) may result from degenerative changes of the spine, which lead to neural ischemia, neurogenic claudication, and a significant decrease in quality of life. Treatments for LSS range from conservative management including epidural steroid injections (ESI) to laminectomy surgery. Treatments vary greatly in cost and success. ESI is the least costly treatment may be successful for early stages of LSS but often must be repeated frequently. Laminectomy surgery is more costly and has higher complication rates. Minimally invasive lumbar decompression (mild(®) ) is an alternative. Using a decision-analytic model from the Medicare perspective, a cost-effectiveness analysis was performed comparing mild(®) to ESI or laminectomy surgery. The analysis population included patients with LSS who have moderate to severe symptoms and have failed conservative therapy. Costs included initial procedure, complications, and repeat/revision or alternate procedure after failure. Effects measured as change in quality-adjusted life years (QALY) from preprocedure to 2 years postprocedure. Incremental cost-effectiveness ratios were determined, and sensitivity analysis conducted. The mild(®) strategy appears to be the most cost-effective ($43,760/QALY), with ESI the next best alternative at an additional $37,758/QALY. Laminectomy surgery was the least cost-effective ($125,985/QALY). © 2014 World Institute of Pain.
An, Jihyun; Lee, Kwang Sun; Kim, Kang Mo; Park, Do Hyun; Lee, Sang Soo; Lee, Danbi; Shim, Ju Hyun; Lim, Young-Suk; Lee, Han Chu; Chung, Young-Hwa; Lee, Yung Sang
2017-06-01
Little is known about the treatment or outcomes of hepatocellular carcinoma (HCC) complicated with bile duct invasion. A total of 247 consecutive HCC patients with bile duct invasion at initial diagnosis were retrospectively included. The majority of patients had Barcelona Clinic Liver Cancer (BCLC) stage C HCC (66.8%). Portal vein tumor thrombosis was present in 166 (67.2%) patients. Median survival was 4.1 months. Various modalities of treatment were initially employed including surgical resection (10.9%), repeated transarterial chemoembolization (TACE) (42.5%), and conservative management (42.9%). Among the patients with obstructive jaundice (n=88), successful biliary drainage was associated with better overall survival rate. Among the patients with BCLC stage C, overall survival differed depending on the initial treatment for HCC; surgical resection, TACE, systemic chemotherapy, and conservative management showed overall survival rates of 11.5, 6.0 ,2.4, and 1.6 months, respectively. After adjusting for confounders, surgical resection and repeated TACE were significant prognostic factors for HCC patients with bile duct invasion (hazard ratios 0.47 and 0.39, Ps <0.001, respectively). The survival of HCC patients with bile duct invasion at initial diagnosis is generally poor. However, aggressive treatments for HCC such as resection or biliary drainage may be beneficial therapeutic options for patients with preserved liver function.
Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads
Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej
2016-01-01
Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458
A protocol for better design, application, and communication of population viability analyses.
Pe'er, Guy; Matsinos, Yiannis G; Johst, Karin; Franz, Kamila W; Turlure, Camille; Radchuk, Viktoriia; Malinowska, Agnieszka H; Curtis, Janelle M R; Naujokaitis-Lewis, Ilona; Wintle, Brendan A; Henle, Klaus
2013-08-01
Population viability analyses (PVAs) contribute to conservation theory, policy, and management. Most PVAs focus on single species within a given landscape and address a specific problem. This specificity often is reflected in the organization of published PVA descriptions. Many lack structure, making them difficult to understand, assess, repeat, or use for drawing generalizations across PVA studies. In an assessment comparing published PVAs and existing guidelines, we found that model selection was rarely justified; important parameters remained neglected or their implementation was described vaguely; limited details were given on parameter ranges, sensitivity analysis, and scenarios; and results were often reported too inconsistently to enable repeatability and comparability. Although many guidelines exist on how to design and implement reliable PVAs and standards exist for documenting and communicating ecological models in general, there is a lack of organized guidelines for designing, applying, and communicating PVAs that account for their diversity of structures and contents. To fill this gap, we integrated published guidelines and recommendations for PVA design and application, protocols for documenting ecological models in general and individual-based models in particular, and our collective experience in developing, applying, and reviewing PVAs. We devised a comprehensive protocol for the design, application, and communication of PVAs (DAC-PVA), which has 3 primary elements. The first defines what a useful PVA is; the second element provides a workflow for the design and application of a useful PVA and highlights important aspects that need to be considered during these processes; and the third element focuses on communication of PVAs to ensure clarity, comprehensiveness, repeatability, and comparability. Thereby, DAC-PVA should strengthen the credibility and relevance of PVAs for policy and management, and improve the capacity to generalize PVA findings across studies. © 2013 Society for Conservation Biology.
Maurer, B; Bannert, H; Darai, G; Flügel, R M
1988-01-01
The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755
Wu, Jianzhong; Fujisawa, Masaki; Tian, Zhixi; Yamagata, Harumi; Kamiya, Kozue; Shibata, Michie; Hosokawa, Satomi; Ito, Yukiyo; Hamada, Masao; Katagiri, Satoshi; Kurita, Kanako; Yamamoto, Mayu; Kikuta, Ari; Machita, Kayo; Karasawa, Wataru; Kanamori, Hiroyuki; Namiki, Nobukazu; Mizuno, Hiroshi; Ma, Jianxin; Sasaki, Takuji; Matsumoto, Takashi
2009-12-01
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.
Improving Aquatic Warbler Population Assessments by Accounting for Imperfect Detection
Oppel, Steffen; Marczakiewicz, Piotr; Lachmann, Lars; Grzywaczewski, Grzegorz
2014-01-01
Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola), which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional ‘full count’ approach (175 observer days). Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of habitat management. PMID:24713994
The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.
Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo
2018-02-01
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.
Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng
2013-01-01
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. PMID:23468653
Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M
2013-12-01
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.
A parts list for fungal cellulosomes revealed by comparative genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.
Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomesmore » remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily chimeric structure – an independently evolved fungal complex that co-opted useful activities from bacterial neighbors within the gut microbiome.« less
Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium
Yang, Jiao; Yue, Ming; Niu, Chuan; Ma, Xiong-Feng; Li, Zhong-Hu
2017-01-01
Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process. PMID:28422071
Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo
2017-01-01
Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections, also based on recently developed markers.
Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai
2014-09-01
RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Treatment of Recurrent Hemarthrosis after Total Knee Arthroplasty
Yoo, Ju-Hyung; Oh, Hyun-Cheol; Park, Sang-Hoon; Lee, Sanghyeon; Lee, Yunjae
2018-01-01
Purpose The purpose of this study is to evaluate the incidence and treatment of recurrent hemarthrosis after total knee replacement (TKR). Materials and Methods Among a total of 5,510 patients who underwent TKR from March 2000 to October 2016, patients who had two or more bleeding 2 weeks after surgery were studied. Conservative treatments were performed for all cases with symptoms. In patients who did not respond to conservative treatment several times, embolization was performed. We retrospectively evaluated the postoperative bleeding time, bleeding frequency, treatment method, and outcome. Results Seventeen (0.3%) of the 5,510 patients developed recurrent hemarthrosis. Bleeding occurred at an average of 2 years 3 months after the operation. Joint aspiration was performed 3.5 times (range, 2 to 10 times) on average, and 14 cases (82.3%) were treated with conservative treatment. In 3 patients with severe bleeding and hemorrhage, embolization was performed. Conclusions Recurrent hemarthrosis after TKR is a rare disease with a low incidence of 0.3% and usually could be treated by conservative treatment. If recurrences occur repeatedly, embolization through angiography or surgical treatment may be considered, but the results are not satisfactory and careful selection of treatment modalities is warranted. PMID:29715715
NASA Astrophysics Data System (ADS)
Pelizardi, Flavia; Bea, Sergio A.; Carrera, Jesús; Vives, Luis
2017-07-01
Mixing calculations (i.e., the calculation of the proportions in which end-members are mixed in a sample) are essential for hydrological research and water management. However, they typically require the use of conservative species, a condition that may be difficult to meet due to chemical reactions. Mixing calculation also require identifying end-member waters, which is usually achieved through End Member Mixing Analysis (EMMA). We present a methodology to help in the identification of both end-members and such reactions, so as to improve mixing ratio calculations. The proposed approach consists of: (1) identifying the potential chemical reactions with the help of EMMA; (2) defining decoupled conservative chemical components consistent with those reactions; (3) repeat EMMA with the decoupled (i.e., conservative) components, so as to identify end-members waters; and (4) computing mixing ratios using the new set of components and end-members. The approach is illustrated by application to two synthetic mixing examples involving mineral dissolution and cation exchange reactions. Results confirm that the methodology can be successfully used to identify geochemical processes affecting the mixtures, thus improving the accuracy of mixing ratios calculations and relaxing the need for conservative species.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... Conservation Program: Availability of the Interim Technical Support Document for High-Intensity Discharge Lamps... high-intensity discharge (HID) lamps energy conservation standards in the Federal Register. This... interim analysis for high- intensity discharge lamps energy conservation standards. The notice provided...
Serrano, Soraya; Huarte, Nerea; Rujas, Edurne; Andreu, David; Nieva, José L; Jiménez, María Angeles
2017-10-17
Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.
Making literature reviews more reliable through application of lessons from systematic reviews.
Haddaway, N R; Woodcock, P; Macura, B; Collins, A
2015-12-01
Review articles can provide valuable summaries of the ever-increasing volume of primary research in conservation biology. Where findings may influence important resource-allocation decisions in policy or practice, there is a need for a high degree of reliability when reviewing evidence. However, traditional literature reviews are susceptible to a number of biases during the identification, selection, and synthesis of included studies (e.g., publication bias, selection bias, and vote counting). Systematic reviews, pioneered in medicine and translated into conservation in 2006, address these issues through a strict methodology that aims to maximize transparency, objectivity, and repeatability. Systematic reviews will always be the gold standard for reliable synthesis of evidence. However, traditional literature reviews remain popular and will continue to be valuable where systematic reviews are not feasible. Where traditional reviews are used, lessons can be taken from systematic reviews and applied to traditional reviews in order to increase their reliability. Certain key aspects of systematic review methods that can be used in a context-specific manner in traditional reviews include focusing on mitigating bias; increasing transparency, consistency, and objectivity, and critically appraising the evidence and avoiding vote counting. In situations where conducting a full systematic review is not feasible, the proposed approach to reviewing evidence in a more systematic way can substantially improve the reliability of review findings, providing a time- and resource-efficient means of maximizing the value of traditional reviews. These methods are aimed particularly at those conducting literature reviews where systematic review is not feasible, for example, for graduate students, single reviewers, or small organizations. © 2015 Society for Conservation Biology.
Accelerated modern human-induced species losses: Entering the sixth mass extinction.
Ceballos, Gerardo; Ehrlich, Paul R; Barnosky, Anthony D; García, Andrés; Pringle, Robert M; Palmer, Todd M
2015-06-01
The oft-repeated claim that Earth's biota is entering a sixth "mass extinction" depends on clearly demonstrating that current extinction rates are far above the "background" rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.
Accelerated modern human–induced species losses: Entering the sixth mass extinction
Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M.
2015-01-01
The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. PMID:26601195
Levy-Zauberman, Y; Fernandez, H; Pourcelot, A-G; Legendre, G
2014-01-01
Hysteroscopic endometrial resection or destruction in the indication of abnormal uterine bleeding or post-menopausal bleeding represents an alternative to hysterectomy, as it carries a lower morbidity rate. In case of failure of such procedure though, hysterectomy will most often be proposed as a second line of treatment. The place of the repetition of an endometrial destruction procedure has not yet been evaluated. The aim of our study is to evaluate the efficiency and the satisfaction after two consecutive techniques of endometrial destruction in case of abnormal uterine bleeding or post-menopausal bleeding. Nineteen patients presenting with recurring abnormal uterine bleeding after one procedure of endometrial destruction, underwent in our department, between 2004 and 2011, a second conservative endometrial procedure. No complication occurred during the repeated procedure. Sixteen of the nineteen patients (84.2 %) included answered a questionnaire. The mean delay since the second procedure was 27 months [25; 29]. Eight patients (i.e. 50 %) later underwent a hysterectomy, with 5 of them (31.25 % of all 16 patients) being directly attributed to treatment failure. Patients said to be satisfied with the management of their condition in 68.75 % of cases, and 93.75 % of them would recommend it to a friend. Our results suggest that a second conservative management in case of recurrence of AUB is effective. Hysterectomy could be avoided in 50 % of cases. A second conservative treatment could be an interesting option for patients with medical contra-indication for heavier surgery, as well as for patients willing to keep their uterus. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L.; Levin, Henry L.
2008-01-01
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the γ-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining. PMID:18397885
Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L; Levin, Henry L
2008-06-06
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.
Comparative Genomics of Carp Herpesviruses
Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.
2013-01-01
Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803
Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.
2008-01-01
Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875
Surgical management of anterior chamber epithelial cysts.
Haller, Julia A; Stark, Walter J; Azab, Amr; Thomsen, Robert W; Gottsch, John D
2003-03-01
To review management strategies for treatment of anterior chamber epithelial cysts. Retrospective review of consecutive interventional case series. Charts of patients treated for epithelial ingrowth over a 10-year period by a single surgeon were reviewed. Cases of anterior chamber epithelial cysts were identified and recorded, including details of ocular history, preoperative and postoperative acuity, intraocular pressure (IOP), and ocular examination, type of surgical intervention, and details of further procedures performed. Seven eyes with epithelial cysts were identified. Patient age ranged from 1.5 to 53 years at presentation. Four patients were children. In four eyes, cysts were secondary to trauma, one case was presumably congenital, one case developed after corneal perforation in an eye with Terrien's marginal degeneration, and one case developed after penetrating keratoplasty (PK). Three eyes were treated with vitrectomy, en bloc resection of the cyst and associated tissue, fluid-air exchange and cryotherapy. The last four eyes were treated with a new conservative strategy of cyst aspiration (three cases) or local excision (one keratin "pearl" cyst), and endolaser photocoagulation of the collapsed cyst wall/base. All epithelial tissue was successfully eradicated by clinical criteria; one case required repeat excision (follow-up, 9 to 78 months, mean 45). Two eyes required later surgery for elevated IOP, two for cataract extraction and one for repeat PK. Final visual acuity ranged from 20/20 to hand motions, depending on associated ocular damage. Best-corrected visual results were obtained in the more conservatively managed eyes. Anterior chamber epithelial cysts can be managed conservatively in selected cases with good results. This strategy may be particularly useful in children's eyes, where preservation of the lens, iris, and other structures may facilitate amblyopia management. Copyright 2003 by Elsevier Science Inc.
LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects
Horani, Amjad; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Oren, Yifat S.; Kerem, Batsheva; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Brody, Steven L.; Elpeleg, Orly; Kerem, Eitan
2013-01-01
Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects. PMID:23527195
Vargas-Ponce, Ofelia; Zizumbo-Villarreal, Daniel; Martínez-Castillo, Jaime; Coello-Coello, Julián; Colunga-Garcíamarín, Patricia
2009-02-01
Traditional farming communities frequently maintain high levels of agrobiodiversity, so understanding their agricultural practices is a priority for biodiversity conservation. The cultural origin of agave spirits (mezcals) from west-central Mexico is in the southern part of the state of Jalisco where traditional farmers cultivate more than 20 landraces of Agave angustifolia Haw. in agroecosystems that include in situ management of wild populations. These systems, rooted in a 9000-year-old tradition of using agaves as food in Mesoamerica, are endangered by the expansion of commercial monoculture plantations of the blue agave variety (A. tequilana Weber var. Azul), the only agave certified for sale as tequila, the best-known mezcal. Using intersimple sequence repeats and Bayesian estimators of diversity and structure, we found that A. angustifolia traditional landraces had a genetic diversity (H(BT) = 0.442) similar to its wild populations (H(BT) = 0.428) and a higher genetic structure ((B) = 0.405; (B) =0. 212). In contrast, the genetic diversity in the blue agave commercial system (H(B) = 0.118) was 73% lower. Changes to agave spirits certification laws to allow the conservation of current genetic, ecological and cultural diversity can play a key role in the preservation of the traditional agroecosystems.
Aggarwal, A; Adam, R D; Nash, T E
1989-01-01
The amino acid sequence of a 29.4-kilodalton [corrected] structural protein located in the ventral disk and axostyle of Giardia lamblia was determined. Clone lambda M16 from a mung bean expression library in lambda gt11 expressed a fusion protein recognized by three different isolate-specific antisera and sera from G. lamblia-infected gerbils. One of the three EcoRI fragments (M16; 1.26 kilobases) encoded the recognized protein. Sequence analysis revealed a single open reading frame of 813 base pairs. Two areas showed conservation of the positions of some amino acids. The abundance of arginine, glutamic acid, and threonine was increased. Two potential alpha-helical regions were deduced in the regions of repeats. Antisera to the M16 fusion protein reacted specifically with internal components of the ventral disk and axostyle, as well as Giardia fractions enriched for ventral disk structural proteins. An identical protein was recognized in different isolates by anti-M16, and a single identical band was recognized in Southern blots using the M16 1.26-kilobase fragment as a probe. Therefore, the 29.4-kilodaltion [corrected] protein appears to be highly conserved compared with variant surface proteins. Images PMID:2925253
Reducing antibiotic prescribing in Australian general practice: time for a national strategy.
Del Mar, Christopher B; Scott, Anna Mae; Glasziou, Paul P; Hoffmann, Tammy; van Driel, Mieke L; Beller, Elaine; Phillips, Susan M; Dartnell, Jonathan
2017-11-06
In Australia, the antibiotic resistance crisis may be partly alleviated by reducing antibiotic use in general practice, which has relatively high prescribing rates - antibiotics are mostly prescribed for acute respiratory infections, for which they provide only minor benefits. Current surveillance is inadequate for monitoring community antibiotic resistance rates, prescribing rates by indication, and serious complications of acute respiratory infections (which antibiotic use earlier in the infection may have averted), making target setting difficult. Categories of interventions that may support general practitioners to reduce prescribing antibiotics are: regulatory (eg, changing the default to "no repeats" in electronic prescribing, changing the packaging of antibiotics to facilitate tailored amounts of antibiotics for the right indication and restricting access to prescribing selected antibiotics to conserve them), externally administered (eg, academic detailing and audit and feedback on total antibiotic use for individual GPs), interventions that GPs can individually implement (eg, delayed prescribing, shared decision making, public declarations in the practice about conserving antibiotics, and self-administered audit), supporting GPs' access to near-patient diagnostic testing, and public awareness campaigns. Many unanswered clinical research questions remain, including research into optimal implementation methods. Reducing antibiotic use in Australian general practice will require a range of approaches (with various intervention categories), a sustained effort over many years and a commitment of appropriate resources and support.
Structural characterization and evolutionary analysis of fish-specific TLR27.
Wang, Jinlan; Zhang, Zheng; Liu, Jing; Li, Fang; Chang, Fen; Fu, Hui; Zhao, Jing; Yin, Deling
2015-08-01
Toll-like receptors (TLRs) are critical components of the innate immune response of fish. In a phylogenetic analysis, TLR27 from three fish species, which belongs to TLR family 1, clustered with TLR14/18 and TLR25 on the evolutionary tree. The ectodomain of TLR27 is predicted to include 19 leucine-rich repeat (LRR) modules. Structural modeling showed that the TLR27 ectodomain can be divided into three distinctive sections. The lack of conserved asparagines on the concave surface of the central subdomain causes a structural transition in the middle of the ectodomain, forming a distinct hydrophobic pocket at the border between the central subdomain and the C-terminal subdomain. We infer that, like other functionally characterized TLRs in family 1, the hydrophobic pocket located between LRR11 and LRR12 participates in ligand recognition by TLR27. An evolutionary analysis showed that the dN/dS value at the TLR27 locus was very low. Approximately one quarter of the total number of TLR27 sites are under significant negatively selection pressure, whereas only two sites are under positive selection. Consequently, TLR27 is highly evolutionarily conserved and probably plays an extremely important role in the innate immune systems of fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein
Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.
2006-01-01
Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.
DAZ Family Proteins, Key Players for Germ Cell Development
Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei
2015-01-01
DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816
Goff, Will L.; McElwain, Terry F.; Suarez, Carlos E.; Johnson, Wendell C.; Brown, Wendy C.; Norimine, Junzo; Knowles, Donald P.
2003-01-01
The competitive enzyme-linked immunosorbent assay (cELISA) format has proven to be an accurate, reliable, easily standardized, and high-throughput method for detecting hemoparasite infections. In the present study, a species-specific, broadly conserved, and tandemly repeated B-cell epitope within the C terminus of the rhoptry-associated protein 1 of the hemoparasite Babesia bovis was cloned and expressed as a histidine-tagged thioredoxin fusion peptide and used as antigen in a cELISA. The assay was optimized with defined negative and positive bovine sera, where positive sera inhibited the binding of the epitope-specific monoclonal antibody BABB75A4. The cELISA accurately differentiated animals with B. bovis-specific antibodies from uninfected animals and from animals with antibodies against other tick-borne hemoparasites (98.7% specificity). In addition, B. bovis-specific sera from Australia, Argentina, Bolivia, Puerto Rico, and Morocco inhibited the binding of BABB75A4, confirming conservation of the epitope. The assay first detected experimentally infected animals between 13 and 17 days postinfection, and with sera from naturally infected carrier cattle, was comparable to indirect immunofluorescence (98.3% concordance). The assay appears to have the characteristics necessary for an epidemiologic and disease surveillance tool. PMID:12522037
2014-01-01
Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.
Freites, J Alfredo; Tobias, Douglas J
2015-06-01
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis
Craig, Errol; Zhang, Zhi-Kai; Davies, Kelvin P.; Kalpana, Ganjam V.
2002-01-01
INI1 (integrase interactor 1)/hSNF5 is a component of the mammalian SWI/SNF complex and a tumor suppressor mutated in malignant rhabdoid tumors (MRT). We have identified a nuclear export signal (NES) in the highly conserved repeat 2 domain of INI1 that is unmasked upon deletion of a downstream sequence. Mutation of conserved hydrophobic residues within the NES, as well as leptomycin B treatment abrogated the nuclear export. Full-length INI1 specifically associated with hCRM1/exportin1 in vivo and in vitro. A mutant INI1 [INI1(1–319) delG950] found in MRT lacking the 66 C-terminal amino acids mislocalized to the cytoplasm. Full-length INI1 but not the INI1(1–319 delG950) mutant caused flat cell formation and cell cycle arrest in cell lines derived from MRT. Disruption of the NES in the delG950 mutant caused nuclear localization of the protein and restored its ability to cause cell cycle arrest. These observations demonstrate that INI1 has a masked NES that mediates regulated hCRM1/exportin1-dependent nuclear export and we propose that mutations that cause deregulated nuclear export of the protein could lead to tumorigenesis. PMID:11782423
Population structure and genotypic variation of Crataegus pontica inferred by molecular markers.
Rahmani, Mohammad-Shafie; Shabanian, Naghi; Khadivi-Khub, Abdollah; Woeste, Keith E; Badakhshan, Hedieh; Alikhani, Leila
2015-11-01
Information about the natural patterns of genetic variability and their evolutionary bases are of fundamental practical importance for sustainable forest management and conservation. In the present study, the genetic diversity of 164 individuals from fourteen natural populations of Crataegus pontica K.Koch was assessed for the first time using three genome-based molecular techniques; inter-retrotransposon amplified polymorphism (IRAP); inter-simple sequence repeats (ISSR) and start codon targeted (SCoT) polymorphism. IRAP, ISSR and SCoT analyses yielded 126, 254 and 199 scorable amplified bands, respectively, of which 90.48, 93.37 and 83.78% were polymorphic. ISSR revealed efficiency over IRAP and SCoT due to high effective multiplex ratio, marker index and resolving power. The dendrograms based on the markers used and combined data divided individuals into three major clusters. The correlation between the coefficient matrices for the IRAP, ISSR and SCoT data was significant. A higher level of genetic variation was observed within populations than among populations based on the markers used. The lower divergence levels depicted among the studied populations could be seen as evidence of gene flow. The promotion of gene exchange will be very beneficial to conserve and utilize the enormous genetic variability. Copyright © 2015 Elsevier B.V. All rights reserved.
Conservation of streptococcal CRISPRs on human skin and saliva.
Robles-Sikisaka, Refugio; Naidu, Mayuri; Ly, Melissa; Salzman, Julia; Abeles, Shira R; Boehm, Tobias K; Pride, David T
2014-06-06
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are utilized by bacteria to resist encounters with their viruses. Human body surfaces have numerous bacteria that harbor CRISPRs, and their content can provide clues as to the types and features of viruses they may have encountered. We investigated the conservation of CRISPR content from streptococci on skin and saliva of human subjects over 8-weeks to determine whether similarities existed in the CRISPR spacer profiles and whether CRISPR spacers were a stable component of each biogeographic site. Most of the CRISPR sequences identified were unique, but a small proportion of spacers from the skin and saliva of each subject matched spacers derived from previously sequenced loci of S. thermophilus and other streptococci. There were significant proportions of CRISPR spacers conserved over the entire 8-week study period for all subjects, and salivary CRISPR spacers sampled in the mornings showed significantly higher levels of conservation than any other time of day. We also found substantial similarities in the spacer repertoires of the skin and saliva of each subject. Many skin-derived spacers matched salivary viruses, supporting that bacteria of the skin may encounter viruses with similar sequences to those found in the mouth. Despite the similarities between skin and salivary spacer repertoires, the variation present was distinct based on each subject and body site. The conservation of CRISPR spacers in the saliva and the skin of human subjects over the time period studied suggests a relative conservation of the bacteria harboring them.
Conservation of streptococcal CRISPRs on human skin and saliva
2014-01-01
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are utilized by bacteria to resist encounters with their viruses. Human body surfaces have numerous bacteria that harbor CRISPRs, and their content can provide clues as to the types and features of viruses they may have encountered. Results We investigated the conservation of CRISPR content from streptococci on skin and saliva of human subjects over 8-weeks to determine whether similarities existed in the CRISPR spacer profiles and whether CRISPR spacers were a stable component of each biogeographic site. Most of the CRISPR sequences identified were unique, but a small proportion of spacers from the skin and saliva of each subject matched spacers derived from previously sequenced loci of S. thermophilus and other streptococci. There were significant proportions of CRISPR spacers conserved over the entire 8-week study period for all subjects, and salivary CRISPR spacers sampled in the mornings showed significantly higher levels of conservation than any other time of day. We also found substantial similarities in the spacer repertoires of the skin and saliva of each subject. Many skin-derived spacers matched salivary viruses, supporting that bacteria of the skin may encounter viruses with similar sequences to those found in the mouth. Despite the similarities between skin and salivary spacer repertoires, the variation present was distinct based on each subject and body site. Conclusions The conservation of CRISPR spacers in the saliva and the skin of human subjects over the time period studied suggests a relative conservation of the bacteria harboring them. PMID:24903519
Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae)1
Klabunde, Gustavo H. F.; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I.; Nodari, Rubens O.
2014-01-01
• Premise of the study: Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • Methods and Results: A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)–enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • Conclusions: These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana. PMID:25202632
Motosugi, Utaroh; Hernando, Diego; Wiens, Curtis; Bannas, Peter; Reeder, Scott. B
2017-01-01
Purpose: To determine whether high signal-to-noise ratio (SNR) acquisitions improve the repeatability of liver proton density fat fraction (PDFF) measurements using confounder-corrected chemical shift-encoded magnetic resonance (MR) imaging (CSE-MRI). Materials and Methods: Eleven fat-water phantoms were scanned with 8 different protocols with varying SNR. After repositioning the phantoms, the same scans were repeated to evaluate the test-retest repeatability. Next, an in vivo study was performed with 20 volunteers and 28 patients scheduled for liver magnetic resonance imaging (MRI). Two CSE-MRI protocols with standard- and high-SNR were repeated to assess test-retest repeatability. MR spectroscopy (MRS)-based PDFF was acquired as a standard of reference. The standard deviation (SD) of the difference (Δ) of PDFF measured in the two repeated scans was defined to ascertain repeatability. The correlation between PDFF of CSE-MRI and MRS was calculated to assess accuracy. The SD of Δ and correlation coefficients of the two protocols (standard- and high-SNR) were compared using F-test and t-test, respectively. Two reconstruction algorithms (complex-based and magnitude-based) were used for both the phantom and in vivo experiments. Results: The phantom study demonstrated that higher SNR improved the repeatability for both complex- and magnitude-based reconstruction. Similarly, the in vivo study demonstrated that the repeatability of the high-SNR protocol (SD of Δ = 0.53 for complex- and = 0.85 for magnitude-based fit) was significantly higher than using the standard-SNR protocol (0.77 for complex, P < 0.001; and 0.94 for magnitude-based fit, P = 0.003). No significant difference was observed in the accuracy between standard- and high-SNR protocols. Conclusion: Higher SNR improves the repeatability of fat quantification using confounder-corrected CSE-MRI. PMID:28190853
Genetic Pathway of HIV-1 Resistance to Novel Fusion Inhibitors Targeting the Gp41 Pocket
Su, Yang; Chong, Huihiui; Xiong, Shengwen; Qiao, Yuanyuan; Qiu, Zonglin
2015-01-01
ABSTRACT The peptide drug enfuvirtide (T20) is the only HIV-1 fusion inhibitor in clinical use, but it easily induces drug resistance, calling for new strategies for developing effective drugs. On the basis of the M-T hook structure, we recently developed highly potent short-peptide HIV-1 fusion inhibitors (MTSC22 and HP23), which mainly target the conserved gp41 pocket and possess high genetic barriers to resistance. Here, we focused on the selection and characterization of HIV-1 escape mutants of MTSC22, which revealed new resistance pathways and mechanisms. Two mutations (E49K and L57R) located at the inhibitor-binding site and two mutations (N126K and E136G) located at the C-terminal heptad repeat region of gp41 were identified as conferring high resistance either singly or in combination. While E49K reduced the C-terminal binding of inhibitors via an electrostatic repulsion, L57R dramatically disrupted the N-terminal binding of M-T hook structure and pocket-binding domain. Unlike E49K and N126K, which enhanced the stability of the endogenous viral six-helical bundle core (6-HB), L57R and E136G conversely destabilized the 6-HB structure. We also demonstrated that both primary and secondary mutations caused the structural changes in 6-HB and severely impaired the capability for HIV-1 entry. Collectively, our data provide novel insights into the mechanisms of short-peptide fusion inhibitors targeting the gp41 pocket site and help increase our understanding of the structure and function of gp41 and HIV-1 evolution. IMPORTANCE The deep pocket on the N-trimer of HIV-1 gp41 has been considered an ideal drug target because of its high degree of conservation and essential role in viral entry. Short-peptide fusion inhibitors, which contain an M-T hook structure and mainly target the pocket site, show extremely high binding and inhibitory activities as well as high genetic barriers to resistance. In this study, the HIV-1 mutants resistant to MTSC22 were selected and characterized, which revealed that the E49K and L57R substitutions at the inhibitor-binding site and the N126K and E136G substitutions at the C-terminal heptad repeat region of gp41 critically determine the resistance phenotype. The data provide novel insights into the mechanisms of action of the M-T hook structure-based fusion inhibitors which will help further our understanding of the structure-function relationship of gp41 and molecular pathways of HIV-1 evolution and eventually facilitate the development of new anti-HIV drugs. PMID:26446597
Ma, S J; Sa, K J; Hong, T K; Lee, J K
2017-09-21
In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.
Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo
2002-06-10
chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the
Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach
Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.
2017-01-01
The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat requirements and will be useful for management and conservation activities.
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia
2011-01-01
Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation. PMID:21909358
Chandrashekar, Darshan Shimoga; Dey, Poulami; Acharya, Kshitish K.
2015-01-01
Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting repeats in various contexts/regions. GREAM is freely available at http://resource.ibab.ac.in/GREAM/. PMID:26208093
Sagarin, Raphael D; Crowder, Larry B
2009-02-01
Over the last decade, 2 major U.S. commissions on ocean policy and a wide range of independent sources have argued that ocean ecosystems are in a period of crisis and that current policies are inadequate to prevent further ecological damage. These sources have advocated ecosystem-based management as an approach to address conservation issues in the oceans, but managers remain uncertain as to how to implement ecosystem-based approaches in the real world. We argue that the philosophies of Edward F. Ricketts, a mid-20th-century marine ecologist, offer a framework and clear guidance for taking an ecosystem approach to marine conservation. Ricketts' philosophies, which were grounded in basic observations of natural history, espoused building a holistic picture of the natural world, including the influence of humans, through repeated observation. This approach, when applied to conservation, grounds management in what is observable in nature, encourages early action in the face of uncertainty, and supports an adaptive approach to management as new information becomes available. Ricketts' philosophy of "breaking through," which focuses on getting beyond crisis and conflict through honest debate of different parties' needs (rather than forcing compromise of differing positions), emphasizes the social dimension of natural resource management. New observational technologies, long-term ecological data sets, and especially advances in the social sciences made available since Ricketts' time greatly enhance the utility of Ricketts' philosophy of marine conservation.
Adaptive introgression as a resource for management and genetic conservation in a changing climate.
Hamilton, Jill A; Miller, Joshua M
2016-02-01
Current rates of climate change require organisms to respond through migration, phenotypic plasticity, or genetic changes via adaptation. We focused on questions regarding species' and populations' ability to respond to climate change through adaptation. Specifically, the role adaptive introgression, movement of genetic material from the genome of 1 species into the genome of another through repeated interbreeding, may play in increasing species' ability to respond to a changing climate. Such interspecific gene flow may mediate extinction risk or consequences of limited adaptive potential that result from standing genetic variation and mutation alone, enabling a quicker demographic recovery in response to changing environments. Despite the near dismissal of the potential benefits of hybridization by conservation practitioners, we examined a number of case studies across different taxa that suggest gene flow between sympatric or parapatric sister species or within species that exhibit strong ecotypic differentiation may represent an underutilized management option to conserve evolutionary potential in a changing environment. This will be particularly true where advanced-generation hybrids exhibit adaptive traits outside the parental phenotypic range, a phenomenon known as transgressive segregation. The ideas presented in this essay are meant to provoke discussion regarding how we maintain evolutionary potential, the conservation value of natural hybrid zones, and consideration of their important role in adaptation to climate. © 2015 Society for Conservation Biology.
Wang, Yanjie; Wang, Yanli; Sun, Xiaodong; Caiji, Zhuoma; Yang, Jingbiao; Cui, Di; Cao, Guilan; Ma, Xiaoding; Han, Bing; Xue, Dayuan; Han, Longzhi
2016-10-27
Crop genetic resources are important components of biodiversity. However, with the large-scale promotion of mono-cropping, genetic diversity has largely been lost. Ex-situ conservation approaches were widely used to protect traditional crop varieties worldwide. However, this method fails to maintain the dynamic evolutionary processes of crop genetic resources in their original habitats, leading to genetic diversity reduction and even loss of the capacity of resistance to new diseases and pests. Therefore, on-farm conservation has been considered a crucial complement to ex-situ conservation. This study aimed at clarifying the genetic diversity differences between ex-situ conservation and on-farm conservation and to exploring the influence of traditional cultures on genetic diversity of rice landraces under on-farm conservation. The conservation status of rice landrace varieties, including Indica and Japonica, non-glutinous rice (Oryza sativa) and glutinous rice (Oryza sativa var. glutinosa Matsum), was obtained through ethno-biology investigation method in 12 villages of ethnic groups from Guizhou, Yunnan and Guangxi provinces of China. The genetic diversity between 24 pairs of the same rice landraces from different times were compared using simple sequence repeat (SSR) molecular markers technology. The landrace paris studied were collected in 1980 and maintained ex-situ, while 2014 samples were collected on-farm in southwest of China. The results showed that many varieties of rice landraces have been preserved on-farm by local farmers for hundreds or thousands of years. The number of alleles (Na), effective number of alleles (Ne), Nei genetic diversity index (He) and Shannon information index (I) of rice landraces were significantly higher by 12.3-30.4 % under on-farm conservation than under ex-situ conservation. Compared with the ex-situ conservation approach, rice landraces under on-farm conservation programs had more alleles and higher genetic diversity. In every site we investigated, ethnic traditional cultures play a positive influence on rice landrace variety diversity and genetic diversity. Most China's rice landraces were conserved in the ethnic areas of southwest China. On-farm conservation can effectively promote the allelic variation and increase the genetic diversity of rice landraces over the past 35 years. Moreover, ethnic traditional culture practices are a crucial foundation to increase genetic diversity of rice landraces and implement on-farm conservation.
Xia, Tao; Chen, Shilong; Chen, Shengyun; Ge, Xuejun
2005-04-01
Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai-Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai-Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.
Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada
2002-07-01
Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.
Zhou, Lijuan; Powell, Charles A.; Hoffman, Michele T.; Li, Wenbin; Fan, Guocheng; Liu, Bo; Lin, Hong; Duan, Yongping
2011-01-01
“Candidatus Liberibacter asiaticus” is a psyllid-transmitted, phloem-limited alphaproteobacterium and the most prevalent species of “Ca. Liberibacter” associated with a devastating worldwide citrus disease known as huanglongbing (HLB). Two related and hypervariable genes (hyvI and hyvII) were identified in the prophage regions of the Psy62 “Ca. Liberibacter asiaticus” genome. Sequence analyses of the hyvI and hyvII genes in 35 “Ca. Liberibacter asiaticus” DNA isolates collected globally revealed that the hyvI gene contains up to 12 nearly identical tandem repeats (NITRs, 132 bp) and 4 partial repeats, while hyvII contains up to 2 NITRs and 4 partial repeats and shares homology with hyvI. Frequent deletions or insertions of these repeats within the hyvI and hyvII genes were observed, none of which disrupted the open reading frames. Sequence conservation within the individual repeats but an extensive variation in repeat numbers, rearrangement, and the sequences flanking the repeat region indicate the diversity and plasticity of “Ca. Liberibacter asiaticus” bacterial populations in the world. These differences were found not only in samples of distinct geographical origins but also in samples from a single origin and even from a single “Ca. Liberibacter asiaticus”-infected sample. This is the first evidence of different “Ca. Liberibacter asiaticus” populations coexisting in a single HLB-affected sample. The Florida “Ca. Liberibacter asiaticus” isolates contain both hyvI and hyvII, while all other global “Ca. Liberibacter asiaticus” isolates contain either one or the other. Interclade assignments of the putative HyvI and HyvII proteins from Florida isolates with other global isolates in phylogenetic trees imply multiple “Ca. Liberibacter asiaticus” populations in the world and a multisource introduction of the “Ca. Liberibacter asiaticus” bacterium into Florida. PMID:21784907
A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.
Baranowska Körberg, Izabella; Sundström, Elisabeth; Meadows, Jennifer R S; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif
2014-01-01
The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.
A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs
Meadows, Jennifer R. S.; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K.; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif
2014-01-01
The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs. PMID:25116146
Methods for sequencing GC-rich and CCT repeat DNA templates
Robinson, Donna L.
2007-02-20
The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.
2013-01-01
Background Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum). Conclusions The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a valuable tool for species identification in the initial assessment of germplasm as well as for characterization, conservation and successful species hybridization. PMID:23759066
SEGARRA-MORAGUES, JOSÉ GABRIEL; IRIONDO, JOSÉ MARÍA; CATALÁN, PILAR
2005-01-01
• Background and Aims Molecular markers have changed previous expectations about germplasm collections of endangered plants, as new perspectives aim at holding a significant representation of all the genetic diversity in the studied species to accomplish further conservation initiatives successfully. Borderea chouardii is a critically endangered allotetraploid dioecious member of Dioscoreaceae, known from a single population in the Iberian pre-Pyrenees. This population was reported to be highly structured into two genetically distinct groups of individuals corresponding to their spatial separation along the vertical cliff where it grows. In 1999, the Spanish Government of Aragón launched the first conservation programme for the ex situ preservation of this species, and since then a seed collection has been conserved at the Germplasm Bank of the Universidad Politécnica de Madrid. However, as some seed samples had not been labelled clearly at the time of collection, their origin was uncertain. • Methods Genetic variation in germplasm accessions of B. chouardii was investigated using microsatellite (simple sequence repeat; SSR) markers. • Key Results The 17 primer pairs used detected 62 SSR alleles in the 46 samples analysed from five different germplasm stocks. Eight alleles scored from the wild population were not detected in the germplasm samples analysed. The relatedness of the germplasm samples to the wild subpopulations through neighbour-joining clustering, principal coordinates analysis (PCO) and assignment tests revealed a biased higher representation of the genetic diversity of the lower cliff (43 samples) subpopulation than that of the upper cliff (three samples). • Conclusions The collection of additional samples from the upper cliff is recommended to achieve a better representation of the genetic diversity of this subpopulation. It is also recommended that these stocks should be managed separately according to their distinct microspatial origin in order to preserve the genetic substructuring of the wild population. PMID:16230324
Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette
2002-06-01
We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.
Thermal and chemical denaturation of the BRCT functional module of human 53BP1.
Thanassoulas, Angelos; Nomikos, Michail; Theodoridou, Maria; Stavros, Philemon; Mastellos, Dimitris; Nounesis, George
2011-10-01
BRCTs are protein-docking modules involved in eukaryotic DNA repair. They are characterized by low sequence homology with generally well-conserved structure organization. In a considerable number of proteins, a pair of BRCT structural repeats occurs, connected with inter-BRCT linkers, variable in length, sequence and structure. Linkers may separate and control the relative position of BRCT domains as well as protect and stabilize the hydrophobic inter-BRCT interface region. Their vital role in protein function has been demonstrated by recent findings associating missense mutations in the inter-repeat linker region of the BRCT domain of BRCA1 (BRCA1-BRCT) to hereditary breast/ovarian cancer. The interaction of 53BP1 with the core domain of the p53 tumor suppressor involves the C-terminal BRCT repeat as well as the inert-BRCT linker of the tandem BRCT domain of 53BP1 (53BP1-BRCT). High-accuracy differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to characterize the heat-induced unfolding of 53BP1-BRCT domain. The calorimetric results provide evidence for unfolding to an intermediate, only partly unfolded state, which, based on the CD results, retains the secondary structural characteristics of the native protein. A direct comparison with the corresponding thermal processes for BRAC1-BRCT and BARD1-BRCT provides evidence that the observed behavior is analogous to BRCA1-BRCT even though the two domains differ substantially in the linker structure. Moreover, chemical denaturation experiments of the untagged 53BP1-BRCT and comparison with BRCA1 and BARD1 BRCTs show that no clear association can be drawn between the structural organization of the inter-BRCT linkers and the overall stability of the BRCT domains. Copyright © 2011 Elsevier B.V. All rights reserved.
Favaro, Francine P; Alvizi, Lucas; Zechi-Ceide, Roseli M; Bertola, Debora; Felix, Temis M; de Souza, Josiane; Raskin, Salmo; Twigg, Stephen R F; Weiner, Andrea M J; Armas, Pablo; Margarit, Ezequiel; Calcaterra, Nora B; Andersen, Gregers R; McGowan, Simon J; Wilkie, Andrew O M; Richieri-Costa, Antonio; de Almeida, Maria L G; Passos-Bueno, Maria Rita
2014-01-02
Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. We mapped the mutated gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion of a region with several repeats of 18- or 20-nucleotide motifs in the 5' untranslated region (5' UTR) of EIF4A3, which contained from 14 to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is caused by mutations in EIF4A3 and show that EIF4A3, a gene involved in RNA metabolism, plays a role in mandible, laryngeal, and limb morphogenesis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Pattaradilokrat, Sittiporn; Trakoolsoontorn, Chawinya; Simpalipan, Phumin; Warrit, Natapot; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai
2018-01-22
The glutamate-rich protein (GLURP) of the malaria parasite Plasmodium falciparum is a key surface antigen that serves as a component of a clinical vaccine. Moreover, the GLURP gene is also employed routinely as a genetic marker for malarial genotyping in epidemiological studies. While extensive size polymorphisms in GLURP are well recorded, the extent of the sequence diversity of this gene is rarely investigated. The present study aimed to explore the genetic diversity of GLURP in natural populations of P. falciparum. The polymorphic C-terminal repetitive R2 region of GLURP sequences from 65 P. falciparum isolates in Thailand were generated and combined with the data from 103 worldwide isolates to generate a GLURP database. The collection was comprised of 168 alleles, encoding 105 unique GLURP subtypes, characterized by 18 types of amino acid repeat units (AAU). Of these, 28 GLURP subtypes, formed by 10 AAU types, were detected in P. falciparum in Thailand. Among them, 19 GLURP subtypes and 2 AAU types are described for the first time in the Thai parasite population. The AAU sequences were highly conserved, which is likely due to negative selection. Standard Fst analysis revealed the shared distributions of GLURP types among the P. falciparum populations, providing evidence of gene flow among the different demographic populations. Sequence diversity causing size variations in GLURP in Thai P. falciparum populations were detected, and caused by non-synonymous substitutions in repeat units and some insertion/deletion of aspartic acid or glutamic acid codons between repeat units. The P. falciparum population structure based on GLURP showed promising implications for the development of GLURP-based vaccines and for monitoring vaccine efficacy.
Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng
2014-01-01
Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078
Molecular cloning of crustins from the hemocytes of Brazilian penaeid shrimps.
Rosa, Rafael Diego; Bandeira, Paula Terra; Barracco, Margherita Anna
2007-09-01
Crustins are antimicrobial peptides initially identified in the hemocytes of the crab Carcinus maenas (11.5-kDa peptide or carcinin) and recently also recognized in penaeid shrimps and other crustacean species. The aim of this study was to identify sequences encoding for crustins from the hemocytes of four Brazilian penaeid species: Farfantepenaeus paulensis, Farfantepenaeus subtilis, Farfantepenaeus brasiliensis and Litopenaeus schmitti. Using primers based on consensus nucleotide alignment of crustins from different crustaceans, cDNA sequences coding for crustins in all indigenous penaeid species were amplified. The obtained four crustin sequences encoded for peptides containing a hydrophobic N-terminal region rich in glycine repeats and a C-terminal part with 12 cysteine residues and a conserved whey acidic protein domain. All obtained crustin sequences showed high amino acidic similarity among each other and with crustins from litopenaeid shrimps (76-98%). This is the first report of crustins in native Brazilian penaeid shrimps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng,Y.; Liu, J.; Zheng, Q.
Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct a-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest amore » possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.« less
The tiger genome and comparative analysis with lion and snow leopard genomes.
Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong
2013-01-01
Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.
Pros and Cons of Focal Therapy for Localised Prostate Cancer
Mearini, Luigi; Porena, Massimo
2011-01-01
In prostate cancer, an interesting and intriguing option to overcome the risks of whole-gland treatment is focal therapy, with the aim of eradicating known cancer foci and reducing collateral damages to the structures essential for maintaining normal urinary and sexual function. Ablation of all known lesions would favorably alter the natural history of the cancer without impacting health-related quality of life and allows for safe retreatment with repeated focal therapy or whole-gland approaches if necessary. Our objective is to reassess the possibilities and criticisms of such procedure: the rationale for focal therapy and the enthusiasm come from the success of conservative approaches in treating other malignancies and in the high incidence of overtreatment introduced by prostate cancer screening programs. One of the challenges in applying such an approach to the treatment of prostate cancer is the multifocal nature of the disease and current difficulties in accurate tumor mapmaking. PMID:22110990
Motifs, modules and games in bacteria.
Wolf, Denise M; Arkin, Adam P
2003-04-01
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.
Short poly-glutamine repeat in the androgen receptor in New World monkeys.
Hiramatsu, Chihiro; Paukner, Annika; Kuroshima, Hika; Fujita, Kazuo; Suomi, Stephen J; Inoue-Murayama, Miho
2017-12-01
The androgen receptor mediates various physiological and developmental functions and is highly conserved in mammals. Although great intraspecific length polymorphisms in poly glutamine (poly-Q) and poly glycine (poly-G) regions of the androgen receptor in humans, apes and several Old World monkeys have been reported, little is known about the characteristics of these regions in New World monkeys. In this study, we surveyed 17 species of New World monkeys and found length polymorphisms in these regions in three species (common squirrel monkeys, tufted capuchin monkeys and owl monkeys). We found that the poly-Q region in New World monkeys is relatively shorter than that in catarrhines (humans, apes and Old World monkeys). In addition, we observed that codon usage for poly-G region in New World monkeys is unique among primates. These results suggest that the length of polymorphic regions in androgen receptor genes have evolved uniquely in New World monkeys.