Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.
Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong
2011-03-01
To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.
Functional gene diversity of soil microbial communities from five oil-contaminated fields in China
Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong
2011-01-01
To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites. PMID:20861922
TREATMENT OF HIGHLY CONTAMINATED GROUNDWATER: A SITE DEMONSTRATION PROJECT
From 9-11/1994, the USEPA conducted a field demonstration of the remediation of highly contaminated groundwater at the Mascolite Superfund site located in Millville, NJ. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also containe...
Wei, Ran; Ni, Jinzhi; Li, Xiaoyan; Chen, Weifeng; Yang, Yusheng
2017-03-01
Pot experiments were used to compare the dissipation and phytoremediation effect of alfalfa (Medicago sativa L.) for polycyclic aromatic hydrocarbons (PAHs) in a freshly spiked soil and two field-contaminated soils with different soil organic carbon (SOC) contents (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC). In spiked soils, the dissipation rates of phenanthrene and pyrene were greater than 99.5 and 94.3%, respectively, in planted treatments and 95.0 and 84.5%, respectively, in unplanted treatments. In field-contaminated Anthrosols, there were limited but significant reductions of 10.2 and 15.4% of total PAHs in unplanted and planted treatments, respectively. In field-contaminated Phaeozems, there were no significant reductions of total PAHs in either unplanted or planted treatments. A phytoremediation effect was observed for the spiked soils and the Anthrosols, but not for the Phaeozems. The results indicated that laboratory tests with spiked soils cannot reflect the real state of field-contaminated soils. Phytoremediation efficiency of PAHs in field-contaminated soils was mainly determined by the content of SOC. Phytoremediation alone has no effect on the removal of PAHs in field-contaminated soils with high SOC content.
Field based plastic contamination sensing
USDA-ARS?s Scientific Manuscript database
The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...
Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity become...
In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications
This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.
The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
NASA Astrophysics Data System (ADS)
Saburo, Tanaka; Tomohiro, Akai; Makoto, Takemoto; Yoshimi, Hatsukade; Takeyoshi, Ohtani; Yoshio, Ikeda; Shuichi, Suzuki
2010-08-01
We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods.
The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibil...
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ingersoll, Christopher G.; Brunson, Eric L.; Wang, Ning; Dwyer, James F.; Ankley, Gerald T.; Mount, David R.; Huckins, James; Petty, J.; Landrum, Peter F.
2003-01-01
Uptake of sediment-associated contaminants by the oligochaete Lumbriculus variegatus was evaluated after 1, 3, 7, 14, 28, and 56 d of exposure to a field-collected sediment contaminated with DDT and its metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE), or to a field-collected sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Depuration of contaminants by oligochaetes in a control sediment or in water was also evaluated over a 7-d period after 28 d of exposure to the field-collected sediments. Accumulation of PAHs with a log octanol-water partitioning coefficient (log Kow) 5.6 or DDD and DDE typically exhibited a steady increase from day 1 to about day 14 or 28, followed by a plateau. Therefore, exposures conducted for a minimum of 14 to 28 d better reflected steady-state concentrations for DDT and its metabolites and for PAHs. Depuration rates for DDT and its metabolites and high-Kow PAHs were much higher in organisms held in clean sediment relative to both water-only depuration and model predictions. This suggests that depuration in clean sediment may artificially accelerate depuration of hydrophobic compounds. Comparisons between laboratory-exposed L. variegatus and oligochaetes collected in the field from these sediments indicate that results of laboratory tests can be extrapolated to the field with a reasonable degree of certainty.
Zielinski, R.A.; Otton, J.K.; Budahn, J.R.
2001-01-01
Radium-bearing barite (radiobarite) is a common constituent of scale and sludge deposits that form in oil-field production equipment. The barite forms as a precipitate from radium-bearing, saline formation water that is pumped to the surface along with oil. Radioactivity levels in some oil-field equipment and in soils contaminated by scale and sludge can be sufficiently high to pose a potential health threat. Accurate determinations of radium isotopes (226Ra+228Ra) in soils are required to establish the level of soil contamination and the volume of soil that may exceed regulatory limits for total radium content. In this study the radium isotopic data are used to provide estimates of the age of formation of the radiobarite contaminant. Age estimates require that highly insoluble radiobarite approximates a chemically closed system from the time of its formation. Age estimates are based on the decay of short-lived 228Ra (half-life=5.76 years) compared to 226Ra (half-life=1600 years). Present activity ratios of 228Ra/226Ra in radiobarite-rich scale or highly contaminated soil are compared to initial ratios at the time of radiobarite precipitation. Initial ratios are estimated by measurements of saline water or recent barite precipitates at the site or by considering a range of probable initial ratios based on reported values in modern oil-field brines. At sites that contain two distinct radiobarite sources of different age, the soils containing mixtures of sources can be identified, and mixing proportions quantified using radium concentration and isotopic data. These uses of radium isotope data provide more description of contamination history and can possibly address liability issues. Copyright ?? 2000 .
Guo, Pan; Wang, Ting; Liu, Yanli; Xia, Yan; Wang, Guiping; Shen, Zhenguo; Chen, Yahua
2014-01-01
A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg(-1)). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1%, compared with 8.73% in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.
Passive Standoff Detection of Chemical Warfare Agents on Surfaces
NASA Astrophysics Data System (ADS)
Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.
2004-11-01
Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.
EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES
Ground-water contamination by nonaqueous phase liquids poses one of the greatest remedial challenges In the field of environmental engineering. Denser-than-water nonaqueous phase liquids (DNAPLs) are especially problematic due to their tow water solubility, high density, and capi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.
Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less
NASA Astrophysics Data System (ADS)
Jang, Cheng-Shin; Liu, Chen-Wuing
2005-10-01
This study aimed to analyze the contamination potential associated with the reactive transport of nitrate-N and ammonium-N in the Choushui River alluvial fan, Taiwan and to evaluate a risk region in developing a groundwater protection policy in 2021. In this area, an aquifer redox sequence provided a good understanding of the spatial distributions of nitrate-N and ammonium-N and of aerobic and anaerobic environments. Equiprobable hydraulic conductivity ( K) fields reproduced by geostatistical methods characterized the spatial uncertainty of contaminant transport in the heterogeneous aquifer. Nitrogen contamination potential fronts for high and low threshold concentrations based on a 95% risk probability were used to assess different levels of risk. The simulated result reveals that the spatial uncertainty of highly heterogeneous K fields governs the contamination potential assessment of the nitrogen compounds along the regional flow directions. The contamination potential of nitrate-N is more uncertain than that for ammonium-N. The high nitrate-N concentrations (≧ 3 mg/L) are prevalent in the aerobic environment. The low concentration nitrate-N plumes (0.5-3 mg/L) gradually migrate to the mid-fan area and to a maximum distance of 15 km from the aerobic region. The nitrate-N plumes pose a potential human health risk in the aerobic and anaerobic environments. The ammonium-N plumes remain stably confined to the distal-fan and partial mid-fan areas.
EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES
Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon Chorover, University of Arizona; Peggy O'ÃÂÃÂDay, University of California, Merced; Karl Mueller, Penn State University
2012-10-01
Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of howmore » sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.« less
NASA Astrophysics Data System (ADS)
Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya
To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.
Kozar, Mark D.; Paybins, Katherine S.
2016-08-30
Groundwater public-supply systems in areas of high intrinsic susceptibility and with a large number of potential contaminant sources within the recharge or source-water-protection area of individual wells or well fields are potentially vulnerable to contamination and probably warrant further evaluation as potential SWIGS. However, measures can be taken to educate the local population and initiate safety protocols and protective strategies to appropriately manage contaminant sources to prevent release of contaminants to the aquifer, therefore, reducing vulnerability of these systems to contamination. However, each public groundwater supply source needs to be assessed on an individual basis. Data presented in this report can be used to categorize and prioritize wells and springs that have a high potential for intrinsic susceptibility or vulnerability to contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions
NASA Astrophysics Data System (ADS)
Kim, C.; Ko, K.; Son, J.; Kim, J.
2008-12-01
One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the aged LNAPL- impacted sites, and (3) high electrical resistivity anomalies at the fresh or aged sites contaminated with residual products of crude oils (lubricating oils). The study results also show that the geophysical methods, as a non-invasive sounding technique, can be effectively applied to mapping hydrocarbon-contaminated zones.
Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi
2009-08-01
Lack of understanding of dioxins mass loading into the aquatic environment motivated the quantitative investigation of dioxins runoff from paddy fields during one entire irrigation period in the Minakuchi region, Japan. Combination use of the chemically activated luciferase gene expression (CALUX) bioassay together with high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) enabled efficient investigation of dioxins contamination. The result shows that the congener profile in irrigation runoff is quite similar to those in paddy soil samples and that 1,3,6,8-/1,3,7,9-TeCDD and OCDD derived from pesticides (i.e., pentachlorophenol (PCP) and chloronitrophen (CNP)) are predominant congeners in irrigation runoff. Although it is not surprising that dioxins concentration was strongly dependent on the suspended solids (SS) and the particulate organic carbon (POC) concentration, the dioxins toxic equivalency (TEQ) concentration was extremely high in irrigation runoff (max: 16,380 pg/L, corresponding to 12 pg WHO-TEQ/L) due to runoff of highly contaminated paddy soils. The results imply that dioxins concentration in a river must be monitored considering soil contamination level, land use, and soil runoff events. Using experimental data and a theoretical model, the mass loading of dioxins from the paddy fields by irrigation runoff was estimated to be 1.50 x 10(-2)% of total amount of dioxins accumulated in the paddy fields. Given the results of other researches, it is implied the following: 1) large portion of paddy soils released into the river appear to be settled on the riverbed due to small water flux, and, then, washed out and transported by rainfall runoff after irrigation period, 2) rainfall runoff itself also wash out paddy soils directly from paddy fields. Combination use of the CALUX bioassay with HRGC/HRMS is demonstrated as an alternative strategy to assess dioxins contamination in the environment.
Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems
NASA Astrophysics Data System (ADS)
Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.
2011-12-01
Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination Threats (PRoTECT)" supported by the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).
Clostre, Florence; Letourmy, Philippe; Lesueur-Jannoyer, Magalie
2017-04-01
Due to the persistent pollution of soils by an organochlorine, chlordecone (CLD also known as Kepone © ) in the French West Indies, some crops may be contaminated beyond the European regulatory threshold, the maximum residue limit (MRL). Farmers need to be able to foresee the risk of not complying with the regulatory threshold in each field and for each crop, if not, farmers whose fields are contaminated would have to stop cultivating certain crops in the fields concerned. To help farmers make the right choices, we studied the relationship between contamination of the soil and contamination of crops. We showed that contamination of a crop by CLD depended on the crop concerned, the soil CLD content and the type of soil. We grouped crop products in three categories: (i) non-uptakers and low-uptakers, (ii) medium-uptakers, and (iii) high-uptakers, according to their level of contamination and the resulting risk of exceeding MRL. Using a simulation model, we computed the soil threshold required to ensure the risk of not complying with MRL was sufficiently low for each crop product and soil type. Threshold values ranged from 0.02 μgkg -1 for dasheen grown in nitisol to 1.7 μgkg -1 for yam grown in andosol in the high-uptake category, and from 1 μgkg -1 for lettuce grown in nitisol to 45 μgkg -1 for the leaves of spring onions grown in andosol in the medium-uptake category. Contamination of non-uptakers and low-uptakers did not depend on soil contamination. With these results, we built an easy-to-use decision support tool based on two soil thresholds (0.1 and 1 μgkg -1 ) to enable growers to adapt their cropping system and hence to be able to continue farming. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland
Hughes, W.B.
1993-01-01
Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.
Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara
2009-11-01
The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds
Bender, David A.; Zogorski, John S.; Mueller, David K.; Rose, Donna L.; Martin, Jeffrey D.; Brenner, Cassandra K.
2011-01-01
This report describes the quality of volatile organic compound (VOC) data collected from October 1996 to December 2008 from groundwater and surface-water sites for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The VOC data described were collected for three NAWQA site types: (1) domestic and public-supply wells, (2) monitoring wells, and (3) surface-water sites. Contamination bias, based on the 90-percent upper confidence limit (UCL) for the 90th percentile of concentrations in field blanks, was determined for VOC samples from the three site types. A way to express this bias is that there is 90-percent confidence that this amount of contamination would be exceeded in no more than 10 percent of all samples (including environmental samples) that were collected, processed, shipped, and analyzed in the same manner as the blank samples. This report also describes how important native water rinsing may be in decreasing carryover contamination, which could be affecting field blanks. The VOCs can be classified into four contamination categories on the basis of the 90-percent upper confidence limit (90-percent UCL) concentration distribution in field blanks. Contamination category 1 includes compounds that were not detected in any field blanks. Contamination category 2 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is about an order of magnitude lower than the concentration distribution of the environmental samples. Contamination category 3 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is within an order of magnitude of the distribution in environmental samples. Contamination category 4 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is at least an order of magnitude larger than the concentration distribution of the environmental samples. Fifty-four of the 87 VOCs analyzed in samples from domestic and public-supply wells were not detected in field blanks (contamination category 1), and 33 VOC were detected in field blanks. Ten of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 10 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative of the sources of contamination bias affecting the environmental samples for these 10 VOCs. Seven VOCs had a 90-percent UCL concentration distribution of the field blanks that was within an order of magnitude of the concentration distribution of the environmental samples (contamination category 3). Sixteen VOCs had a 90-percent UCL concentration distribution in the field blanks that was at least an order of magnitude greater than the concentration distribution of the environmental samples (contamination category 4). Field blanks for these 16 VOCs appear to be nonrepresentative of the sources of contamination bias affecting the environmental samples because of the larger concentration distributions (and sometimes higher frequency of detection) in field blanks than in environmental samples. Forty-three of the 87 VOCs analyzed in samples from monitoring wells were not detected in field blanks (contamination category 1), and 44 VOCs were detected in field blanks. Eight of the 44 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than concentrations in environmental samples (contamination category 2). These eight VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Seven VOCs had a 90-percent UCL concentration distribution in field blanks that was of the same order of magnitude as the concentration distribution of the environmental samples (contamination category 3). Twenty-nine VOCs had a 90-percent UCL concentration distribution in the field blanks that was an order of magnitude greater than the distribution of the environmental samples (contamination category 4). Field blanks for these 29 VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. Fifty-four of the 87 VOCs analyzed in surface-water samples were not detected in field blanks (category 1), and 33 VOC were detected in field blanks. Sixteen of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 16 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Ten VOCs had a 90-percent UCL concentration distribution in field blanks that was similar to the concentration distribution of environmental samples (contamination category 3). Seven VOCs had a 90-percent UCL concentration distribution in the field blanks that was greater than the concentration distribution in environmental samples (contamination category 4). Field-blank samples for these seven VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. The relation between the detection of a compound in field blanks and the detection in subsequent environmental samples appears to be minimal. The median minimum percent effectiveness of native water rinsing is about 79 percent for the 19 VOCs detected in more than 5 percent of field blanks from all three site types. The minimum percent effectiveness of native water rinsing (10 percent) was for toluene in surface-water samples, likely because of the large detection frequency of toluene in surface-water samples (about 79 percent) and in the associated field-blank samples (46.5 percent). The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study. The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study.
The public health significance of latrines discharging to groundwater used for drinking.
Ravenscroft, P; Mahmud, Z H; Islam, M Shafiqul; Hossain, A K M Z; Zahid, A; Saha, G C; Zulfiquar Ali, A H M; Islam, Khairul; Cairncross, S; Clemens, J D; Islam, M Sirajul
2017-11-01
Faecal contamination of groundwater from pit latrines is widely perceived as a major threat to the safety of drinking water for several billion people in rural and peri-urban areas worldwide. On the floodplains of the Ganges-Brahmaputra-Meghna delta in Bangladesh, we constructed latrines and monitored piezometer nests monthly for two years. We detected faecal coliforms (FC) in 3.3-23.3% of samples at four sites. We differentiate a near-field, characterised by high concentrations and frequent, persistent and contiguous contamination in all directions, and a far-field characterised by rare, impersistent, discontinuous low-level detections in variable directions. Far-field FC concentrations at four sites exceeded 0 and 10 cfu/100 ml in 2.4-9.6% and 0.2-2.3% of sampling events respectively. The lesser contamination of in-situ groundwater compared to water at the point-of-collection from domestic wells, which itself is less contaminated than at the point-of-consumption, demonstrates the importance of recontamination in the well-pump system. We present a conceptual model comprising four sub-pathways: the latrine-aquifer interface (near-field); groundwater flowing from latrine to well (far-field); the well-pump system; and post-collection handling and storage. Applying a hypothetical dose-response model suggests that 1-2% of the diarrhoeal disease burden from drinking water is derived from the aquifer, 29% from the well-pump system, and 70% from post-collection handling. The important implications are (i) that leakage from pit latrines is a minor contributor to faecal contamination of drinking water in alluvial-deltaic terrains; (ii) fears of increased groundwater pollution should not constrain expanding latrine coverage, and (iii) that more attention should be given to reducing contamination around the well-head. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas
2013-04-01
In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.
Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments.
Beckingham, Barbara; Ghosh, Upal
2011-12-15
Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.
Mirmonsef, Hassan; Hornum, Hanne D; Jensen, John; Holmstrup, Martin
2017-01-01
Contaminated soil is a problem throughout the industrialized world, and a significant proportion of these sites are polluted with heavy metals such as copper. Ecological risk assessment of contaminated sites requires ecotoxicological studies with spiked soils as well as in-situ ecological observations. Here, we report laboratory and field assessment of copper toxicity for earthworms at a Danish site (Hygum) exclusively contaminated with an increasing gradient in copper from background to highly toxic levels (>1000mgkg -1 dry soil). More specifically, we report effects on field populations, body contents of copper, hatching of earthworm cocoons and reproduction of the common species Aporrectodea tuberculata. Abundance of earthworms and cocoons decreased significantly from about 400-150m -2 along the gradient as the soil copper concentration increased from ca. 50 to ca. 1000mgkg -1 . At lower concentrations, the population was dominated by endogeic species, whereas at high concentrations the population was dominated by epigeic species. At high copper contents the internal concentration of copper was in the range 100-160mgkg -1 dry tissue. Despite the high internal copper contents, hatchability of field collected cocoons was not impaired in any species. The EC50 reproduction value of A. tuberculata was about 220mg copper kg -1 dry soil in the first two exposure periods, but nearly doubled in the third period suggesting that an acclimation response had occurred. Also in the laboratory reproduction test, cocoon hatchability was not reduced, but rather slightly stimulated by copper. Based on these results we discuss the possibility that acute exposure in laboratory experiments is more detrimental than exposure in a field situation, perhaps because increased tolerance may be acquired through natural selection and genetic adaptation through increased use of defense mechanisms such as metallothioneins. Further, we discuss that the rather high tissue copper level of earthworms from the Hygum site may have smaller effects in these free-ranging worms than it would have in acute-exposure laboratory tests because the copper is more efficiently sequestered and detoxified in the field situation where populations have been exposed for many generations. Copyright © 2016 Elsevier Inc. All rights reserved.
Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2012-01-01
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233
The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff
Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.
Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.
Extraction of contaminants from a gas
Babko-Malyi, Sergei
2000-01-01
A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.
Apparatus for extraction of contaminants from a gas
Babko-Malyi, Sergei
2001-01-01
A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.
Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.
1987-01-01
This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the sorption of contaminants by different sediment size fractions. Field studies indicate that organic contaminants tend to sorb more to fine-grained sediment, and this correlates significantly with sediment organic matter content. Laboratory experiments have extended the field studies to a wider spectrum of natural particulates and anthropogenic compounds. Quantitation of isotherm results allows the comparison of different sediment sorbents as well as the estimation of field partition coefficients from laboratory-measured sediment and contaminant properties. Detailed analyses made on the basis of particle-size classes show that all sediment fractions need to be considered in evaluating the fate and distribution of manmade organic compounds. This conclusion is based on observations from field studies and on the variety of natural organic sorbents that demonstrate sorptive capabilities in laboratory isotherm experiments.
USDA-ARS?s Scientific Manuscript database
An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...
Lampert, David J; Lu, Xiaoxia; Reible, Danny D
2013-03-01
In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.
Mixed Contaminants Removal Efficiency Using Bio-FeS Nanoparticles.
Seo, Hyunhee; Roh, Yul
2018-02-01
Advances in nanotechnology has provided diverse industrial applications including an environmental remediation field. In particular, bio-nanotechnology gives extended eco-friendly remediation practice. Among diverse bio-nanoparticles synthesized by microorganisms, the iron based nanoparticles (NPs) are of great interest because of their availability, low cost and toxicity to human health and the environment. In this study, iron based nanoparticles were biologically synthesized and mineralogically identified. Also, the removal efficiency of mixed contaminants, high As(III)-low Cr(VI) and high As(V)-low Cr(VI), using these bio-nanoparticles were conducted. As a result, biologically synthesized NPs were identified as FeS complex and their catalytic capacity showed highly effective to immobilize more than 97% of mixed contaminants by adsorption/mineralization.
Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew
2014-01-01
To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge
Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata
2016-01-01
ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503
Cheraghi, Mehrdad; Lorestani, Bahareh; Merrikhpour, Hajar
2012-01-01
The use of phosphate fertilizers is essential in agriculture, because they supply farmland with nutrients for growing plants. However, heavy metals might be included as impurities in natural materials and minerals, so heavy metals can also be present in phosphate fertilizers or other chemical fertilizers. The aim of this work was to assess the heavy metal content and contamination status of agricultural soils in the Hamadan province of Iran used for the cultivation of different crops, including cucumber, potatoes, and sugar beet. Surface soil samples were collected and analyzed to determine the total concentration of specific elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), before the pollution index was calculated for each element. Soils used for the cultivation of the three types of crop were not contaminated with As, Cr, Cu, Pb, or Zn. However, the pollution indices for Cd were 1.1, 4.4, and 3.8 in cucumber, potato, and sugar beet fields, respectively, which indicated moderate, high, and high levels of contamination, respectively. Soils from potato and sugar beet fields were heavily contaminated with Cd, which may have resulted from long-term overuse of phosphate fertilizers.
Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.
Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata
2016-01-01
Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.
IS COPPER REQUIRED FOR EASTERN OYSTER SETTING AND METAMORPHOSIS?
Recent field research with eastern oysters demonstrated higher defense activities, including hemocyte numbers, locomotion and bactericidal ability, associated with locations exhibiting relatively high contamination. Copper and zinc, found in high concentrations in tissues of oyst...
Son, Manki; Kim, Daesan; Kang, Jinkyung; Lim, Jong Hyun; Lee, Seung Hwan; Ko, Hwi Jin; Hong, Seunghun; Park, Tai Hyun
2016-12-06
Salmonella infection is the one of the major causes of food borne illnesses including fever, abdominal pain, diarrhea, and nausea. Thus, early detection of Salmonella contamination is important for our healthy life. Conventional detection methods for the food contamination have limitations in sensitivity and rapidity; thus, the early detection has been difficult. Herein, we developed a bioelectronic nose using a carbon nanotube (CNT) field-effect transistor (FET) functionalized with Drosophila odorant binding protein (OBP)-derived peptide for easy and rapid detection of Salmonella contamination in ham. 3-Methyl-1-butanol is known as a specific volatile organic compound, generated from the ham contaminated with Salmonella. We designed and synthesized the peptide based on the sequence of the Drosophila OBP, LUSH, which specifically binds to alcohols. The C-terminus of the synthetic peptide was modified with three phenylalanine residues and directly immobilized onto CNT channels using the π-π interaction. The p-type properties of FET were clearly maintained after the functionalization using the peptide. The biosensor detected 1 fM of 3-methyl-1-butanol with high selectivity and successfully assessed Salmonella contamination in ham. These results indicate that the bioelectronic nose can be used for the rapid detection of Salmonella contamination in food.
Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T
2018-03-01
Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Perdrial, Nico; Mueller, Karl
2012-11-05
Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improvedmore » molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Perdrial, Nico; Mueller, Karl
2012-08-14
Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, P CO2, and reaction time; (ii)more » improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.« less
Henderson, Rory; Unthank, Michael D.; Zettwoch, Douglas D.; Lane, John W.
2010-01-01
The potable water system at Fort Knox is threatened by brine contamination from improperly abandoned natural gas exploration wells. The Fort Knox well field is located near the town of West Point, Kentucky, in the flood plain of the Ohio River. At the site, unconsolidated sediments approximately 30 – 40 m thick, overlie shale and porous limestone. Brine is believed to flow vertically from the underlying formations to the unconsolidated aquifer through damaged or leaky well casings under a high hydraulic gradient from the artificially pressurized porous limestone, which is utilized for natural gas storage by a regional energy company. Upon reaching the unconsolidated aquifer, brinecontaminated groundwater enters water supply production wells under the pumping‐induced gradient. As part of the Fort Knox remediation strategy to reduce the impact of brine contamination, electrical resistivity tomography (ERT) and borehole electromagnetic (EM) logs are being collected annually to detect gross changes in subsurface conductivity. The 2009 ERT data show areas of high conductivity on the western (contaminated) side of the site with conductivities more than an order of magnitude higher than on the eastern (uncontaminated) side of the site. The areas of high conductivity are interpreted as brine contamination, consistent with known regions of brine contamination. Conductivities from the EM logs are consistent with the results from the ERT inversions. The EM logs show little change between 2008 and 2009, except for some small changes in the brine distribution in well PZ1. Yearly ERT surveys will be continued to detect new areas of brine contamination and monitor the remediation effort.
The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...
On-farm and postharvest processing sources of bacterial contamination to melon rinds.
Gagliardi, J V; Millner, P D; Lester, G; Ingram, D
2003-01-01
Multistate and international foodborne illness outbreaks, particularly involving cantaloupe and often involving rare Salmonella spp., have increased dramatically over the past 13 years. This study assessed the sources and extent of melon rind contamination in production fields and at processing and packing facilities. In the spring of 1999, cantaloupe (Cucumis melo L. [reticulatus group] cv. Cruiser) sampled from two sites in the Rio Grande River Valley showed that postharvest-processed melon rinds often had greater plate counts of bacterial contaminants than field-fresh melons. Cantaloupe in the field had 2.5 to 3.5 log CFU g(-1) rind total coliforms by aerobic plate counts, whereas washed melons had 4.0 to 5.0 log CFU g(-1). In the fall of 1999, coliforms on honeydew melons (C. melo [inodorous group] cv. Honey Brew) ranged from 2.6 to 3.7 log CFU g(-1) after processing, and total and fecal coliforms and enterococci never fell below 2.5 log CFU g(-1). A hydrocooler at another site contaminated cantaloupe rinds with up to 3.4 log CFU g(-1) total and fecal enterococci; a secondary rinse with chlorinated water incompletely removed these bacteria. Sources of coliforms and enterococci were at high levels in melon production soils, especially in furrows that were flood irrigated, in standing water at one field, and in irrigation water at both sites. At one processing facility, wash water pumped from the Rio Grande River may not have been sufficiently disinfected prior to use. Because soil, irrigation water, and process water were potential sources of bacterial contamination, monitoring and management on-farm and at processing and packing facilities should focus on water quality as an important control point for growers and packers to reduce bacterial contamination on melon rinds.
Model based estimation of sediment erosion in groyne fields along the River Elbe
NASA Astrophysics Data System (ADS)
Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard
2008-11-01
River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, L. E.; Patton, T. L.; Quinn, J. J.
1999-01-04
Past disposal operations at the Toxic Burn Pits (TBP) area of J-Field, Aberdeen Proving Ground, Maryland, have resulted in volatile organic compound (VOC) contamination of groundwater. Although the contaminant concentration is highest in the surficial aquifer, VOCs are also present in the confined aquifer, which is approximately 30 m (100 ft) deep at the TBP area. This study focuses on the confined aquifer, a sandy valley-fill Pleistocene unit in a paleochannel cut into Cretaceous sands and clays. This report documents the locations of the region's pumping wells, which are over 6 km (4 mi) away from the TBP. The distancesmore » to the pumping wells and the complex stratigraphy limit the likelihood of any contamination reaching a receptor well. Nonetheless, a worst-case scenario was evaluated with a model designed to simulate the transport of trichloroethylene (TCE), the main chemical of concern, from the confined aquifer beneath the TBP along a hypothetical, direct flowpath to a receptor well. The model was designed to be highly conservative (i.e., based on assumptions that promote the transport of contaminants). In addition to the direct flowpath assumption, the model uses the lowest literature value for the biodegradation rate of TCE, a low degree of sorption, a continuous-strength source, and a high flow velocity. Results from this conservative evaluation indicate that the simulated contaminant plume extends into areas offshore from J-Field, but decays before reaching a receptor well. The 5-ppb contour, for example, travels approximately 5 km (3 mi) before stagnating. Recent field analyses have documented that complete biodegradation of TCE to ethene and ethane is occurring directly below the TBP; therefore, the likelihood of TCE or its daughter products reaching a pumping well appears negligible. Thus, the model results may be useful in proposing either a no action or a natural attenuation alternative for the confined aquifer.« less
Nijenhuis, Ivonne; Stollberg, Reiner; Lechner, Ute
2018-04-01
The megasite Bitterfeld-Wolfen is highly contaminated as a result of accidents and because of dumping of wastes from local chemical industries in the last century. A variety of contaminants including chlorinated ethenes and benzenes, hexachlorohexanes and chlorinated dioxins can still be found in the groundwater and (river) sediments. Investigations of the in situ microbial transformation of organohalides have been performed only over the last two decades at this megasite. In this review, we summarise the research on the activity of anaerobic dehalogenating bacteria at the field site in Bitterfeld-Wolfen, focusing on chlorinated ethenes, monochlorobenzene and chlorinated dioxins. Various methods and concepts were applied including ex situ cultivation and isolation, and in situ analysis of hydrochemical parameters, compound-specific stable isotope analysis of contaminants, 13C-tracer studies and molecular markers. Overall, biotransformation of organohalides is ongoing at the field site and Dehalococcoides mccartyi species play an important role in the detoxification process in the Bitterfeld-Wolfen region.
Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces
NASA Technical Reports Server (NTRS)
Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.
1992-01-01
Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.
Fixation of Radiological Contamination; International Collaborative Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Demmer
2013-03-01
A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.
Firdaus-e Bareen; Tahira, Syeda Anjum
2011-02-15
The tannery effluent contaminated lands, adjacent to Depalpur Road, Kasur, Pakistan, have been rendered infertile due to long term effluent logging from the leather industry. The area has been colonized by twelve plant species among which Suaeda fruticosa, Salvadora oleoides and Calatropis procera have been found to be the most common and high biomass producing plants. S. fruticosa was subjected to further experimentation because of its high biomass and phytoextraction capabilities for metals. The pot and field experiments were carried out simultaneously. Pot experiments were conducted using the same field soil in column pots with stoppard bottoms to obtain the leachate. EDTA treatment caused a greater solubility of Cr in the soil pore water. In higher doses more amount of the heavy metal was leached. The increase in the amount of EDTA significantly caused a decrease in the biomass of plants without toxicity symptoms. A higher biomass of plants was observed in the field as compared to the pot experiment. The greatest amount of Na was accumulated by leaves of S. fruticosa followed by stem and roots. Similarly, the greatest amount of Cr was bioaccumulated by leaves of S. fruticosa, but followed by roots and then stem. S. fruticosa can be employed in rehabilitation of tannery effluent contaminated soil using small doses of EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.
Leaching of organic contaminants from storage of reclaimed asphalt pavement.
Norin, Malin; Strömvall, A M
2004-03-01
Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.
Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1972-01-01
Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.
Managing puncturevine in alfalfa hay and along field edges
USDA-ARS?s Scientific Manuscript database
Puncturevine (Tribulus terrestris) is a nuisance and difficult to control weed in alfalfa hay field edges and borders. Puncturevine contaminated hay can contain high levels of nitrates and burs can injure mouths of livestock, lowering the value and quality of the hay. Puncturevine is a summer annual...
Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning
2013-10-01
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.
The impact of on-site wastewater from high density cluster developments on groundwater quality
NASA Astrophysics Data System (ADS)
Morrissey, P. J.; Johnston, P. M.; Gill, L. W.
2015-11-01
The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site.
Measurement of metallic contaminants in food with a high-Tc SQUID
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Natsume, Miyuki; Uchida, Masashi; Hotta, Naoki; Matsuda, Takemasa; Spanut, Zarina A.; Hatsukade, Yoshimi
2004-04-01
We have proposed and demonstrated a high-Tc SQUID system for detecting metallic contaminants in foodstuffs. There is a demand for the development of systems for detecting not only magnetic materials but also non-magnetic materials such as Cu and aluminium in foodstuffs to ensure food safety. The system consists of a SQUID magnetometer, an excitation coil and a permanent magnet. For a non-magnetic sample, an AC magnetic field is applied during detection to induce an eddy current in the sample. For a magnetizable sample, a strong magnetic field is applied to the sample prior to the detection attempt. We were able to detect a stainless steel ball with a diameter of 0.1 mm and a Cu ball less than 1 mm in diameter, for example.
Distinguishing bovine fecal matter on spinach leaves using field spectroscopy
USDA-ARS?s Scientific Manuscript database
Detection of fecal contaminants on leafy greens in the field will allow for decreasing cross-contamination of produce during and post-harvest. Fecal contamination of leafy greens has been associated with E.coli O157:H7 outbreaks and foodbourne illnesses. In this study passive field spectroscopy, mea...
Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field
Zhang, Shaohui; Hua, Yumei; Deng, Liangwei
2016-01-01
The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003) compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils. PMID:27058548
Desjardins, Anne E; Busman, Mark; Manandhar, Gyanu; Jarosz, Andrew M; Manandhar, Hira K; Proctor, Robert H
2008-07-09
The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (1) or 4-deoxynivalenol (2), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance of 1 and 2 in maize ear rot, a survey of naturally contaminated maize in Nepal was combined with experiments in the field and in a plant growth room. In the survey, 1 contamination was 4-fold more frequent than 2 contamination and 1-producers (TRI13) were isolated more than twice as frequently as 2-producers (Psi TRI13). In maize ear rot experiments, genetically diverse 1-producers and 2-producers caused ear rot and trichothecene contamination. Among strains with the same genetic background, however, 1-producers caused less ear rot and trichothecene contamination than did 2-producers. The high frequency of 1 contamination and the high virulence of many 1-producers are of concern because maize is a staple food of rural populations in Nepal and because 1 has proven to be more toxic than 2 to animals.
Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott
2014-05-15
Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Strategies for sustainable woodland on contaminated soils.
Dickinson, N M
2000-07-01
Extensive in situ reclamation treatment technologies are appropriate for a large proportion of contaminated land in place of total removal or complete containment of soil. In this paper, initial results are presented of site descriptions, tree survival and metal uptake patterns from two field planting trials on a highly industrially contaminated site adjacent to a metal refinery and on old sanitary landfill sites. Survival rate was high in both trials but factors besides heavy metals were particularly significant. Uptake patterns of metals into foliage and woody tissues were variable, with substantial uptake in some species and clones supporting the findings of earlier pot experiments. It is argued that there is sufficient evidence to consider the use of trees in reclamation as part of a realistic, integrated, low-cost, ecologically-sound and sustainable reclamation strategy for contaminated land. This is an opportunity to bring a large number of brownfield sites into productive use, which otherwise would be prohibitively expensive to restore.
Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul
2005-01-01
Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.
2013-06-01
Bioavailability, metals, soil, bioaccessibility, ecological risk, arsenic, cadmium , chromium, lead 16. SECURITY CLASSIFICATION OF:U 17. LIMITATION...located in Sacramento, CA. Soils from a former wastewater treatment lagoon are contaminated with high concentrations of lead , chromium, and cadmium ...in soil. Soil and Sediment Contamination, 2003. 12(1): p. 1-21. 23. Pierzynski, G.M. and A.P. Schwab, Bioavailability of Zinc, Cadmium , and Lead
Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field
NASA Astrophysics Data System (ADS)
Dawson, Lon A.; Pohl, Phillip I.
1997-11-01
The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.
Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.
Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo
2015-01-01
The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil environment.
Garber, N P; Cotty, P J
2014-05-01
In the Rio Grande Valley of Texas (RGV), values of maize and cottonseed crops are significantly reduced by aflatoxin contamination. Aflatoxin contamination of susceptible crops is the product of communities of aflatoxin producers and the average aflatoxin-producing potentials of these communities influence aflatoxin contamination risk. Cropping pattern influences community composition and, thereby, the epidemiology of aflatoxin contamination. In 2004, Aspergillus parasiticus was isolated from two fields previously cropped to sugarcane but not from 23 fields without recent history of sugarcane cultivation. In 2004 and 2005, A. parasiticus composed 18 to 36% of Aspergillus section Flavi resident in agricultural soils within sugarcane-producing counties. A. parasiticus was not detected in counties that do not produce sugarcane. Aspergillus section Flavi soil communities within sugarcane-producing counties differed significantly dependent on sugarcane cropping history. Fields cropped to sugarcane within the previous 5 years had greater quantities of A. parasiticus (mean = 16 CFU/g) than fields not cropped to sugarcane (mean = 0.1 CFU/g). The percentage of Aspergillus section Flavi composed of A. parasiticus increased to 65% under continuous sugarcane cultivation and remained high the first season of rotation out of sugarcane. Section Flavi communities in fields rotated to non-sugarcane crops for 3 to 5 years were composed of <5% A. parasiticus, and fields with no sugarcane history averaged only 0.2% A. parasiticus. The section Flavi community infecting RGV sugarcane stems ranged from 95% A. parasiticus in billets prepared for commercial planting to 52% A. parasiticus in hand-collected sugarcane stems. Vegetative compatibility assays and multilocus phylogenies verified that aflatoxin contamination of raw sugar was previously attributed to similar A. parasiticus in Japan. Association of closely related A. parasiticus genotypes with sugarcane produced in Japan and RGV, frequent infection of billets by these genotypes, and the ephemeral nature of A. parasiticus in RGV soils suggests global transport with sugarcane planting material.
Recent Progresses in Nanobiosensing for Food Safety Analysis
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-01-01
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636
Recent Progresses in Nanobiosensing for Food Safety Analysis.
Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen
2016-07-19
With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-04-18
The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediationmore » under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.« less
MILITARY RATIONS, *MICROORGANISMS), (*FOOD, *BIOLOGICAL CONTAMINATION), DETECTION, IDENTIFICATION, STORAGE, PROCESSING, FREEZE DRYING, MICROCOCCUS , STREPTOCOCCUS, YEASTS, MOLDS(ORGANISMS), TEMPERATURE, HIGH ALTITUDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.T.; Ziegenfuss, P.S.; Marks, P.J.
1989-03-01
A field-scale demonstration of composting propellants-contaminated sediment was conducted at the Badger Army Ammunition Plant (BAAP). Composting, as used at BAAP, is a treatment process in which organic-chemical contaminated soils or sediments are mixed with organic materials such as manure to enhance the role of microbial metabolism in degrading and stabilizing soil/sediment contaminants. Sediments contaminated with the propellant nitrocellulose (NC) were mixed with manure, alfalfa, livestock feed, and wood chips and composted in four static piles. Negative pressure aeration was used to maintain aerobiosis and remove excess heat. Experimental variables investigated during the study were temperature (mesophilic, 35 C vs.more » thermophilic, 55 C), sediment loading (19 to 32 weight percent), and NC loading. Small aliquots of compost (approximately 400 cu cm) were spiked with pure NC, placed in porous nylon bags and buried in compost piles. These bagged compost samples were used to determine if high levels of NC could be successfully composted. Thermophilic temperatures resulted in the highest percent reduction in NC concentration.« less
Tai, Yiping; McBride, Murray B; Li, Zhian
2013-03-30
In the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite. However, the BCR sequential extraction for field-collected soils with known and different sources of Pb contamination was not sufficiently discriminatory in the dissolution of soil Pb phases to allow soil Pb forms to be "fingerprinted" by this method. It is concluded that standard sequential extraction procedures are probably not very useful in predicting lability and bioavailability of Pb in contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.
Enabling environmental metagenomics and extremophile discovery through SCODA DNA purification
NASA Astrophysics Data System (ADS)
Lum, T.; Maydan, J.
2016-12-01
A major challenge in nucleic acid preparation from environmental samples is in the ability to separate DNA and RNA from contaminants that often co-purify with methods commonly used. This becomes even more challenging when nucleic acids are in low abundance or when enriching for high molecular weight fragments. Many column- and bead-based methods rely upon selective chemical affinity which is insufficient in dealing with similarly charged contaminants, and also often result in over fragmentation nucleic acids and substantial sample loss. Here we present a unique and alternative parameter for the separation nucleic acids based on the nonlinear response of long, charged polymers to electrophoretic fields. The synchronous coefficient of drag alteration (SCODA) technology is capable of purifying nucleic acids from highly contaminated sample matrices, with molecular weight ranges from 300 bp to over 1 Mbp, and from very low biomass origins. Using a combination of rotating dipole and quadrupole electric fields, SCODA technology concentrates ultrapure nucleic acids that enable PCR, NGS, and optical mapping applications on sample types that are otherwise difficult or impossible to analyze.
NASA Astrophysics Data System (ADS)
Chon, Hyo-Taek
2015-04-01
Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.
Uptake of sediment-associated contaminants by the oligochaete, Lumbriculus variegatus, was evaluated after 1,3,7,14,28, and 56 d of exposure to a field-collected sediment contaminated with DDT and its metabolites DDD and DDE or to a field-collected sediment contaminated with PAHs...
Anti-contamination device for cryogenic soft X-ray diffraction microscopy
Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...
2011-05-01
Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.
Zhang, Huaning; Hou, Peibin; Lv, Hui; Chen, Yuzhen; Li, Xinpeng; Ren, Yanyan; Wang, Mei; Tan, Hailian; Bi, Zhenwang
2017-05-01
Infection with Cronobacter spp. leads to neonatal meningitis, necrotizing enterocolitis and bacteremia. Cronobacter spp. are reported to comprise an important pathogen contaminating powdered infant formula (PIF) and follow-up formula (FUF), although little is known about the contamination level of Cronobacter spp. in PIFs and FUFs in China. In total, 1032 samples were collected between 2011 and 2013. Forty-two samples were positive, including 1.6% in PIFs and 6.5% in FUFs. The strains were susceptible to most antibiotics except for cefoxitin. Pulsed-field gel electrophoresis after XbaI digestion produced a total of 36 banding patterns. The 38 strains were found in 27 sequence types (STs), of which nine types (ST454 to ST462) had not been reported in other countries. The clinically relevant strains obtained from the 38 isolates in the present study comprised three ST3, two ST4, two ST8 and one ST1. The contamination rate in the PIF and FUF has stayed at a relatively high level. The contamination rate of PIF was significantly lower than FUF. The isolates had high susceptibility to the antibiotics tested, except cefoxitin. There were polymorphisms between the Cronobacter spp. as indicated by pulsed-field gel electrophoresis and multilocus sequence typing. Therefore, contamination with Cronobacter spp. remains a current issue for commercial infant formulas in China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
High explosive spot test analyses of samples from Operable Unit (OU) 1111
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRae, D.; Haywood, W.; Powell, J.
1995-01-01
A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soilmore » and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.« less
NASA Astrophysics Data System (ADS)
Odling, Noelle E.; Roden, Julie E.
1997-09-01
Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.
1999-03-01
Results of the 1998 Field Demonstration and Preliminary Implementation Guidance for Phytoremediation of Lead-Contaminated Soil at the Twin... Phytoremediation of Lead-Contaminated Soil at the Twin Cities Army Ammunition Plant, Arden Hills, Minnesota. 12. PERSONAL AUTHOR(S) A. P. Behel, Jr...CODES FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Phytoremediation of Lead-Contaminated
Zhang, Juan; Wang, Renqing; Du, Xiaoming; Li, Fasheng; Dai, Jiulan
2012-01-01
To evaluate contamination caused by petroleum, surface soil samples were collected from both upland and paddy fields along the irrigation canals in the Hunpu wastewater irrigation region in northeast China. N-alkanes, terpanes, steranes, and phospholipid fatty acids (PLFA) in the surface soil samples were analyzed. The aliphatic hydrocarbon concentration was highest in the samples obtained from the upland field near an operational oil well; it was lowest at I-3P where wastewater irrigation promoted the downward movement of hydrocarbons. The Hunpu region was found contaminated by heavy petroleum from oxic lacustrine fresh water or marine deltaic source rocks. Geochemical parameters also indicated significantly heavier contamination and degradation in the upland fields compared with the paddy fields. Principal component analysis based on PLFA showed various microbial communities between petroleum contaminated upland and paddy fields. Gram-negative bacteria indicated by 15:0, 3OH 12:0, and 16:1(9) were significantly higher in the paddy fields, whereas Gram-positive bacteria indicated by i16:0 and 18:1(9)c were significantly higher in the upland fields (p < 0.05). These PLFAs were related to petroleum contamination. Poly-unsaturated PLFA (18:2omega6, 9; indicative of hydrocarbon-degrading bacteria and fungi) was also significantly elevated in the upland fields. This paper recommends more sensitive indicators of contamination and degradation of petroleum in soil. The results also provide guidelines on soil pollution control and remediation in the Hunpu region and other similar regions.
Pramanik, Krishnendu; Mitra, Soumik; Sarkar, Anumita; Maiti, Tushar Kanti
2018-06-05
Heavy metal resistant PGPR mediated bioremediation, phytostimulation and stress alleviation is an eco-friendly method for sustainable agriculture in the metal contaminated soil. The isolation of such PGPR is highly demanding to reduce heavy metals in contaminated cultivated fields for agricultural benefit. The present study was successful to isolate a potent multi-heavy metal resistant PGPR strain, identified as Enterobacter aerogenes strain K6 based on MALDI-TOF MS, FAME analysis and 16S rDNA sequence homology, from rice rhizosphere contaminated with a variety of heavy metals/metalloid near industrial area. The strain exhibited high degree of resistance to Cd 2+ , Pb 2+ and As 3+ upto 4000 μg/mL, 3800 μg/mL and 1500 μg/mL respectively. Intracellular Cd accumulation of this strain was evidenced by AAS-SEM-TEM-EDX-XRF studies. Moreover, it showed several important PGP traits like IAA production, nitrogen fixation, phosphate solubilization, ACC deaminase activity even under high Cd stress (upto 3000 μg/mL). The combined effect of Cd resistance and PGP activities of this strain was manifested to the significant (p < 0.05) growth promotion of rice seedling under Cd stress by reducing oxidative stress (through antioxidants), stress ethylene and Cd uptake in seedlings. Thus K6 strain conferred Cd-tolerance in rice seedlings and could be applied as PGPR in contaminated fields. Copyright © 2018 Elsevier B.V. All rights reserved.
Ineffective hand washing and the contamination of carrots after using a field latrine.
Monaghan, J M; Hutchison, M L
2016-04-01
A study was undertaken to simulate the likely effects of a field worker with poor hygienic practices that had returned to work too soon after recovering from an infection by an enteric pathogen. The studies simulated a variety of hand-washing practices from no washing to washing with soap and water followed by an application of alcohol gel after using a field latrine. The numbers of generic Escherichia coli isolated from workers' hands declined with increasing thoroughness of hand-washing treatments with unwashed hands > water > water and soap > water, soap and alcohol gel. Where gloves were worn the counts obtained for the treatments were significantly reduced, but it was observed that unwashed hands contaminated gloves during the process of putting them on. Hand contamination following the use of a field latrine transferred contamination to carrots. These results suggest that if no gloves are worn it would be best practice to wash hands with water and soap and apply alcohol gel after using a field latrine. Wearing gloves reduced the risk of contaminating handled produce but workers should still wash their hands after using a field latrine before applying gloves. This study shows that inadequate hand hygiene in the field following the use of a field latrine can transfer bacterial contamination to hand-harvested carrots. Where fresh produce crops are to be handled by workers, wearing gloves reduces the risk of contaminating produce but workers should still wash their hands after using a field latrine before applying gloves. If no gloves are worn it would be best practice to wash hands with water and soap and apply alcohol gel after using a field latrine. © 2016 The Society for Applied Microbiology.
2014-06-01
unacceptable levels of the toxic metal(loid)s arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). With the exception of Pb contaminated soils, human...remediation and closure. Lead (Pb), arsenic (As), chromium (Cr), and cadmium (Cd) are toxic (i.e., capable of producing an unwanted, deleterious effect...lagoon are contaminated with high concentrations of lead , chromium, and cadmium . 14 Deseret Chemical Depot: The Deseret Chemical Depot is
NASA Astrophysics Data System (ADS)
Hu, Xue-Feng; Jiang, Ying; Shu, Ying
2014-05-01
Hunan province, Central South China, is a well-known nonferrous metal base in China. Mine exploiting and processing there, however, often lead to heavy metal pollution of farmland. To study the effects of mining activities on the soil environmental quality, four representative paddy fields, the HSG, SNJ, NT and THJ, in Y county, northern Hunan province, were investigated. It was found that the streams running through the HSG, SNJ and NT are severely contaminated due to the long-term discharge of untreated mineral wastewater from local indigenous mining factories. The stream at the HSG, for example, is brownish red in color, with high concentrations of Cu, Zn, Cd, Fe and Mn. The concentrations of Cu, Zn and Cd in all the stream water of the HSG, SNJ and NT exceed the maximum allowable levels of the Agricultural Irrigation Water Criteria of China. Correspondingly, the HSG, SNJ and NT are heavily polluted by Cu, Zn and Cd due to the long-term irrigation with the contaminated stream water. In comparison, both stream water and paddy fields of the THJ, far away from mining areas, are not contaminated by any heavy metals and hence regarded as a control in this study. The rice grain produced at the HSG, SNJ and NT has a high risk of Cd contamination. The rate of rice grain produced in the four paddy fields in Y county with Cd exceeding the safe level (Cd, 0.2 μg g-1) specified by the National Standards for Rice Quality and Safety of China reaches 90%. Cd content in the rice grain is positively significantly correlated with that in the paddy fields, especially with the content of diethylenetriaminepentaacetic acid (DTPA) - extracted Cd, suggesting that the heavy metal pollution of paddy fields has already posed a high risk to rice safety and human health. Soil enzyme activities and microbial biomass are significantly inhibited by the heavy metal pollution of the paddy fields. Microbial biomass C and N (MBC and MBN) at a severely contaminated site of the HSG are only 31.6% and 64.4% of the controls; the activities of dehydrogenase, urease, catalase, acid and neutral phosphatase and sucrase are only 25.2%, 49.3%, 52.4%, 94.7%, 53.2% and 87.8% of the controls. These microbial parameters are mostly negatively significantly correlated with the contents of Cu, Zn, Cd and Ni in the paddy fields, suggesting the toxic effects of the heavy metals on microbial processes. Both the Principal Component Analysis (PCA) and Cluster Analysis (CA) indicated that DH activity and MBC are the most sensitive to the heavy metal pollution and could be used as eco-indicators of the environmental quality of the paddy fields in the study areas. Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 41130526).
There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...
FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT
This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...
Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen
2014-10-01
This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. Copyright © 2014 Elsevier Inc. All rights reserved.
The degree of bacterial contamination while performing spine surgery.
Ahn, Dong Ki; Park, Hoon Seok; Kim, Tae Woo; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin
2013-03-01
Prospective experimental study. To evaluate bacterial contamination during surgery. The participants of surgery and ventilation system have been known as the most significant sources of contamination. Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time.
The Degree of Bacterial Contamination While Performing Spine Surgery
Ahn, Dong Ki; Park, Hoon Seok; Yang, Jong Hwa; Boo, Kyung Hwan; Kim, In Ja; Lee, Hye Jin
2013-01-01
Study Design Prospective experimental study. Purpose To evaluate bacterial contamination during surgery. Overview of Literature The participants of surgery and ventilation system have been known as the most significant sources of contamination. Methods Two pairs of air culture blood agar plate for G(+) bacteria and MacConkey agar plate for G(-) bacteria were placed at 3 different locations in a conventional operation room: in the surgical field, under the airflow of local air conditioner, and pathway to door while performing spine surgeries. One pair of culture plates was retrieved after one hour and the other pair was retrieved after 3 hours. The cultured bacteria were identified and number of colonies was counted. Results There was no G(-) bacteria identified. G(+) bacteria grew on all 90 air culture blood agar plates. The colony count of one hour group was 14.5±5.4 in the surgical field, 11.3±6.6 under the local air conditioner, and 13.1±8.7 at the pathway to the door. There was no difference among the 3 locations. The colony count of 3 hours group was 46.4±19.5, 30.3±12.9, and 39.7±15.2, respectively. It was more at the surgical field than under the air conditioner (p=0.03). The number of colonies of one hour group was 13.0±7.0 and 3 hours group was 38.8±17.1. There was positive correlation between the time and the number of colonies (r=0.76, p=0.000). Conclusions Conventional operation room was contaminated by G(+) bacteria. The degree of contamination was most high at the surgical field. The number of bacteria increased right proportionally to the time. PMID:23508998
Utilization of microwave energy for decontamination of oil polluted soils.
Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi
2010-01-01
Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.
White HDPE bottles as source of serious contamination of water samples with Ba and Zn.
Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik
2007-03-15
During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.
Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO
The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker.more » Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations, and step-out sampling to define the extent of contamination, as necessary. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less
Development of Canavalia ensiformis in soil contaminated with diesel oil.
Balliana, A G; Moura, B B; Inckot, R C; Bona, C
2017-01-01
Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator.
Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F
2014-01-01
Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.
2016-05-01
An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.
Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard
2018-04-01
The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Henri, C.; Fernandez-Garcia, D.; de Barros, F.
2013-12-01
The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel times and other higher order statistics. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme, and the total risk (TR) for human health related to the mixtures of the four carcinogenic plumes is evaluated. Results show two distinct spatio-temporal behavior of the TR estimation. At a fixed environmentally sensitive location, aquifers with a high degree of connectivity display a lower TR. On the other hand, at the same environmentally sensitive location, the poorly connected aquifer yields higher TR. Our results reflect the interplay between the characteristic reactive time for each component and the characteristic travel time of the plume since the production of VC depends on these factors.
NASA Astrophysics Data System (ADS)
Friedlander, L. R.; Garb, Y.
2017-12-01
Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.
2015-03-12
Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.
NASA Astrophysics Data System (ADS)
Altenbockum, Michael; Berens, Katharina; Enzmann, Frieder; Kersten, Michael; Rüde, Thomas R.; Wieber, Georg H. E.
2017-12-01
The present case study brings together different field- and laboratory methods and shows how the combination of different methods is able to lead to a plausible geological and hydrogeological conceptual model. The motivation for the study is a large groundwater-contamination site with volatile chlorinated hydrocarbons (CHC). The field work included core drilling, borehole geophysics, field mapping, remote sensing as well as pumping and packer tests. In the laboratory, thin section analyses, computed tomography, mercury porosimetry, compressed permeability measurements and triaxial cell tests were carried out. The Kreuznach- and Standenbühl-Formations can be identified as two types of aquifers by their hydrochemical composition. The hypothesis of continuous porous sandstone-layers in the Kreuznach-Formation as published in former articles (Fürst et al. 1987) was not confirmed. The primary strike of the joint system was identified as N-S and E-W with joint spacings of 3 to 8 m. The laboratory tests show an effective porosity of at most 4% and a high retention capacity for the sandstone of the Kreuznach-Formation. About 9% of the joints are water conduits. The results show that because of heterogeneities in the fractured aquifer, the efficiency of hydraulic remediation of groundwater contamination by pumping wells is unpredictable. Furthermore, the high matrix retention capacity has a negative impact on the release of contaminants and on groundwater remediation.
NASA Astrophysics Data System (ADS)
Altenbockum, Michael; Berens, Katharina; Enzmann, Frieder; Kersten, Michael; Rüde, Thomas R.; Wieber, Georg H. E.
2018-06-01
The present case study brings together different field- and laboratory methods and shows how the combination of different methods is able to lead to a plausible geological and hydrogeological conceptual model. The motivation for the study is a large groundwater-contamination site with volatile chlorinated hydrocarbons (CHC). The field work included core drilling, borehole geophysics, field mapping, remote sensing as well as pumping and packer tests. In the laboratory, thin section analyses, computed tomography, mercury porosimetry, compressed permeability measurements and triaxial cell tests were carried out. The Kreuznach- and Standenbühl-Formations can be identified as two types of aquifers by their hydrochemical composition. The hypothesis of continuous porous sandstone-layers in the Kreuznach-Formation as published in former articles (Fürst et al. 1987) was not confirmed. The primary strike of the joint system was identified as N-S and E-W with joint spacings of 3 to 8 m. The laboratory tests show an effective porosity of at most 4% and a high retention capacity for the sandstone of the Kreuznach-Formation. About 9% of the joints are water conduits. The results show that because of heterogeneities in the fractured aquifer, the efficiency of hydraulic remediation of groundwater contamination by pumping wells is unpredictable. Furthermore, the high matrix retention capacity has a negative impact on the release of contaminants and on groundwater remediation.
Abel, Sebastian; Akkanen, Jarkko
2018-04-17
The in situ remediation of aquatic sediments with activated carbon (AC)-based thin layer capping is a promising alternative to traditional methods, such as sediment dredging. Applying a strong sorbent like AC directly to the sediment can greatly reduce the bioavailability of organic pollutants. To evaluate the method under realistic field conditions, a 300 m 2 plot in the PCB-contaminated Lake Kernaalanjärvi, Finland, was amended with an AC cap (1.6 kgAC/m 2 ). The study lake showed highly dynamic sediment movements over the monitoring period of 14 months. This led to poor retention and rapid burial of the AC cap under a layer of contaminated sediment from adjacent sites. As a result, the measured impact of the AC amendment was low: Both the benthic community structure and PCB bioaccumulation were similar on the plot and in surrounding reference sites. Corresponding follow-up laboratory studies using Lumbriculus variegatus and Chironomus riparius showed that long-term remediation success is possible, even when an AC cap is covered with contaminated sediment. To retain a measurable effectiveness (reduction in contaminant bioaccumulation), a sufficient intensity and depth of bioturbation is required. On the other hand, the magnitude of the adverse effect induced by AC correlated positively with the measured remediation success.
Field investigations of bacterial contaminants and their effects on extended porcine semen.
Althouse, G C; Kuster, C E; Clark, S G; Weisiger, R M
2000-03-15
Field investigations (n=23) were made over a 3-yr period at North American boar studs and farms in which the primary complaint was sperm agglutination in association with decreased sperm longevity of extended semen, and increased regular returns to estrus and/or vaginal discharges across parity. Microscopic examination of extended semen from these units revealed depressed gross motility (usually <30%), sperm agglutination, and sperm cell death occurring within 2 d of semen collection and processing regardless of the semen extender used. The extended semen exhibited a high number of induced acrosome abnormalities (>20%). Sample pH was acidic (5.7 to 6.4) in 93% of the submitted samples. Aerobic culture yielded a variety of bacteria from different genera. A single bacterial contaminant was obtained from 66% of the submitted samples (n=37 doses); 34% contained 2 or more different bacterial genera. The most frequently isolated contaminant bacteria from porcine extended semen were Alcaligenes xylosoxydans (n=3), Burkholderia cepacia (n=6), Enterobacter cloacae (n=6), Escherichia coli (n=6), Serratia marcescens (n=5), and Stenotrophomonas [Xanthomonas] maltophilia (n=6); these 6 bacteria accounted for 71% of all contaminated samples, and were spermicidal when re-inoculated and incubated in fresh, high quality extended semen. All contaminant bacteria were found to be resistant to the aminoglycoside gentamicin, a common preservative antibiotic used in commercial porcine semen extenders. Eleven genera were spermicidal in conjunction with an acidic environment, while 2 strains (E. coli, S. maltophilia) were spermicidal without this characteristic acidic environment. Bacteria originated from multiple sources at the stud/farm, and were of animal and nonanimal origin. A minimum contamination technique (MCT) protocol was developed to standardize hygiene and sanitation. This protocol focused on MCT's during boar preparation, semen collection, semen processing and laboratory sanitation. Implementation of the MCT, in addition to specific recommendations in stud management, resulted in the control of bacterial contamination in the extended semen.
Catarino, Ana I; Cabral, Henrique N; Peeters, Kris; Pernet, Philippe; Punjabi, Usha; Dubois, Philippe
2008-07-01
The present study evaluated the effects of field metal contamination on sperm motility and the RNA/DNA ratio in echinoderms. Populations of Asterias rubens and Echinus acutus that occur naturally along a contamination gradient of sediments by cadmium, copper, lead, and zinc in a Norwegian fjord (the Sørfjord) were studied. Sperm motility, a measure of sperm quality, was quantified using a computer-assisted sperm analysis system. The RNA/DNA ratio, a measure of protein synthesis, was assessed by a one-dye (ethidium bromide)/one-enzyme (RNase), 96-well microplate fluorometric assay. Although both species accumulate metals at high concentrations, neither sperm motility parameters in A. rubens nor the RNA/DNA ratio in both species were affected. The Sørfjord is still one of the most metal-contaminated marine sites in Europe, but even so, populations of A. rubens and E. acutus are able to endure under these conditions.
Vadose zone transport field study: Detailed test plan for simulated leak tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL Ward; GW Gee
2000-06-23
The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from thesemore » uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.« less
Fate of Listeria spp. on parsley leaves grown in laboratory and field cultures.
Dreux, N; Albagnac, C; Carlin, F; Morris, C E; Nguyen-The, C
2007-11-01
To investigate the population dynamics of Listeria monocytogenes and Listeria innocua on the aerial surfaces of parsley. Under 100% relative humidity (RH) in laboratory and regardless of the inoculum tested (10(3)-10(8) CFU per leaf), counts of L. monocytogenes EGDe, LO28, LmP60 and L. innocua CIP 80-12 tended towards approx. 10(5) CFU per leaf. Under low RH, Listeria spp. populations declined regardless to the inoculum size (10(4)-10(8) CFU per leaf). L. innocua CIP 80-12 survived slightly better than L. monocytogenes in the laboratory and was used in field cultures. Under field cultures, counts of L. innocua decreased more rapidly than in the laboratory, representing a decrease of 9 log(10) in 2 days in field conditions compared to a decrease of 4.5 log(10) in 8 days in the laboratory. Counts of L. innocua on tunnel parsley cultures were always higher (at least by 100 times) than those on unprotected parsley culture. Even with a high inoculum and under protected conditions (i.e. plastic tunnels), population of L. monocytogenes on the surface of parsley on the field would decrease by several log(10) scales within 2 days. Direct contamination of aerial surfaces of parsley with L. monocytogenes (i.e. through contaminated irrigation water) will not lead to contaminated produce unless it occurs very shortly before harvest.
Current approaches for the assessment of in situ biodegradation.
Bombach, Petra; Richnow, Hans H; Kästner, Matthias; Fischer, Anko
2010-04-01
Considering the high costs and technical difficulties associated with conventional remediation strategies, in situ biodegradation has become a promising approach for cleaning up contaminated aquifers. To verify if in situ biodegradation of organic contaminants is taking place at a contaminated site and to determine if these processes are efficient enough to replace conventional cleanup technologies, a comprehensive characterization of site-specific biodegradation processes is essential. In recent years, several strategies including geochemical analyses, microbial and molecular methods, tracer tests, metabolite analysis, compound-specific isotope analysis, and in situ microcosms have been developed to investigate the relevance of biodegradation processes for cleaning up contaminated aquifers. In this review, we outline current approaches for the assessment of in situ biodegradation and discuss their potential and limitations. We also discuss the benefits of research strategies combining complementary methods to gain a more comprehensive understanding of the complex hydrogeological and microbial interactions governing contaminant biodegradation in the field.
He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong
2016-12-01
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.
Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart
2009-11-01
Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.
Direct-field acoustic testing of a flight system : logistics, challenges, and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit
2010-10-01
Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, themore » test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.« less
Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.
2013-01-01
The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743
Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan
2016-03-01
We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.
Torre, Michele; Digka, Nikoletta; Anastasopoulou, Aikaterini; Tsangaris, Catherine; Mytilineou, Chryssi
2016-12-15
Research studies on the effects of microlitter on marine biota have become more and more frequent the last few years. However, there is strong evidence that scientific results based on microlitter analyses can be biased by contamination from air transported fibres. This study demonstrates a low cost and easy to apply methodology to minimize the background contamination and thus to increase results validity. The contamination during the gastrointestinal content analysis of 400 fishes was tested for several sample processing steps of high risk airborne contamination (e.g. dissection, stereomicroscopic analysis, and chemical digestion treatment for microlitter extraction). It was demonstrated that, using our methodology based on hermetic enclosure devices, isolating the working areas during the various processing steps, airborne contamination reduced by 95.3%. The simplicity and low cost of this methodology provide the benefit that it could be applied not only to laboratory but also to field or on board work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials.
Li, J T; Liao, B; Dai, Z Y; Zhu, R; Shu, W S
2009-08-01
Use of metal-accumulating woody species to extract metals from heavy metal contaminated soil has received more attention. While considerable studies have focused on the phytoextraction potential of willow (Salix spp.) and poplar (Populus spp.), similar information is rare for other woody species. Carambola (Averrhoa carambola) is a high-biomass tree and has been identified as a new Cd-accumulating species. The present study aimed to evaluate the Cd phytoextraction potential of carambola under field condition. After growing in a slightly Cd-contaminated site for about 170 d, the carambola stand initiated by seed-seedling with high planting density (encoded with "HD-1yr") attained a high shoot biomass yield of 18.6 t ha(-1) and extracted 213 g Cdha(-1), resulting in a 1.6-fold higher Cd removal efficiency than that of a contrasting stand established by grafted-seedling with low planting density (5.3% vs. 2%). That is, "HD-1yr" would remove 50% of the total soil Cd with 13yr, assuming that the Cd removal efficiency would not change over time. Further, one crop of "HD-1yr" significantly decreased (63-69%) the Cd uptake by subsequent vegetables. Among the four carambola stands established using grafted-seedling, the 2-yr-old stand exhibited the highest annual Cd removal efficiency (3.7%), which was yet lower than that of "HD-1yr". These results suggested that phytoextraction of Cd by carambola (especially for "HD-1yr" stand) presented a feasible option to clean up agricultural soils slightly contaminated by Cd.
Loh, Leslie J; Bandara, Gayan C; Weber, Genevieve L; Remcho, Vincent T
2015-08-21
Due to the rapid expansion in hydraulic fracturing (fracking), there is a need for robust, portable and specific water analysis techniques. Early detection of contamination is crucial for the prevention of lasting environmental damage. Bromide can potentially function as an early indicator of water contamination by fracking waste, because there is a high concentration of bromide ions in fracking wastewaters. To facilitate this, a microfluidic paper-based analytical device (μPAD) has been developed and optimized for the quantitative colorimetric detection of bromide in water using a smartphone. A paper microfluidic platform offers the advantages of inexpensive fabrication, elimination of unstable wet reagents, portability and high adaptability for widespread distribution. These features make this assay an attractive option for a new field test for on-site determination of bromide.
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
Shear stress cleaning for surface departiculation
NASA Technical Reports Server (NTRS)
Musselman, R. P.; Yarbrough, T. W.
1986-01-01
A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.
Bioremediation of oil-contaminated soils by composting
NASA Astrophysics Data System (ADS)
Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.
2009-08-01
Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.
Cocaine phenomenology study: results of a third in a series of field trials
NASA Astrophysics Data System (ADS)
Su, Chih-Wu; Rigdon, Stephen W.; Ricard, Steve; Hoglund, David E.; Drolet, Gerry; Neudorfl, Pavel; Hupe, Michael; Kunz, Terry D.; Ulvick, Sydney J.; Demirgian, Jack C.; Shier, Patrick; Wingo, Jeff J.
1997-01-01
To form an understanding of the environment in which non- intrusive detection and inspection technologies are required to operate, the Narcotic Detection Technology assessment Team has undertaken a series of field studies. These field studies have focused on the phenomenology, fate and behavior of narcotic residue in real world environments. The overall goal of the tests is to give Law Enforcement officers the ability to accurately differentiate between individuals involved in the smuggling process and individuals innocently contaminated with narcotics. The latest filed study in this series was conducted in Miami, FL in February 1996. The field study comprised several individual tests. The first was a contamination and transfer study which focuses on human contamination resulting from contact with actual kilos of cocaine and the mechanism by which this contamination transfers to surrounding objects, if at all. The second was a secondary contamination study which focused on determining the conditions under which cocaine contamination transfers from objects touched by individuals who handled narcotics to innocent passerbys. The third was a persistence study which focused on the persistence of cocaine contamination on people under a variety of conditions. An overview of the tests and their preliminary results will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fresquez, Philip R.
Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.
Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site
NASA Astrophysics Data System (ADS)
Morse, J. G.; Wellman, D. M.; Gephart, R.
2010-12-01
The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U.S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.
NASA Astrophysics Data System (ADS)
Rouillon, M.; Taylor, M. P.; Dong, C.
2016-12-01
This research assesses the advantages of integrating field portable X-ray Fluorescence (pXRF) technology for reducing the risk and increase confidence of decision making for metal-contaminated site assessments. Metal-contaminated sites are often highly heterogeneous and require a high sampling density to accurately characterize the distribution and concentration of contaminants. The current regulatory assessment approaches rely on a small number of samples processed using standard wet-chemistry methods. In New South Wales (NSW), Australia, the current notification trigger for characterizing metal-contaminated sites require the upper 95% confidence interval of the site mean to equal or exceed the relevant guidelines. The method's low `minimum' sampling requirements can misclassify sites due to the heterogeneous nature of soil contamination, leading to inaccurate decision making. To address this issue, we propose integrating infield pXRF analysis with the established sampling method to overcome sampling limitations. This approach increases the minimum sampling resolution and reduces the 95% CI of the site mean. Infield pXRF analysis at contamination hotspots enhances sample resolution efficiently and without the need to return to the site. In this study, the current and proposed pXRF site assessment methods are compared at five heterogeneous metal-contaminated sites by analysing the spatial distribution of contaminants, 95% confidence intervals of site means, and the sampling and analysis uncertainty associated with each method. Finally, an analysis of costs associated with both the current and proposed methods is presented to demonstrate the advantages of incorporating pXRF into metal-contaminated site assessments. The data shows that pXRF integrated site assessments allows for faster, cost-efficient, characterisation of metal-contaminated sites with greater confidence for decision making.
Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 7
Mooty, W.S.
1987-01-01
The geohydrology and susceptibility of the seven major aquifers to surface contamination in Area 7 - Bibb, Dallas, Hale, Perry, and Wilcox Counties, are described. Aquifers in the northern part of the study area are in Paleozoic limestones and dolomite formations. Deposits in the central part of the study area are predominately of Cretaceous age and contain the Coker, Gordo, and Eutaw aquifers. Although the southern part of the study area has many deposits of Tertiary age, the Ripley Formation of Cretaceous age is the major aquifer. Contamination of any of the major aquifers is improbable because the majority of the recharge area for the primary aquifers is woodland, pasture, or farmland. Downdip from their outcrops, the major aquifers in the study area are protected from land surface contamination by relatively impermeable layers of clay and chalk. The aquifers that are highly susceptible to contamination are the ones in the limestone and dolomite formations in northern Bibb County. Sinkholes exist in the recharge area of these formations and could provide a direct link for contaminates from the land surface to the water table. An area northeast of the Selma well field is also highly susceptible to contamination. The Eutaw Formation in this area is overlain by alluvial deposits that could increase recharge to the aquifer by slowing the runoff rate of surface water. (USGS)
Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter
2016-01-01
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.
Ji, Puhui; Sun, Tieheng; Song, Yufang; Ackland, M Leigh; Liu, Yang
2011-03-01
Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg(-1) Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dror, I.; Merom Jacov, O.; Berkowitz, B.
2010-12-01
A new composite material based on deposition of nanosized zero valent iron (ZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with ZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nanosized ZVI by preventing agglomeration of iron particles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material and in turn faster rates of remediation. The ability of the material to degrade or transform rapidly and completely a large spectrum of water pollutants will be demonstrated, based on results from two field site experiments where polluted groundwater containing a mixture of industrial and agricultural persistent pollutants was treated. In addition a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions will be presented.
NASA Astrophysics Data System (ADS)
Linnik, Vitaly; Sokolov, Alexander; Sokolov, Peter
2017-04-01
As a result of the Chernobyl accident on April 26, 1986, large amounts of radionuclides were released into the atmosphere, resulting in high contamination in Belarus, Ukraine, and Russia. High variability of environmental parameters and multi-scale nature of initial fallout significantly contributed to very complicated Cs-137 patterns. The first maps of radioactive contamination due to the accident at the Chernobyl nuclear power plant, built in May 1986, already identified a heterogeneous nature of the contamination zones [1]. A complex combination of factors, such as the nature of the deposition (dry, wet), various volumetric activity of radionuclides in the atmosphere during the deposition of aerosols on the earth's surface, led to the formation of multiscale fields of radionuclide contamination, where each scale correlates with "pollution spots" having their own specific nature]. Air gamma survey was conducted with a grid 100x100 m and it allowed to reveal different levels of scale "spots" of Cs-137 contamination associated with the movement of polluted air and the influence of the underlying surface - forests, river valleys. Cs-137 contamination field has an extraordinary feature - uniqueness of its spatial structure in different districts of the Bryansk region. A maximal area of "cesium" spots up to 30-50 km in size and with a contamination density of more than 1000 kBq/m2 is observed in the western part of the Bryansk Region. Their spatial structure is extremely heterogeneous, the differences in the local density of Cs-137 contamination being due to those in intensity of precipitation (wet deposition). The central part of the Bryansk Region with the density of contamination below 37 kBq/m2 (up to 3-5 kBq/m2 ) is an example of a condensing zone of "dry" deposition. With a larger scale, allowing individual elements of Cs-137 contamination to be shown in a more distinct way, it is possible to observe the relationship of contamination with a number of landscape factors. Specifically, one can find apparent relationship of Cs-137 contamination density with forests, where there is an increased deposition activity. An air gamma survey with a range of pollution 7,4-90 0 kBq/m2, conducted in the central and southern part of the Bryansk Region, revealed a complex pattern of contamination density, which is presented as a sequence of "spots" of irregular shape with a high level of radioactive contamination, as well as elongated "bands", whose orientation shows a direction of the movement of air masses, i.e., west-eastward or to the northwest- south-east. The distribution of Cs-137 contamination can be clearly related to the valley of the Sudost River, thus showing relevance of landscape factors for the formation of technogenic pollution with radionuclides. The analysis of transformation of the original Cs-137 contamination formed as a result of the deposition of radioactive aerosols in April-May 1986, due to the effect of landscape factors, has been performed. 1. Izrael Yu. A., Kvasnikova E.V., Linnik V.G. 2012 Radioactive contamination in Russia //Changing the natural environment of Russia in the 20th century (in Russian). Eds. V. M. Kotlyakov, D.I. Lyuri. Moscow: Publishing House Molnet. Pp.202-220.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, S.V.; Athmer, C.; Sheridan, P.W.
A novel, in situ remediation technology called Lasagna is being developed for cleaning up contamination in heterogeneous or low-permeability soils. The technology uses electrical current to drive contaminants from the soil into treatment zones installed directly in the contaminated area. The collaboration between a consortium of industry (Monsanto, DuPont, and General Electric) with the Department of Energy (DOE) and the Environmental Protection Agency (EPA) has led to two field tests at a DOE plant, chosen for its combination of low-permeability soil and trichloroethylene (TCE) as the sole contaminant. This paper describes the first field test in which TCE in themore » contaminated soil was transported into carbon-containing treatment zones where it was trapped. The test was very successful, removing over 98% TCE from the contaminated soil, with most treated samples showing greater than 99% removal. The success of this test paved the way for the second and much larger field test in which TCE was degraded in place.« less
Yen, Jui-Hung; Sheu, Wey-Shin; Wang, Yei-Shung
2003-02-01
The dissipation and mobility of the herbicide oxyfluorfen (2-chloro-alpha,alpha,alpha-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether) in field soil of Taiwan were investigated in the laboratory with six tea garden soils. The dissipation coefficients of oxyfluorfen in soils of different moisture content (30%, 60%, and 90% of soil field capacity) and soil temperature (10 degrees C, 25 degrees C, and 40 degrees C) were studied. Results indicate that the half-life of oxyfluorfen ranged from 72 to 160 days for six tea garden soils. It was found that if the temperature is high, the dissipation rate is rapid, and there is almost no dissipation at 10 degrees C. Possible contamination of groundwater by the herbicide oxyfluorfen was assessed using the behavior assessment model and the groundwater pollution-potential (GWP) model. The results obtained after evaluating the residue and travel time using the GWP model illustrated that oxyfluorfen is not very mobile in soil and may not contaminate groundwater under normal conditions. But in the case of soil of extremely low organic carbon content and coarse texture, oxyfluorfen has the potential to contaminate groundwater less than 3m deep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldron, P.J.; Wu, L.; Van Nostrand, J.D.
2009-06-15
To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity butmore » greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.« less
Direct push injection logging for high resolution characterization of low permeability zones
NASA Astrophysics Data System (ADS)
Liu, G.; Knobbe, S.; Butler, J. J., Jr.; Reboulet, E. C.; Borden, R. C.; Bohling, G.
2017-12-01
One of the grand challenges for groundwater protection and contaminated site remediation efforts is dealing with the slow, yet persistent, release of contaminants from low permeability zones. In zones of higher permeability, groundwater flow is relatively fast and contaminant transport can be more effectively affected by treatment activities. In the low permeability zones, however, groundwater flow and contaminant transport are slow and thus become largely insensitive to many in-situ treatment efforts. Clearly, for sites with low permeability zones, accurate depiction of the mass exchange between the low and higher permeability zones is critical for designing successful groundwater protection and remediation systems, which requires certain information such as the hydraulic conductivity (K) and porosity of the subsurface. The current generation of field methods is primarily developed for relatively permeable zones, and little work has been undertaken for characterizing zones of low permeability. For example, the direct push injection logging (DPIL) approach (e.g., Hydraulic Profiling Tool by Geoprobe) is commonly used for high resolution estimation of K over a range of 0.03 to 23 m/d. When K is below 0.03 m/d, the pressure responses from the current DPIL are generally too high for both the formation (potential formation alteration at high pressure) and measuring device (pressure exceeding the upper sensor limit). In this work, we modified the current DPIL tool by adding a low-flow pump and flowmeter so that injection logging can be performed with much reduced flow rates when K is low. Numerical simulations showed that the reduction in injection rates (reduced from 250 to 1 mL/min) allowed pressures to be measurable even when K was as low as 0.001 m/d. They also indicated that as the K decreased, the pore water pressure increase induced by probe advancement had a more significant impact on DPIL results. A new field DPIL profiling procedure was developed for reducing that impact. Our preliminary test results in both the lab and at a field site have demonstrated the promise of the modified DPIL approach as a practical method for characterizing low permeability zones.
Modeling contamination of shallow unconfined aquifers through infiltration beds
Ostendorf, D.W.
1986-01-01
We model the transport of a simply reactive contaminant through an infiltration bed and underlying shallow, one-dimensional, unconfined aquifer with a plane, steeply sloping bottom in the assumed absence of dispersion and downgradient dilution. The effluent discharge and ambient groundwater flow under the infiltration beds are presumed to form a vertically mixed plume marked by an appreciable radial velocity component in the near field flow region. The near field analysis routes effluent contamination as a single linear reservoir whose output forms a source plane for the one-dimensional, far field flow region downgradient of the facility; the location and width of the source plane reflect the relative strengths of ambient flow and effluent discharge. We model far field contaminant transport, using an existing method of characteristics solution with frame speeds modified by recharge, bottom slope, and linear adsorption, and concentrations reflecting first-order reaction kinetics. The near and far field models simulate transport of synthetic detergents, chloride, total nitrogen, and boron in a contaminant plume at the Otis Air Force Base sewage treatment plant in Barnstable County, Massachusetts, with reasonable accuracy.
PERFORMANCE VERIFICATION TEST FOR FIELD-PORTABLE MEASUREMENTS OF LEAD IN DUST
The US Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program (www.epa.jzov/etv) conducts performance verification tests of technologies used for the characterization and monitoring of contaminated media. The program exists to provide high-quali...
Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Gee, Glendon W.
2000-06-23
This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptualmore » models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.« less
Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.
Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C
2014-01-15
PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Bin; Cao, Yi; Wang, Wei
Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, K.; Bae, G.
2004-12-01
In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.
Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad
2016-06-01
This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80-6.99 mg/kg) and Cd (0.21-0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk.
Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.
Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification. PMID:24098816
Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru
2008-01-01
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.
Yamashita, Takako; Tanaka, Yuji; Yagoshi, Masayasu; Ishida, Kiyohito
2016-01-01
In multiphase steels, control of the carbon contents in the respective phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy by electron probe microanalysis (EPMA) due to the unavoidable effect of hydrocarbon contamination during measurements. We have investigated new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements as well as a conventional liquid nitrogen trap. Plasma cleaner inside the specimen chamber results in a improvement of carbon-content determination by point analysis, increasing precision tenfold from the previous 0.1 mass%C to 0.01 mass%C. Stage heating at about 100 °C dramatically suppresses contamination growth during continuous point measurement and mapping. By the combination of above two techniques, we successfully visualized the two-dimensional carbon distribution in a dual-phase steel. It was also noted that the carbon concentrations at the ferrite/martensite interfaces were not the same across all interfaces, and local variation was observed. The developed technique is expected to be a powerful tool for understanding the mechanisms of mechanical properties and microstructural evolution, thereby contributing to the design of new steel products with superior properties. PMID:27431281
Brinkmann, Markus; Eichbaum, Kathrin; Reininghaus, Mathias; Koglin, Sven; Kammann, Ulrike; Baumann, Lisa; Segner, Helmut; Zennegg, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner
2015-09-01
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluating Contaminants of Emerging Concern as tracers of wastewater from septic systems.
James, C Andrew; Miller-Schulze, Justin P; Ultican, Shawn; Gipe, Alex D; Baker, Joel E
2016-09-15
Bacterial and nutrient contamination from anthropogenic sources impacts fresh and marine waters, reducing water quality and restricting recreational and commercial activities. In many cases the source of this contamination is ambiguous, and a tracer or set of tracers linking contamination to source would be valuable. In this work, the effectiveness of utilizing a suite of Contaminants of Emerging Concern (CECs) as tracers of bacteria from human septic system effluent is investigated. Field sampling was performed at more than 20 locations over approximately 18 months and analyzed for a suite of CECs and fecal coliform bacteria. The sampling locations included seeps and small freshwater discharges to the shoreline. Sites were selected and grouped according to level of impact by septic systems as determined by previous field sampling programs. A subset of selected locations had been positively identified as being impacted by effluent from failing septic systems through dye testing. The CECs were selected based on their predominant use, their frequency of use, and putative fate and transport properties. In addition, two rounds of focused sampling were performed at selected sites to characterize short-term variations in CEC and fecal coliform concentrations, and to evaluate environmental persistence following source correction activities. The results indicate that a suite of common use compounds are suitable as generalized tracers of bacterial contamination from septic systems and that fate and transport properties are important in tracer selection. Highly recalcitrant or highly labile compounds likely follow different loss profiles in the subsurface compared to fecal bacteria and are not suitable tracers. The use of more than one tracer compound is recommended due to source variability of septic systems and to account for variations in the subsurface condition. In addition, concentrations of some CECs were measured in receiving waters at levels which suggested the potential for environmental harm, indicating that the possible risk presented from these sources warrants further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Villalobos, M; Merino-Sánchez, C; Hall, C; Grieshop, J; Gutiérrez-Ruiz, M E; Handley, M A
2009-04-01
An interdisciplinary investigation, involving environmental geochemists, epidemiologists, nurses, and anthropologists, was undertaken to determine the contamination source and pathway of an on-going outbreak of lead poisoning among migrants originating from Zimatlán, Oaxaca, Mexico and living in Seaside, California, and among their US-born children. An initial investigation in Seaside identified grasshopper foodstuff ("chapulines") imported from Mexico and consumed as snacks, as containing alarmingly high lead concentrations (up to 2300 mg/kg). The focus in the present work concentrates on the Oaxacan area of origin of the problem in Mexico, and two potential sources of contamination were investigated: wind-borne dusts from existing mine residues as potential contaminants of soil, plant, and fauna; and food preparation practices using lead-glazed ceramic cookware. Over a three year period, sampling was conducted in Oaxaca using community-level sampling and also targeted sampling with families of cases with lead poisoning in California. In addition to fresh field chapulines, we analyzed for total lead: soil, water, mine residues, and plant materials, both from areas adjacent to or at an abandoned waste site containing mine tailings, and from fields where chapulines are collected; foodstuffs gathered in community markets or in a food transport business; and foodstuffs and cookware gathered from relatives of case families in California. Also, selected new and used lead-glazed clay cookware was extracted for lead, using 0.02 M citric acid and with 4% acetic acid. The results indicated significant presence of lead in mine wastes, in specific foodstuffs, and in glazed cookware, but no extensive soil contamination was identified. In-situ experiments demonstrated that lead incorporation in food is made very efficient through grinding of spices in glazed cookware, with the combination of a harsh mechanical action and the frequent presence of acidic lime juice, but without heating, resulting in high but variable levels of contamination.
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.
2018-01-01
ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661
A high resolution Passive Flux Meter approach based on colorimetric responses
NASA Astrophysics Data System (ADS)
Chardi, K.; Dombrowski, K.; Cho, J.; Hatfield, K.; Newman, M.; Annable, M. D.
2016-12-01
Subsurface water and contaminant mass flux measurements are critical in determining risk, optimizing remediation strategies, and monitoring contaminant attenuation. The standard Passive Flux Meter, hereafter knows as a (PFM), is a well-developed device used for determining and monitoring rates of groundwater and contaminant mass flux in screened wells. The current PFM is a permeable device that contains granular activated carbon impregnated with alcohol tracers which is deployed in a flow field for a designated period of time. Once extracted, sampling requires laboratory analysis to quantify Darcy flux, which can be time consuming and have significant cost. To expedite test results, a modified PFM based on the image analysis of colorimetric responses, herein referred to as a colorimetric Passive Flux Meter (cPFM), was developed. Various dyes and sorbents were selected and evaluated to determine colorimetric response to water flow. Rhodamine, fluorescent yellow, fluorescent orange, and turmeric were the dye candidates while 100% wool and a 35% wool blend with 65% rayon were the sorbent candidates selected for use in the cPFM. Ultraviolet light image analysis was used to calculate average color intensity using ImageJ, a Java-based image processing program. These results were then used to quantify Darcy flux. Error ranges evaluated for Darcy flux using the cPFM are comparable to those with the standard, activated carbon based, PFM. The cPFM has the potential to accomplish the goal of obtaining high resolution Darcy flux data while eliminating high costs and analysis time. Implications of groundwater characteristics, such as PH and contaminant concentrations, on image analysis are to be tested through laboratory analysis followed by field testing of the cPFM.
Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite
Phillips, D. H.; Watson, D. B.
2014-12-05
The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided amore » unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al 3+, Ca 2+, NO 3-, and SO 4 2- over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ~6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration ofUand otherpHsensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater.« less
Kosek, Margaret N.; Schwab, Kellogg J.
2017-01-01
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 (p < 0.0001) and 0.91 (p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials. PMID:28829392
Exum, Natalie G; Kosek, Margaret N; Davis, Meghan F; Schwab, Kellogg J
2017-08-22
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 ( p < 0.0001) and 0.91 ( p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Verona Well Field site consists of a well field, three contaminant sources, and the ground water between the source areas and the well field in Battle Creek, Calhoun County, Michigan. Surrounding land use is mixed residential and industrial. The site overlies a surficial glacial aquifer and a deeper bedrock aquifer, both of which are local sources of drinking water. A 1985 Record of Decision (ROD) addressed remediation of soil and ground water at the TSRR facility, and provided for treatment of contaminated soil using vapor extraction with off-gas treatment, and pumping and treatment of contaminated ground water. The RODmore » addresses the second and final operable unit for soil and ground water contamination at the site.« less
A food contaminant detection system based on high-Tc SQUIDs
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Fujita, H.; Hatsukade, Y.; Nagaishi, T.; Nishi, K.; Ota, H.; Otani, T.; Suzuki, S.
2006-05-01
We have designed and constructed a computer controlled food contaminant detection system for practical use, based on high-Tc SQUID detectors. The system, which features waterproof stainless steel construction, is acceptable under the HACCP (Hazard Analysis and Critical Control Point) programme guidelines. The outer dimensions of the system are 1500 mm length × 477 mm width × 1445 mm height, and it can accept objects up to 200 mm wide × 80 mm high. An automatic liquid nitrogen filling system was installed in the standard model. This system employed a double-layered permeable metallic shield with a thickness of 1 mm as a magnetically shielded box. The distribution of the magnetic field in the box was simulated by FEM; the gap between each shield layer was optimized before fabrication. A shielding factor of 732 in the Z-component was achieved. This value is high enough to safely operate the system in a non-laboratory environment, i.e., a factory. During testing, we successfully detected a steel contaminant as small as 0.3 mm in diameter at a distance of 75 mm.
Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H
2018-03-01
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
NASA Astrophysics Data System (ADS)
B., Serena; Lee | Gavin, F.; Birch | Charles, J.; Lemckert
2011-05-01
Runoff from the urban environment is a major contributor of non-point source contamination for many estuaries, yet the ultimate fate of this stormwater within the estuary is frequently unknown in detail. The relationship between catchment rainfall and estuarine response within the Sydney Estuary (Australia) was investigated in the present study. A verified hydrodynamic model (Environmental Fluid Dynamics Computer Code) was utilised in concert with measured salinity data and rainfall measurements to determine the relationship between rainfall and discharge to the estuary, with particular attention being paid to a significant high-precipitation event. A simplified rational method for calculating runoff based upon daily rainfall, subcatchment area and runoff coefficients was found to replicate discharge into the estuary associated with the monitored event. Determining fresh-water supply based upon estuary conditions is a novel technique which may assist those researching systems where field-measured runoff data are not available and where minor field-measured information on catchment characteristics are obtainable. The study concluded that since the monitored fresh-water plume broke down within the estuary, contaminants associated with stormwater runoff due to high-precipitation events (daily rainfall > 50 mm) were retained within the system for a longer period than was previously recognised.
Assessing the sources of high fecal coliform levels at an urban tropical beach
Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro, Roberto Augusto
2015-01-01
Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated. PMID:26691459
Assessing the sources of high fecal coliform levels at an urban tropical beach.
Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro Filho, Roberto Augusto
2015-01-01
Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated.
NASA Astrophysics Data System (ADS)
Parker, B. L.; Chapman, S.
2015-12-01
Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.
NASA Astrophysics Data System (ADS)
Kemper, Thomas; Sommer, Stefan
2004-10-01
Field and airborne hyperspectral data was used to map residual contamination after a mining accident, by applying spectral mixture modelling. Test case was the Aznalcollar Mine (Southern Spain) accident, where heavy metal bearing sludge from a tailings pond was distributed over large areas of the Guadiamar flood plain. Although the sludge and the contaminated topsoils have been removed mechanically in the whole affected area, still high abundance of pyritic material remained on the ground. During dedicated field campaigns in two subsequent years soil samples were collected for geochemical and spectral laboratory analysis and spectral field measurements were carried out in parallel to data acquisition with the HyMap sensor. A Variable Multiple Endmember Spectral Mixture Analysis (VMESMA) tool was used providing possibilities of multiple endmember unmixing, aiming to estimate the quantities and distribution of the remaining tailings material. A spectrally based zonal partition of the area was introduced to allow the application of different submodels to the selected areas. Based on an iterative feedback process, the unmixing performance could be improved in each stage until an optimum level was reached. The sludge abundances obtained by unmixing the hyperspectral spectral data were confirmed by the field observations and chemical measurements of samples taken in the area. The semi-quantitative sludge abundances of residual pyritic material could be transformed into quantitative information for an assessment of acidification risk and distribution of residual heavy metal contamination based on an artificial mixture experiment. The unmixing of the second year images allowed identification of secondary minerals of pyrite as indicators of pyrite oxidation and associated acidification.
Lee, Lawrence; Mata, Juan; Landry, Tara; Khwaja, Kosar A; Vassiliou, Melina C; Fried, Gerald M; Feldman, Liane S
2014-09-01
Guidelines recommend the use of bioprosthetics for abdominal wall reinforcement in contaminated fields, but the evidence supporting the use of biologic over synthetic non-absorbable prosthetics for this indication is poor. Therefore, the objective was to perform a systematic review of outcomes after synthetic non-absorbable and biologic prosthetics for ventral hernia repair or prophylaxis in contaminated fields. The systematic literature search identified all articles published up to 2013 that reported outcomes after abdominal wall reinforcement using synthetic non-absorbable or biologic prosthetics in contaminated fields. Studies were included if they included at least 10 cases (excluding inguinal and parastomal hernias). Quality assessment was performed using the MINORS instrument. The main outcomes measures were the incidence of wound infection and hernia at follow-up. Weighted pooled proportions were calculated using a random effects model. A total of 32 studies met the inclusion criteria and were included for synthesis. Mean sample size was 41.4 (range 10-190), and duration of follow-up was >1 year in 72 % of studies. Overall quality was low (mean 6.2, range 1-12). Pooled wound infection rates were 31.6 % (95 % CI 14.5-48.7) with biologic and 6.4 % (95 % CI 3.4-9.4) with synthetic non-absorbable prosthetics in clean-contaminated cases, with similar hernia rates. In contaminated and/or dirty fields, wound infection rates were similar, but pooled hernia rates were 27.2 % (95 % CI 9.5-44.9) with biologic and 3.2 % (95 % CI 0.0-11.0) with synthetic non-absorbable. Other outcomes were comparable. The available evidence is limited, but does not support the superiority of biologic over synthetic non-absorbable prosthetics in contaminated fields.
Franson, J. Christian
2015-01-01
Exposure to lead and petroleum has caused deaths of sea ducks, but relatively few contaminants have been shown to cause mortality or be associated with population level effects. This chapter focuses primarily on field reports of contaminant concentrations in tissues of sea ducks in North America and Europe and results of some pertinent experimental studies. Much of the available interpretive data for contaminants in waterfowl come from studies of freshwater species. Limits of available data present a challenge for managers interested in sea ducks because field reports have shown that marine birds may carry greater burdens of some pollutants than freshwater species, particularly metals. It is important, then, to distinguish poisoning due to a particular contaminant as a cause of death in sea ducks versus simple exposure based solely on tissue residues. A comprehensive approach that incorporates information on field circumstances, any observed clinical signs and lesions, and tissues residues is recommended when evaluating contaminant concentrations in sea ducks.
Lobel, Lisa M Kerr; Davis, Elizabeth A
2002-01-01
Antibodies against polychlorinated biphenyls (PCBs) were used to determine if immunohistochemical methods could detect PCBs in embryos and larvae of a territorial coral reef fish (Abudefduf sordidus; Pomacentridae) collected from Johnston Atoll, Central Pacific Ocean. Sites with differing levels of contamination were sampled, one with relatively high sediment PCB concentrations of up to 389.0 ng/g and another with low PCB concentrations of only 0.5 ng/g. Immunostaining suggested that PCB concentrations were higher in fish larvae from the PCB contaminated site and that PCB concentrations within abnormal embryos were higher than normal embryos from the same nest. This technique will be useful for detecting exposed populations in the field and assessing correlations with adverse effects, particularly in potential indicator organisms such as Abudefduf sordidus.
Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A.; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard
2016-01-01
There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650
Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard
2016-03-09
There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012-2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision.
Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian
2012-07-25
A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.
NAPL detection with ground-penetrating radar (Invited)
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2013-12-01
Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.
Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio
2015-01-25
This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a quicker evaluation of the bioremediation potential of a site, and in turn a preliminary assessment of the technical feasibility of the chosen bioprocess which could replace or at least reduce the need for time-consuming and expensive field tests. At the same time, field tests will probably remain unavoidable for a detailed design of full scale remedial actions and the above reported tools will in any event be useful for a better design and a more reliable operation. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Schatz, Albert; Kriebs, Jean Oak
Prepared primarily for junior high school students and utilizing an integrated science approach, this manual offers activities for examining the ecosystem and environmental problems. With organic aspects of soils as the main subject field, it includes study of soil formation, soil fertility, soil contamination, and edaphic relationships. Most of…
Implications and Questions- Perfluorinated compounds at high concentrations in sludges, on fields, in surface water in areas receiving sludge applications-Urban and suburban sludges typically disposed of in rural locations, usually marketed as “free fertilizer” becaus...
Bioremediation of Petroleum Hydrocarbon Contaminated Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallgren, Paul
Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop amore » biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of environmental parameters on bioremediation is important in designing a bioremediation system to reduce petroleum hydrocarbon concentrations in impacted soils.« less
Field demonstration of age dependent increase in lead phytoextraction by Pelargonium cultivar
NASA Astrophysics Data System (ADS)
Shahid, Muhammad; Arshad, Muhammad; Pinelli, Eric; Alric, Alain; Kaemmerer, Michel; Pradere, Philippe; Dumat, Camille
2013-04-01
Unnecessary for living organisms, lead (Pb) is one of the major widespread toxic metals found in the environment with potential danger to human health and to ecosystems (Shahid et al. 2012). Lead is known to induce a broad range of toxic effects to living organism, including those that are morphological, physiological and biochemical in origin (Pourrut et al. 2011). A field study was carried out in the vicinity of Pb recycling plant near Toulouse-France, and contaminated by atmospheric fallouts to evaluate lead extraction and uptake efficiency of hyperaccumulater Attar of Roses Pelargonium cultivar. It was found that Attar of Roses has ability to accumulate (8644 mgPb/kg DW plant) and survive on highly contaminated acidic soil (39250 mg kg-1 of total Pb) without any morpho-phytotoxicity symptoms. Moreover Attar showed increased extraction of lead from bulk soil to rhizosphere through Pb mobilization and ultimately increased uptake by roots and translocation to shoots. The studied contaminated soil could be cleaned up in few years by planting hyperaccumulater Attar of Rose for longer time period. Under optimum fertlization, irrigation and use of natural or synthetic chelates (EDTA, LMOWA, humic substances etc.) along with old Attar of rose plants, time requires for complete remediation of contaminated site can be reduced to practically applicable time period. Moreover, the use of Pelargonium for remediation has several additional practical, esthetical and economic advantages. The extraction of value-added essential oils from harvested biomass could offset the cost of deploying phytoremediation and renders it as a viable approach for remediating highly contaminated soils, on large scale. Keywords: metal uptake, Pelargonium, phytoremediation, cultivar, soil-plant transfer and kinetic. References Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E., 2011a. Lead uptake, toxicity and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113-136. Shahid, M., Arshad, M., Kaemmerer, M., Pinelli, E., Probst, A., Baque, D., Pradere, P., Dumat, C., 2012a. Long term field metal extraction by pelargonium: Phytoextraction efficiency in relation with plant maturity. Inter. J. Phytorem. 14, 493-505.
Arthur, Terrance M; Bono, James L; Kalchayanand, Norasak
2014-01-01
The development and implementation of effective antimicrobial interventions by the beef processing industry in the United States have dramatically reduced the incidence of beef trim contamination by Escherichia coli O157:H7. However, individual processing plants still experience sporadic peaks in contamination rates where multiple E. coli O157:H7-positive lots are clustered in a short time frame. These peaks have been referred to as "high event periods" (HEP) of contamination. The results reported here detail the characterization of E. coli O157:H7 isolates from 21 HEP across multiple companies and processing plants to gain insight regarding the mechanisms causing these incidents. Strain genotypes were determined by pulsed-field gel electrophoresis, and isolates were investigated for characteristics linking them to human illness. Through these analyses, it was determined that individual HEP show little to no diversity in strain genotypes. Hence, each HEP has one strain type that makes up most, if not all, of the contamination. This is shown to differ from the genotypic diversity of E. coli O157:H7 found on the hides of cattle entering processing plants. In addition, it was found that a large proportion (81%) of HEP are caused by strain types associated with human illness. These results pose a potential challenge to the current model for finished product contamination during beef processing.
Follow-Up of Norovirus Contamination in an Oyster Production Area Linked to Repeated Outbreaks.
Le Mennec, Cécile; Parnaudeau, Sylvain; Rumebe, Myriam; Le Saux, Jean-Claude; Piquet, Jean-Côme; Le Guyader, S Françoise
2017-03-01
A production area repeatedly implicated in oyster-related gastroenteritis in France was studied for several months over 2 years. Outbreaks and field samples were analyzed by undertaking triplicate extractions, followed by norovirus (NoV) detection using triplicate wells for genomic amplification. This approach allowed us to demonstrate that some variabilities can be observed for samples with a low level of contamination, but most samples analyzed gave reproducible results. At the first outbreak, implicated oysters were collected at the beginning of the contamination event, which was reflected by the higher NoV levels during the first month of the study. During the second year, NoV concentrations in samples implicated in outbreaks and collected from the production area were similar, confirming the failure of the shellfish depuration process. Contamination was detected mainly during winter-spring months, and a high prevalence of NoV GI contamination was observed. A half-life of 18 days was calculated from NoV concentrations detected in oysters during this study, showing a very slow decrease of the contamination in the production area. Preventing the contamination of coastal waters should be a priority.
Shin, Woosik; Choung, Sungwook; Han, Weon Shik; Hwang, Jeonghwan; Kang, Gyeongmin
2018-06-12
Although soil contamination must be remediated by the polluters under current legal frameworks in numerous countries, the allocation of responsibilities for soil clean-up is still challenging in the case of multiple potentially responsible parties (PRPs). This study evaluated the individual contributions of two PRPs (Owners A & B) to heavy metal contamination in the soil environment near an abandoned smelter and compared the results with those from the conventional Gore Factor (GF) method. The soil in the study area was widely contaminated by various heavy metals. In particular, the arsenic concentration exceeded the local regulatory level of 25 mg kg -1 at all investigated sites. Arsenic components were frequently observed in the form of iron oxides, and they decreased with increasing distance from the smelter chimney. This distribution supported the premise that the arsenic mainly originated from the chimney through oxidation processes of iron-containing ores under high temperature. The GF results attributed greater responsibility to Owner A than Owner B, while the estimated arsenic masses (based on the field investigation) indicated the contrary. These results could be caused by insufficient information for the GF evaluation, because the change in smelter ownership and long history of contamination obscure important data, such as the amount of total refined ores and the efficiency of air pollution prevention facilities in the smelter. Therefore, more field-based approaches must be considered more importantly for the evaluation of multiple PRPs' remediation responsibilities, especially in areas with long-term contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Disinfection of contaminated water by using solar irradiation.
Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad
2004-02-01
Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.
NASA Astrophysics Data System (ADS)
Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman
2018-04-01
Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.
Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system.
Oborn, B M; Kolling, S; Metcalfe, P E; Crozier, S; Litzenberg, D W; Keall, P J
2014-05-01
A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC's. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm(3) water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm(2) resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm(2). The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% of D(max) for 5 × 5 to 20 × 20 cm(2), respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 μm skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of [Formula: see text] for 5 × 5 cm(2), 18% to 55% of D(max) for 10 × 10 cm(2), and from 23% to 65% of D(max) for 20 × 20 cm(2). Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.
Effect of soil texture on phytoremediation of arsenic-contaminated soils
NASA Astrophysics Data System (ADS)
Pallud, C. E.; Matzen, S. L.; Olson, A.
2015-12-01
Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were largest and accumulated the most total As, while under field conditions, control and compost-treated ferns accumulated the most total As. Under greenhouse conditions, leaching appeared to account for most As removed from sandy loam soil. Results from a similar greenhouse study now underway in clayey soil will be discussed.
Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L
2015-06-01
Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.
Several field and laboratory assays were employed below an urban storm sewer outfall to define the relationship between stormwater runoff and contaminant effects. Specifically, two bioassays that measure feeding rate as a toxicological endpoint were employed in the field and in t...
In-situ Lasagna technology was recently evaluated at a contaminated site at Offutt Air Force Base. The site was contaminated with low levels (< 30 mg/kg) of volatile organic compounds (VOCs). Originally, researchers planned to use field methanol extraction for both pre- and pos...
USDA-ARS?s Scientific Manuscript database
In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence o...
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
Analytical methods for characterization of explosives-contaminated sites on U.S. Army installations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas F.; Walsh, Marianne E.; Thorne, Philip G.
1995-10-01
The U.S. Army manufactures munitions at facilities throughout the United States. Many of these facilities are contaminated with residues of explosives from production, disposal of off- specification, and out-of-data munitions. The first step in remediating these sites is careful characterization. Currently sites are being characterized using a combination of on-site field screening and off-site laboratory analysis. Most of the contamination is associated with TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) and their manufacturing impurities and environmental transformation products. Both colorimetric and enzyme immunoassay-based field screening methods have been used successfully for on-site characterization. These methods have similar detection capabilities but differ in their selectivity. Although field screening is very cost-effective, laboratory analysis is still required to fully characterize a site. Laboratory analysis for explosives residues in the United States is generally conducted using high-performance liquid chromatography equipped with a UV detector. Air-dried soils are extracted with acetonitrile in an ultrasonic bath. Water is analyzed directly if detection limits in the range of 10 - 20 (mu) g/L are acceptable, or preconcentrated using either salting-out solvent extraction with acetonitrile or solid phase extraction.
Medalie, Laura; Martin, Jeffrey D.
2017-08-14
Potential contamination bias was estimated for 8 nutrient analytes and 40 pesticides in stream water collected by the U.S. Geological Survey at 147 stream sites from across the United States, and representing a variety of hydrologic conditions and site types, for water years 2002–12. This study updates previous U.S. Geological Survey evaluations of potential contamination bias for nutrients and pesticides. Contamination is potentially introduced to water samples by exposure to airborne gases and particulates, from inadequate cleaning of sampling or analytic equipment, and from inadvertent sources during sample collection, field processing, shipment, and laboratory analysis. Potential contamination bias, based on frequency and magnitude of detections in field blanks, is used to determine whether or under what conditions environmental data might need to be qualified for the interpretation of results in the context of comparisons with background levels, drinking-water standards, aquatic-life criteria or benchmarks, or human-health benchmarks. Environmental samples for which contamination bias as determined in this report applies are those from historical U.S. Geological Survey water-quality networks or programs that were collected during the same time frame and according to the same protocols and that were analyzed in the same laboratory as field blanks described in this report.Results from field blanks for ammonia, nitrite, nitrite plus nitrate, orthophosphate, and total phosphorus were partitioned by analytical method; results from the most commonly used analytical method for total phosphorus were further partitioned by date. Depending on the analytical method, 3.8, 9.2, or 26.9 percent of environmental samples, the last of these percentages pertaining to all results from 2007 through 2012, were potentially affected by ammonia contamination. Nitrite contamination potentially affected up to 2.6 percent of environmental samples collected between 2002 and 2006 and affected about 3.3 percent of samples collected between 2007 and 2012. The percentages of environmental samples collected between 2002 and 2011 that were potentially affected by nitrite plus nitrate contamination were 7.3 for samples analyzed with the low-level method and 0.4 for samples analyzed with the standard-level method. These percentages increased to 14.8 and 2.2 for samples collected in 2012 and analyzed using replacement low- and standard-level methods, respectively. The maximum potentially affected concentrations for nitrite and for nitrite plus nitrate were much less than their respective maximum contamination levels for drinking-water standards. Although contamination from particulate nitrogen can potentially affect up to 21.2 percent and that from total Kjeldahl nitrogen can affect up to 16.5 percent of environmental samples, there are no critical or background levels for these substances.For total nitrogen, orthophosphate, and total phosphorus, contamination in a small percentage of environmental samples might be consequential for comparisons relative to impairment risks or background levels. At the low ends of the respective ranges of impairment risk for these nutrients, contamination in up to 5 percent of stream samples could account for at least 23 percent of measured concentrations of total nitrogen, for at least 40 or 90 percent of concentrations of orthophosphate, depending on the analytical method, and for 31 to 76 percent of concentrations of total phosphorus, depending on the time period.Twenty-six pesticides had no detections in field blanks. Atrazine with 12 and metolachlor with 11 had the highest number of detections, mostly occurring in spring or early summer. At a 99-percent level of confidence, contamination was estimated to be no greater than the detection limit in at least 98 percent of all samples for 38 of 40 pesticides. For metolachlor and atrazine, potential contamination was no greater than 0.0053 and 0.0093 micrograms per liter in 98 percent of samples. For 11 of 14 pesticides with at least one detection, the maximum potentially affected concentration of the environmental sample was less than their respective human-health or aquatic-life benchmarks. Small percentages of environmental samples had concentrations high enough that atrazine contamination potentially could account for the entire aquatic-life benchmark for acute effects on nonvascular plants, that dieldrin contamination could account for up to 100 percent of the cancer health-based screening level, or that chlorpyrifos contamination could account for 13 or 12 percent of the concentrations in the aquatic-life benchmarks for chronic effects on invertebrates or the criterion continuous concentration for chronic effects on aquatic life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semprini, L.; Istok, J.
'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less
Assessing the vulnerability of a municipal well field to contamination in a karst aquifer
Renken, R.A.; Cunningham, K.J.; Zygnerski, M.R.; Wacker, M.A.; Shapiro, A.M.; Harvey, R.W.; Metge, D.W.; Osborn, C.L.; Ryan, J.N.
2005-01-01
Proposed expansion of extractive lime-rock mines near the Miami-Dade County Northwest well field and Everglades wetland areas has garnered intense scrutiny by government, public, environmental stakeholders, and the media because of concern that mining will increase the risk of pathogen contamination. Rock mines are excavated to the same depth as the well field's primary producing zone. The underlying karst Biscayne aquifer is a triple-porosity system characterized by (1) a matrix of interparticle porosity and separate vug porosity; (2) touching-vug porosity that forms preferred, stratiform passageways; and, less commonly, (3) conduit porosity formed by thin solution pipes, bedding-plane vugs, and cavernous vugs. Existing ground-water flow and particle tracking models do not provide adequate information regarding the ability the aquifer to limit the advective movement of pathogens and other contaminants. Chemical transport and colloidal mobility properties have been delineated using conservative and microsphere-surrogate tracers for Cryptosporidium parvum. Forced-gradient tests were executed by introducing conservative tracers into injection wells located 100 m (328 ft) from a municipal-supply well. Apparent mean advective velocity between the wells is one to two orders of magnitude greater than previously measured. Touching-vug, stratiform flow zones are efficient pathways for tracer movement at the well field. The effective porosity for a continuum model between the point of injection and tracer recovery ranges from 2 to 4 percent and is an order of magnitude smaller than previously assumed. Existing well-field protection zones were established using porosity estimates based on specific yield. The effective, or kinematic, porosity of a Biscayne aquifer continuum model is lower than the total porosity, because high velocities occur along preferential flow paths that result in faster times of travel than can be represented with the ground-water flow equation. Tracer tests indicate that the relative ease of contaminant movement to municipal supply wells is much greater than previously considered.
Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T
2012-07-01
In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Zhang, Ping; Wu, Linwei
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
He, Zhili; Zhang, Ping; Wu, Linwei; ...
2018-02-20
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminantsmore » would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. Here, this study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.« less
Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G
2005-02-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.
Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.
2005-01-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963
Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...
A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.
Asuni, G; Jensen, J M; McCurdy, B M C
2011-02-21
A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.
In planta passive sampling devices for assessing subsurface chlorinated solvents.
Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G
2014-06-01
Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Dongning; Li, Bingyu; Huang, Hongli; Luo, Lin; Zhang, Jiachao; Yang, Yuan; Guo, Jiajun; Tang, Lin; Zeng, Guangming; Zhou, Yaoyu
2018-04-01
Nowadays, agricultural contamination is becoming more and more serious due to the rapid growth of agricultural industry, which discharged antibiotics, pesticides or toxic metals into farmlands. A large number of researchers have applied biochar-based functional materials to the treatment of agricultural wastewater contamination. Meanwhile, biochar has also proved to be a very promising and effective technology in water purification field due to its various beneficial properties (e.g., cost effective, high specific surface area, and surface reactive groups). The focus of this review is to highlight the fabrication methods and application of biochar-based functional materials with the removal of different agricultural contaminants, and discuss the underlying mechanisms. However, the application of biochar-based functional materials is currently under its infancy, with the main hindrance is identified as the gap between laboratory scale and field application, immaturity of engineered biochar production technologies, and lack of quality standards. In order to fill these knowledge gaps, more efforts should be made to pay for the relevant research in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.
Phytoremediation of contaminated soils and groundwater: lessons from the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vangronsveld, J.; van der Lelie, D.; Herzig, R.
The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide anmore » overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).« less
The value of DCIP geophysical surveys for contaminated site investigations
NASA Astrophysics Data System (ADS)
Balbarini, N.; Rønde, V.; Maurya, P. K.; Møller, I.; McKnight, U. S.; Christiansen, A. V.; Binning, P. J.; Bjerg, P. L.
2017-12-01
Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three dimensional (3D) data sets. The DC resistivity can describe both soil properties and the water electrical conductivity, while the IP can describe the lithology and give information on hydrogeological properties. The aim of the study was to investigate a large contaminant plume discharging to a stream from an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D geological model was developed from borehole logs and DCIP data as framework for the complex transport pathways near the meandering stream. IP data were useful in indicating the continuity and the changes in thickness of local clay layers between the borehole logs. The geological model was employed to develop a groundwater flow model describing groundwater flows to the stream. The hydraulic conductivity distribution was based on IP data, slug tests and grain size analysis. The distribution of contaminant concentrations revealed two chemically distinct plumes, separated by a clay layer, with different transport paths to the stream. The DC resistivity was useful in mapping ionic compounds, but also organic compounds whose spatial distribution coincided with the ionic compounds. A conceptual model describing the contaminant plume was developed, and it matched well with contaminant concentrations in stream water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required and helped design field campaigns. The results suggest DCIP surveys are useful and inexpensive tools, which has potential as an integrated part of contaminated site investigations.
FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING.
Observations from field sites provide a means for prioritizing research activities. In the case of petroleum releases, observations may include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemi...
Weller, Daniel; Wiedmann, Martin
2015-01-01
While rain and irrigation events have been associated with an increased prevalence of foodborne pathogens in produce production environments, quantitative data are needed to determine the effects of various spatial and temporal factors on the risk of produce contamination following these events. This study was performed to quantify these effects and to determine the impact of rain and irrigation events on the detection frequency and diversity of Listeria species (including L. monocytogenes) and L. monocytogenes in produce fields. Two spinach fields, with high and low predicted risks of L. monocytogenes isolation, were sampled 24, 48, 72, and 144 to 192 h following irrigation and rain events. Predicted risk was a function of the field's proximity to water and roads. Factors were evaluated for their association with Listeria species and L. monocytogenes isolation by using generalized linear mixed models (GLMMs). In total, 1,492 (1,092 soil, 334 leaf, 14 fecal, and 52 water) samples were collected. According to the GLMM, the likelihood of Listeria species and L. monocytogenes isolation from soil samples was highest during the 24 h immediately following an event (odds ratios [ORs] of 7.7 and 25, respectively). Additionally, Listeria species and L. monocytogenes isolates associated with irrigation events showed significantly lower sigB allele type diversity than did isolates associated with precipitation events (P = <0.001), suggesting that irrigation water may be a point source of L. monocytogenes contamination. Small changes in management practices (e.g., not irrigating fields before harvest) may therefore reduce the risk of L. monocytogenes contamination of fresh produce. PMID:26116668
Miles, Jesse C.; Hua, Jessica; Sepulveda, Maria S.; Krupke, Christian H.
2017-01-01
The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental exposures including concentrations that are representative of what invertebrates experience in the field. In laboratory toxicity experiments, LC50 values ranged from 0.002 ppm to 1.2 ppm for aquatic invertebrates exposed to clothianidin. However, freshwater snails and amphibian larvae showed high tolerance to the chemical with no mortality observed at the highest dissolvable concentration of the insecticide. We also observed behavioral effects of clothianidin. Water bugs, Belostoma flumineum, displayed a dose-dependent reduction in feeding rate following exposure to clothianidin. Similarly, crayfish, Orconectes propinquus, exhibited reduced responsiveness to stimulus with increasing clothianidin concentration. Using a semi-natural mesocosm experiment, we manipulated clothianidin concentration (0.6, 5, and 352 ppb) and the presence of predatory invertebrates to explore community-level effects. We observed high invertebrate predator mortality with increases in clothianidin concentration. With increased predator mortality, prey survival increased by 50% at the highest clothianidin concentration. Thus, clothianidin contamination can result in a top-down trophic cascade in a community dominated by invertebrate predators. In our Indiana field study, we detected clothianidin (max = 176 ppb), imidacloprid (max = 141 ppb), and acetamiprid (max = 7 ppb) in soil samples. In water samples, we detected clothianidin (max = 0.67 ppb), imidacloprid (max = 0.18 ppb), and thiamethoxam (max = 2,568 ppb). Neonicotinoids were detected in >56% of soil samples and >90% of the water samples, which reflects a growing understanding that neonicotinoids are ubiquitous environmental contaminants. Collectively, our results underscore the need for additional research into the effects of neonicotinoids on aquatic communities and ecosystems. PMID:28334022
Yan-Bing, He; Dao-You, Huang; Qi-Hong, Zhu; Shuai, Wang; Shou-Long, Liu; Hai-Bo, He; Han-Hua, Zhu; Chao, Xu
2017-02-01
To mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield. Among these, the LS and LSB treatments reduced the brown rice Cd content by 38.3-69.1% and 58.3-70.9%, respectively, during the three seasons. Combined with planting of a low-Cd-accumulation rice cultivar (Xiang Zaoxian 32) resulted in a Cd content in brown rice that met the contaminant limit (≤0.2mgkg -1 ). However, the grain yield of the low-Cd-accumulation rice cultivar was approximately 30% lower than the other two rice cultivars. Applying LS or LSB as amendments combined with planting a low-Cd-accumulation rice cultivar is recommended for the remediation of Cd-contaminated paddy soil. The selection and breeding of low-Cd-accumulation rice cultivars with high grain production requires further research. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu
2017-02-01
For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport
Baehr, A.L.; Hoag, G.E.; Marley, M.C.
1989-01-01
Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.
This treatability study reports on the results of one of a series of field trials using various remedial action technologies that may be capable of restoring Herbicide Orange (HO)XDioxin contaminated sites. A full-scale field trial using a rotary kiln incinerator capable of pro...
NASA Astrophysics Data System (ADS)
Korobova, E.; Romanov, S.
2009-04-01
Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry could be used to investigate patterns of 137Cs spatial redistribution in the top soil layers. The portion of 137Cs conserved in top layers corresponded to the meso- and micro relief elements. The character and stability of 137Cs spatial structure was studied by measuring its activity within nested plots with different steps of 5, 2, 1 and 0,2 m (the latter was a minimum resolution step for the field NaI detector). Performed measurements showed that the contamination field of 137Cs had a regular structure of polycentric character and exhibited a decrease in spatial variability of contamination with the decrease of the measured area. Repeated measurements of soil contamination in successive years of 2005-2008 along and cross the slopes provided with topographic survey proved the stability of contamination field (r=0, 915, n=121, r=0,912, n=30) and its relation to the meso- and microrelief features. Variation 137Cs activity in lateral direction (along the slopes and thalweg of the hollow)showed a regular character also. In our opinion the regularity in 137Cs spatial structure in the soil cover may result from radionuclide redistribution with the surface and subsurface water flow highly sensitive to the changes in elevation of different scale, and to the slope length and inclination. Cs-137 lateral distribution pattern was likely to reflect alternation of lateral and vertical water mass migration along the slopes. The performed study showing regularity in 137Cs redistribution seems to open new possibilities to develop the deterministic strategy in the study of contamination fields and modeling toxic elements spatial distribution in the soil cover on different scales. The authors are much obliged to Dr. V. Samsonov and Dr. F. Moiseenko for participation in the field work and to S. Kirov for the performance of the laboratory measurement of the soil and plant samples. References 1. Khomutinin, Yu.V., Kashparov, V.A., Zhebrovskaya, E.I., 2001. Optimization of sampling and measurement of the specimen for radioecological monitoring. UkrNIISKHR, Kiev. 2. Korobova, E.M., Romanov, S.L., Samsonov, V.L., Kirov, S.S., 2006. Experimental study of spatial 137Cs redistribution in paragenetic elementary landscapes, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp.157-159. 3. Linnik, V.G., Saveliev, A.A., Govorun, A.P., Ivanitsky, O.M., Sokolov, A.V., 2006. Analysis of the Cs-137 contamination field on micro-landscape scale within the virgin meadows in the western part of the Bryansk region, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp. 201-204. 4. Samsonova V.P. Spatial variability of the soil parameters. On example of soddy-podozolic soils. Moscow, LKI, 2008, 156 p. 5.Shcheglov, A.I., Tsvetnova, O.B., Klyashtorin, A.I., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow.
Lindsey, Bruce D.; Koch, Michele L.
2004-01-01
Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a north-south direction along the anticline axis, with the majority of the flow to the well fields originating from the south. Human activity in the areal extent of the zone of contribution to the well fields was the source of contaminants. The areal extent of the zone of contribution included both urban areas in the Borough and a large amount of agricultural land. By relating results of flow simulation, natural geochemistry, and analyses of anthropogenic (human-made) contaminants, the source areas for water and contaminants were determined with more confidence than by using only flow simulation. Analysis of natural geochemistry identified water sources from both limestone and dolomite aquifers. Geochemistry results also indicated fractures, not conduits, were the dominant source of water from aquifers; however, quantitative source identification was not possible. Chemical ratios of chloride and bromide were useful to show that all samples of ground water had sources with chemical contributions from land surface. Nitrogen isotope ratio analysis indicated animal manure as the possible primary source of nitrate in most ground water. Some of the nitrate in ground water had chemical fertilizer as a source. At the Wineland well field, chemical fertilizer was likely the source of nitrate. The nitrate in water from the Hershberger well field was from a mixture of fertilizer and animal-manure sources. Human sewage was ruled out as a major source of nitrate in water from the municipal wells by results showing 1) wastewater compounds in sewage were rarely detected and 2) a mass-balance calculation indicating the small contribution of nitrogen that could be attributed to septic systems.
Rückerl, I; Muhterem-Uyar, M; Muri-Klinger, S; Wagner, K-H; Wagner, M; Stessl, B
2014-10-17
The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where contamination of the processed product is unlikely. Drying of surfaces after cleaning is highly recommended to facilitate the L. monocytogenes eradication. Copyright © 2014 Elsevier B.V. All rights reserved.
Contaminant behavior in fractured sedimentary rocks: Seeing the fractures that matter
NASA Astrophysics Data System (ADS)
Parker, B. L.
2017-12-01
High resolution spatial sampling of continuous cores from sites contaminated with chlorinated solvents over many decades was used as a strategy to quantify mass stored in low permeability blocks of rock between hydraulically active fractures. Given that core and geophysical logging methods cannot distinguish between hydraulically active fractures and those that do not transmit water, these samples were informed by careful logging of visible fracture features in the core with sample spacing determined by modelled diffusion transport distances given rock matrix properties and expected ages of contamination. These high resolution contaminant concentration profiles from long term contaminated sites in sedimentary rock showed evidence of many more hydraulically active fractures than indicated by the most sophisticated open-hole logging methods. Fracture density is an important attribute affecting fracture connectivity and influencing contaminant plume evolution in fractured porous sedimentary rock. These contaminant profile findings were motivation to find new borehole methods to directly measure hydraulically active fracture occurrence and flux to corroborate the long term "DNAPL tracer experiment" results. Improved sensitivity is obtained when boreholes are sealed using flexible fabric liners (FLUTeTM technology) and various sensor options are deployed in the static water columns used to inflate these liners or in contact with the borehole wall behind the liners. Several methods rely on high resolution temperature measurements of ambient or induced temperature variability such as temperature vector probes (TVP), fiber optic cables for distributed temperature sensing (DTS), both using active heat; packer testing, point dilution testing and groundwater flux measurements between multiple straddle packers to account for leakage. In all cases, numerous hydraulically active fractures are identified over 100 to 300 meters depth, with a large range in transmissivities and hydraulic apertures to inform discrete fracture flow and transport models. 3-D field mapping of decades-old contaminant plumes in sedimentary aquifers shows that numerous hydraulically active fractures are needed to reproduce observed plume concentration distributions and allow targeted monitoring and remediation.
Sampling procedure for lake or stream surface water chemistry
Robert Musselman
2012-01-01
Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.
Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E
2015-10-01
The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Delineating Landfill Leachate Discharge To An Arsenic Contaminated Waterway
Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arseni...
Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies
NASA Astrophysics Data System (ADS)
Harken, B.; Rubin, Y.
2014-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.
Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed
NASA Astrophysics Data System (ADS)
Ko, K.; Koh, D.; Chae, G.; Cheong, B.
2007-12-01
Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The ubiquitous old fluorite and coal mines in Ogcheon belt are considered the main source of arsenic and fluoride in groundwater.
Sinkkonen, Aki; Kauppi, Sari; Simpanen, Suvi; Rantalainen, Anna-Lea; Strömmer, Rauni; Romantschuk, Martin
2013-03-01
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.
Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schäfer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, François
2010-08-01
Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. Copyright 2010 Elsevier Ltd. All rights reserved.
Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A
2018-01-01
Research shows grab sampling is inadequate for evaluating military ranges contaminated with energetics because of their highly heterogeneous distribution. Similar studies assessing the heterogeneous distribution of metals at small-arms ranges (SAR) are lacking. To address this we evaluated whether grab sampling provides appropriate data for performing risk analysis at metal-contaminated SARs characterized with 30-48 grab samples. We evaluated the extractable metal content of Cu, Pb, Sb, and Zn of the field data using a Monte Carlo random resampling with replacement (bootstrapping) simulation approach. Results indicate the 95% confidence interval of the mean for Pb (432 mg/kg) at one site was 200-700 mg/kg with a data range of 5-4500 mg/kg. Considering the U.S. Environmental Protection Agency screening level for lead is 400 mg/kg, the necessity of cleanup at this site is unclear. Resampling based on populations of 7 and 15 samples, a sample size more realistic for the area yielded high false negative rates.
A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...
NASA Astrophysics Data System (ADS)
Suryantini; Rachmawati, C.; Abdurrahman, M.
2017-12-01
Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.
Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, M.C.; Hinchman, R.R.; Gatliff, E.G.
1996-07-01
Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds and radioactive compounds in soil or water. Our research includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. A greenhouse experiment on zinc uptakemore » in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known ``hyperaccumulator`` species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less
Lead Determination and Heterogeneity Analysis in Soil from a Former Firing Range
NASA Astrophysics Data System (ADS)
Urrutia-Goyes, Ricardo; Argyraki, Ariadne; Ornelas-Soto, Nancy
2017-07-01
Public places can have an unknown past of pollutants deposition. The exposition to such contaminants can create environmental and health issues. The characterization of a former firing range in Athens, Greece will allow its monitoring and encourage its remediation. This study is focused on Pb contamination in the site due to its presence in ammunition. A dense sampling design with 91 location (10 m apart) was used to determine the spatial distribution of the element in the surface soil of the study area. Duplicates samples were also collected one meter apart from 8 random locations to estimate the heterogeneity of the site. Elemental concentrations were measured using a portable XRF device after simple sample homogenization in the field. Robust Analysis of Variance showed that the contributions to the total variance were 11% from sampling, 1% analytical, and 88% geochemical; reflecting the suitability of the technique. Moreover, the extended random uncertainty relative to the mean concentration was 91.5%; confirming the high heterogeneity of the site. Statistical analysis defined a very high contamination in the area yielding to suggest the need for more in-depth analysis of other contaminants and possible health risks.
Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed
2013-04-01
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.
Su, Shaw-Wei; Tsui, Chun-Chih; Lai, Hung-Yu; Chen, Zueng-Sang
2014-01-01
Arsenic contamination in a large area of agricultural fields on the Guandu Plain of northern Taiwan was confirmed in a survey conducted in 2006, but research concerning the relationship between bioavailable As concentrations in contaminated soils and crop production in Taiwan is not available. Pot experiments were conducted to examine the growth and accumulation of As in four vegetable crops grown in As-contaminated soils and to assess As intake through consumption. The phytotoxic effects of As in soils were not shown in the pot experiments in which vegetable crops were grown in soils contaminated with different As levels in situ collected from Guandu Plain (120–460 mg/kg) or artificially spiked As-contaminated soils (50–170 mg/kg). Experimental results showed that the bioavailable As extracted with 5 M NaHCO3 from soils can be used to estimate As concentrations in vegetables. The As concentrations in the vegetables were compared with data shown in the literature and As limits calculated from drinking water standards and the provisional tolerance weekly intake (PTWI) of inorganic As established by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Although the As levels in the vegetables were not high and the bioavailability of As in the soils was quite low, long-term consumption may result in higher As intake in the human body. PMID:24736690
Su, Shaw-Wei; Tsui, Chun-Chih; Lai, Hung-Yu; Chen, Zueng-Sang
2014-04-14
Arsenic contamination in a large area of agricultural fields on the Guandu Plain of northern Taiwan was confirmed in a survey conducted in 2006, but research concerning the relationship between bioavailable As concentrations in contaminated soils and crop production in Taiwan is not available. Pot experiments were conducted to examine the growth and accumulation of As in four vegetable crops grown in As-contaminated soils and to assess As intake through consumption. The phytotoxic effects of As in soils were not shown in the pot experiments in which vegetable crops were grown in soils contaminated with different As levels in situ collected from Guandu Plain (120-460 mg/kg) or artificially spiked As-contaminated soils (50-170 mg/kg). Experimental results showed that the bioavailable As extracted with 0.5M NaHCO3 from soils can be used to estimate As concentrations in vegetables. The As concentrations in the vegetables were compared with data shown in the literature and As limits calculated from drinking water standards and the provisional tolerance weekly intake (PTWI) of inorganic As established by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Although the As levels in the vegetables were not high and the bioavailability of As in the soils was quite low, long-term consumption may result in higher As intake in the human body.
Etching method for photoresists or polymers
NASA Technical Reports Server (NTRS)
Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)
1991-01-01
A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.
On Cross-talk Correction of Images from Multiple-port CCDs
NASA Astrophysics Data System (ADS)
Freyhammer, L. M.; Andersen, M. I.; Arentoft, T.; Sterken, C.; Nørregaard, P.
Multi-channel CCD read-out, which is an option offered at most optical observatories, can significantly reduce the time spent on reading the detector. The penalty of using this option is the so-called amplifier cross-talk, which causes contamination across the output amplifiers, typically at the level of 1:10 000. This can be a serious problem for applications where high precision and/or high contrast is of importance. We represent an analysis of amplifier cross-talk for two instruments - FORS1 at the ESO VLT telescope Antu (Paranal) and DFOSC at the Danish 1.54 m telescope (La Silla) - and present a post-processing method for removing the imprint of cross-talk. It is found that cross-talk may significantly contaminate high-precision photometry in crowded fields, but it can be effectively eliminated during data reduction.
Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi
2012-11-01
Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.
2009-11-01
Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less
Alaedeen, D I; Lipman, J; Medalie, D; Rosen, M J
2007-02-01
The surgical treatment of large ventral hernias with accompanying contamination is challenging. We have reviewed our institution's experience with single-staged repair of complex ventral hernias in the setting of contamination. We retrospectively reviewed the medical records of all patients who underwent ventral hernia repairs in the setting of a contaminated field. Pertinent details included baseline demographics, reason for contamination, operative technique and details, postoperative morbidity, mortality and recurrence rates. Between December 1999 and January 2006, 19 patients were identified with ventral hernia repairs performed in contaminated fields. There were 6 males and 13 females with a mean age of 61 years (40-82), ASA 3.2 (2-4), and BMI of 34 kg/m(2) (20-65). Fourteen patients had prior mesh: prolene (9), composix (3), goretex (1), and alloderm (1). Reasons for contamination included: mesh infection (14), enterocutaneous fistula (7), concomitant bowel resection (8), chronic non-healing wound (2), and necrotizing fasciitis (1). Operative approaches included primary repair (3), component separation without reinforcement (2), and with prosthetic reinforcement (9). In five patients the fascia could not be reapproximated in the midline and the defect was bridged with surgisis (1), Marlex (1), lightweight polypropylene (1) placed in the retrorectus space, and alloderm (2). Mean operative time was 260 min (90-600). Twelve postoperative complications occurred in nine (47%) patients and included wound infection (6), respiratory failure (1), ileus (2), postoperative hemorrhage (1), renal failure (1), and atrial fibrillation (1). One patient died in this series. During routine follow-up two recurrences were identified by physical exam. This study shows that single-stage treatment of ventral hernias in contaminated fields can be accomplished with a low recurrence rate and acceptable morbidity in these extremely challenging patients.
Vanhoof, Chris; Corthouts, Valère; Tirez, Kristof
2004-04-01
To determine the heavy metal content in soil samples at contaminated locations, a static and time consuming procedure is used in most cases. Soil samples are collected and analyzed in the laboratory at high quality and high analytical costs. The demand by government and consultants for a more dynamic approach and by customers requiring performances in which analyses are performed in the field with immediate feedback of the analytical results, is growing. Especially during the follow-up of remediation projects or during the determination of the sampling strategy, field analyses are advisable. For this purpose four types of ED-XRF systems, ranging from portable up to high performance laboratory systems, have been evaluated. The evaluation criteria are based on the performance characteristics for all the ED-XRF systems such as limit of detection, accuracy and the measurement uncertainty on one hand, and also the influence of the sample pretreatment on the obtained results on the other hand. The study proved that the field portable system and the bench top system, placed in a mobile van, can be applied as field techniques, resulting in semi-quantitative analytical results. A limited homogenization of the analyzed sample significantly increases the representativeness of the soil sample. The ED-XRF systems can be differentiated by their limits of detection which are a factor of 10 to 20 higher for the portable system. The accuracy of the results and the measurement uncertainty also improved using the bench top system. Therefore, the selection criteria for applicability of both field systems are based on the required detection level and also the required accuracy of the results.
Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I
2004-08-01
Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.
NASA Astrophysics Data System (ADS)
Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.
1996-08-01
The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.
1988-05-01
include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway
Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.
Roberts, David A
2012-04-01
Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally variable exposures to RCS is required, as well as research into the relative importance of various disturbances under field conditions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oborn, B. M.; Kolling, S.; Metcalfe, P. E.
Purpose: A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Methods: Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both withmore » and without the presence of an ECD located immediately below the MLC’s. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm{sup 3} water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm{sup 2} resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm{sup 2}. Results: The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% ofD {sub max} for 5 × 5 to 20 × 20 cm{sup 2}, respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 μm skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of D {sub max} for 5 × 5 cm{sup 2}, 18% to 55% of D {sub max} for 10 × 10 cm{sup 2}, and from 23% to 65% of D {sub max} for 20 × 20 cm{sup 2}. Conclusions: Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.« less
ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM
Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...
Endophyte-enhanced phytoremediation of DDE-contaminated using Cucurbita pepo: A field trial.
Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N
2018-03-21
Although the use of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) was banned from the mid-1970s, its most abundant and recalcitrant degradation product, 2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE), is still present in terrestrial and aquatic ecosystems worldwide. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and was proposed for phytoremediation of contaminated soils. We performed a field trial covering a full plant life cycle. C. pepo plants inoculated with the plant growth-promoting endophytic strains Sphingomonas taxi UH1, Methylobacterium radiotolerans UH1, Enterobacter aerogenes UH1, or a consortium combining these 3 strains were grown on a DDE-contaminated field for 100 days. The effects of these inoculations were examined at both the plant level, by evaluating plant weight and plant DDE-content, and at the level of the cultivable and total endophytic communities. Inoculating plants with S. taxi UH1, M. radiotolerans UH1, and the consortium increased plant weight. No significant effects of the inoculations were observed on DDE-concentrations in plant tissues. However, the amount of DDE accumulated by C. pepo plants per growing season was significantly higher for plants that were inoculated with the consortium of the 3 strains. Therefore, inoculation of C. pepo with DDE-degrading endophytes might be promising for phytoremediation applications.
Mauro, Antonio; Garcia-Cela, Esther; Pietri, Amedeo; Cotty, Peter J; Battilani, Paola
2018-01-05
Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development. The displacement results in lower aflatoxin concentrations in harvested grain. The current study evaluated in field performances of two atoxigenic strains of A . flavus endemic to Italy in artificially inoculated maize ears and in naturally contaminated maize. Co-inoculation of atoxigenic strains with aflatoxin producers resulted in highly significant reductions in aflatoxin concentrations (>90%) in both years only with atoxigenic strain A2085. The average percent reduction in aflatoxin B₁ concentration in naturally contaminated maize fields was 92.3%, without significant differences in fumonisins between treated and control maize. The vegetative compatibility group of A2085 was the most frequently recovered A. flavus in both treated and control plots (average 61.9% and 53.5% of the A. flavus , respectively). A2085 was therefore selected as an active ingredient for biocontrol products and deposited under provisions of the Budapest Treaty in the Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/MUCL) collection (accession MUCL54911). Further work on development of A2085 as a tool for preventing aflatoxin contamination in maize produced in Italy is ongoing with the commercial product named AF-X1™.
Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu
2010-01-01
Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT,D.B.; PAQUETTE,D.E.; KLAUS,K.
The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wellsmore » 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past ten years have effectively protected the quality of the water supply.« less
Martin, Jeffrey D.; Gilliom, Robert J.; Schertz, Terry L.
1999-01-01
Field blanks did show evidence of contamination by some pesticides. Most of the pesticides detected in field blanks, however, were detected more frequently and at higher concentrations in environmental water samples. Two criteria were used to evaluate the need to consider contamination in water-quality assessments: (1) a ratio of the frequency of pesticide detection in environmental water samples to the frequency of detection in field blanks of 5.0 or less and (2) a ratio of the median concentration detected in environmental water samples to the maximum concentration detected in field blanks of 2.0 or less. These criteria indicate that contamination, for the majority of the pesticide data collected for the NAWQA Program, probably does not need to be considered in the analysis and interpretation of (1) the frequency of pesticide detection or (2) the median concentration of pesticides detected. Contamination must be considered, however, in detection frequency for cispermethrin, pronamide, p,p' -DDE, pebulate, propargite, ethalfluralin, and triallate in surface water and fenuron, benfluralin, pronamide, cis-permethrin, triallate, chlorpyrifos, trifluralin, propanil, p,p' -DDE, bromacil, dacthal, diazinon, and diuron in ground water. Contamination also must be considered in median concentrations detected for pronamide, p,p' -DDE, propargite, napropamide, and triallate in surface water and benfluralin, cis-permethrin, triallate, chlorpyrifos, trifluralin, p,p' -DDE, dacthal, and diazinon in ground water.
Bose-O'Reilly, Stephan; Schierl, Rudolf; Nowak, Dennis; Siebert, Uwe; William, Jossep Frederick; Owi, Fradico Teorgi; Ir, Yuyun Ismawati
2016-08-01
Cisitu is a small-scale gold mining village in Indonesia. Mercury (Hg) is used to extract gold from ore, heavily polluting air, soil, fish and rice paddy fields with Hg. Rice in Cisitu is burdened with mercury. The main staple food of the inhabitants of Cisitu is this polluted rice. Villagers were concerned that the severe diseases they observed in the community might be related to their mining activities, including high mercury exposure. Case report of the medical examinations and the mercury levels in urine and hair of 18 people with neurological symptoms. Typical signs and symptoms of chronic mercury intoxication were found (excessive salivation, sleep disturbances, tremor, ataxia, dysdiadochokinesia, pathological coordination tests, gray to bluish discoloration of the oral cavity and proteinuria). Mercury levels in urine were increased in eight patients (>7µg Hg/L urine). All 18 people had increased hair levels (>1µg Hg/g hair). 15 patients exhibited several, and sometimes numerous, symptoms in addition to having moderately to highly elevated levels of mercury in their specimens. These patients were classified as intoxicated. The situation in Cisitu is special, with rice paddy fields being irrigated with mercury-contaminated water and villagers consuming only local food, especially mercury-contaminated rice. Severe neurological symptoms and increased levels of mercury in urine and hair support are possibly caused by exposure to inorganic mercury in air, and the consumption of mercury-contaminated fish and rice. The mercury exposure needs to be reduced and treatment provided. Further research is needed to test the hypothesis that mercury-contaminated rice from small-scale gold mining areas might cause mercury intoxication. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasat, M.M.; Ebbs, S.D.; Kochian, L.V.
1997-08-01
A field study was conducted to investigate the potential of three plant species for phytoremediation of a {sup 137}Cs-contaminated site. From the contaminated soil, approximately 40-fold more radiocesium was removed in shoots of red root pigweed (Amaranthus retroflexus L.) compared with those of Indian mustard (Brassica juncea (L.) Czern) and tepary bean (Phaseolus acutifolius A. Gray). The greater potential for {sup 137}Cs removal from the soil by Amaranthus was associated with both high concentration of radiocesium in shoots and high shoot biomass production. Approximately 3% of the total {sup 137}Cs was removed from the top 15 cm of the soilmore » in shoots of three-month-old Amaranthus plants. Soil leaching tests conducted with 0.1 and 0.5 M NH{sub 4}NO{sub 3} solutions eluted as much as 15 and 19%, respectively, of the soil {sup 137}Cs. Addition of NH{sub 4}NO{sub 3} to the soil, however, had no positive effect on {sup 137}Cs accumulation in shoots in any of the species investigated. It is proposed that either NH{sub 4}NO{sub 3} solution quickly percolated through the soil before interacting at specific {sup 137}Cs binding sites or radiocesium mobilized by NH{sub 4}NO{sub 3} application moved below the rhizosphere becoming unavailable for root uptake. Further research is required to enhance the phytotransfer of the NH{sub 4}NO{sub 3}-mobilized {sup 137}Cs. With two croppings of Amaranthus per year and a sustained rate of extraction, phytoremediation of this {sup 137}Cs-contaminated soil appears feasible in less than 15 years.« less
Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A
2015-06-01
Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
..., especially in crop fields and pastures where silt, chemicals, and fertilizers can be directly deposited into... provide consistent water flow, high organic input, and connection to surface streams, which allow for... County cave streams were contaminated by a mixture of organic pollutants that included both current-use...
1994-04-11
Field 3 is possibly contaminated with napalm-gasoline mixtures, white phosphorous (WiP), thermite , and high explosives (HE) from the various munitions...Scale in Feet l/ ATf j CERFA Category and Designation Map ’S-t-HWWj NO. Figure f .5. |DRAWN | M.K. Bond/CMP DATE
REMEDIATION OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE USING PERMEABLE REACTIVE BARRIERS
The Norman Landfill is the field site for this project. It was reported that ground water toxicity at this site was due to ammonia, and napthalene was the only ASOC present at high concentrations. Thus, batch and column studies will be used to evaluate reactive materials with the...
Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin
NASA Astrophysics Data System (ADS)
Li, Fei; Liu, Junjie; Pei, Jingjing; Lin, Chao-Hsin; Chen, Qingyan
2014-03-01
The environment of the aircraft cabin greatly influences the comfort and health of passengers and crew members. Contaminant transport has a strong effect on disease spreading in the cabin environment. To obtain the complex cabin contaminant distribution fields accurately and completely, which is also essential to provide solid and precise data for computational fluid dynamics (CFD) model validation, this paper aimed to investigate and improve the method for simultaneous particle and gaseous contaminant fields measurement. The experiment was conducted in a functional MD-82 aircraft. Sulfur hexafluoride (SF6) was used as tracer gas, and Di-Ethyl-Hexyl-Sebacat (DEHS) was used as particulate contaminant. The whole measurement was completed in a part of the economy-class cabin without heating manikins or occupied with heating manikins. The experimental method, in terms of pollutant source setting, sampling points and schedule, was investigated. Statistical analysis showed that appropriately modified sampling grid was able to provide reasonable data. A small difference in the source locations can lead to a significant difference in cabin contaminant fields. And the relationship between gaseous and particulate pollutant transport was also discussed through tracking behavior analysis.
NASA Technical Reports Server (NTRS)
Jones, W. L., Jr.; Cross, A. E.
1972-01-01
Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280,000 to 175,000 ft) with measured densities of 10 to the 8th power to 10 to the 12th power electrons/cu cm, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25,000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow field contamination. Comparisons of the probe measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle of attack motions and the good high altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements.
Banks, M K; Schwab, P; Liu, B; Kulakow, P A; Smith, J S; Kim, R
2003-01-01
A field project located at the US Naval Base at Port Hueneme, California was designed to evaluate changes in contaminant concentrations and toxicity during phytoremediation. Vegetated plots were established in petroleum (diesel and heavy oil) contaminated soil and were evaluated over a two-year period. Plant species were chosen based on initial germination studies and included native California grasses. The toxicity of the impacted soil in vegetated and unvegetated plots was evaluated using Microtox, earthworm, and seed germination assays. The reduction of toxicity was affected more by contaminant aging than the establishment of plants. However, total petroleum hydrocarbon concentrations were lower by the end of the study in the vegetated plots when compared to the unvegetated soil. Although phytoremediation is an effective approach for cleaning-up of petroleum contaminated soil, a long-term management plan is required for significant reductions in contaminant concentrations.
Canine scent detection and microbial source tracking of human waste contamination in storm drains.
Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A
2014-06-01
Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.
Field Analysis of Microbial Contamination Using Three Molecular Methods in Parallel
NASA Technical Reports Server (NTRS)
Morris, H.; Stimpson, E.; Schenk, A.; Kish, A.; Damon, M.; Monaco, L.; Wainwright, N.; Steele, A.
2010-01-01
Advanced technologies with the capability of detecting microbial contamination remain an integral tool for the next stage of space agency proposed exploration missions. To maintain a clean, operational spacecraft environment with minimal potential for forward contamination, such technology is a necessity, particularly, the ability to analyze samples near the point of collection and in real-time both for conducting biological scientific experiments and for performing routine monitoring operations. Multiple molecular methods for detecting microbial contamination are available, but many are either too large or not validated for use on spacecraft. Two methods, the adenosine- triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays have been approved by the NASA Planetary Protection Office for the assessment of microbial contamination on spacecraft surfaces. We present the first parallel field analysis of microbial contamination pre- and post-cleaning using these two methods as well as universal primer-based polymerase chain reaction (PCR).
Weaver, Mark A; Abbas, Hamed K; Jin, Xixuan; Elliott, Brad
2016-01-01
Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water-dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, there was no WDG treatment that could provide significant protection against aflatoxin contamination. The following year a new WDG formulation was tested that resulted in 100% reduction in aflatoxin in one field experiment and ≥ 49% reduction in all five WDG treatments with biocontrol strain 21882. Large sampling error, however, limited the resolution of various treatment effects. Corn samples were also subjected to microbial analysis to understand better the mechanisms of successful biocontrol. In the samples examined here, the size of the A. flavus population on the grain was associated with the amount of aflatoxin, but the toxigenic status of that population was a poor predictor of aflatoxin concentration.
Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi
2009-06-15
Significant dioxins accumulations in Japanese forests and paddy fields have been observed, and surface soil runoff caused by rainfall and irrigation (i.e., soil puddling in paddy fields) results in dioxins input into the aquatic environment. An extensive investigation into the origins and transport of aquatic dioxins in the Yasu watershed, Japan was conducted considering surface soil contamination level, land use, and type of soil runoff event (i.e., irrigation runoff [IR], rainfall runoff [RR], and base flow [BF]). Combined use of the chemically activated luciferase expression (CALUX) assay together with high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) efficiently enabled this study, so that origins, transport, and dynamic movement of aquatic dioxins in the watershed were revealed. The particulate organic carbon normalized particulate-dioxins WHO-toxic equivalent (TEQ) concentration predicted by the CALUX assay (Spar) was found to be a convenient molecular marker to indicate origins of aquatic dioxins and clearly reflect surface soil contamination level, land use, and soil runoff events. Using experimental results and theoretical modeling, the annual loading amount of dioxins at the middle reach of the river was estimated to be 0.458 mg WHO-TEQ in 2004. More than 96.6% of the annual loading amount was attributed to RR and derived almost evenly from forest and paddy fields at the study location. Because the annual loading amount at the middle reach is less than 0.5% of the total dioxins accumulated in the upper basin, dioxins runoff from the Japanese watershed will continue. This study shows that the combined use of the bioassay with HRGC/HRMS can provide new insights into dioxins transport and fate in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, G.R.; Yevich, P.P.; Malcolm, A.R.
1991-01-01
The eastern oyster (Crassostrea virginica) developed neoplastic disorders when experimentally exposed both in the laboratory and field to chemically contaminated sediment from Black Rock Harbor (BRH), Bridgeport, Connecticut. Neoplasia was observed in oysters after 30 or 60 days of continuous exposure in a laboratory flow-through system to a 20 mg/L suspension of BRH sediment plus postexposure periods of 3, 30, or 60 days. Composite tumor incidence was 13.6% for both exposures. Tumor occurrence was highest in the renal excretory epithelium, followed in order by gill, gonad, gastrointestinal, heart, and embryonic neural tissue. Regression of experimental neoplasia was not observed whenmore » the stimulus was discontinued. In field experiments, gill neoplasms developed in oysters, deployed in cages for 30 days at BRH and 36 days at a BRH dredge material disposal area in Central Long Island Sound, and kidney and gastrointestinal neoplasms developed in caged oysters deployed 40 days in Quincy Bay, Boston Harbor. Oysters exposed to BRH sediment in the laboratory and in the field accumulated high concentrations of polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and chlorinated pesticides. Chemical analyses demonstrated high concentrations of PCBs, PAHs, chlorinated pesticides, and heavy metals in BRH sediment. Known genotoxic carcinogens, cocarcinogens, and tumor promoters were present as contaminants. The uptake of parent PAH and PCBs from BRH sediment observed in oysters also occurs in blue mussels (Mytilus edulis). Winter flounder fed BRH-contaminated blue mussels contained xenobiotic chemicals analyzed in mussels. The flounder developed renal and pancreatic neoplasms and hepatotoxic neoplastic precursor lesions, demonstrating trophic transfer of sediment-bound carcinogens up the food chain.« less
Disinfection of Contaminated Water by Using Solar Irradiation
Caslake, Laurie F.; Connolly, Daniel J.; Menon, Vilas; Duncanson, Catriona M.; Rojas, Ricardo; Tavakoli, Javad
2004-01-01
Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min. PMID:14766599
Abbasi, Sedigheh; Lamb, Dane T; Palanisami, Thavamani; Kader, Mohammed; Matanitobua, Vitukawalu; Megharaj, Mallavarapu; Naidu, Ravi
2016-02-01
Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Direct simulation Monte Carlo prediction of on-orbit contaminant deposit levels for HALOE
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1994-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flow field and surface conditions and geometric orientations for the satellite in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. A detailed description of the adaptation of this solution method to the study of the satellite's environment is also presented. Results pertaining to the satellite's environment are presented regarding contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface, along with data related to code performance. Using procedures developed in standard contamination analyses, along with many worst-case assumptions, the cumulative upper-limit level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated at about 13,350 A.
Maiti, Subodh Kumar; Rana, Vivek
2017-01-01
The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W.; Kan, A.T.; Fu, G.
Neutral organic contaminants commonly reside on the solid portion of soils and sediments. The extent of desorption from these solids determines the fate, reactivity, and toxicity. Numerous researchers have observed that, after an initial exposure of a few days, desorption takes place in two phases, namely, an initial rapid release followed by a long-term resistant phase. Resistant desorption has been highly unpredictable. In this research, the adsorption and desorption of chlorobenzenes, hexachlorobutadiene, and naphthalene have been studied using historically and freshly contaminated bayou sediments from Lake Charles, Louisiana, USA. After an initial release period, both laboratory-spiked and historically contaminated sedimentsmore » from Lake Charles, Louisiana, USA. After an initial release period, both laboratory-spiked and historically contaminated sediments exhibit similar desorption profiles. The simulations compare favorably with previous in situ measurements. All desorption results, both laboratory and field, could reasonably be interpreted using a single irreversible isotherm. Consequences of these results in terms of sediment quality criteria (SQC) are also discussed. Finally, an index of fractional irreversible adsorption is proposed and tested.« less
Salmonella and produce: survival in the plant environment and implications in food safety.
Fatica, Marianne K; Schneider, Keith R
2011-01-01
There has been a continuous rise in the number of produce-based foodborne outbreaks in the recent decades despite the perception that foodborne diseases were primarily linked to animal-based products. The Centers for Disease Control and Prevention (CDC) estimates that 95% of Salmonella-based infections originate from foodborne sources, with multiple produce-based salmonellosis outbreaks occurring since 1990. The contamination of produce in both the pre-harvest and post-harvest produce environments is challenging to eliminate since produce is consumed as a raw, fresh commodity. Salmonella spp. contamination is possible through contact with the produce in the field as well as in the processing facility. The field contamination of produce infers the ability of Salmonella spp. to survive on the plant surface. The fitness of Salmonella spp. in the plant habitat is limited as opposed to naturally plant-associated bacteria, but survival is possible. The use of intensive farming practices, globalization of food products, high demand for convenience food products, and increased foodborne disease surveillance also have unknown ramifications in the ascending trends of produce-based outbreaks. A better understanding of the ecology of Salmonella spp. in the plant environment as well as the processing, food handling, and surveillance factors affecting the incidence of foodborne outbreaks will provide a comprehensive view of the etiology and epidemiology of produce-associated foodborne outbreaks. An understanding of the outbreaks and the factors facilitating produce contamination will allow for the development of intervention procedures and strategies to reduce the risk of produce contamination by Salmonella spp.
Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui
2014-01-01
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.
Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui
2014-01-01
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey
2017-04-01
Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field //Chemometrics and Intelligent Laboratory Systems, 99, 1-8. Korobova, E., Romanov S., 2011. Experience of mapping spatial structure of Cs-137 in natural landscape and patterns of its distribution in soil toposequence // Journal of Geochemical Exploration, 109, 1-3, 139-145. Korobova Elena, Sergey Romanov, Vladimir Samsonov, Fedor Moiseenko, 2008. Peculiarities of spatial structure of 137Cs contamination field in landscape toposequence: regularities in geo-field structure. Proceedings of the International Conference on Radioecology and Environmental Radioactivity, 15-20 June 2008, Bergen, Norway, Part 2, 182-186.
Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor
NASA Technical Reports Server (NTRS)
Brown, G. A.; Harrap, V.
1971-01-01
Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.
A field study to determine the ability of selected lignin-degrading fungi to remediate soil contaminated with creosote was performed at a wood-treating facility in south central Mississippi in the autumn of 1991. The effects of solid-phase bioremediation with Phanerochaete sordid...
A pilot-scale field experiment was conducted to compare the remediation effectiveness of an enhanced-solubilization technique to that of water flushing for removal of multicomponent nonaqueous-phase organic liquid (NAPL) contaminants form a phreatic aquifer. This innovative remed...
Remediation of Cd-contaminated soil around metal sulfide mines
NASA Astrophysics Data System (ADS)
Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan
2017-04-01
The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is the key to the remediation of Cd-contaminated soils, and apply the composite material of zeolite combining apatite is the best choice for the remediation of Cd-contaminated soils.
Vavrouš, Adam; Pavloušková, Jana; Ševčík, Václav; Vrbík, Karel; Čabala, Radomír
2016-07-22
Worldwide production of phthalates has led to their undesirable presence in the food chain. Particularly edible oils have become an area of growing concern owing to numerous reported occurrences of phthalates. The analytical methods used in this field face difficulties associated mainly with matrix complexity or phthalate contamination which this study has aimed to describe and resolve. The proposed procedure consisting of liquid-liquid extraction, solid phase extraction and high performance liquid chromatography coupled with tandem mass spectrometry allowed us to analyze simultaneously 6 individual phthalates and 2 phthalate isomeric mixtures. DSC-18 SPE phase was selected for cleanup owing to the most efficient co-extract removal (assessed using high resolution mass spectrometry). Several sources of phthalate contamination were identified, however, the mobile phase was the most serious. The key improvement was achieved by equipping a contamination trap, a 50-mm reverse phase HPLC column, generating a delay between target and mobile phase peaks of the same compounds. RSDs ranging between 2.4 and 16 % confirm good precision and LOQs between 5.5 and 110μgkg(-1) reflect satisfactory blank management. With up to 19 occurrences in 25 analyzed edible oil samples and levels up to 33mgkg(-1), bis(2-ethylhexyl), diisononyl and diisodecyl phthalates were the most important contaminants. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.; Steefel, C.I.; Williams, K.H.
2009-04-20
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates.more » The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.« less
Li, Li; Steefel, Carl I; Williams, Kenneth H; Wilkins, Michael J; Hubbard, Susan S
2009-07-15
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can bean effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.
Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M
2018-03-01
One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.
Influence of sediment storage on downstream delivery of contaminated sediment
Malmon, Daniel V.; Reneau, Steven L.; Dunne, Thomas; Katzman, Danny; Drakos, Paul G.
2005-01-01
Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in‐channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952–1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel‐ and floodplain‐stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long‐term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment‐bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long‐term movement of contaminated sediment through valleys.
Jacobs, Arnaud; Drouet, Thomas; Sterckeman, Thibault; Noret, Nausicaa
2017-03-01
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 μg g -1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha -1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha -1 and 47 kg Zn ha -1 -and show the interest of selecting the adequate population according to the targeted metal.
De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo
2014-03-01
In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.
NASA Astrophysics Data System (ADS)
Bjerg, P. L.; Chambon, J.; Troldborg, M.; Binning, P. J.; Broholm, M. M.; Lemming, G.; Damgaard, I.
2008-12-01
Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment, and to determine the relationship and time frames of source clean up and plume response. To meet that aim, field and laboratory observations are coupled to state of the art models incorporating new insights of contaminant behaviour. The long term leaching of chlorinated ethenes from clay aquitards is currently being monitored at a number of Danish sites. The observed data is simulated using a coupled fracture flow and clay matrix diffusion model. Sequential degradation is represented by modified Monod kinetics accounting for competitive inhibition between the chlorinated ethenes. The model is constructed using Comsol Multiphysics, a generic finite- element partial differential equation solver. The model is applied at two well characterised field sites with respect to hydrogeology, fracture network, contaminant distribution and microbial processes (lab and field experiments). At the study sites (Sortebrovej and Vadsbyvej), the source areas are situated in a clayey till with fractures and interbedded sand lenses. The field sites are both highly contaminated with chlorinated ethenes which impact the underlying sand aquifer. Anaerobic dechlorination is taking place, and cis-DCE and VC have been found in significant amounts in the matrix. Full scale remediation using ERD was implemented at Sortebrovej in 2006, and ERD has been suggested as a remedy at Vadsbyvej. Results reveal several interesting findings. The physical processes of matrix diffusion and advection in the fractures seem to be more important than the microbial degradation processes for estimation of the time frames and the distance between fractures is amongst the most sensitive model parameters. However, the inclusion of sequential degradation is crucial to determining the composition of contamination leaching into the underlying aquifer. Degradation products like VC will peak at an earlier stage compared to the mother compound due to a higher mobility. The findings highlight a need for improved characterization of low permeability aquitards lying above aquifers used for water supply. The fracture network in aquitards is currently poorly described at larger depths (below 5-8 m) and the effect of sand lenses on leaching behaviour is not well understood. The microbial processes are assumed to be taking place in the fracture system, but the interaction with and processes in the matrix need to be further explored. Development of new methods for field site characterisation and integrated field and model expertise are crucial for the design of remedial actions and for risk assessment of contaminated sites in low permeability settings.
Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments
NASA Astrophysics Data System (ADS)
Buckle, J. V.; Richer, J. S.
2015-10-01
We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.
Modeling steady-state methanogenic degradation of phenols in groundwater
Bekins, Barbara A.; Godsy, E. Michael; Goerlitz, Donald F.
1993-01-01
Field and microcosm observations of methanogenic phenolic compound degradation indicate that Monod kinetics governs the substrate disappearance but overestimates the observed biomass. In this paper we present modeling results from an ongoing multidisciplinary study of methanogenic biodegradation of phenolic compounds in a sand and gravel aquifer contaminated by chemicals and wastes used in wood treatment. Field disappearance rates of four phenols match those determined in batch microcosm studies previously performed by E.M. Godsy and coworkers. The degradation process appears to be at steady-state because even after a sustained influx over several decades, the contaminants still are disappearing in transport downgradient. The existence of a steady-state degradation profile of each substrate together with a low biomass density in the aquifer indicate that the bacteria population is exhibiting no net growth. This may be due to the oligotrophic nature of the biomass population in which utilization and growth are approximately independent of concentration for most of the concentration range. Thus a constant growth rate should exist over much of the contaminated area which may in turn be balanced by an unusually high decay or maintenance rate due to hostile conditions or predation.
Zebrafish as a model system to study toxicology.
Dai, Yu-Jie; Jia, Yong-Fang; Chen, Na; Bian, Wan-Ping; Li, Qin-Kai; Ma, Yan-Bo; Chen, Yan-Ling; Pei, De-Sheng
2014-01-01
Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants. © 2013 SETAC.
Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.
2013-01-01
Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615
Taira, Wataru; Hiyama, Atsuki; Nohara, Chiyo; Sakauchi, Ko; Otaki, Joji M.
2015-01-01
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011–2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years. PMID:26661851
NASA Astrophysics Data System (ADS)
Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.
2007-08-01
Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O2, or NF3 + O2 clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.
Miniature quadrupole mass spectrometer having a cold cathode ionization source
Felter, Thomas E.
2002-01-01
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-30
Fields Brook is located in the City of Ashtabula, Ohio and drains a 5.6-square mile watershed (defined as the 'site'). The 3.5 mile main channel of Fields Brook flows through an industrial area that is one of the largest and most diversified concentrations of chemical plants in Ohio. Industrial sources have contaminated the sediment in Fields Brook with a variety of organic and heavy metal pollutants, including TCE, PCE, chlorobenzene, vinyl chloride, arsenic, zinc, mercury and chromium. Base-neutral compounds including hexachloroethane, toluenediamine and toluene diisocyanate also were detected in Fields Brook sediments. Sediments taken from the Ashtabula River in themore » vicinity of Fields Brook are contaminated with PCBs. The U.S. EPA believes that the amount of contamination entering the brook at this time has been substantially reduced due to the recent development of pollution control laws and discharge-permitting requirements.« less
Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong
2015-03-05
A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.
High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dollar, F.; Zulick, C.; Matsuoka, T.
2013-05-15
Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less
Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas
2017-04-01
Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.
Chien, Yi-Chi
2012-01-15
Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas. Copyright © 2011 Elsevier B.V. All rights reserved.
Phytoremediation with transgenic trees.
Peuke, Andreas D; Rennenberg, Heinz
2005-01-01
In the present paper actual trends in the use of transgenic trees for phytoremediation of contaminated soils are reviewed. In this context a current field trial in which transgenic poplars with enhanced GSH synthesis and hence elevated capacity for phytochelatin production are compared with wildtype plants for the removal of heavy metals at different levels of contamination and under different climatic conditions. The studies are carried out with grey poplar (Populus tremula x P. alba), wildtype plants and plants overexpressing the gene for gamma-glutamylcysteine synthetase (gshI) from E. coli in the cytosol. The expression of this gene in poplar leads to two- to four-fold enhanced GSH concentrations in the leaves. In greenhouse experiments under controlled conditions these transgenic poplars showed a high potential for uptake and detoxification of heavy metals and pesticides. This capacity is evaluated in field experiments. Further aims of the project are to elucidate (a) the stability of the transgene under field conditions and (b) the possibility of horizontal gene transfer to microorganisms in the rhizosphere. The results will help to assess the biosafety risk of the use of transgenic poplar for phytoremediation of soils.
INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS
The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...
NASA Technical Reports Server (NTRS)
Bareiss, L. E.
1978-01-01
The paper presents a compilation of the results of a systems level Shuttle/payload contamination analysis and related computer modeling activities. The current technical assessment of the contamination problems anticipated during the Spacelab program are discussed and recommendations are presented on contamination abatement designs and operational procedures based on experience gained in the field of contamination analysis and assessment, dating back to the pre-Skylab era. The ultimate test of the Shuttle/Payload Contamination Evaluation program will be through comparison of predictions with measured levels of contamination during actual flight.
Green turtle fibropapillomatosis: challenges to assessing the role of environmental cofactors.
Herbst, L H; Klein, P A
1995-01-01
Green turtle fibropapillomatosis (GTFP) is a growing threat to the survival of green turtle (Chelonia mydas) populations worldwide. Recent transmission studies point to an infectious etiology. Several field studies suggest that high GTFP prevalence is associated with marine habitats that have been impacted by agricultural, industrial, or urban development. Environmental contaminants could be involved in GTFP through several plausible mechanisms including cocarcinogenesis and contaminant-induced immune suppression. However, an association of contaminants with GTFP has not been established. A broader perspective is needed when studying infectious diseases such as GTFP in complex ecosystems. Alternative explanations for high GTFP prevalence in some near-shore habitats include the following: a) these habitats provide an optimum physical environment for survival and transmission of the infectious agent; b) these habitats attract a high density of susceptible turtles or harbor a higher density of potential vectors, facilitating transmission of the pathogen in a density-dependent fashion; and c) these habitats may contain other stressors that render turtles more susceptible to GTFP. Application of scientifically rigorous criteria in the epizootiology of GTFP in free-ranging populations remains a formidable challenge. Images Figure 1. PMID:7556020
Compatibility of a Diffractive Pupil and Coronagraphic Imaging
NASA Technical Reports Server (NTRS)
Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier
2013-01-01
Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.
Firmin, Stéphane; Labidi, Sonia; Fontaine, Joël; Laruelle, Frédéric; Tisserant, Benoit; Nsanganwimana, Florian; Pourrut, Bertrand; Dalpé, Yolande; Grandmougin, Anne; Douay, Francis; Shirali, Pirouz; Verdin, Anthony; Lounès-Hadj Sahraoui, Anissa
2015-09-15
Arbuscular mycorrhizal fungus (AMF)-assisted phytoremediation could constitute an ecological and economic method in polluted soil rehabilitation programs. The aim of this work was to characterize the trace element (TE) phytoremediation potential of mycorrhizal Miscanthus × giganteus. To understand the mechanisms involved in arbuscular mycorrhizal symbiosis tolerance to TE toxicity, the fatty acid compositions and several stress oxidative biomarkers were compared in the roots and leaves of Miscanthus × giganteus cultivated under field conditions in either TE-contaminated or control soils. TEs were accumulated in greater amounts in roots, but the leaves were the organ most affected by TE contamination and were characterized by a strong decrease in fatty acid contents. TE-induced oxidative stress in leaves was confirmed by an increase in the lipid peroxidation biomarker malondialdehyde (MDA). TE contamination decreased the GSSG/GSH ratio in the leaves of exposed plants, while peroxidase (PO) and superoxide dismutase (SOD) activities were increased in leaves and in whole plants, respectively. AMF inoculation also increased root colonization in the presence of TE contamination. The mycorrhizal colonization determined a decrease in SOD activity in the whole plant and PO activities in leaves and induced a significant increase in the fatty acid content in leaves and a decrease in MDA formation in whole plants. These results suggested that mycorrhization is able to confer protection against oxidative stress induced by soil pollution. Our findings suggest that mycorrhizal inoculation could be used as a bioaugmentation technique, facilitating Miscanthus cultivation on highly TE-contaminated soil. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...
Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters
NASA Astrophysics Data System (ADS)
Allred, B. J.
2007-12-01
Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products significantly decreased phosphate amounts. For the 38 specific filter materials evaluated, based on a 60 percent contaminant reduction level, 12 materials removed nitrate, 26 materials removed phosphate, and 21 materials removed atrazine. Furthermore, 2 materials removed zero contaminants, 16 materials removed one contaminant, 17 materials removed two contaminants, and 3 of the materials removed all three contaminants. The most effective filter materials proved to be a steam activated carbon, a zero valent iron and sulfer modified iron mixture, and a surfactant modified clay. The findings of this study indicate that there are a variety of filter materials, either separately or in combination, which have the potential to treat agricultural drainage waters.
NASA Astrophysics Data System (ADS)
O'Shea, Francis; Spencer, Kate; Brasington, James
2014-05-01
Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.
NASA Astrophysics Data System (ADS)
Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo
2001-07-01
The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.
Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.
Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong
2016-08-01
Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu.
Fujita, Masafumi; Ide, Yoichi; Sato, Daisaku; Kench, Paul S; Kuwahara, Yuji; Yokoki, Hiromune; Kayanne, Hajime
2014-01-01
To evaluate contamination of coastal sediments along Fongafale Islet, Central Pacific, a field survey was conducted in densely populated, sparsely populated, open dumping and undisturbed natural areas. Current measurements in shallow water of the lagoon indicated that contaminants from the densely populated area would only be transported for a small proportion of a tidal cycle. Acid-volatile sulfides were detected in both the intertidal beach and nearshore zones of the densely populated area, whereas these were no detection in the other areas. This observation lends support to argument that the coastal pollution mechanism that during ebb tide, domestic wastewater leaking from poorly constructed sanitary facilities seeps into the coast. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were relatively high in all of the areas except the undisturbed natural area. The indices of contamination factor, pollution load index and geoaccumulation index were indicative of heavy metal pollution in the three areas. The densely populated area has the most significant contamination; domestic wastewater led to significant contamination of coastal sediments with Cr, Zn, Cu, Pb and Cd. The open dumping area is noteworthy with respect to Mn and Ni, which can be derived from disposed batteries. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
2006-11-01
spores of B. stearothermophilus . For all of the test organisms, conditions were found that effected sterilization (6-log kill of contaminating...kill 106 E. coli, L. monocytogenes, S. aureus, and bacterial spores of B. atrophaeus and B. stearothermophilus and to sterilize high-grade...Portable Chemical Sterilizer for Microbial Decontamination of
Nano-soldering to single atomic layer
Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA
2011-10-11
A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryxell, Glen E.; Mattigod, Shas V.; Lin, Yuehe
2007-07-01
Water, and water quality, are issues of critical importance to the future of humankind. The Earth’s water supplies have been contaminated by a wide variety of industrial, military and natural sources. The need exists for an efficient separation technology to remove heavy metal and radionuclide contamination from water. Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to build high efficiency environmental sorbents. These nanoporous ceramics condense a huge amount of surface area into a very small volume. These mesoporous architectures can be subsequently functionalized through molecular self-assembly. These functional mesoporous materials offer significant capabilities in termsmore » of removal of heavy metals and radionuclides from a variety of liquid media, including groundwater, contaminated oils and contaminated chemical weapons. They are highly efficient sorbents, whose rigid, open pore structure allows for rapid, efficient sorption kinetics. Their interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. This manuscript provides a review of the design, synthesis and performance of the sorbent materials. The role that ligand posture plays in the chemistry of these interfacial ligand fields is discussed.« less
Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky
Lyverse, M.A.; Unthank, M.D.
1988-01-01
Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)
Unrein, Julia R.; Morris, Jeffrey M.; Chitwood, Rob S.; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B.
2016-01-01
Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance.
Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo
2017-02-15
Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.
Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach
NASA Astrophysics Data System (ADS)
Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk
2018-02-01
An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.
NASA Astrophysics Data System (ADS)
Reinke, Matthew
2016-10-01
Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.
NASA Astrophysics Data System (ADS)
Atekwana, E. A.; Enright, A.; Atekwana, E. A.; Beaver, C. L.; Rossbach, S.; Slater, L. D.; Ntarlagiannis, D.
2016-12-01
Sharp redox gradients are indicative of enhanced biogeochemical activity and occur at or near the water table. Hydrologic forcing drives changes in redox state and oxygen levels, enhancing the elemental cycling of metals, and coupling different biogeochemical cycles. These coupled hydrobiogeochemical cycles are often difficult to study in the field using geochemical and microbial proxies because of direct sampling limitations, the costs associated with these techniques, and because the dynamic nature of these processes complicates the interpretation of single time point measurements, which may not give accurate representations of prevailing conditions. Geophysical techniques can provide both the spatial and temporal resolution needed to elucidate these processes. Here we investigated the use of magnetic susceptibility (c) as a viable proxy for understanding the biogeochemical cycling of iron at several hydrocarbon contaminated sites where active intrinsic bioremediation is occurring. We performed borehole c logging using a Bartington c probe in the field as well as made c measurements on core samples retrieved from the field sites. Our results show the following: (1) in both sulfate-rich and sulfate-poor aquifers, excursions in c are coincident with zones of free product contamination and are limited to the water table fluctuation (smear) zone; (2) c values within the free product plume and contamination source zones are higher compared to values within the dissolved product plume; (3) high c coincides with zones of elevated Fe (II) and Fe (III) concentrations extracted from aquifer solids; and (4) the mixed valence magnetite and greigite were the dominant magnetic minerals. The c excursions are limited to the water table fluctuation zones because fluctuating water level conditions are hot beds for microbial activity due to the steep hydrocarbon and nutrients and consequently redox gradients. High water levels during periods of recharge favor anaerobic conditions enhancing iron reduction, while low water conditions during drought periods favor iron oxidation due to increased oxygen penetration. Such conditions favor mixed valent iron minerals such as magnetite and greigite. We conclude that c measurements are a low cost, rapid monitoring tool for assessing the elemental cycling of iron.
Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates
NASA Astrophysics Data System (ADS)
Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.
2017-09-01
A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.
NASA Technical Reports Server (NTRS)
Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.
1975-01-01
An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.
Consequences of metal exposure on retinoid metabolism in vertebrates: a review.
Defo, M A; Spear, P A; Couture, P
2014-02-10
What we generally refer to as 'vitamin A' is a group of naturally-occurring molecules structurally similar to retinol that are capable of exerting biological activity. These retinoids are essential to diverse physiological functions including vision, immune response, bone mineralization, reproduction, cell differentiation, and growth. As well, some retinoids have antioxidant properties. Independent studies published over the last few decades have revealed that many fish and wildlife populations living in highly polluted environments have altered retinoid status possibly associated with retinoid metabolic or homeostatic mechanisms. Substantial evidence links organic contaminant exposure with changes in retinoid status in animal populations, but only a few detailed studies have been published implicating inorganic contaminants such as metals. This mini-review selectively deals with field and laboratory studies reporting associations between environmental contaminants, especially trace metals, and alterations in retinoid status. Both essential and non-essential trace metals have been reported to affect retinoid status. This review focuses on metabolic imbalances of retinoids in relation to metal contamination and illustrates possible modes of action. The role of retinoids as antioxidants and their potential as biomarkers of metal contamination are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hartley, J; Cairney, J W; Freestone, P; Woods, C; Meharg, A A
1999-09-01
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.
Electrokinetic-enhanced phytoremediation of soils: status and opportunities.
Cameselle, Claudio; Chirakkara, Reshma A; Reddy, Krishna R
2013-10-01
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation-electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Polynuclear aromatic hydrocarbon analysis using the synchronous scanning luminoscope
NASA Astrophysics Data System (ADS)
Hyfantis, George J., Jr.; Teglas, Matthew S.; Wilbourn, Robert G.
2001-02-01
12 The Synchronous Scanning Luminoscope (SSL) is a field- portable, synchronous luminescence spectrofluorometer that was developed for on-site analysis of contaminated soil and ground water. The SSL is capable of quantitative analysis of total polynuclear aromatic hydrocarbons (PAHs) using phosphorescence and fluorescence techniques with a high correlation to laboratory data as illustrated by this study. The SSL is also capable of generating benzo(a)pyrene equivalency results, based on seven carcinogenic PAHs and Navy risk numbers, with a high correlation to laboratory data as illustrated by this study. These techniques allow rapid field assessments of total PAHs and benzo(a)pyrene equivalent concentrations. The Luminoscope is capable of detecting total PAHs to the parts per billion range. This paper describes standard field methods for using the SSL and describes the results of field/laboratory testing of PAHs. SSL results from two different hazardous waste sites are discussed.
Assessment of potential ecological risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. Instrumental analysis of environmental samples alone can identify contaminants, but provides only limited insights as to possible a...
Assessing potential biological impacts of complex mixtures of contaminants in aquatic environments is an ongoing challenge for ecotoxicologists. Instrumental analysis of site waters alone can identify contaminants but provides only limited insights as to possible adverse effects...
USE OF QSPRS IN IMPROVING CARBON ADSORPTION MODELING OF EPA CONTAMINANT CANDIDATE COMPOUNDS
Activated carbon adsorption of EPA contaminant candidate list (CCL) compounds is under investigation as a treatment technology for contaminated drinking water. Historically, EPA, in support of drinking water regulations, has used a number of techniques to calculate field-scale c...
Assessment of trace element accumulation by earthworms in a DDT remediation study
USDA-ARS?s Scientific Manuscript database
In this study, organic amendments were used to remediate an orchard field soil contaminated with organochlorine and Pb pesticide residues. Organic amendments can enhance the metabolic activity of microorganisms and chemically complex the contaminants but they can also introduce further contamin ...
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua
2017-01-01
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg−1 bw day−1, BEDI of As < 3 μg kg−1 bw day−1) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua
2017-08-29
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities.
USDA-ARS?s Scientific Manuscript database
Fecal contamination in fresh produce fields caused by animals or livestock entering the fields can lead to outbreaks of foodbourne illnesses. E.coli O157:H7 originating in the intestines of animals can transfer onto leafy greens via fecal matter. Leafy greens are often eaten fresh without thermal tr...
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1987-08-10
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.
Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1988-01-01
Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.
Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments.
Guérineau, Hélène; Dorner, Sarah; Carrière, Annie; McQuaid, Natasha; Sauvé, Sébastien; Aboulfadl, Khadija; Hajj-Mohamad, Mariam; Prévost, Michèle
2014-07-01
In highly urbanized areas, surface water and groundwater are particularly vulnerable to sewer exfiltration. In this study, as an alternative to Microbial Source Tracking (MST) methods, we propose a new method combining microbial and chemical fecal indicators (Escherichia coli (E. coli)) and wastewater micropollutants (WWMPs) analysis both in water and sediment samples and under different meteorological conditions. To illustrate the use of this method, wastewater exfiltration and subsequent infiltration were identified and quantified by a three-year field study in an urban canal. The gradients of concentrations observed suggest that several sources of fecal contamination of varying intensity may be present along the canal, including feces from resident animal populations, contaminated surface run-off along the banks and under bridge crossings, release from contaminated banks, entrainment of contaminated sediments, and most importantly sewage exfiltration. Calculated exfiltration-infiltration volumes varied between 0.6 and 15.7 m(3)/d per kilometer during dry weather, and between 1.1 and 19.5 m(3)/d per kilometer during wet weather. WWMPs were mainly diluted and degraded below detection limits in water. E. coli remains the best exfiltration indicator given a large volume of dilution and a high abundance in the wastewater source. WWMPs are effective for detecting cumulated contamination in sediments from a small volume source and are particularly important because E. coli on its own does not allow source tracking. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude
2016-02-01
Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Arumugam, K.; Elangovan, K.
2009-10-01
Groundwater samples from 62 locations have been collected from Tirupur region viz. Avinashi, Tirupur and Palladam taluks of Coimbatore District. The extensive agricultural industrial activities and urbanization resulted in the contamination of the aquifer. To study the contamination of groundwater, water samples were collected in an area of 180 km2 and analysed for major cations and anions. Most of the locations are contaminated by higher concentration of EC, TDS, K and NO3. Major hydro chemical facies were identified using Piper trilinear diagram. Based on US salinity diagram, most of the samples fall in the field of C3S1, indicating high salinity and low sodium water, which can be used for almost all types of soil with little danger of exchangeable sodium. Majority of the samples are not suitable for domestic purposes and far from drinking water standards. However, PI values indicates that groundwater is suitable for irrigation.
Woodall, Lucy C; Gwinnett, Claire; Packer, Margaret; Thompson, Richard C; Robinson, Laura F; Paterson, Gordon L J
2015-06-15
There is growing evidence of extensive pollution of the environment by microplastic, with microfibres representing a large proportion of the microplastics seen in marine sediments. Since microfibres are ubiquitous in the environment, present in the laboratory air and water, evaluating microplastic pollution is difficult. Incidental contamination is highly likely unless strict control measures are employed. Here we describe methods developed to minimize the amount of incidental post-sampling contamination when quantifying marine microfibre pollution. We show that our protocol, adapted from the field of forensic fibre examination, reduces fibre abundance by 90% and enables the quick screening of fibre populations. These methods therefore allow an accurate estimate of microplastics polluting marine sediments. In a case study from a series of samples collected on a research vessel, we use these methods to highlight the prevalence of microfibres as marine microplastics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Datta, S.; Do, L.V.; Young, T.M.
2004-01-01
A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-01-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-12-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals.
Rajaretnam, G; Spitz, H B
2000-02-01
Elevated concentrations of naturally occurring radioactive material (NORM), including 238U, 232Th, and their progeny found in underground geologic deposits, are often encountered during crude oil recovery. Radium, the predominant radionuclide brought to the surface with the crude oil and produced water, co-precipitates with barium in the form of complex compounds of sulfates, carbonates, and silicates found in sludge and scale. These NORM deposits are highly stable and very insoluble under ambient conditions at the earth's surface. However, the co-precipitated radium matrix is not thermodynamically stable at reducing conditions which may enable a fraction of the radium to eventually be released to the environment. Although the fate of radium in uranium mill tailings has been studied extensively, the leachability of radium from crude oil NORM deposits exposed to acid-rain and other aging processes is generally unknown. The leachability of radium from NORM contaminated soil collected at a contaminated oil field in eastern Kentucky was determined using extraction fluids having wide range of pH reflecting different extreme environmental conditions. The average 226Ra concentration in the samples of soil subjected to leachability testing was 32.56 Bq g(-1) +/- 0.34 Bq g(-1). The average leaching potential of 226Ra observed in these NORM contaminated soil samples was 1.3% +/- 0.46% and was independent of the extraction fluid. Risk assessment calculations using the family farm scenario show that the annual dose to a person living and working on this NORM contaminated soil is mainly due to external gamma exposure and radon inhalation. However, waterborne pathways make a non-negligible contribution to the dose for the actual resident families living on farmland with the type of residual NORM contamination due to crude oil recovery operations.
Rubin, H.; Buddemeier, R.W.
2002-01-01
Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are helpful in visualizing the gradual development of uniform contaminant concentration distribution in an aquifer subject to contaminant plume penetration. The method developed in this study can be applied to a variety of problems associated with groundwater quality, such as initial evaluation of field data, design of field data collection, the identification of appropriate boundary conditions for numerical models, selection of appropriate numerical modeling approaches, interpretation and evaluation of field monitoring results, etc.
Hawthorne, Steven B; Kubátová, Alena; Gallagher, John R; Sorensen, James A; Miller, David J
2005-05-15
Soil and groundwater samples were collected at the site of a former chemical processing plant in areas impacted by accidental releases of MEA (monoethanolamine) and IPA (2-propanolamine or isopropanolamine). Although their use had ceased ca. 10 years before sample collection, soils collected at contamination sites had MEA concentrations ranging from ca. 400 to 3000 mg/kg and IPA concentrations from ca. 30 to 120 mg/kg. Even though alkanolamines are miscible in water, transport to groundwater was slow, apparently because they are present in soil as bound cations. Only one groundwater sample (near the most highly contaminated soil)from wells directly adjacentto and down-gradient from the contaminated soils had detectable MEA, and none had detectable IPA. However, ammonia was found in the soil samples collected in the MEA-contaminated areas (ca. 500-1400 mg/kg) and the groundwater (80-120 mg/L), as would be consistent with bacterial degradation of MEA to ammonia, followed by transport of ammonia into the groundwater. Counts for bacteria capable of using MEA or IPA as a sole carbon source were ca. 5 x 106 and 1 x 106 (respectively) per gram in uncontaminated site soil, but no such organisms were found in highly contaminated soils. Similarly, bacterial degradation of MEA in slurries of highly contaminated soils was slow, with ca. 8-20 days required for half of the initial concentrations of MEA to be degraded at 20 degrees C and 30-60 days at 10 degrees C. In contrast, bacterial degradation studies using uncontaminated site soils spiked with ca. 1300 mg/L either MEA or IPA showed very rapid degradation of both compounds,with more than 99% degradation occurring in less than 3 days with quantitative conversion to ammonia, followed by slower conversion to nitrite and nitrate. The results obtained in the site soils, the groundwater samples, and from the biodegradation studies demonstrate that MEA and IPA can persist for decades on soil at high (hundreds of mg/kg) concentrations without significant migration into groundwater, despite the fact that they are miscible in water. Since MEA and IPA exist primarily as cations at the pH of site soils, their persistence apparently results from strong binding to soil, as well as inhibition of natural bioremediation in highly contaminated field soils.
Lafontaine, Anne; Gismondi, Eric; Dodet, Nathalie; Joaquim-Justo, Célia; Boulangé-Lecomte, Céline; Caupos, Fanny; Lemoine, Soazig; Lagadic, Laurent; Forget-Leray, Joëlle; Thomé, Jean-Pierre
2017-10-01
Chlordecone is a persistent organochlorine pesticide that has been widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus from 1972 to 1993. A few years after its introduction, widespread contamination of soils, rivers, wild animals and aquatic organisms was reported. Although high chlordecone concentrations have been reported in several crustacean species, its uptake, internal distribution, and elimination in aquatic species have never been described. This study aimed at investigating the accumulation and tissue distribution of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii, using both laboratory (30 days exposure) and field (8 months exposure) approaches. In addition, depuration in chlordecone-free water was studied. Results showed that chlordecone bioconcentration in prawns was dose-dependent and time-dependent. Moreover, females appeared to be less contaminated than males after 5 and 7 months of exposure, probably due to successive spawning leading in the elimination of chlordecone through the eggs. Chlordecone distribution in tissues of exposed prawns showed that cephalothorax organs, mainly represented by the hepatopancreas, was the most contaminated. Results also showed that chlordecone was accumulated in cuticle, up to levels of 40% of the chlordecone body burden, which could be considered as a depuration mechanism since chlordecone is eliminated with the exuviae during successive moults. Finally, this study underlined the similarity of results obtained in laboratory and field approaches, which highlights their complementarities in the chlordecone behaviour understanding in M. rosenbergii. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer
NASA Astrophysics Data System (ADS)
Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.
2001-12-01
We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of acetoclastic methanogenesis in the proximity of separate phase contaminant sources may result in build-up of acetate in contaminant plumes. Within the aqueous-phase contaminant plume steep vertical hydrocarbon concentration gradients are associated with sharp transitions in the dominant microbial population. In the 20 years since the aquifer became contaminated, sediment iron oxides have been depleted and the dominant physiologic type has changed in areas of high contaminant flux from iron reducing to methanogenic. Thus, methanogens are found in high permeability horizons down gradient from the oil while iron reducers persist in low permeability zones. Expansion of the methanogenic zone over time has resulted in a concomitant increase in the aquifer volume contaminated with the highest concentrations of benzene and ethylbenzene.
do Nascimento, Clístenes Williams A; Amarasiriwardena, Dula; Xing, Baoshan
2006-03-01
Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal.
Jang, Sung-Chan; Kang, Sung-Min; Kim, Gi Yong; Rethinasabapathy, Muruganantham; Haldorai, Yuvaraj; Lee, Ilsong; Han, Young-Kyu; Renshaw, Joanna C; Roh, Changhyun; Huh, Yun Suk
2018-06-12
In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe₃O₄ nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m²/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.
Biological effects of anthropogenic contaminants in the San Francisco Estuary
Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.
2007-01-01
Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.
Use of mixed-function oxygenases to monitor contaminant exposure in wildlife
Rattner, B.A.; Hoffman, D.J.; Marn, C.M.
1989-01-01
This overview examines the utility of mixed-function oxygenase (MFO) enzymes as a bioeffects monitor for wildlife (amphibians, reptiles, birds and mammals) in view of their widespread use as indicators of contaminant exposure in aquatic invertebrates and fish. Phylogenetic trends in MFO activity, toxicological implications of induction and the relationship between contaminant exposure and MFO activity are discussed. Field studies using avian embryos and hatchlings suggest that MFO induction has utility for documenting contaminant exposure; however, findings in adult birds and mammals are equivocal. Age, sex and season are sources of variation that require consideration when undertaking field trials. Further understanding of MFO inducibility among species and application of recently developed analytical techniques including quantification of specific cytochrome P-450 isozymes are warranted.
Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.
1995-01-01
Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.
2007-12-01
Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.
Bioindicators of contaminant exposure and effect in aquatic and terrestrial monitoring
Melancon, Mark J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
2003-01-01
Bioindicators of contaminant exposure presently used in environmental monitoring arc discussed. Some have been extensively field-validated and arc already in routine application. Included are (1) inhibition of brain or blood cholinesterase by anticholinesterase pesticides, (2) induction of hepatic microsomal cytochromes P450 by chemicals such as PAHs and PCBs, (3) reproductive problems such as terata and eggshell thinning, and (4) aberrations of hemoglobin synthesis, including the effects of lead and of certain chlorinated hydrocarbons. Many studies on DNA damage and of histopathological effects, particularly in the form of tumors, have already been completed. There are presently numerous other opportunities for field validation. Bile metabolites of contaminants in fish reveal exposure to contaminants that might otherwise be difficult to detect or quantify. Bile analysis is beginning to be extended to species other than fishes. Assessment of oxidative damage and immune competence appear to be valuable biomarkers. needing only additional field validation for wider use. The use of metallothioneins as biomarkers depends on the development of convenient, inexpensive methodology that provides information not available from measurements of metal ions. The use of stress proteins as biomarkers depends on development of convenient, inexpensive methodology and field validation. Gene arrays and proteomics hold promise as bioindicators for contaminant exposure or effect, particularly because of the large amount of data that could be generated, but they still need extensive development and testing.
STIMULATION OF DEFENSE FACTORS FOR OYSTERS DEPLOYED TO CONTAMINATED SITES IN PENSACOLA BAY, FLORIDA
A positive association between chemical contaminants and defense factors has been established for eastern oysters (Crassostrea virginica) from Florida, but it is unknown whether such factors can be stimulated through short-term exposure to contaminants in the field. Hatchery oyst...
PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS
Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...
Assessing potential biological impacts of complex mixtures of contaminants in aquatic environments is an ongoing challenge for ecotoxicologists. Instrumental analysis of site waters alone can identify contaminants but provides only limited insights as to possible adverse effects...
NASA Astrophysics Data System (ADS)
Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.
2011-12-01
Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model and compare four scenarios: (1) CAH diffusion only into cracks, (2) CAH advection-dispersion into cracks, (3) separate phase DNAPL movement into the cracks, and (4) CAH diffusion into an uncracked low permeability clay layer. For each scenario, model simulations are used to show the evolution and persistence of groundwater contamination downgradient of the DNAPL source.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung
2014-05-01
The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.
An approach for addressing hard-to-detect hot spots.
Abelquist, Eric W; King, David A; Miller, Laurence F; Viars, James A
2013-05-01
The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) survey approach is comprised of systematic random sampling coupled with radiation scanning to assess acceptability of potential hot spots. Hot spot identification for some radionuclides may not be possible due to the very weak gamma or x-ray radiation they emit-these hard-to-detect nuclides are unlikely to be identified by field scans. Similarly, scanning technology is not yet available for chemical contamination. For both hard-to-detect nuclides and chemical contamination, hot spots are only identified via volumetric sampling. The remedial investigation and cleanup of sites under the Comprehensive Environmental Response, Compensation, and Liability Act typically includes the collection of samples over relatively large exposure units, and concentration limits are applied assuming the contamination is more or less uniformly distributed. However, data collected from contaminated sites demonstrate contamination is often highly localized. These highly localized areas, or hot spots, will only be identified if sample densities are high or if the environmental characterization program happens to sample directly from the hot spot footprint. This paper describes a Bayesian approach for addressing hard-to-detect nuclides and chemical hot spots. The approach begins using available data (e.g., as collected using the standard approach) to predict the probability that an unacceptable hot spot is present somewhere in the exposure unit. This Bayesian approach may even be coupled with the graded sampling approach to optimize hot spot characterization. Once the investigator concludes that the presence of hot spots is likely, then the surveyor should use the data quality objectives process to generate an appropriate sample campaign that optimizes the identification of risk-relevant hot spots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Commencement Bay, South Tacoma Field site occupies 260 acres of land located in the southwestern section of the city of Tacoma in Pierce County, Washington. The South Tacoma Field site poses a public health hazard to trespassers who repeatedly ingest contaminated surface soils, surface water, and sediment during recreational activities at the site. Exposure to the contaminants arsenic, copper, lead, manganese, as well as polychlorinated biphenyl and polycyclic aromatic hydrocarbon compounds may have occurred in the past, may be presently occurring, and may occur in the future, which could result in noncarcinogenic and carcinogenic health effects. Potentially, the sitemore » can pose a public health hazard through exposure to groundwater and subsurface soil contaminants that could cause adverse health effects. Additionally, should contruction/excavation uncover contaminated subsurface soils, workers as well as recreationalists/trespassers may be exposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; Perron, M.M.; Friedman, C.L.
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspectedmore » that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.« less
Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, M.C.; Hinchman, R.R.
1996-05-01
Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds ({open_quotes}organics{close_quotes}), and radioactive compounds in soil or water. Current research at Argonne National Laboratory includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. Amore » greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data from Applied Natural Sciences, Inc. (our CRADA partner), indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known {open_quotes}hyperaccumulator{close_quotes} species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korte, N.; Muck, M.; Kearl, P.
1998-08-01
This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and becausemore » they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).« less
Storage mite contamination of commercial dry dog food in south-eastern Australia.
Hibberson, C E; Vogelnest, L J
2014-06-01
To evaluate contamination of unopened and opened stored sources of commercial dry dog food by viable storage mites. Prospective laboratory and field study. Samples were collected from nine brands of previously unopened bags (new bags) of dry food and 20 field sources of stored dry food in homes in Sydney and Canberra, Australia. All samples were initially examined for the presence of mites using a stereo-binocular microscope and then placed in separate filter-paper-sealed containers. Field samples were incubated at an average temperature of 29°C and 78% relative humidity (RH) for 5 weeks and then at average 26°C/83% RH for 8 weeks. Paired new-bag samples were stored under room conditions (average 23°C/47% RH) and controlled incubator conditions (average 26°C/80% RH) for 6 weeks. All samples were thoroughly examined for mites, mite eggs and visible mould once weekly using a stereo-binocular microscope. Storage mites were not visualised in any of the field samples or in new-bag samples stored at room temperature. Storage mites, identified as Tyrophagus putrescentiae, were visualised in increasing numbers in seven of nine new-bag samples after incubation, with first mites and then eggs evident after 3 weeks of incubation. We confirmed the presence of viable storage mites in a range of previously unopened commercial dry dog foods in Australia and confirmed the possibility of heavy storage mite contamination for dry food stored under conditions of moderate temperature and high humidity. These findings have relevance to storage mite and/or dust mite sensitivity in canine atopic dermatitis. © 2014 Australian Veterinary Association.
Method for analyzing the mass of a sample using a cold cathode ionization source mass filter
Felter, Thomas E.
2003-10-14
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Environmental stress in the Gulf of Mexico and its potential impact on public health
Turner, J.; Walter, L.; Lathan, N.; Thorpe, D.; Ogbevoen, P.; Daye, J.; Alcorn, D.; Wilson, S.; Semien, J.; Richard, T.; Johnson, T.; McCabe, K.; Estrada, J.J.; Galvez, F.; Velasco, C.; Reiss, K.
2017-01-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. PMID:26745734
Environmental stress in the Gulf of Mexico and its potential impact on public health.
Singleton, B; Turner, J; Walter, L; Lathan, N; Thorpe, D; Ogbevoen, P; Daye, J; Alcorn, D; Wilson, S; Semien, J; Richard, T; Johnson, T; McCabe, K; Estrada, J J; Galvez, F; Velasco, C; Reiss, K
2016-04-01
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico was the largest maritime oil spill in history resulting in the accumulation of genotoxic substances in the air, soil, and water. This has potential far-reaching health impacts on cleanup field workers and on the populations living in the contaminated coastal areas. We have employed portable airborne particulate matter samplers (SKC Biosampler Impinger) and a genetically engineered bacterial reporter system (umu-ChromoTest from EBPI) to determine levels of genotoxicity of air samples collected from highly contaminated areas of coastal Louisiana including Grand Isle, Port Fourchon, and Elmer's Island in the spring, summer and fall of 2011, 2012, 2013 and 2014. Air samples collected from a non-contaminated area, Sea Rim State Park, Texas, served as a control for background airborne genotoxic particles. In comparison to controls, air samples from the contaminated areas demonstrated highly significant increases in genotoxicity with the highest values registered during the month of July in 2011, 2013, and 2014, in all three locations. This seasonal trend was disrupted in 2012, when the highest genotoxicity values were detected in October, which correlated with hurricane Isaac landfall in late August of 2012, about five weeks before a routine collection of fall air samples. Our data demonstrate: (i) high levels of air genotoxicity in the monitored areas over last four years post DWH oil spill; (ii) airborne particulate genotoxicity peaks in summers and correlates with high temperatures and high humidity; and (iii) this seasonal trend was disrupted by the hurricane Isaac landfall, which further supports the concept of a continuous negative impact of the oil spill in this region. Copyright © 2015 Elsevier Inc. All rights reserved.
Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng
2016-11-01
Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.
The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the ...
Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...
USDA-ARS?s Scientific Manuscript database
Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...
One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...
Recent field and experimental research has shown that certain classes of subsurface contaminants can biodegrade at many sites. A number of site specific factors influences the rate of biodegradation, which helps determine the ultimate extent of contamination at these sites. The...
Injection of Emulsified Vegetable Oil for Long-Term Bioreduction of Uranium
NASA Astrophysics Data System (ADS)
Brooks, S. C.; Watson, D. B.; Schadt, C. W.; Jardine, P. M.; Gihring, T. M.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Phillips, J.; Earles, J.; Wu, W.; Criddle, C. S.; Kemner, K. M.; Boyanov, M.
2011-12-01
In situ bioremediation of a uranium and nitrate-contaminated aquifer with the slow-release electron donor, emulsified vegetable oil (EVO), was tested at the US DOE Subsurface Biogeochemical Research Program (SBR) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. The EVO injection took place in Area 2 of the IFRC located about 300 m downgradient of the former S-3 disposal ponds. Liquid wastes, disposed in the ponds from 1951 to 1983, were primarily composed of nitric acid, plating wastes containing various metals (Cr, Ni) radionuclides (U, Tc), inorganics (nitrate, sulfate) and organic contaminants (tetrachloroethylene, acetone). Prior pond closure in 1987, large volumes of waste fluids migrated into the subsurface, down Bear Creek Valley and into Bear Creek. Contaminants detected at Area 2 were transported through a high permeability gravelly fill that is considered a preferred transport pathway for U to Bear Creek. Groundwater in the gravelly fill is contaminated with U (1-3 mg/L), sulfate (95-130 mg/L), and nitrate (20-40 mg/L) and 500 mg/kg or higher U has been detected on the solid phase of the fill material. The objective of this study is to investigate the feasibility and long-term sustainability of U(VI) reduction and immobilization, and nitrate degradation in the high permeability, high flow gravel fill using EVO as the electron donor. A one-time EVO injection was conducted over a 2 hour period in the highly permeable gravel (hydraulic conductivity 0.08 cm/sec) in the well instrumented IFRC Area 2 field plot. Extensive monitoring of geochemical parameters, dissolved gases and microbial populations were conducted during the test. A bromide tracer test was conducted prior to the injection of the EVO to assess transport pathways and rates. Geochemical analysis of site groundwater demonstrated the sequential bioreduction of oxygen, nitrate, Mn(IV), Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of U and nitrate from groundwater was observed in all wells in hydraulic connection to the injection wells after 2-4 weeks. U concentrations in groundwater were reduced to below 30 ppb (US EPA drinking water standard) at some well locations and nitrate was reduced to below detectable levels. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the EVO was consumed. The flux of U and nitrate contamination from groundwater to the surface water receptor (Bear Creek) was significantly reduced by the EVO injection over a one year period. Uranium (VI) reduction to U(IV) in the field tests was confirmed by X-ray absorption near-edge spectroscopy (XANES) analysis. The reduced U(IV) was determined by X-ray absorption fine structure (XAFS) to be in an Fe-U complex, not uraninite. The activities of major Fe(III)- and sulfate-reducing bacteria with U(VI)-reducing capability as well as methanogens was stimulated after injection of the oil.
ERIC Educational Resources Information Center
Homem, Vera; Alves, Arminda; Santos, Lu´cia
2014-01-01
A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…
Contamination and Micropropulsion Technology
2012-07-01
23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904
Navy Field Evaluation of Particle Counter Technology for Aviation Fuel Contamination Detection
2014-02-06
Naval Ship’s Technical Manual NAVAIR ... ………………………………………………………Naval Air Systems Command RSD ...6. Relative Standard Deviation of >4 µm Particle Count The high RSD between particle counts of the same sediment and free water concentrations are
USDA-ARS?s Scientific Manuscript database
Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. Maize is cultivated from 0 to 2,100 masl under diverse growing regimes in the state of Sonora, Mexico. This is typical of the nation. In order to design sampling strat...
Clark, Robert M.; Cronin, John C.
1977-01-01
A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.
Application of risk management techniques for the remediation of an old mining site in Greece.
Panagopoulos, I; Karayannis, A; Adam, K; Aravossis, K
2009-05-01
This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.
Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng
2017-06-01
Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Chaochao; Luo, Jiaxun; Li, Chenglong; Ma, Mingfang; Yu, Wenbo; Shen, Jianzhong; Wang, Zhanhui
2018-03-21
The chemical contaminants in food and the environment are quite harmful to food safety and human health. Rapid, accurate, and cheap detection can effectively control the potential risks derived from these chemical contaminants. Among all detection methods, the immunoassay based on the specific interaction of antibody-analyte is one of the most widely used techniques in the field. However, biological antibodies employed in the immunoassay usually cannot tolerate extreme conditions, resulting in an unstable state in both physical and chemical profiles. Molecularly imprinted polymers (MIPs) are a class of polymers with specific molecular recognition abilities, which are highly robust, showing excellent operational stability under a wide variety of conditions. Recently, MIPs have been used in biomimetic immunoassays for chemical contaminants as an antibody substitute in food and the environment. Here, we reviewed these applications of MIPs incorporated in different analytical platforms, such as enzyme-linked immunosorbent assay, fluorescent immunoassay, chemiluminescent immunoassay, electrochemical immunoassay, microfluidic paper-based immunoassay, and homogeneous immunoassay, and discussed current challenges and future trends in the use of MIPs in biomimetic immunoassays.
Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.
2011-01-01
The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996–2008 and 2002–08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks.Blanks and groundwater samples were collected during 2008–09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples.Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds, using less rigorous identification criteria than is required for reporting data to the National Water Information System database. For the FCS, these data are considered adequate to indicate "evidence of presence," and were used only for diagnostic purposes. Evidence of VOCs and WICs at low concentrations near or less than the long-term method detection level can indicate a contamination problem that could affect future datasets if method detection levels were ever to be lowered.
SUPERFUND TREATABILITY CLEARINGHOUSE: FULL ...
This treatability study reports on the results of one of a series of field trials using various remedial action technologies that may be capable of restoring Herbicide Orange (HO)XDioxin contaminated sites. A full-scale field trial using a rotary kiln incinerator capable of processing up to 6 tons per hour of dioxin contaminated soil was conducted at the Naval Construction Battalion Center, Gulfport, MS. publish information
The purpose of this paper is to present an overview and the initial results of a pilot-scale experiment designated to test the use of cyclodextrin for enhanced in-situ flushing of an aquifer contaminated by immiscible liquid. This is the first field test of this technology, terme...
A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating f...
Edgewood Area - Aberdeen Proving Ground Five-Year Review
2008-10-01
27 / 2001 Reduce the contaminant mass in the J-Field surficial aquifer through DNAPL recovery, phytoremediation , and natural processes; Eliminate...exposure to groundwater; and Control off-site contaminant migration from the confined aquifer. Institutional Controls Phytoremediation Monitoring... phytoremediation and natural degradaton processes. 2. Monitoring of MCLs and non-zero MCLGs at points outside of the designated TI Zone. J-Field
Apparel for Cleaner Clean Rooms
NASA Technical Reports Server (NTRS)
1983-01-01
In the 1960s NASA pioneered contamination control technology, providing a base from which aerospace contractors could develop control measures. NASA conducted special courses for clean room technicians and supervisors, and published a series of handbooks with input from various NASA field centers. These handbooks extended aerospace experience to the medical, pharmaceutical, electronics, and other industries where extreme cleanliness is important. American Hospital Supply Company (AHSC) felt that high technology products with increasingly stringent operating requirements in aerospace, electronics, pharmaceuticals and medical equipment manufacturing demanded improvement in contamination control techniques. After studying the NASA handbooks and visiting NASA facilities, the wealth of information gathered resulted in Micro-clean non-woven garments and testing equipment and procedures for evaluating effectiveness.
NASA Astrophysics Data System (ADS)
Bjerg, P. L.; Chambon, J. C.; Christiansen, C. M.; Broholm, M. M.; Binning, P. J.
2009-04-01
Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment, and to determine the relationship and time frames of source clean up and plume response. To meet that aim, field and laboratory observations are coupled to state of the art models incorporating new insights of contaminant behaviour. The long term leaching of chlorinated ethenes from clay aquitards is currently being monitored at a number of Danish sites. The observed data is simulated using a coupled fracture flow and clay matrix diffusion model. Sequential degradation is represented by modified Monod kinetics accounting for competitive inhibition between the chlorinated ethenes. The model is constructed using Comsol Multiphysics, a generic finite- element partial differential equation solver. The model is applied at well characterised field sites with respect to hydrogeology, fracture network, contaminant distribution and microbial processes (lab and field experiments). At one of the study sites (Sortebrovej), the source areas are situated in a clayey till with fractures and interbedded sand lenses. The site is highly contaminated with chlorinated ethenes which impact the underlying sand aquifer. Full scale remediation using ERD was implemented at Sortebrovej in 2006. Anaerobic dechlorination is taking place, and cis-DCE and VC have been found in significant amounts in monitoring wells and to some degree in sediment cores representing the the clayey till matrix. Model results reveal several interesting findings. The physical processes of matrix diffusion and advection in the fractures seem to be more important than the microbial degradation processes for estimation of the time frames and the distance between fractures is amongst the most sensitive model parameters. However, the inclusion of sequential degradation is crucial to determining the composition of contamination leaching into the underlying aquifer. Degradation products like VC will peak at an earlier stage compared to the mother compound due to a higher mobility. These model results are supported by actual findings at the Sortebrovej site. The findings highlight a need for improved characterization of low permeability aquitards lying above aquifers used for water supply. The fracture network in aquitards is currently poorly described at larger depths (below 5-8 m) and the effect of sand lenses on leaching behaviour is not well understood. The microbial processes are assumed to be taking place in the fracture system, but the interaction with and processes in the matrix need to be further explored. Development of new methods for field site characterisation and integrated field and model expertise are crucial for the design of remedial actions and for risk assessment of contaminated sites in low permeability settings.
Detection of intestinal parasites on field-grown strawberries in the Federal District of Brazil.
Silva, Sandra Regina Morais da; Maldonade, Iriani Rodrigues; Ginani, Verônica Cortez; Lima, Sônia Alves; Mendes, Vinícios Silveira; Azevedo, Maria Lidiane Ximendes; Gurgel-Gonçalves, Rodrigo; Machado, Eleuza Rodrigues
2014-01-01
This study evaluated the presence of pathogenic human parasites on field-grown strawberries in the Federal District of Brazil. A total of 48 samples of strawberries and 48 soil samples from 16 properties were analyzed. Contaminated strawberries were detected in 56% of the properties. Schistosoma mansoni, Ascaris lumbricoides or Ascaris suum, Balantidium coli, Endolimax nana, and Entamoeba spp. were detected. Soil was contaminated with Entamoeba spp., Entamoeba coli, Strongyloides spp., Ancylostomatidae, and Hymenolepis nana. Producers should be instructed on the safe handling of strawberries in order to reduce the incidence of strawberries that are contaminated with enteroparasites.
Alfaro, M.; Salazar, F.; Troncoso, E.; Mitchell, R. M.; Ramirez, L.; Naguil, A.; Zamorano, P.; Collins, M. T.
2013-01-01
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m2 were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health. PMID:23542616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M.S.; Whaley, J.E.; McCain, W.C.
1995-12-31
Current methods used for evaluating ecological risk to vertebrate receptors have come under increasing criticisms in that they neglect factors influencing population sustainability (i.e., predator avoidance and mate recognition behavior, reproductive performance, indirect effects, etc.). Further, recent declines in the densities of species of amphibians, combined with the fact that they are most exposed to soil, sediment, and surface water contaminants indicate that amphibians are conservative indicators of environmental stress. The authors marked 20 craters at J-Field, Edgewood Area, Aberdeen Proving Ground, Maryland, which were created from either high explosives, impact, or were excavated to receive surface water runoff frommore » hazardous waste sites. Each of these sites were chosen a priori and were habitats likely to be used by amphibians. Contaminants of concern were explosives, organochlorines (PCBs, chlordane, DDE), and some metals (As, Hg, Pb, Ba, Cd, Cr). The authors compared relative abundance and reproductive performance (defined by pooled egg mass weight) to measures of contaminant concentrations. Subsequent qualitative assessments of embryo development were also made. The authors contend that these methods are valuable in that they reduce uncertainty (including effects of selection), and provide a novel, yet feasible alternative to current ecological assessment methods.« less
Field Application of a Rapid Spectrophotometric Method for Determination of Persulfate in Soil
Cunningham, Colin J.; Pitschi, Vanessa; Anderson, Peter; Barry, D. A.; Patterson, Colin; Peshkur, Tanya A.
2013-01-01
Remediation of hydrocarbon contaminated soils can be performed both in situ and ex situ using chemical oxidants such as sodium persulfate. Standard methods for quantifying persulfate require either centrifugation or prolonged settling times. An optimized soil extraction procedure was developed for persulfate involving simple water extraction using a modified disposable syringe. This allows considerable saving of time and removes the need for centrifugation. The extraction time was reduced to only 5 min compared to 15 min for the standard approach. A comparison of the two approaches demonstrated that each provides comparable results. Comparisons were made using high (93 g kg−1 soil) and low (9.3 g kg−1 soil) additions of sodium persulfate to a petroleum hydrocarbon-contaminated soil, as well as sand spiked with diesel. Recoveries of 95±1% and 96±10% were observed with the higher application rate in the contaminated soil and spiked sand, respectively. Corresponding recoveries of 86±5% and 117±19% were measured for the lower application rate. Results were obtained in only 25 min and the method is well suited to batch analyses. In addition, it is suitable for application in a small field laboratory or even a mobile, vehicle-based system, as it requires minimal equipment and reagents. PMID:23776446
NASA Astrophysics Data System (ADS)
Johnson, G. R.; Norris, D. K.; Brusseau, M. L.
2008-12-01
This study investigates the effect of long-term contaminant aging on the sorption/desorption and transport of trichloroethene in a low organic-carbon content aquifer material collected from the source zone of a chlorinated-solvent contaminated federal Superfund site in Arizona. This was accomplished by comparing elution behavior for field-contaminated, synthetically-aged (contact times of approximately four years), and freshly-amended aquifer material. Elution of trichloroethene exhibited extensive low-concentration tailing, despite minimal retention of trichloroethene by the aquifer material. The observed nonideal behavior indicates significant mass-transfer constraints influenced trichloroethene transport in this aquifer material. The elution behavior of trichloroethene for the field-contaminated and aged treatments was essentially identical to that observed for the fresh treatments. In addition, the results of three independent mass- balance analyses, total mass eluted, solvent-extraction analysis of residual sorbed mass, and flow- interruption rebound, showed equivalent recoveries for the aged and fresh treatments. These results indicate that long-term contaminant aging did not significantly influence the transport and fate behavior of trichloroethene in this low organic-carbon aquifer material. The observed nonideal behavior of trichloroethene (i.e., nonlinear sorption and significantly rate-limited sorption/desorption) suggests physically condensed carbonaceous material, comprising 61% of this media's organic-carbon content, mediates the transport and fate behavior of trichloroethene in this low organic-carbon content aquifer material.
Bradley, Paul M.
2012-01-01
Chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products may suggest that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, non-conservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms, and is consistent with contaminant degradation to non-diagnostic mineralization products. An ongoing technical debate over the potential for mineralization of dichloroethene (DCE) and vinyl chloride (VC) to CO2 in the complete absence of diatomic oxygen has largely obscured the importance of microbial DCE/VC mineralization at dissolved oxygen (DO) concentrations below the current field standard (DO < 0.1-0.5 milligrams per liter) for nominally anoxic conditions. This study demonstrates that oxygen-based microbial mineralization of DCE and VC can be substantial under field conditions that are frequently characterized as "anoxic." Because mischaracterization of operant contaminant biodegradation processes can lead to expensive and ineffective remedial actions, a modified framework for assessing the potential importance of oxygen during chloroethene biodegradation was developed.
Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M
2007-09-01
We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.
NASA Astrophysics Data System (ADS)
Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis
2018-05-01
Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full open source semi-analytical codes are made available at the website https://lhyges.unistra.fr/FAHS-Marwan.
Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H
2009-07-01
Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild-type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal-contaminated field sites. Further experiments are required to test these assumptions.
Kiware, Samson S; Corliss, George; Merrill, Stephen; Lwetoijera, Dickson W; Devine, Gregor; Majambere, Silas; Killeen, Gerry F
2015-01-01
Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis--malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats [Formula: see text] that persist or retain PPF activity (Ux) for only one week [Formula: see text], where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of the proportional coverage of the ovipositing mosquito population with PPF contamination (CM) by the ovitrap-detectable rates of oviposition by wild mosquitoes into this subset of habitats [Formula: see text], divided by the titre of contaminated mosquitoes required to render them unproductive [Formula: see text], that approximately approach unity [Formula: see text]. The simple multiplicative relationship between CM and [Formula: see text], and the simple exponential decay effect they have upon uncontaminated aquatic habitats, allows application of this model by theoreticians and field biologists alike.
Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators
NASA Astrophysics Data System (ADS)
Wang, Jingang; Chong, Junlong; Yang, Jie
2014-10-01
Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.
Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken
2013-01-01
During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628
Numerical Modeling of STARx for Ex Situ Soil Remediation
NASA Astrophysics Data System (ADS)
Gerhard, J.; Solinger, R. L.; Grant, G.; Scholes, G.
2016-12-01
Growing stockpiles of contaminated soils contaminated with petroleum hydrocarbons are an outstanding problem worldwide. Self-sustaining Treatment for Active Remediation (STAR) is an emerging technology based on smouldering combustion that has been successfully deployed for in situ remediation. STAR has also been developed for ex situ applications (STARx). This work used a two-dimensional numerical model to systematically explore the sensitivity of ex situ remedial performance to key design and operational parameters. First the model was calibrated and validated against pilot scale experiments, providing confidence that the rate and extent of treatment were correctly predicted. Simulations then investigated sensitivity of remedial performance to injected air flux, contaminant saturation, system configuration, heterogeneity of intrinsic permeability, heterogeneity of contaminant saturation, and system scale. Remedial performance was predicted to be most sensitive to the injected air flux, with higher air fluxes achieving higher treatment rates and remediating larger fractions of the initial contaminant mass. The uniformity of the advancing smouldering front was predicted to be highly dependent on effective permeability contrasts between treated and untreated sections of the contaminant pack. As a result, increased heterogeneity (of intrinsic permeability in particular) is predicted to lower remedial performance. Full-scale systems were predicted to achieve treatment rates an order of magnitude higher than the pilot scale for similar contaminant saturation and injected air flux. This work contributed to the large scale STARx treatment system that is being tested at a field site in Fall 2016.
Simmler, Michael; Suess, Elke; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben
2016-12-01
Riverine floodplains downstream of active or former metal sulfide mines are in many cases contaminated with trace metals and metalloids, including arsenic (As). Since decontamination of such floodplains on a large scale is unfeasible, management of contaminated land must focus on providing land use guidelines or even restrictions. This should be based on knowledge about how contaminants enter the food chain. For As, uptake by plants may be an important pathway, but the As soil-to-plant transfer under field conditions is poorly understood. Here, we investigated the soil-to-shoot transfer of As and phosphorus (P) in wild populations of herbaceous species growing along an As contamination gradient across an extensive pasture in the mining-impacted Ogosta River floodplain. The As concentrations in the shoots of Trifolium repens and Holcus lanatus reflected the soil contamination gradient. However, the soil-to-shoot transfer factors (TF) were fairly low, with values mostly below 0.07 (TF=As shoot /As soil ). We found no evidence for interference of As with P uptake by plants, despite extremely high molar As:P ratios (up to 2.6) in Olsen soil extracts of the most contaminated topsoils (0-20cm). Considering the restricted soil-to-shoot transfer, we estimated that for grazing livestock As intake via soil ingestion is likely more important than intake via pasture herbage. Copyright © 2016 Elsevier B.V. All rights reserved.
Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken
2013-01-01
During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.
In Situ Magnetic Susceptibility Variations at Two Contaminated Sites: Brandywine, MD and Bemidji, MN
NASA Astrophysics Data System (ADS)
Donaldson, Y. Y.; Kessouri, P.; Ntarlagiannis, D.; Johnson, T. C.; Day-Lewis, F. D.; Johnson, C. D.; Bekins, B. A.; Slater, L. D.
2017-12-01
Geophysical methods are widely used monitoring tools for investigating subsurface processes. Compared to more traditional methods, they are low cost and minimally invasive. Magnetic susceptibility (MS) is a geophysical technique particularly sensitive to the presence of ferri/ ferro-magnetic particles such as iron oxides (e.g., magnetite, hematite and goethite). These oxides can be formed through microbially mediated redox reactions, inducing changes in the soil properties that can be observed by MS measurements. Monitoring MS changes over time provides indications of iron mineral transformations in the ground. These transformations are of particular interest for the characterization of contaminated sites. We acquired borehole MS measurements from two contaminated sites: Brandywine, MD and Bemidji, MN. Active remediation was applied at Brandywine, whereas natural attenuation has been geophysically monitored at Bemidji since 2011 using MS log measurements. High MS values were observed at both sites within the contaminated area only. We hypothesize that this is due to iron reducing bacteria reducing Fe-(III) to Fe-(II) and utilizing contaminants and/or amendments injected as a carbon source. At Bemidji, elevated MS readings were observed in the smear zone and correlate to the presence of magnetite. Furthermore, time-lapse MS observations at Bemidji indicate a decay in signal amplitude over time suggesting further redox transformation into less magnetic particles. For both field examples presented here, we observe variations in magnetic susceptibility within the contaminated areas that can be linked with redox reactions and mineral transformations occurring during the degradation of organic contaminants.
NASA Astrophysics Data System (ADS)
Bloem, E.; French, H. K.
2013-12-01
Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were also carried out during the monitoring period. We present a selection of results from the snowmelt experiments and how the combination of measurement techniques can help interpret and understand the relative importance of the various contributions to the bulk electrical conductivity during snowmelt and solute transport.
Mesterházy, Ákos; Tóth, Beáta; Varga, Monika; Bartók, Tibor; Szabó-Hevér, Ágnes; Farády, László; Lehoczki-Krsjak, Szabolcs
2011-01-01
Fungicide application is a key factor in the control of mycotoxin contamination in the harvested wheat grain. However, the practical results are often disappointing. In 2000-2004, 2006-2008 and 2007 and 2008, three experiments were made to test the efficacy of fungicide control on Fusarium Head Blight (FHB) in wheat and to find ways to improve control of the disease and toxin contamination. In a testing system we have used for 20 years, tebuconazole and tebuconazole + prothioconazole fungicides regularly reduced symptoms by about 80% with a correlating reduction in toxin contamination. Averages across the years normally show a correlation of r = 0.90 or higher. The stability differences (measured by the stability index) between the poorest and the best fungicides are about 10 or more times, differing slightly in mycotoxin accumulation, FHB index (severity) and Fusarium damaged kernels (FDK). The weak fungicides, like carbendazim, were effective only when no epidemic occurred or epidemic severity was at a very low level. Similar fungicide effects were seen on wheat cultivars which varied in FHB resistance. In this study, we found three fold differences in susceptibility to FHB between highly susceptible and moderately resistant cultivars when treated with fungicides. In the moderately resistant cultivars, about 50% of the fungicide treatments lowered the DON level below the regulatory limit. In the most susceptible cultivars, all fungicides failed to reduce mycotoxin levels low enough for grain acceptance, in spite of the fact that disease was significantly reduced. The results correlated well with the results of the large-scale field tests of fungicide application at the time of natural infection. The Turbo FloodJet nozzle reduced FHB incidence and DON contamination when compared to the TeeJet XR nozzle. Overall, the data suggest that significant decreases in FHB incidence and deoxynivalenol contamination in field situations are possible with proper fungicide applications. Additionally, small plot tests can be used to evaluate the quality of the field disease and toxin production. PMID:22174980
NASA Astrophysics Data System (ADS)
Bauer, Robert D.; Rolle, Massimo; Kürzinger, Petra; Grathwohl, Peter; Meckenstock, Rainer U.; Griebler, Christian
2009-05-01
SummaryA fundamental prerequisite of any remedial activity is a sound knowledge of both the biotic and abiotic processes involved in transport and degradation of contaminants. Investigations of these aspects in situ often seem infeasible due to the complexity of interacting processes. A simplified portrayal of nature can be facilitated in laboratory-based two-dimensional (2D) sediment flow-through microcosms. This paper describes the versatility of such simple aquifer model systems with respect to biodegradation of aromatic hydrocarbons, i.e. toluene and ethylbenzene, under various environmental conditions. Initially constructed to study non-reactive and bioreactive transport of organic contaminants in homogeneous porous media under steady state hydraulic conditions, experimental setups developed towards more realistic heterogeneous sediment packing and transient hydraulic conditions. High-resolution spatial and temporal sampling allowed to obtain new insights on the distribution of bioactivities in contaminant plumes and associated controlling and limiting factors. Major biodegradation activities in saturated porous sediments are located at the fringes of contaminant plumes and are driven by dispersive mixing. These hot-spots of contaminant biotransformation are characterized by steep physical-chemical gradients in the millimeter to centimeter range. Sediment heterogeneity, i.e. high-conductivity zones, was shown to significantly enhance transverse mixing and subsequently biodegradation. On the contrary, transient hydraulic conditions may generate intermediate disturbances to biodegrader populations and thus may interfere with optimized contaminant conversion. However, a bacterial strain aerobically degrading toluene, i.e. Pseudomonas putida F1, was shown to adapt to vertically moving contaminant plumes, in the way that it regained full biodegradation potential two-times faster in areas with a mid-term (days to weeks) contamination history than in areas not contaminated before. The 2D flow-through microcosms facilitated to combine a number of physicochemical and microbiological methods, such as high-resolution non-invasive oxygen measurements, conservative tracer tests, compound-specific isotope analysis (CSIA), fluorescence in situ hybridization (FISH), and numerical transport modelling, to name a few. Moreover, due to the defined and well-controlled operating conditions, these bench-scale flow-through systems allow to investigate theoretical concepts and to develop and test predictive models. They represent a valuable tool in helping to bridge the current knowledge gap concerning transport and degradation of contaminants in groundwater from the small-scale (i.e. oversimplified batch systems, disregarding transport processes) to the highly complex field conditions. The promising potential of applications is by far not exhausted. Further possibilities include testing ecological theories such as the resource-ratio theory, island biogeography, area-species richness relationships and relations between community structure, microbial abundance and process rates as well as the importance and effects of bacterial chemotaxis.
Whitehead, A.; Anderson, S.L.; Kuivila, K.M.; Roach, J.L.; May, B.
2003-01-01
Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is discussed.
A model of p, p'-DDE and total PCB bioaccumulation in birds from the Southern California Bight
NASA Astrophysics Data System (ADS)
Glaser, David; Connolly, John P.
2002-05-01
Pathways of p, p'-DDE and PCB transfer to three species of birds were characterized as part of the Southern California Bight Natural Resource Damage Assessment. Based upon analysis of the results of extensive field studies conducted by other investigators to characterize the dietary composition, foraging behavior, and contaminant levels in the predators and in their prey, 70-80 percent of the contaminant dose received by the peregrine falcon and 90-95 percent of the dose to the bald eagle originated within the Bight. Dynamic, mechanistic, bioenergetics-based bioaccumulation models for p, p'-DDE and PCBs were developed for both species. Measured contaminant levels in predator eggs were found to be quantitatively consistent with measured levels in their prey, providing support for the estimates of dietary composition and foraging behavior, and therefore for the characterization of contaminant sources. Based on the model, most of the contaminant dose to the bald eagles on Santa Catalina Island is accumulated from sea lion carrion, and, based on a model of female sea lion bioaccumulation described in a companion publication, much of the dose to the sea lion originates in the more highly contaminated regions of the Bight which include the Palos Verdes Shelf and Santa Monica Bay. The importance of non-local contaminant sources to the eagle was surprising, since the eagles are non-migratory and forage locally on Santa Catalina, and consume 90 percent fish, most of which are nearshore species. A third model constructed for the double-crested cormorant indicated that cormorants from Anacapa Island are likely to feed to some degree in the more highly contaminated regions of the Bight near the Palos Verdes Shelf. In contrast, the cormorants from Santa Barbara Island probably feed less intensively in the more contaminated regions of the Bight than previously thought. The model framework developed here is generally applicable. It can aid in predicting the course of natural recovery and the impacts of remediation activities, and can provide quantitative exposure estimates for use in risk assessment.
Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P
2006-03-17
The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.
Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat
2016-10-01
Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values <1 and a bioconcentration coefficient for roots >1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.
NASA Astrophysics Data System (ADS)
Phillips, E.; Manna, J.; Horst, A.; Gilevska, T.; Sherwood Lollar, B.; Mack, E. E.; Seger, E.; Lutz, E. J.; Norcoss, S.; Morgan, S. E.; West, K. A.; Dworatzek, S.; Webb, J.
2017-12-01
Compound specific isotope analysis (CSIA) measures isotope ratios of organic hydrocarbons to monitor intrinsic bioremediation processes that can transform contaminants in field settings. The fraction of original contaminant remaining can be determined using the measured isotope ratio of the contaminant by an experimentally determined fractionation factor. In this study, two separate biotransformation experiments were performed in the Stable Isotope Laboratory at the University of Toronto using CSIA. In these two experiments, a mixed culture derived from a contaminated site was amended with trichlorotrifluoroethane (CFC-113), or trichlorofluoromethane (CFC-11), respectively. The concentrations and carbon isotope ratios of CFC-113, or CFC-11 were analyzed to calculate the fractionation factor for the transformation of each compound. Subsequently, groundwater samples from 9 wells at a historically contaminated site were collected and analyzed. The experimentally determined fractionation factors were then used to evaluate the extent of transformation that had occurred at the field site. In the laboratory studies, significant carbon isotope fractionation was observed for both CFC-113 and CFC-11 as biotransformation proceeded. This significant fractionation is beneficial when evaluating biotransformation at field sites as it can be clearly differentiated from the effects of other physical processes such as transport, or volatilization. Although there was significant variation in the carbon isotope values of CFC-113 between different well locations at the field site, these variations may be due to differences in source carbon isotope signatures. For CFC-11, much more significant isotopic variation was observed within the same well and between wells, showing trends consistent with in situ biotransformation. Results from this study demonstrate that CSIA can be successfully applied to evaluate the extent of transformation of chlorofluorocarbons (CFCs) at contaminated field sites, which has not been shown previously. This study also demonstrates that biotransformation may play a more significant role in the natural attenuation of CFCs than has previously been recognized.
Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.
Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir
2017-04-01
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
NASA Astrophysics Data System (ADS)
Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro
2013-10-01
The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.
Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro
2013-10-01
The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. © 2013 Elsevier B.V. All rights reserved.
Field incidence of mycotoxins in commercial popcorn and potential environmental influences.
Dowd, Patrick F; Johnson, Eric T
2010-02-01
Popcorn ear damage by insects and mycotoxin levels in kernels were monitored in several commercial popcorn fields in central Illinois over a 4-year period. Aflatoxin was rare, but fumonisin and deoxynivalenol (DON) were commonly encountered each year, and occurred at mean levels in fields up to 1.7 mg/kg (sample max. 2.77 mg/kg) and 1.9 mg/kg (sample max. 2.66 mg/kg), respectively. Neither fumonisin nor DON levels were significantly correlated with the percent of ears with visibly moldy insect-damaged kernels. Significant correlations were noted for the percent of ears with early caterpillar damage and both fumonisin and DON levels overall for some years and at specific sites in other years. Fumonisin levels were generally more highly correlated with insect damage than DON levels. Insect damaged kernels had 100- to 500-fold or greater levels of fumonisin compared to noninsect-damaged kernels, while DON levels were closer to 10- to 30-fold higher in insect damaged versus nondamaged kernels. A high percentage of DON-contaminated kernels were not insect damaged in 2007 and 2008. In some cases, differing mycotoxin levels for the same hybrid and same year planted at different locations appeared to be due to the prior crop. Higher DON levels in 2008 than other years were most likely associated with higher levels of rainfall and cooler temperatures than average during ear fill. While kernel sorters are reported to remove mycotoxin-contaminated popcorn kernels to acceptible levels, consideration of environmental factors that promote mycotoxins in popcorn should result in more effective control measures in the field.
NASA Technical Reports Server (NTRS)
Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.;
2002-01-01
Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").
Li, Hua; Wang, Pengfei; Lan, Ruiting; Luo, Lijuan; Cao, Xiaolong; Wang, Yi; Wang, Yan; Li, Hui; Zhang, Lu; Ji, Shunshi; Ye, Changyun
2018-01-01
Listeria monocytogenes can contaminate various foods via food processing environments and contamination of raw materials. There is a limited understanding of L. monocytogenes transmission in retail market and the role of insects in L. monocytogenes transmission in the retail environments. To better understand the risk factors of raw pork contamination, the prevalence of L. monocytogenes was examined in raw pork, retail environments and insects in a retail market over a 6-month period from March to August in 2016 in Beijing, China. A total of 2,789 samples were collected, including 356 raw pork samples, 1,392 meat contact surface swabs (MCS), 712 non-meat contact surface swabs (NMCS) and 329 insect samples. Overall, 424 (15.20%) of the samples were found to be contaminated by L. monocytogenes . Analyzed by serotyping, multilocus sequence typing and pulsed-field gel electrophoresis, the 424 L. monocytogenes isolates were divided into three serotypes (1/2c, 1/2a and 3a), 15 pulsotypes (PTs) and nine sequence types (STs), 1/2c/PT4/ST9 (244/424, 58%) was the most prevalent type of L. monocytogenes strains. The raw pork, MCS of the environments and insects were contaminated with higher levels of L. monocytogenes than NMCS of the environments, which suggested that cross contamination of L. monocytogenes between raw pork and the environment existed in the retail market, and long-term contaminated surfaces and vector insects would act as high risk factors to transmit L. monocytogenes to raw pork. Thus more effective strategies are needed to reduce the risk of retail pork meat contamination by L. monocytogenes and prevent foodborne human listeriosis.
Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.
Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry
2008-12-15
The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.
NASA Astrophysics Data System (ADS)
Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.
2018-01-01
Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.
Natarajan, Seenivasan; Stamps, Robert H; Ma, Lena Q; Saha, Uttam K; Hernandez, Damaris; Cai, Yong; Zillioux, Edward J
2011-01-30
A large-scale hydroponic system to phytoremediate arsenic-contaminated groundwater using Pteris vittata (Chinese brake fern) was successfully tested in a field. In this 30-wk study, three frond-harvesting regimes (all, mature, and senescing fronds) and two water-refilling schemes to compensate for evapotranspiration (high-As water of 140-180 μg/L and low-As water of <7 μg/L) were investigated. Two experiments (Cycle 1 and Cycle 2) were conducted using the same plants in 24 tanks with each containing 600 L of arsenic-contaminated groundwater and 32 ferns. During Cycle 1 and with initial As of 140 μg/L, As in tanks refilled with low-As water was reduced to <10 μg/L in 8 wks compared to <10 μg/L in 17 wks in tanks refilled with high-As water. During Cycle 2 and with initial As of 180 μg/L, the remediation time was reduced by 2-5 wks, indicating that more established ferns were more efficient. In areas where clean water is limiting, refilling high-As water coupled with harvesting senescing fronds is recommended for more effective As phytoremediation. Published by Elsevier B.V.
Ribeiro, Luís; Pindo, Juan Carlos; Dominguez-Granda, Luis
2017-01-01
The Guayas region in Ecuador is economically very important, producing 68% of the national crops. The main agricultural activities threaten the groundwater therein with nitrate contamination given the large fertiliser and water needs. The present work tests the applicability of the susceptibility index assessment method in evaluating the impact of agricultural activities on groundwater quality, using as a case study an aquifer of the Guayas river basin in Ecuador. The index adapts four parameters of the DRASTIC method and incorporated a new land use parameter. Results show that the areas highly vulnerable to contamination are located in irrigation perimeters of dominant paddy fields associated with the high recharge rates in the alluvial deposits. Respectively, moderately vulnerable and low-vulnerability areas correspond to aquatic environments and forests, semi-natural zones and water bodies. One of the main contributions of the Daule aquifer vulnerability is likely its wide, flat topography. A great part of the aquifer is at high risk of contamination by nitrates if a code of good agricultural practices is not applied. Therefore the implementation of a monitoring network to control the nitrates concentrations is the first step to assure groundwater quality for drinking purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Fish Health Study Ashtabula River Natural Resource Damage Assessment
Blazer, V.S.; Iwanowicz, L.R.; Baumann, P.C.
2006-01-01
INTRODUCTION The Ashtabula River is located in northeast Ohio, flowing into Lake Erie at Ashtabula, Ohio. Tributaries include Fields Brook, Hubbard Run, Strong Brook, and Ashtabula Creek. The bottom sediments, bank soils and biota of Fields Brook have been severely contaminated by unregulated discharges of hazardous substances. Hazardous substances have migrated downstream from Fields Brook to the Ashtabula River and Harbor, contaminating bottom sediments, fish and wildlife. There are presently more than 1,000,000 cubic yards of contaminated sediment in the Ashtabula River and Harbor, much of which originated from Fields Brook. Contaminants include polychlorinated biphenyls (PCBs), chlorinated benzenes, chlorinated ethenes, hexachlorobutadiene, polyaromatic hydrocarbons (PAHs), other organic chemicals, heavy metals and low level radionuclides. A Preassessment Screen, using existing data, was completed for the Ashtabula River and Harbor on May 18, 2001. Among the findings was that the fish community at Ashtabula contained approximately 45 percent fewer species and 52 percent fewer individuals than the Ohio EPA designated reference area, Conneaut Creek. The Ashtabula River and Conneaut Creek are similar in many respects, with the exception of the presence of contamination at Ashtabula. The difference in the fish communities between the two sites is believed to be at least partially a result of the hazardous substance contamination at Ashtabula. In order to investigate this matter further, the Trustees elected to conduct a study of the status and health of the aquatic biological communities of the Ashtabula River and Conneaut Creek in 2002-2004. The following document contains brief method descriptions (more detail available in attached Appendix A) and a summary of the data used to evaluate the health status of brown bullheads (Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) collected from the above sites.
Dunon, Vincent; Sniegowski, Kristel; Bers, Karolien; Lavigne, Rob; Smalla, Kornelia; Springael, Dirk
2013-12-01
Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Gurska, Jolanta; Wang, Wenxi; Gerhardt, Karen E; Khalid, Aaron M; Isherwood, David M; Huang, Xiao-Dong; Glick, Bernard R; Greenberg, Bruce M
2009-06-15
Phytoremediation of total petroleum hydrocarbons (TPH) has the potential to be a sustainable waste management technology if it can be proven to be effective in the field. Over the past decade, our laboratory has developed a system which utilizes plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation (PEP) that, following extensive greenhouse testing, was shown to be effective at remediating TPH from soils. This system consists of physical soil manipulation and plant growth following seed inoculation with PGPR. PGPR elicit biomass increases, particularly in roots, by minimizing plant stress in highly contaminated soils. Extensive development of the root system enhances degradation of contaminants by the plants and supports an active rhizosphere that effectively promotes TPH degradation by a broad microbial consortium. Following promising greenhouse trials, field tests of PEP were performed over a period of three years at a Southern Ontario site (approximately 130 g kg(-1) TPH) used for land farming of refinery hydrocarbon waste for many years. The low molecular weight fractions (the Canadian Council of Ministers of the Environment (CCME) fractions 1 and 2) were removed through land farming and bioremediation; the high molecular weight, recalcitrant fractions (CCME fractions 3 and 4) remained at high levels in the soil. Using PEP, we substantially remediated fractions 3 and 4, and lowered TPH from 130 g kg(-1) to approximately 50 g kg(-1) over a three year period. The amount of plant growth and extent of oil remediation were consistently enhanced by PGPR.
A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments
NASA Astrophysics Data System (ADS)
Fay, E. L.; Knight, R. J.; Grunewald, E. D.
2016-12-01
Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.
Fusing chlorophyll fluorescence and plant canopy reflectance to detect TNT contamination in soils
NASA Astrophysics Data System (ADS)
Naumann, Julie C.; Rubis, Kathryn; Young, Donald R.
2010-04-01
TNT is released into the soil from many different sources, especially from military and mining activities, including buried land mines. Vegetation may absorb explosive residuals, causing stress and by understanding how plants respond to energetic compounds, we may be able to develop non-invasive techniques to detect soil contamination. The objectives of our study were to examine the physiological response of plants grown in TNT contaminated soils and to use remote sensing methods to detect uptake in plant leaves and canopies in both laboratory and field studies. Differences in physiology and light-adapted fluorescence were apparent in laboratory plants grown in N enriched soils and when compared with plants grown in TNT contaminated soils. Several reflectance indices were able to detect TNT contamination prior to visible signs of stress, including the fluorescence-derived indices, R740/R850 and R735/R850, which may be attributed to transformation and conjugation of TNT metabolites with other compounds. Field studies at the Duck, NC Field Research Facility revealed differences in physiological stress measures, and leaf and canopy reflectance when plants growing over suspected buried UXOs were compared with reference plants. Multiple reflectance indices indicated stress at the suspected contaminated sites, including R740/R850 and R735/R850. Under natural conditions of constant leaching of TNT into the soil, TNT uptake would be continuous in plants, potentially creating a distinct signature from remotely sensed vegetation. We may be able to use remote sensing of plant canopies to detect TNT soil contamination prior to visible signs.
Ferguson, Alesia; Solo-Gabriele, Helena
2016-11-09
Children are at increased vulnerability to many environmental contaminants compared to adults due to their unique behavior patterns, increased contaminant intake per body weight, and developing biological systems. Depending upon their age, young children may crawl on the floor and may practice increased hand to mouth activity that may increase their dose-intake of specific contaminants that accumulate in dust and other matrices. Children are also smaller in size than adults, resulting in a greater body burden for a given contaminant dose. Because children undergo rapid transitions through particular developmental stages they are also especially vulnerable during certain growth-related time windows. A Special Issue was organized focused on the latest findings in the field of children's environmental exposure for these reasons. This editorial introduces articles in this Special Issue and emphasizes their main findings in advancing the field. From the many articles submitted to this Special Issue from around the world, 23 were accepted and published. They focus on a variety of research areas such as children's activity patterns, improved risk assessment methods to estimate exposures, and exposures in various contexts and to various contaminants. The future health of a nation relies on protecting the children from adverse exposures and understanding the etiology of childhood diseases. The field of children's environmental exposures must consider improved and comprehensive research methods aimed at introducing mitigation strategies locally, nationally, and globally. We are happy to introduce a Special Issue focused on children's environmental exposure and children's health and hope that it contributes towards improved health of children.
Bergholz, Peter W; Strawn, Laura K; Ryan, Gina T; Warchocki, Steven; Wiedmann, Martin
2016-03-01
Although flooding introduces microbiological, chemical, and physical hazards onto croplands, few data are available on the spatial extent, patterns, and development of contamination over time postflooding. To address this paucity of information, we conducted a spatially explicit study of Escherichia coli and Salmonella contamination prevalence and genetic diversity in produce fields after the catastrophic flooding that occurred in New England during 2011. Although no significant differences were detected between the two participating farms, both random forest and logistic regression revealed changes in the spatial pattern of E. coli contamination in drag swab samples over time. Analyses also indicated that E. coli detection was associated with changes in farm management to remediate the land after flooding. In particular, E. coli was widespread in drag swab samples at 21 days postflooding, but the spatial pattern changed by 238 days postflooding such that E. coli was then most prevalent in close proximity to surface water features. The combined results of several population genetics analyses indicated that over time postflooding E. coli populations on the farms (i) changed in composition and (ii) declined overall. Salmonella was primarily detected in surface water features, but some Salmonella strains were isolated from soil and drag swab samples at 21 and 44 days postflooding. Although postflood contamination and land management responses should always be evaluated in the context of each unique farm landscape, our results provide quantitative data on the general patterns of contamination after flooding and support the practice of establishing buffer zones between flood-contaminated cropland and harvestable crops in produce fields.
Passive sampling can be used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for...
Passive sampling is used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for con...
Whitehorn, Penelope R; Norville, George; Gilburn, Andre; Goulson, Dave
2018-01-01
Populations of farmland butterflies have been suffering from substantial population declines in recent decades. These declines have been correlated with neonicotinoid usage both in Europe and North America but experimental evidence linking these correlations is lacking. The potential for non-target butterflies to be exposed to trace levels of neonicotinoids is high, due to the widespread contamination of agricultural soils and wild plants in field margins. Here we provide experimental evidence that field realistic, sub-lethal exposure to the neonicotinoid imidacloprid negatively impacts the development of the common farmland butterfly Pieris brassicae . Cabbage plants were watered with either 0, 1, 10, 100 or 200 parts per billion imidacloprid, to represent field margin plants growing in contaminated agricultural soils and these were fed to P. brassicae larvae. The approximate digestibility (AD) of the cabbage as well as behavioural responses by the larvae to simulated predator attacks were measured but neither were affected by neonicotinoid treatment. However, the duration of pupation and the size of the adult butterflies were both significantly reduced in the exposed butterflies compared to the controls, suggesting that adult fitness is compromised through exposure to this neonicotinoid.
USDA-ARS?s Scientific Manuscript database
Contaminated irrigation water is a potential source for the introduction of foodborne pathogens on to produce commodities. Zero-valent iron (ZVI) may provide a simple cheap method to mitigate the contamination of produce groups through irrigation water. A small field scale system was utilized to e...
Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, Anne O.
Hg is of special interest to DOE due to past intensive use in manufacture of nuclear weapons at the Oak Ridge Reservation (ORR). Because of its facile oxidation/reduction [Hg(II)/Hg(0)] chemistry, ability to bond to carbon [as in highly toxic methylmercury: MeHg(I)] and its unique physical properties [e.g., volatility of Hg(0)], Hg has a complex environmental cycle involving soils, sediments, waterways and the atmosphere and including biotic and abiotic chemical and physical transport and transformations.1 Understanding such processes well enough to design stewardship plans that minimize negative impacts in diverse ecological settings requires rich knowledge of the contributing abiotic and bioticmore » processes. Prokaryotes are major players in the global Hg cycle. Facultative and anaerobic bacteria can form MeHg(I) with consequent intoxication of wildlife and humans. Sustainable stewardship of Hg-contaminated sites requires eliminating not only MeHg(I) but also the Hg(II) substrate for methylation. Fortunately, a variety of mercury resistant (HgR) aerobic and facultative bacteria and archaea can do both things. Prokaryotes harboring narrow or broad Hg resistance (mer) loci detoxify Hg(II) or RHg(I), respectively, to relatively inert, less toxic, volatile Hg(0). HgR microbes are enriched in highly contaminated sites and extensive field data show they depress levels of MeHg >500-fold in such zones2. So, enhancing the natural capacity of indigenous HgR microbes to remove Hg(II) and RHg(I) from soils, sediments and waterways is a logical component of a comprehensive plan for clean up and stewardship of contaminated sites.« less
Thamke, Joanna N.; Smith, Bruce D.
2014-01-01
The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible plumes do not contain either existing water wells or monitoring wells. Analysis of groundwater samples from wells confirms the presence of 12.1 square miles of contamination, as much as 1.7 square miles of which is considerably contaminated (Type 3). Electromagnetic apparent conductivity data in areas with no wells delineate an additional 5.8 square miles of possible contamination, 2.1 square miles of which might be considerably contaminated (Type 3). Storage-tank facilities, oil wells, brine-injection wells, pipelines, and pits are likely sources of brine in the study area. It is not possible to identify discrete oil-related features as likely sources of brine plumes because several features commonly are co-located. During the latter half of the twentieth century, many brine plumes migrated beyond the immediate source area and likely mix together in modern and ancestral Poplar River valley subareas.
Deterioration of groundwater quality in the vicinity of an active open-tipping site in West Malaysia
NASA Astrophysics Data System (ADS)
Rahim, Bahaa-Eldin E. A.; Yusoff, I.; Samsudin, A. R.; Yaacob, W. Z. W.; Rafek, A. G. M.
2010-06-01
There is an urgent need for characterization of leachate arising from waste disposal to ensure a corresponding effective leachate management policy. Field and laboratory studies have been carried out to investigate the impact of municipal landfill leachate on the underlying groundwater at a site in West Malaysia. The solid waste was disposed of directly onto an unprotected natural soil formation. This situation was made worse by the shallow water table. The hydrochemical composition of groundwater in the vicinity of the site (background) is a dilute mixed cation, bicarbonate water. The high ionic balance error of ~13.5% reveals that the groundwater body underneath the site was a highly contaminated leachate rather than contaminated groundwater. Elevated concentration of chloride (355.48 mg/L), nitrate (10.40 mg/L as NO3), nitrite (14.59 mg/L), ammoniacal-N (11.61 mg/L), sodium (227.56 mg/L), iron (0.97 mg/L), and lead (0.32 mg/L) measured downgradient indicate that the contamination plume has migrated further away from the site. In most cases, the concentration of these contamination indicators, together with the ranges of sodium percentage (66.3-89.9%) and sodium adsorption ratio (10.1-19.7%), were found to be considerably higher than the limit values of safe water for both domestic and irrigation purposes, respectively.
Lessard, Isabelle; Sauvé, Sébastien; Deschênes, Louise
2014-06-15
Functional stability (FS) is an ecosystem attribute that is increasingly promoted in soil health assessment. However, FS is currently assessed comparatively, and it is therefore impossible to generate toxicity parameters. Additionally, the FS scores in the literature do not consider site and contamination history within the score. To address these issues, three new FS scores adapted to an ecotoxicological context and based on the Relative Soil Stability Index (RSSI) method were developed. The aim of the study was then to determine the FS score(s) that best describe the toxicity of metal-contaminated field-collected soils. Twenty pairs of Zn-contaminated soils (contaminated and reference soils) were collected on the field, and their enzymatic FS (arylsulfatase, protease, phosphatase and urease) and metal fractions (total and bioavailable) were analyzed. New RSSI-based and existing FS scores were calculated for each enzyme and correlated to the Zn fractions. One of the new RSSI-based scores was well correlated with the bioavailable labile Zn concentration for the arylsulfatase, phosphatase and urease (coefficients of regression higher than 0.50). Furthermore, this FS score was not affected by the soil organic matter and depended little on other soil properties. Other FS scores were correlated to labile Zn for only one enzyme, which varied according to the score. The new RSSI-based score thus better attributed Zn toxicity to field-collected soils than other FS scores. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E
2018-03-01
Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts. Copyright © 2017 Elsevier B.V. All rights reserved.
Pascoe, Gary A.; Blanchet, Richard J.; Linder, Greg L.; Palawski, Don; Brumbaugh, William G.; Canfield, Tim J.; Kemble, Nile E.; Ingersoll, Chris G.; Farag, Aïda M.; DalSoglio, Julie A.
1994-01-01
A comprehensive field and laboratory approach to the ecological risk assessment for the Milltown Reservoir-Clark Fork River Sediments Site, a Superfund site in the Rocky Mountains of Montana, has been described in the preceding reports of this series. The risk assessment addresses concerns over the ecological impacts of upstream releases of mining wastes to fisheries of the upper Clark Fork River (CFR) and the benthic and terrestrial habitats further downstream in Milltown Reservoir. The risk characterization component of the process integrated results from a triad of information sources: (a) chemistry studies of environmental media to identify and quantify exposures of terrestrial and aquatic organisms to site-related contaminants; (b) ecological or population studies of terrestrial vegetation, birds, benthic communities, and fish; and (c) in situ and laboratory toxicity studies with terrestrial and aquatic invertebrates and plants, small mammals, amphibians, and fish exposed to contaminated surface water, sediments, wetland soils, and food sources. Trophic transfer studies were performed on waterfowl, mammals, and predatory birds using field measurement data on metals concentrations in environmental media and lower trophic food sources. Studies with sediment exposures were incorporated into the Sediment Quality Triad approach to evaluate risks to benthic ecology. Overall results of the wetland and terrestrial studies suggested that acute adverse biological effects were largely absent from the wetland; however, adverse effects to reproductive, growth, and physiological end points of various terrestrial and aquatic species were related to metals exposures in more highly contaminated depositional areas. Feeding studies with contaminated diet collected from the upper CFR indicated that trout are at high risk from elevated metals concentrations in surface water, sediment, and aquatic invertebrates. Integration of chemical analyses with toxicological and ecological evaluations of metal effects on the wetland and fishery has provided an important foundation for environmental decisions at this site.
Brouyère, Serge
2006-01-10
In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and usefulness of the new conceptual, mathematical and numerical model.
Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding
NASA Astrophysics Data System (ADS)
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-07-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-01-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, B.; Rossabi, J.; Shinn, J.D. II
1997-05-01
This report documents the results of a combined field and laboratory investigation program to: (1) delineate the geologic layering and (2) determine the location of a dense non-aqueous liquid-phase (DNAPL) contaminated plume beneath the M Area Hazardous Waste Management Facility at the Savannah River Plant. During April of 1991, DNAPLs were detected in monitoring well (MSB-3D), located adjacent to the capped M-Area Settling Basin. Solvents in the well consisted mainly of tetrachloroethylene and trichloroethylene, which are also the main solvents found in groundwater in the M Area. In permeable soils, DNAPLs move downward rapidly due to their high density andmore » low viscosity as compared to water. Within the vadose zone, DNAPLs tend to be held by the less permeable clay and silts by capillary force. In the saturated zone, the downward movement is slowed by clays and silts and the DNAPL tends to pool on this layer, then spread laterally. The lateral movement continues until a permeable layer is encountered, which can be a sand lens, fracture or other high conductivity seam. The DNAPL then moves downward, until another low permeability layer is encountered. Applied Research Associates was contracted to conduct a program to: (1) field demonstrate the utility of Cone Penetration Technology to investigate DOE contaminant sites and, (2) conduct a laboratory and field program to evaluate the use of electric resistivity surveys to locate DNAPL contaminated soils. The field program was conducted in the M-Basin and laboratory tests were conducted on samples from the major stratigraphy units as identified in Eddy et. al. Cone Penetration Technology was selected to investigate the M-Basin as it: (1) is minimally invasive, (2) generates minimal waste, (3) is faster and less costly than drilling, (4) provides continuous, detailed in situ characterization data, (5) permits real-time data processing, and (6) can obtain soil, soil gas, and water samples without the need for a boring.« less
Radon progeny in hydrometeors at the earth's surface.
Voltaggio, M
2012-07-01
During atmospheric thermal inversions, dew and hoarfrost concentrate gamma emitting radionuclides of the short-lived (222)Rn progeny ((214)Pb and (214)Bi), causing an increase in the total natural gamma background from the ground. To highlight this phenomenon, a volcanic zone of high (222)Rn flux was studied during the winter season 2010-11. High-specific short-lived radon progeny activities up to 122 Bq g(-1) were detected in hydrometeors forming at the earth's surface (ESHs), corresponding to a mean increase of up to 17 % of the normal gamma background value. A theoretical model, depending on radon flux from soil and predicting the radon progeny concentrations in hydrometeors forming at the ESHs is presented. The comparison between model and field data shows a good correspondence. Around nuclear power plants or in nuclear facilities that use automatic NaI or CsI total gamma spectroscopy systems for monitoring radioactive contamination, hydrometeors forming at the ESHs in sites with a high radon flux could represent a relevant source of false alarms of radioactive contamination.
Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander
2017-06-01
Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg -1 , As >19mgkg -1 ) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC 80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg -1 (339 - 528mgkg -1 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil. Copyright © 2017 Elsevier Inc. All rights reserved.
The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review.
Hua, Yumei; Heal, Kate V; Friesl-Hanl, Wolfgang
2017-03-05
This review focuses on the applicability of red mud as an amendment for metal/metalloid-contaminated soil. The varying properties of red muds from different sources are presented as they influence the potentially toxic element (PTE) concentration in amended soil. Experiments conducted worldwide from the laboratory to the field scale are screened and the influencing parameters and processes in soils are highlighted. Overall red mud amendment is likely to contribute to lowering the PTE availability in contaminated soil. This is attributed to the high pH, Fe and Al oxide/oxyhydroxide content of red mud, especially hematite, boehmite, gibbsite and cancrinite phases involved in immobilising metals/metalloids. In most cases red mud amendment resulted in a lowering of metal concentrations in plants. Bacterial activity was intensified in red mud-amended contaminated soil, suggesting the toxicity from PTEs was reduced by red mud, as well as indirect effects due to changes in soil properties. Besides positive effects of red mud amendment, negative effects may also appear (e.g. increased mobility of As, Cu) which require site-specific risk assessments. Red mud remediation of metal/metalloid contaminated sites has the potential benefit of reducing red mud storage and associated problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Rufener, Simonne; Mäusezahl, Daniel; Mosler, Hans-Joachim; Weingartner, Rolf
2010-02-01
In-house contamination of drinking-water is a persistent problem in developing countries. This study aimed at identifying critical points of contamination and determining the extent of recontamination after water treatment. In total, 81 households were visited, and 347 water samples from their current sources of water, transport vessels, treated water, and drinking vessels were analyzed. The quality of water was assessed using Escherichia coli as an indicator for faecal contamination. The concentration of E. coli increased significantly from the water source [median=0 colony-forming unit (CFU)/100 mL, interquartile range (IQR: 0-13)] to the drinking cup (median=8 CFU/100 mL; IQR: 0-550; n=81, z=-3.7, p<0.001). About two-thirds (34/52) of drinking vessels were contaminated with E. coli. Although boiling and solar disinfection of water (SODIS) improved the quality of drinking-water (median=0 CFU/100 mL; IQR: 0-0.05), recontamination at the point-of-consumption significantly reduced the quality of water in the cups (median=8, IQR: 0-500; n=45, z=-2.4, p=0.015). Home-based interventions in disinfection of water may not guarantee health benefits without complementary hygiene education due to the risk of posttreatment contamination.
Zeng, Eddy Y; Tsukada, David; Diehl, Dario W
2004-11-01
Solid-phase microextraction (SPME) has been used as an in situ sampling technique for a wide range of volatile organic chemicals, but SPME field sampling of nonvolatile organic pollutants has not been reported. This paper describes the development of an SPME-based sampling method employing a poly(dimethylsiloxane) (PDMS)-coated (100-microm thickness) fiber as the sorbent phase. The laboratory-calibrated PDMS-coated fibers were used to construct SPME samplers, and field tests were conducted at three coastal locations off southern California to determine the equilibrium sampling time and compare the efficacy of the SPME samplers with that of an Infiltrex 100 water pumping system (Axys Environmental Systems Ltd., Sidney, British Columbia, Canada). p,p'-DDE and o,p'-DDE were the components consistently detected in the SPME samples among 42 polychlorinated biphenyl congeners and 17 chlorinated pesticidestargeted. SPME samplers deployed attwo locations with moderate and high levels of contamination for 18 and 30 d, respectively, attained statistically identical concentrations of p,p'-DDE and o,p'-DDE. In addition, SPME samplers deployed for 23 and 43 d, respectively, at a location of low contamination also contained statistically identical concentrations of p,p'-DDE. These results indicate that equilibrium could be reached within 18 to 23 d. The concentrations of p,p'-DDE, o,p'-DDE, or p,p'-DDD obtained with the SPME samplers and the Infiltrex 100 system were virtually identical. In particular, two water column concentration profiles of p,p'-DDE and o,p'-DDE acquired by the SPME samplers at a highly contaminated site on the Palos Verdes Shelf overlapped with the profiles obtained by the Infiltrex 100 system in 1997. The field tests not only reveal the advantages of the SPME samplers compared to the Infiltrex 100 system and other integrative passive devices but also indicate the need to improve the sensitivity of the SPME-based sampling technique.
Blanchard, Paul J.
2002-01-01
The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential or intermediate potential for contamination. About 6 percent of the study area was assessed to have the least potential for contamination, mostly in areas where the slope of the land surface is more than 12 percent. Nearly all fields on the Navajo Indian Irrigation Project were assessed to have the most potential for contamination. The assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project was based on pesticide application to various crops on part of the Navajo Indian Irrigation Project during 1997-99. The assessment indicated that ground water underlying fields of beans, wheat, barley, and alfalfa was most vulnerable to pesticide contamination; ground water underlying fields of corn and potatoes was intermediately vulnerable to pesticide contamination; and ground water underlying fields of hay was least vulnerable to pesticide contamination.
Field evaluation of ventilation system performance in enclosed parking garages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, A.M.; Grot, D.A.; Krarti, M.
2000-07-01
This paper summarizes the results of a field study to determine the ventilation requirements and the contaminant levels in existing enclosed parking garages. The testing was conducted in seven parking garages with different sizes, traffic flow patterns, vehicle types, and locations. In particular, the study compares the actual ventilation rates measured using the tracer gas technique with the ventilation requirements of ANSI/ASHRAE Standard 62-1989. In addition, the field test evaluated the effectiveness of the existing ventilation systems in maintaining acceptable contaminant levels within enclosed parking garages.
NASA Astrophysics Data System (ADS)
Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.
2007-06-01
Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.
Development of a Selective Culture Medium for Primary Isolation of the Main Brucella Species▿
De Miguel, M. J.; Marín, C. M.; Muñoz, P. M.; Dieste, L.; Grilló, M. J.; Blasco, J. M.
2011-01-01
Bacteriological diagnosis of brucellosis is performed by culturing animal samples directly on both Farrell medium (FM) and modified Thayer-Martin medium (mTM). However, despite inhibiting most contaminating microorganisms, FM also inhibits the growth of Brucella ovis and some B. melitensis and B. abortus strains. In contrast, mTM is adequate for growth of all Brucella species but only partially inhibitory for contaminants. Moreover, the performance of both culture media for isolating B. suis has never been established properly. We first determined the performance of both media for B. suis isolation, proving that FM significantly inhibits B. suis growth. We also determined the susceptibility of B. suis to the antibiotics contained in both selective media, proving that nalidixic acid and bacitracin are highly inhibitory, thus explaining the reduced performance of FM for B. suis isolation. Based on these results, a new selective medium (CITA) containing vancomycin, colistin, nystatin, nitrofurantoin, and amphotericin B was tested for isolation of the main Brucella species, including B. suis. CITA's performance was evaluated using reference contaminant strains but also field samples taken from brucella-infected animals or animals suspected of infection. CITA inhibited most contaminant microorganisms but allowed the growth of all Brucella species, to levels similar to those for both the control medium without antibiotics and mTM. Moreover, CITA medium was more sensitive than both mTM and FM for isolating all Brucella species from field samples. Altogether, these results demonstrate the adequate performance of CITA medium for the primary isolation of the main Brucella species, including B. suis. PMID:21270216
Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike
2015-07-15
The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arkoosh, M.R.; Clemons, E.; Huffman, P.
The leukoproliferative (LP) response of splenic leukocytes from the marine benthic fish English sole (Pleuronectes vetulus) stimulated with the mitogens lipopolysaccharide (LPS), convanavalin A (Con A), and pokeweed mitogen (PWM) was examined as a biomarker of immunotoxic effects. English sole were exposed to contaminants, either by injection of an organic-solvent extract of a sediment containing polycyclic aromatic compounds (PACs) or placed for up to 5 weeks on a reference sediment containing 0.15 to 1.5% (v/v) of the PAC-contaminated sediment. English sole either injected with the contaminated extract or held on PAC-contaminated sediment had an augmented response to Con A. Themore » LP response to LPS showed no relationship to PAC exposure in laboratory-exposed fish, while PWM showed no consistent relationship to exposure to PACs. In a field study, English sole captured from an urban area in Puget Sound, Washington, USA, contaminated with PACs and other chemical contaminants had a significantly augmented LP response to Con A and PWM in comparison to the LP response in fish from a nonurban reference site. Fish from another nonurban site also had an augmented LP response to Con A, indicating that the elevation of the Con A LP response can also result from factors other than chemical contaminant exposure. In addition, English sole from this site also had an augmented LP response to LPS, whereas fish from urban sites did not exhibit an augmented LP response to LPS. Overall, the results demonstrated that although the LP response in splenic leukocytes of English sole to Con A was linked to contaminant exposure, the LP response to Con A did not exhibit high specificity as an indicator of chemical contaminant exposure. However, the concerted use of Con A, LPS, and PWM allowed for identification of apparent chemical contaminant-induced alterations of the LP response in English sole from an urban area of Puget Sound.« less
Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L
2016-02-01
Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen.
Uptake of organochlorine pesticides by zucchini cultivars grown in polluted soils.
Donnarumma, L; Pompi, V; Faraci, A; Conte, E
2008-01-01
Aim of this trial was to verify the occurrence and the distribution of organochlorine pesticides (OCPs) in zucchini cultivated varieties grown in glasshouses and in open field with different levels of pollutants in soil. Residues of OCPs have been detected in soils and crops in the province of Latina, an intensively agricultural area of Lazio Region, in Italy. The study has been focused at crop harvest in less contaminated glasshouses and during crop life cycle in contaminated field in spring-summer time. Dieldrin distribution in different part of plant is similar among zucchini cultivars grown in contaminated field. In crop grown in field and in glasshouses with soil pollution >0.01 mg/kg, we found dieldrin in all zucchini fruits and flowers, at the same level or higher than the maximum residue limit (RML) fixed by European law for edible vegetables (0.02 mg/kg). Instead in soil with pollution < or = 0.01 mg/kg total OCPs it would be possible to grow zucchini cultivars.
NASA Astrophysics Data System (ADS)
Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya
2018-03-01
This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.
Methods for visualising active microbial benzene degraders in in situ microcosms.
Schurig, Christian; Mueller, Carsten W; Höschen, Carmen; Prager, Andrea; Kothe, Erika; Beck, Henrike; Miltner, Anja; Kästner, Matthias
2015-01-01
Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results.
Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I
2015-06-15
An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.
Albers, P.H.; Heinz, G.H.; Hall, R.J.; Albers, Peter H.; Heinz, Gary H.; Ohlendorf, Harry M.
2000-01-01
Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e.g., ecological risk assessments). However, realized population, or higher, levels of effects should not be part of regulatory guidelines because the threshold of harm would be too high to be used as a catalyst for action. Measures of realized population or community effects could be used to evaluate the effectiveness of regulatory actions and assess chronic or difficult environmental problems. Some of these information needs can be satisfied with modest effort and expense, but much of the suggested work that incorporates great complexity or long duration is likely to be difficult to accomplish. Cooperation among investigators with different specialties and a willingness by government, academia, and corporate organizations to support the most challenging work will be necessary. Because we are unlikely to have the financial resources to evaluate more than a small number of contaminants for effects at the levels of population, community, or ecosystem, we might need to thoroughly study a few contaminants and then extend the findings to functionally similar contaminants. If sufficient cooperation and organizational support does not materialize, the pursuit of estimation methods will overshadow the collection of actual information on relations between contaminants and wildlife.
Bioremediation Education Science and Technology (BEST) Program Annual Report 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, Terry C.
2000-07-01
The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.
Bradley, P.M.; Chapelle, F.H.; Wilson, J.T.
1998-01-01
Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biodegradability of vinyl chloride under anaerobic conditions. In this study, a combination of field geochemical analyses and laboratory radiotracer ([1,2-14C] vinyl chloride) experiments was utilized to assess the potential for intrinsic biodegradation of vinyl chloride contamination in an Fe(III)-reducing, anaerobic aquifer. Microcosm experiments conducted under Fe(III)-reducing conditions with material from the Fe(III)-reducing, chlorinated-ethene contaminated aquifer demonstrated significant oxidation of [1,2-14C] vinyl chloride to 14CO2 with no detectable production of ethene or other reductive dehalogenation products. Rates of degradation derived from the microcosm experiments (0.9-1.3% d-1) were consistent with field-estimated rates (0.03-0.2% d-1) of apparent vinyl chloride degradation. Field estimates of apparent vinyl chloride biodegradation were calculated using two distinct approaches; 1) a solute dispersion model and 2) a mass balance assessment. These findings demonstrate that degradation under Fe(III) reducing conditions can be an environmentally significant mechanism for intrinsic bioremediation of vinyl chloride in anaerobic ground-water systems.
Shelton, Larry R.
1994-01-01
The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.
Winger, P.V.; Kemmish, Michael J.
2002-01-01
Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi-species and/or various life stages with different sensitivities to contaminants may offer a more conservative assessment of toxicity than single species testing. Using a ?weight of evidence? approach, the Sediment Quality Trial produces a robust evaluation of habitat quality and includes a measure of contaminant concentrations in the sediment, an assessment of sediment/pore-water toxicity to laboratory animals, and an evaluation of in situ biological assemblages. Field and laboratory procedures are available that can be used to ascertain habitat quality, identify contaminants causing environmental degradation and delineate aquatic systems requiring mitigation of protective efforts. These studies provide the scientific data that are integral to developing an environmental risk assessment of contaminants from watercraft use in shallow water systems.
NASA Astrophysics Data System (ADS)
Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina
2016-04-01
Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as increasing of HMs mobility in the conditions of 6-weeks field experiment. Peat-humate application causes insignificant enrichment of soil by organic matter, has low influence on pH and microbiological activity. Nevertheless, in combination with lime, it raises pH and immobilizes Ni and Cu and shows best results by vegetation state. Ni and Cu mean concentrations in soil water extract of control sites are 3.7 μg kg-1 and 12.3 μg kg-1, and of sites with combination of peat-humate and lime - 0.2 μg kg-1 and 1.1 μg kg-1 respectively. Coal-humate application attended with high enrichment of soil by organic matter and it's soluble forms, changes in molecular-mass distribution, decreasing of acidity, and growth of microbe biomass (also due to using of biomates). That involves relatively HM soluble forms mobilization in variants with highest concentration of coal-humate (1%). Ni and Cu mean concentrations of those variants are 2.1 μg kg-1and 10.2 μg kg-1. Promising results obtained in short-term experiments should be supported by further investigations. Proper evaluation of humates efficiency and selection their optimal doses for remediation of contaminated soils require long-term field experiments under the influence of multicomponent contamination and diverse physical, chemical, and biological factors.
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
1989-02-01
contaminated by past disposal practices. Sampling and analysis was not included in the PA. B. MAJOR FINDINGS The Air National Guard has utilized...with 23 Base personnel and the field surveys identified 3 potentially contaminated sites resulting from past disposal, storage, and/or spills and leaks...characteristic petroleum odor. With visible evidence of released contaminants , there is potential for contaminant migration by shallow groundwater. Site No. 3
Post monitoring of a cyclodextrin remeditated chlorinated solvent contaminated aquifer
NASA Astrophysics Data System (ADS)
Blanford, W. J.
2006-12-01
Hydroxypropyl-â-cyclodextrin (HPâCD) has been tested successfully in the laboratory and in the field for enhanced flushing of low-polarity contaminants from aquifers. The cyclodextrin molecule forms a toroidal structure, which has a hydrophobic cavity. Within this cavity, organic compounds of appropriate shape and size can form inclusion complexes, which is the basis for the use of cyclodextrin in groundwater remediation. The hydrophilic exterior of the molecule makes cyclodextrin highly water-soluble. The solubility of cyclodextrins can be further enhanced by adding functional groups, such as hydroxypropyl groups, to the cyclodextrin core. The aqueous solubility of HPâCD exceeds 950 g/L. These high solubilities are advantageous for field applications because they permit relatively high concentrations of the flushing agent. In order for cyclodextrin to become a feasible remediative alternative, it must be demonstrate a short term resistance to biodegradation during field application, but ultimately biodegrade so as not to pose a long term presence in the aquifer. The potential for degradation of cyclodextrin as well as changes in the chlorinated solvents and groundwater geochemistry were examined during the post monitoring of a field demonstration in a shallow aquifer at Little Creek Naval Amphibious Base in Virginia. It was found that a portion of the cyclodextrin remaining in the aquifer after the cessation of field activities biodegraded during the 425 days of post monitoring. This degradation also led to the degradation of the chlorinated solvents trichloroethylene and 1,1-trichloroethane through both biological and chemical processes. The aquifer remained anaerobic with average dissolved oxygen levels below 0.5 mg/L. Dissolved nitrate and sulfate concentrations within the cyclodextrin plume decreased due their being used as terminal electron acceptors during the degradation of the cyclodextrin. The concentrations of total iron at the field site showed no change over time. It can be concluded from this research that cyclodextrin remaining in the subsurface after cessation of active remediation will degrade due to microbial processes. The chlorinated solvents will also degrade through both chemical and biological processes to their daughter products. The terminal electron acceptors present within the cyclodextrin plume will also be used for energy during the degradation processes.
Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.
Zhang, H-S; Komvopoulos, K
2008-07-01
Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.
Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L
2015-12-11
Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.
Tracking sources of Clostridium botulinum type E contamination in seal meat.
Leclair, Daniel; Farber, Jeffrey M; Pagotto, Franco; Suppa, Sandy; Doidge, Bill; Austin, John W
2017-01-01
Botulism in Nunavik, Quebec is associated with the consumption of aged marine mammal meat and fat. The objective was to identify meat handling practices presenting a risk of contamination of seal meat with C. botulinum. Potential sources of contamination were assessed through interviews with igunaq producers from five communities of Nunavik. These sources were verified by detection and isolation of C. botulinum from igunaq prepared in the field from seal carcasses. Interviews indicated practices presenting a risk for contamination included: placing meat or fat on coastal rocks, using seawater for rinsing, and ageing meat in inverted seal skin pouches. Although the presence of C. botulinum type E spores was detected in only two of 32 (6.3%) meat or fat samples collected during the butchering process, two of four igunaq preparations from these samples contained type E botulinum toxin. Analysis of C. botulinum type E isolates recovered from these preparations indicated that shoreline soil may be a source of contamination. Seal meat and fat may be contaminated with C. botulinum type E during the butchering process. Measures can be adopted to reduce the risks of contamination in the field and possibly decrease the incidence of type E botulism in Nunavik.
Alegbeleye, Oluwadara Oluwaseun; Singleton, Ian; Sant'Ana, Anderson S
2018-08-01
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik
2014-11-01
Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3 > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3 > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.
Photocatalytic Degradation of Organic Contaminants in Water
Photocatalytic treatment of organics, including regulated and contaminants of emerging concern, has been an important area of this field. Details are provided on the mechanism of degradation, reaction intermediates, kinetics, and nanointerfacial adsorption phenomena. The degradat...
NASA Astrophysics Data System (ADS)
Henri, C. V.; Harter, T.
2017-12-01
Agricultural activities are recognized as the preeminent origin of non-point source (NPS) contamination of water bodies through the leakage of nitrate, salt and agrochemicals. A large fraction of world agricultural activities and therefore NPS contamination occurs over unconsolidated alluvial deposit basins offering soil composition and topography favorable to productive farming. These basins represent also important groundwater reservoirs. The over-exploitation of aquifers coupled with groundwater pollution by agriculture-related NPS contaminant has led to a rapid deterioration of the quality of these groundwater basins. The management of groundwater contamination from NPS is challenged by the inherent complexity of aquifers systems. Contaminant transport dynamics are highly uncertain due to the heterogeneity of hydraulic parameters controlling groundwater flow. Well characteristics are also key uncertain elements affecting pollutant transport and NPS management but quantifying uncertainty in NPS management under these conditions is not well documented. Our work focuses on better understanding the joint impact of aquifer heterogeneity and pumping well characteristics (extraction rate and depth) on (1) the transport of contaminants from NPS and (2) the spatio-temporal extension of the capture zone. To do so, we generate a series of geostatistically equivalent 3D heterogeneous aquifers and simulate the flow and non-reactive solute transport from NPS to extraction wells within a stochastic framework. The propagation of the uncertainty on the hydraulic conductivity field is systematically analyzed. A sensitivity analysis of the impact of extraction well characteristics (pumping rate and screen depth) is also conducted. Results highlight the significant role that heterogeneity and well characteristics plays on management metrics. We finally show that, in case of NPS contamination, the joint impact of regional longitudinal and transverse vertical hydraulic gradients and well depth strongly constrain the average travel times and extension of the contributing area.
NASA Astrophysics Data System (ADS)
Park, D.; Bae, G.; Lee, K.
2010-12-01
In many agricultural regions, high dependence of irrigation on groundwater has brought about serious concerns about unplanned groundwater developments and over-pumping. Various agricultural activities including fertilization and livestock husbandry usually result in groundwater contamination in those regions. Field works in Icheon, Korea showed that in this region the rice farming still requires a significant amount of water and continuous construction of greenhouse can make the contamination from the fertilization more serious. In this study, a groundwater management model based on the simulation-optimization methodology is developed to achieve sufficient groundwater supply and groundwater quality conservation together on regional-scale. This model can obtain the on-ground contaminant loading mass by integrating an analytical model for 1-D solute transport in unsaturated zone with 3-D groundwater flow and solute transport model, HydroGeosphere. The outputs of the 1-D unsaturated transport model, concentrations of the contaminant leaching on water table, work as contaminant sources in the 3-D solute transport model in saturated zone. This integrated simulation model is linked to genetic algorithm that searches the global optimum for the sustainable groundwater use. And, in order for the design on the contaminant sources to be more effective, it also links the backward transport model useful for evaluating the contamination from contaminant sources to each pumping well. The first objective of the management in this study is to obtain the optimal pumping rates that not only can supply sufficient amount of the groundwater but protect the groundwater from the excessive drawdown and contamination. The second objective is to control the periodic loading of the contaminant by suggesting the allowable contaminant loading mass. For this multi-objective groundwater management, the objective function to maximize both pumping rates and allowable contaminant loading mass and at the same time to satisfy the constraints for contaminant concentration and drawdown are assigned in the optimization model. The proposed methodology can be useful to provide the groundwater management options for sustainable groundwater use in the agricultural regions.
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Primordial non-Gaussianity and reionization
NASA Astrophysics Data System (ADS)
Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott
2013-07-01
The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.
Li, Weiwei; Chan, Chi-Kong; Wong, Yee-Lam; Chan, K K Jason; Chan, Ho Wai; Chan, Wan
2018-10-30
Emerging evidence suggests that aristolochic acids (AA) produced naturally by a common weed Aristolochia clematitis in the cultivation fields is contaminating the food products in Balkan Peninsula and acting as the etiological agent in the development of Balkan endemic nephropathy. In this study, we investigated the combined use of natural anti-oxidative "food additives" and different cooking methods to find a solution for the widespread contamination of AA in food products. The results indicated that the addition of healthy dietary supplements (such as cysteine, glutathione, ascorbic acid, citric acid and magnesium) during cooking, is a highly efficient method in lowering the concentration of AA in the final food products. Because previous observation indicated one of the toxicological mechanisms by which AA exert its toxicity is to induce oxidative stress in internal organs, it is anticipated that these added anti-oxidants will also help to attenuate the nephrotoxicity of AA. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.
2015-12-01
Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricultural contamination under future climate scenarios in the High Plain Aquifer system.
Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone
Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.
2005-01-01
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.
Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands
NASA Astrophysics Data System (ADS)
Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.
2017-12-01
We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.
Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.
2011-01-01
This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with pathogenic microorganisms (which have limited survival times in aquifers), the microorganisms may be able to persist to the well. Features formed or enlarged by dissolution of bedrock allow most of the water reaching the well field to travel rapidly from the recharge zone to the supply wells along fast pathways rather than through the aquifer matrix. Supporting evidence includes (1) geophysical logging and flowmeter measurements in public-supply well W4 and in nearby monitoring wells showing that most of the flow volume into and out of the wells occurs in three horizontal zones, thought to be dissolution-enlarged bedding planes; and (2) fluctuations in groundwater chemistry that can be correlated to individual precipitation events. Analysis of water samples collected from shallow, intermediate, and deep zones of the Edwards aquifer at public-supply well W4 and from nearby monitoring wells reveal that water in the vicinity of the selected well field is notably well mixed throughout the sampled thickness of the Edwards aquifer, showing little of the chemical variation with depth that is commonly seen in other aquifers. Contaminants were found at all depths, and they did not enter the well through a specific horizon. The well-mixed nature of the Edwards aquifer is caused by the recharge characteristics of the area combined with fast flow paths through karst features. Constituents of concern in the Edwards aquifer for the long-term sustainability of the groundwater resource include the nutrient nitrate and anthropogenic contaminants such as atrazine, PCE, and chloroform. A scenario of hypothetical contaminant loading in the aquifer recharge zone was evaluated by using results from groundwater-flow-model particle tracking to assess the response of the aquifer to potential contamination. Results indicate that the concentrations at public-supply well W4 would begin to respond to contaminant loading in the recharge zone within 1 year because of short traveltimes through fast flow paths. Within 10 years, contaminant concentrations in the public-supply well would be equal to 90 percent of the input concentration for a contaminant (such as nitrate) that does not degrade in the oxic conditions of the Edwards aquifer.
Wei, Xiangxia; Sugumaran, Pon Janani; Peng, Erwin; Liu, Xiao Li; Ding, Jun
2017-10-25
Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe 2 O 4 ) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe 3 O 4 nanoparticles (NPs). PAA-coated Fe 3 O 4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L -1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L -1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.
Particle-free microchip processing
Geller, Anthony S.; Rader, Daniel J.
1996-01-01
Method and apparatus for reducing particulate contamination in microchip processing are disclosed. The method and apparatus comprise means to reduce particle velocity toward the wafer before the particles can be deposited on the wafer surface. A reactor using electric fields to reduce particle velocity and prevent particulate contamination is disclosed. A reactor using a porous showerhead to reduce particle velocities and prevent particulate contamination is disclosed.