Sample records for highly dynamic state

  1. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    DOE PAGES

    Fang, Li; Xiong, Hui; Kukk, Edwin; ...

    2017-05-19

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Li; Xiong, Hui; Kukk, Edwin

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  3. Highly excited and exotic meson spectrum from dynamical lattice QCD.

    PubMed

    Dudek, Jozef J; Edwards, Robert G; Peardon, Michael J; Richards, David G; Thomas, Christopher E

    2009-12-31

    Using a new quark-field construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to reliably identify the continuum spin of extracted states, overcoming the reduced cubic symmetry of the lattice. Using this method we extract, with confidence, excited states, states with exotic quantum numbers (0+-, 1-+, and 2+-), and states of high spin, including, for the first time in lattice QCD, spin-four states.

  4. Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR

    DTIC Science & Technology

    2016-06-30

    Distribution Unlimited UU UU UU UU 30-06-2016 1-Sep-2015 31-May-2016 Final Report: Molecular Dynamics and Morphology of High - Performance Elastomers and...non peer-reviewed journals: Final Report: Molecular Dynamics and Morphology of High -Performance Elastomers and Fibers by Solid-State NMR Report Title...Kanbargi 0.50 0.50 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate

  5. Introduction to State Estimation of High-Rate System Dynamics.

    PubMed

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  6. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods

    NASA Astrophysics Data System (ADS)

    Kuan, Hui-Shun; Blackwell, Robert; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2015-12-01

    Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

  7. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.

    PubMed

    Kuan, Hui-Shun; Blackwell, Robert; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2015-01-01

    Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.

  8. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.

    PubMed

    Ives, Anthony R; Einarsson, Arni; Jansen, Vincent A A; Gardarsson, Arnthor

    2008-03-06

    Complex dynamics are often shown by simple ecological models and have been clearly demonstrated in laboratory and natural systems. Yet many classes of theoretically possible dynamics are still poorly documented in nature. Here we study long-term time-series data of a midge, Tanytarsus gracilentus (Diptera: Chironomidae), in Lake Myvatn, Iceland. The midge undergoes density fluctuations of almost six orders of magnitude. Rather than regular cycles, however, these fluctuations have irregular periods of 4-7 years, indicating complex dynamics. We fit three consumer-resource models capable of qualitatively distinct dynamics to the data. Of these, the best-fitting model shows alternative dynamical states in the absence of environmental variability; depending on the initial midge densities, the model shows either fluctuations around a fixed point or high-amplitude cycles. This explains the observed complex population dynamics: high-amplitude but irregular fluctuations occur because stochastic variability causes the dynamics to switch between domains of attraction to the alternative states. In the model, the amplitude of fluctuations depends strongly on minute resource subsidies into the midge habitat. These resource subsidies may be sensitive to human-caused changes in the hydrology of the lake, with human impacts such as dredging leading to higher-amplitude fluctuations. Tanytarsus gracilentus is a key component of the Myvatn ecosystem, representing two-thirds of the secondary productivity of the lake and providing vital food resources to fish and to breeding bird populations. Therefore the high-amplitude, irregular fluctuations in midge densities generated by alternative dynamical states dominate much of the ecology of the lake.

  9. Introduction to State Estimation of High-Rate System Dynamics

    PubMed Central

    Dodson, Jacob; Joyce, Bryan

    2018-01-01

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model. PMID:29342855

  10. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE PAGES

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...

    2017-03-17

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  11. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  12. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  13. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  14. Dynamics of molecules in extreme rotational states

    PubMed Central

    Yuan, Liwei; Teitelbaum, Samuel W.; Robinson, Allison; Mullin, Amy S.

    2011-01-01

    We have constructed an optical centrifuge with a pulse energy that is more than 2 orders of magnitude larger than previously reported instruments. This high pulse energy enables us to create large enough number densities of molecules in extreme rotational states to perform high-resolution state-resolved transient IR absorption measurements. Here we report the first studies of energy transfer dynamics involving molecules in extreme rotational states. In these studies, the optical centrifuge drives CO2 molecules into states with J ∼ 220 and we use transient IR probing to monitor the subsequent rotational, translational, and vibrational energy flow dynamics. The results reported here provide the first molecular insights into the relaxation of molecules with rotational energy that is comparable to that of a chemical bond.

  15. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    NASA Astrophysics Data System (ADS)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  16. Coevolution of dynamical states and interactions in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi

    2004-06-01

    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.

  17. Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI.

    PubMed

    Giulioni, Massimiliano; Camilleri, Patrick; Mattia, Maurizio; Dante, Vittorio; Braun, Jochen; Del Giudice, Paolo

    2011-01-01

    We demonstrate bistable attractor dynamics in a spiking neural network implemented with neuromorphic VLSI hardware. The on-chip network consists of three interacting populations (two excitatory, one inhibitory) of leaky integrate-and-fire (LIF) neurons. One excitatory population is distinguished by strong synaptic self-excitation, which sustains meta-stable states of "high" and "low"-firing activity. Depending on the overall excitability, transitions to the "high" state may be evoked by external stimulation, or may occur spontaneously due to random activity fluctuations. In the former case, the "high" state retains a "working memory" of a stimulus until well after its release. In the latter case, "high" states remain stable for seconds, three orders of magnitude longer than the largest time-scale implemented in the circuitry. Evoked and spontaneous transitions form a continuum and may exhibit a wide range of latencies, depending on the strength of external stimulation and of recurrent synaptic excitation. In addition, we investigated "corrupted" "high" states comprising neurons of both excitatory populations. Within a "basin of attraction," the network dynamics "corrects" such states and re-establishes the prototypical "high" state. We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can be realized with comparatively small populations of neuromorphic hardware neurons.

  18. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    NASA Astrophysics Data System (ADS)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  19. Stereodynamics in state-resolved scattering at the gas–liquid interface

    PubMed Central

    Perkins, Bradford G.; Nesbitt, David J.

    2008-01-01

    Stereodynamics at the gas–liquid interface provides insight into the important physical interactions that directly influence heterogeneous chemistry at the surface and within the bulk liquid. We investigate molecular beam scattering of CO2 from a liquid perfluoropolyether (PFPE) surface in vacuum [incident energy Einc = 10.6(8) kcal/mol, incident angle θinc = 60°] to specifically reveal rotational angular-momentum directions for scattered molecules. Experimentally, internal quantum state populations and MJ distributions are probed by high-resolution polarization-modulated infrared laser spectroscopy. Analysis of J-state populations reveals dual-channel scattering dynamics characterized by a two-temperature Boltzmann distribution for trapping–desorption and impulsive scattering. In addition, molecular dynamics simulations of CO2 + fluorinated self-assembled monolayers have been used to model CO2 + PFPE dynamics. Experimental results and molecular dynamics simulations reveal highly oriented CO2 distributions that preferentially scatter with “top spin” as a strongly increasing function of J state. PMID:18678907

  20. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  1. A multi-state trajectory method for non-adiabatic dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Guohua, E-mail: taogh@pkusz.edu.cn

    2016-03-07

    A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method showmore » reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states.« less

  2. Multivariate machine learning distinguishes cross-network dynamic functional connectivity patterns in state and trait neuropathic pain.

    PubMed

    Cheng, J C; Rogachov, A; Hemington, K S; Kucyi, A; Bosma, R L; Lindquist, M A; Inman, R D; Davis, K D

    2018-04-26

    Communication within the brain is dynamic. Chronic pain can also be dynamic, with varying intensities experienced over time. Little is known of how brain dynamics are disrupted in chronic pain, or relates to patients' pain assessed at various time-scales (e.g., short-term state versus long-term trait). Patients experience pain "traits" indicative of their general condition, but also pain "states" that vary day to day. Here, we used network-based multivariate machine learning to determine how patterns in dynamic and static brain communication are related to different characteristics and timescales of chronic pain. Our models were based on resting state dynamic and static functional connectivity (dFC, sFC) in patients with chronic neuropathic pain (NP) or non-NP. The most prominent networks in the models were the default mode, salience, and executive control networks. We also found that cross-network measures of dFC rather than sFC were better associated with patients' pain, but only in those with NP features. These associations were also more highly and widely associated with measures of trait rather than state pain. Furthermore, greater dynamic connectivity with executive control networks was associated with milder neuropathic pain, but greater dynamic connectivity with limbic networks was associated greater neuropathic pain. Compared with healthy individuals, the dFC features most highly related to trait neuropathic pain were also more abnormal in patients with greater pain. Our findings indicate that dFC reflects patients' overall pain condition (i.e., trait pain), not just their current state, and is impacted by complexities in pain features beyond intensity.

  3. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    PubMed

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  4. Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective

    PubMed Central

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors. PMID:24586235

  5. Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling.

    PubMed

    Peters, William K; Couch, David E; Mignolet, Benoit; Shi, Xuetao; Nguyen, Quynh L; Fortenberry, Ryan C; Schlegel, H Bernhard; Remacle, Françoise; Kapteyn, Henry C; Murnane, Margaret M; Li, Wen

    2017-12-26

    Highly excited electronic states are challenging to explore experimentally and theoretically-due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron-ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules-in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.

  6. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  7. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. © 2015 The Protein Society.

  8. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  9. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  10. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE PAGES

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...

    2017-05-24

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  11. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  12. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface.

    PubMed

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H

    2013-10-07

    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  13. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  14. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  15. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    PubMed

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.

  16. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain

    PubMed Central

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951

  17. Role of intermediate state in the excited state dynamics of highly efficient TADF molecules

    NASA Astrophysics Data System (ADS)

    Hosokai, Takuya; Matsuzaki, Hiroyuki; Furube, Akihiro; Tokumaru, Katsumi; Tsutsui, Tetsuo; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya

    2016-09-01

    We hereby report the results of our direct investigation into the excited-state dynamics of thermally activated delayed fluorescence (TADF) molecules in solution using pump-probe transient absorption spectroscopy (TAS). We found that the charge-transfer (CT) state commonly stated for TADF molecules encompasses two forms: localized and delocalized CT states. A highly efficient TADF molecule, 4CzIPN [Uoyama et al., Nature, 492, 234-238 (2012)], showed both the localized and delocalized CT states, while an inefficient TADF molecule, 2CzPN, exhibited only a localized CT state. By analyzing the time profile of triplet species observed in TAS, we propose that the reverse intersystem crossing (RISC) of 4CzIPN occurs via a mutual interaction in multiple energy levels of localized neutral and CT states, and delocalized CT states.

  18. Short-range magentic correlations and dynamic orbital ordering in the thermally activated spin state of LaCoO3

    NASA Astrophysics Data System (ADS)

    Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.

    2006-03-01

    The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672

  19. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.

    PubMed

    Roy, Dipanjan; Sigala, Rodrigo; Breakspear, Michael; McIntosh, Anthony Randal; Jirsa, Viktor K; Deco, Gustavo; Ritter, Petra

    2014-12-01

    Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These "resting state networks" are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform "The Virtual Brain," we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8-12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.

  20. Cobotic architecture for prosthetics.

    PubMed

    Faulring, Eeic L; Colgate, J Edward; Peshkin, Michael A

    2006-01-01

    We envision cobotic infinitely-variable transmissions (IVTs) as an enabling technology for haptics and prosthetics that will allow for increases in the dynamic range of these devices while simultaneously permitting reductions in actuator size and power requirements. Use of cobotic IVTs eliminates the need to make compromises on output flow and effort, which are inherent to choosing a fixed transmission ratio drivetrain. The result is a mechanism with enhanced dynamic range that extends continuously from a completely clutched state to a highly backdrivable state. This high dynamic range allows cobotic devices to control impedance with a high level of fidelity. In this paper, we discuss these and other motivations for using parallel cobotic transmission architecture in prosthetic devices.

  1. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.

    PubMed

    Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W

    2010-09-01

    Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.

  2. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    2017-06-01

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  3. Molecular Dynamics Simulations of Shear Induced Transformations in Nitromethane

    NASA Astrophysics Data System (ADS)

    Larentzos, James; Steele, Brad

    Recent experiments demonstrate that NM undergoes explosive chemical initiation under compressive shear stress. The atomistic dynamics of the shear response of single-crystalline and bi-crystalline nitromethane (NM) are simulated using molecular dynamics simulations under high pressure conditions to aid in interpreting these experiments. The atomic interactions are described using a recently re-optimized ReaxFF-lg potential trained specifically for NM under pressure. The simulations demonstrate that the NM crystal transforms into a disordered state upon sufficient application of shear stress; its maximum value, shear angle, and atomic-scale dynamics being highly dependent on crystallographic orientation of the applied shear. Shear simulations in bi-crystalline NM show more complex behavior resulting in the appearance of the disordered state at the grain boundary.

  4. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-12-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.

  5. Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang

    2012-05-01

    We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.

  6. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  7. Variable input observer for state estimation of high-rate dynamics

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob

    2017-04-01

    High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.

  8. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D

    2017-11-15

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multiphase Equations of State for Polymer Materials at High Dynamic Pressures

    NASA Astrophysics Data System (ADS)

    Khishchenko, Konstantin V.

    2015-06-01

    Equations of state for materials over a wide range of pressures and temperatures are necessary for numerical simulations of shock-wave processes in condensed matter. Accuracy of calculation results is determined mainly by adequacy of equation of state of a medium. In this work, a new multiphase equation-of-state model is proposed with taking into account the polymorphic phase transformations, melting and evaporation. Thermodynamic calculations are carried out for 2 polymer materials (polymethylmethacrylate and polytetrafluoroethylene) in a broad region of the phase diagram. Obtained results are presented in comparison with available data of experiments at high dynamic pressures in shock and release waves. This work is supported by RSF, Grant 14-50-00124.

  10. Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

    DOE PAGES

    Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; ...

    2011-01-01

    The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less

  11. Dynamics of harpooning studied by transition state spectroscopy. II. LiṡṡFH

    NASA Astrophysics Data System (ADS)

    Hudson, A. J.; Oh, H. B.; Polanyi, J. C.; Piecuch, P.

    2000-12-01

    The van der Waals complex LiṡṡFH was formed in crossed beams and the transition state of the excited-state reaction, Li*(2p 2P)+HF→LiF+H, was accessed by photoexcitation of this complex. The dynamics of the excited-state reaction were probed by varying the excitation wavelength over the range 570-970 nm while recording the photodepletion of the complex. The findings were interpreted using high-level ab initio calculations of the ground and lowest excited-state potential-energy surfaces.

  12. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state

    PubMed Central

    Zhao, Fang; Tsien, Joe Z.

    2017-01-01

    Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine’s psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine. PMID:29073221

  13. Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state.

    PubMed

    Fox, Grace E; Li, Meng; Zhao, Fang; Tsien, Joe Z

    2017-01-01

    Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.

  14. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  15. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  16. Body measurements of Chinese males in dynamic postures and application.

    PubMed

    Wang, Y J; Mok, P Y; Li, Y; Kwok, Y L

    2011-11-01

    It is generally accepted that there is a relationship between body dimensions, body movement and clothing wearing ease design, and yet previous research in this area has been neither sufficient nor systematic. This paper proposes a method to measure the human body in the static state and in 17 dynamic postures, so as to understand dimensional changes of different body parts during dynamic movements. Experimental work is carried out to collect 30 measurements of 10 male Chinese subjects in both static and dynamic states. Factor analysis is used to analyse body measurement data in a static state, and such key measurements describe the characteristics of different body figures. Moreover, one-way ANOVA is used to analyse how dynamic postures affect these key body measurements. Finally, an application of the research results is suggested: a dynamic block patternmaking method for high-performance clothing design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity.

    PubMed

    Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X

    2017-10-01

    A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g 2 /(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.

  18. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  19. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics.

    PubMed

    Senlik, S Seckin; Policht, Veronica R; Ogilvie, Jennifer P

    2015-07-02

    There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.

  20. Effects of nasal septum perforation repair on nasal airflow: An analysis using computational fluid dynamics on preoperative and postoperative three-dimensional models.

    PubMed

    Nomura, Tsutomu; Ushio, Munetaka; Kondo, Kenji; Kikuchi, Shigeru

    2018-10-01

    The purpose of this research is to examine the changes in nasal airflow dynamics before and after the nasal perforation repair. Three dimensional (3D) models of the nasal cavity before and after septal perforation repair was reconstructed using preoperative and postoperative computed tomography (CT) images of a patient. The numerical simulation was carried out using ANSYS CFX V15.0. Pre- and post-operative models were compared by their velocity, pressure (P), pressure gradient (PG), wall shear (WS), shear strain rate (SSR) and turbulence kinetic energy (TKE) in three plains. In the post-operative state, the cross flows disappeared. In preoperative state, there were areas showing high PG, WS, SSR at the posterior border of the perforation, which exactly correspond to the area showing erosive mucosa on endoscopic inspection of the patient. In postoperative state, such high PG, WS and SSR areas disappeared. High TKEs also disappeared after surgery. The effects of septal perforation repair on airflow dynamics were evaluated using computer fluid dynamics (CFD). High WS, PG and SSR observed at the edge of the septal perforation may be related to the clinical symptom such as nasal bleeding and pain. TKE was considered to cause nasal symptom. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.

    PubMed

    Keerati-U-Rai, Maneephan; Corredig, Milena

    2009-05-13

    Although soy proteins are often employed as functional ingredients in oil-water emulsions, very little is known about the aggregation state of the proteins in solution and whether any changes occur to soy protein dispersions during homogenization. The effect of dynamic high pressure homogenization on the aggregation state of the proteins was investigated using microdifferential scanning calorimetry and high performance size exclusion chromatography coupled with multiangle laser light scattering. Soy protein isolates as well as glycinin and beta-conglycinin fractions were prepared from defatted soy flakes and redispersed in 50 mM sodium phosphate buffer at pH 7.4. The dispersions were then subjected to homogenization at two different pressures, 26 and 65 MPa. The results demonstrated that dynamic high pressure homogenization causes changes in the supramolecular structure of the soy proteins. Both beta-conglycinin and glycinin samples had an increased temperature of denaturation after homogenization. The chromatographic elution profile showed a reduction in the aggregate concentration with homogenization pressure for beta-conglycinin and an increase in the size of the soluble aggregates for glycinin and soy protein isolate.

  2. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  3. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  4. Detection of generalized synchronization using echo state networks

    NASA Astrophysics Data System (ADS)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  5. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  6. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    NASA Astrophysics Data System (ADS)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  7. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  8. In vitro assembled plant microtubules exhibit a high state of dynamic instability.

    PubMed

    Moore, R C; Zhang, M; Cassimeris, L; Cyr, R J

    1997-01-01

    Higher plants possess four distinct microtubule arrays. One of these, the cortical array, is involved in orienting the deposition of cellulose microfibrils. This plant interphase array is also notable because it contains exceptionally dynamic microtubules. Although the primary sequence of plant and animal tubulin is similar (79-87% amino acid identity overall) there are some regions of divergence. Thus, one possible explanation for the high state of polymer assembly and turnover that is observed in plant interphase arrays is that the tubulins have evolved differently and possess a higher intrinsic dynamic character than their animal counterparts. This hypothesis was tested using highly purified plant tubulin assembled in vitro. Using high-resolution DIC video-enhanced microscopy, we quantified the four characteristic parameters of dynamic instability of plant microtubules and compared them with animal microtubules. The elongation velocities between plant and animal microtubules are similar, but plant microtubules undergo catastrophes more frequently, do not exhibit any rescues, and have an average shortening velocity of 195 microm/min (compared with 21 microm/min for animal microtubules). These data support the hypothesis that plant tubulin forms microtubules that are intrinsically more dynamic than those of animals.

  9. Diminished neural network dynamics after moderate and severe traumatic brain injury.

    PubMed

    Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.

  10. Ultrafast internal conversion dynamics of highly excited pyrrole studied with VUV/UV pump probe spectroscopy.

    PubMed

    Horton, Spencer L; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-02-14

    We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.

  11. Beyond the NAO: Dynamics and Precipitation Implications of the Azores High Since AD 800

    NASA Astrophysics Data System (ADS)

    Thatcher, D.; Wanamaker, A. D.; Denniston, R. F.; Asmerom, Y.; Ummenhofer, C.; Polyak, V. J.; Haws, J.; Gillikin, D. P.

    2016-12-01

    Atmospheric circulation in the North Atlantic region during the last millennium, particularly the state of the North Atlantic Oscillation (NAO), a system closely tied to regional precipitation dynamics, remains the subject of considerable debate in both proxy- and model-based studies. It has been suggested that the winter NAO was in a persistently positive state during the Medieval Climate Anomaly (MCA; AD 850-1250), resulting in increased precipitation across much of northern Europe and decreased rainfall across Iberia. However, besides changes in atmospheric circulation and precipitation dynamics that could be associated with an altered mean state of the NAO, relatively little attention has been given to atmospheric dynamics, namely the intensity and location, of the subtropical high system (Azores High, the southern node of the NAO) in driving hydroclimate in Iberia. Presented here is a continuous, precisely dated, and sub-decadally-resolved stalagmite isotopic and elemental time series from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the Azores High at the southern node of the NAO, which preserves evidence of regional hydroclimate from approximately AD 800 to the present. Stalagmite oxygen and carbon isotopic values and magnesium/calcium ratios primarily reflect effective moisture and reveal generally dry conditions during the MCA with a rapid shift to wetter conditions during the Little Ice Age (LIA; AD 1250-1850) at this location. Our proxy data reveal that substantial short-term hydroclimate variability characterized the last 1200 years. They support the hypothesis that while an intensified, semi-persistent subtropical high (and likely positive NAO state) characterized much of the MCA, the NAO remained variable over this time period. Climate model results also suggest that the Azores High pressure system both migrated southward and weakened from the MCA into the LIA.

  12. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  13. Fatal attraction in glycolysis: how Saccharomyces cerevisiae manages sudden transitions to high glucose

    PubMed Central

    Heerden, Johan H. v.; Wortel, Meike T.; Bruggeman, Frank J.; Heijnen, Joseph J.; Bollen, Yves J.; Planqué, Robert; Hulshof, Josephus; O’Toole, Tom G.; Wahl, S. A.; Teusink, Bas

    2014-01-01

    In the model eukaryote Saccharomyces cerevisiae, it has long been known that a functional trehalose pathway is indispensable for transitions to high glucose conditions. Upon addition of glucose, cells with a defect in trehalose 6-phosphate synthase (Tps1), the first committed step in the trehalose pathway, display what we have termed an imbalanced glycolytic state; in this state the flux through the upper part of glycolysis outpaces that through the lower part of glycolysis. As a consequence, the intermediate fructose 1,6-bisphosphate (FBP) accumulates at low concentrations of ATP and inorganic phosphate (Pi). Despite significant research efforts, a satisfactory understanding of the regulatory role that trehalose metabolism plays during such transitions has remained infamously unresolved. In a recent study, we demonstrate that the startup of glycolysis exhibits two dynamic fates: a proper, functional, steady state or the imbalanced state described above. Both states are stable, attracting states, and the probability distribution of initial states determines the fate of a yeast cell exposed to glucose. Trehalose metabolism steers the dynamics of glycolysis towards the proper functional state through its ATP hydrolysis activity; a mechanism that ensures that the demand and supply of ATP is balanced with Pi availability under dynamic conditions. [van Heerden et al. Science (2014), DOI: 10.1126/science.1245114.] PMID:28357229

  14. Aging and rejuvenation of active matter under topological constraints.

    PubMed

    Janssen, Liesbeth M C; Kaiser, Andreas; Löwen, Hartmut

    2017-07-18

    The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.

  15. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  16. X-ray morphological study of galaxy cluster catalogues

    NASA Astrophysics Data System (ADS)

    Democles, Jessica; Pierre, Marguerite; Arnaud, Monique

    2016-07-01

    Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.

  17. A Dynamic Interactive Theory of Person Construal

    ERIC Educational Resources Information Center

    Freeman, Jonathan B.; Ambady, Nalini

    2011-01-01

    A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…

  18. From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H 2O ↔ HX + OH [X = F, Cl, and O( 3P)] Reactions

    DOE PAGES

    Li, Jun; Jiang, Bin; Song, Hongwei; ...

    2015-04-17

    Here, we survey the recent advances in theoretical understanding of quantum state resolved dynamics, using the title reactions as examples. It is shown that the progress was made possible by major developments in two areas. First, an accurate analytical representation of many high-level ab initio points over a large configuration space can now be made with high fidelity and the necessary permutation symmetry. The resulting full-dimensional global potential energy surfaces enable dynamical calculations using either quasi-classical trajectory or more importantly quantum mechanical methods. The second advance is the development of accurate and efficient quantum dynamical methods, which are necessary formore » providing a reliable treatment of quantum effects in reaction dynamics such as tunneling, resonances, and zero-point energy. The powerful combination of the two advances has allowed us to achieve a quantitatively accurate characterization of the reaction dynamics, which unveiled rich dynamical features such as steric steering, strong mode specificity, and bond selectivity. The dependence of reactivity on reactant modes can be rationalized by the recently proposed sudden vector projection model, which attributes the mode specificity and bond selectivity to the coupling of reactant modes with the reaction coordinate at the relevant transition state. The deeper insights provided by these theoretical studies have advanced our understanding of reaction dynamics to a new level.« less

  19. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  20. Crustal dynamics project observing plan for highly mobile systems 1981 - 1986

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1980-01-01

    Measurement of crustal motion in the western United States and other tectonically active regions makes use of fixed, movable and highly mobile satellite laser ranging and very long baseline interferometry systems. Measurement of the rotational dynamics of the Earth as well as regional deformation and plate motion are discussed.

  1. Diminished neural network dynamics after moderate and severe traumatic brain injury

    PubMed Central

    Gilbert, Nicholas; Bernier, Rachel A.; Calhoun, Vincent D.; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M.

    2018-01-01

    Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain’s subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network “states” that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics. PMID:29883447

  2. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    NASA Astrophysics Data System (ADS)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  3. Dynamic heterogeneity in the folding/unfolding transitions of FiP35

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Toshifumi, E-mail: mori@ims.ac.jp; Saito, Shinji, E-mail: shinji@ims.ac.jp

    Molecular dynamics simulations have become an important tool in studying protein dynamics over the last few decades. Atomistic simulations on the order of micro- to milliseconds are becoming feasible and are used to study the state-of-the-art experiments in atomistic detail. Yet, analyzing the high-dimensional-long-temporal trajectory data is still a challenging task and sometimes leads to contradictory results depending on the analyses. To reveal the dynamic aspect of the trajectory, here we propose a simple approach which uses a time correlation function matrix and apply to the folding/unfolding trajectory of FiP35 WW domain [Shaw et al., Science 330, 341 (2010)]. Themore » approach successfully characterizes the slowest mode corresponding to the folding/unfolding transitions and determines the free energy barrier indicating that FiP35 is not an incipient downhill folder. The transition dynamics analysis further reveals that the folding/unfolding transition is highly heterogeneous, e.g., the transition path time varies by ∼100 fold. We identify two misfolded states and show that the dynamic heterogeneity in the folding/unfolding transitions originates from the trajectory being trapped in the misfolded and half-folded intermediate states rather than the diffusion driven by a thermal noise. The current results help reconcile the conflicting interpretations of the folding mechanism and highlight the complexity in the folding dynamics. This further motivates the need to understand the transition dynamics beyond a simple free energy picture using simulations and single-molecule experiments.« less

  4. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia.

    PubMed

    Fu, Zening; Tu, Yiheng; Di, Xin; Du, Yuhui; Pearlson, G D; Turner, J A; Biswal, Bharat B; Zhang, Zhiguo; Calhoun, V D

    2017-09-20

    The human brain is a highly dynamic system with non-stationary neural activity and rapidly-changing neural interaction. Resting-state dynamic functional connectivity (dFC) has been widely studied during recent years, and the emerging aberrant dFC patterns have been identified as important features of many mental disorders such as schizophrenia (SZ). However, only focusing on the time-varying patterns in FC is not enough, since the local neural activity itself (in contrast to the inter-connectivity) is also found to be highly fluctuating from research using high-temporal-resolution imaging techniques. Exploring the time-varying patterns in brain activity and their relationships with time-varying brain connectivity is important for advancing our understanding of the co-evolutionary property of brain network and the underlying mechanism of brain dynamics. In this study, we introduced a framework for characterizing time-varying brain activity and exploring its associations with time-varying brain connectivity, and applied this framework to a resting-state fMRI dataset including 151 SZ patients and 163 age- and gender matched healthy controls (HCs). In this framework, 48 brain regions were first identified as intrinsic connectivity networks (ICNs) using group independent component analysis (GICA). A sliding window approach was then adopted for the estimation of dynamic amplitude of low-frequency fluctuation (dALFF) and dFC, which were used to measure time-varying brain activity and time-varying brain connectivity respectively. The dALFF was further clustered into six reoccurring states by the k-means clustering method and the group difference in occurrences of dALFF states was explored. Lastly, correlation coefficients between dALFF and dFC were calculated and the group difference in these dALFF-dFC correlations was explored. Our results suggested that 1) ALFF of brain regions was highly fluctuating during the resting-state and such dynamic patterns are altered in SZ, 2) dALFF and dFC were correlated in time and their correlations are altered in SZ. The overall results support and expand prior work on abnormalities of brain activity, static FC (sFC) and dFC in SZ, and provide new evidence on aberrant time-varying brain activity and its associations with brain connectivity in SZ, which might underscore the disrupted brain cognitive functions in this mental disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGES

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; ...

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  6. Li conduction pathways in solid-state electrolytes: Insights from dynamics and polarizability

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsukasa; Nagagiri, Koki; Iwadate, Yasuhiko; Utsuno, Futoshi; Yamaguchi, Hiroshi; Ohkubo, Takahiro

    2018-04-01

    We investigated the dynamical and polarizable properties of Li7P3S11, which is a fast Li-conducting material, by performing ab initio molecular dynamics simulations. A zone analysis based on Li migration highlighted the effective path along which Li diffuses in the crystal. The effective Li diffusion was analyzed in terms of the dynamics and polarizability of the sulfur surrounding the Li migration path. High flexibility and large anisotropic polarizability were the characteristics identified as necessary for the formation of an effective Li migration path. These findings provide principles for understanding Li conduction in solid-state electrolytes.

  7. Quantification of brain macrostates using dynamical nonstationarity of physiological time series.

    PubMed

    Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung

    2011-04-01

    The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.

  8. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    PubMed

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  9. Stochastic inference with spiking neurons in the high-conductance state

    NASA Astrophysics Data System (ADS)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz

    2016-10-01

    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  10. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2011-05-12

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.

  11. Emulating short-term synaptic dynamics with memristive devices

    NASA Astrophysics Data System (ADS)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  12. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.

    2015-09-01

    Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

  13. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations.

    PubMed

    Blöchliger, Nicolas; Caflisch, Amedeo; Vitalis, Andreas

    2015-11-10

    Data mining techniques depend strongly on how the data are represented and how distance between samples is measured. High-dimensional data often contain a large number of irrelevant dimensions (features) for a given query. These features act as noise and obfuscate relevant information. Unsupervised approaches to mine such data require distance measures that can account for feature relevance. Molecular dynamics simulations produce high-dimensional data sets describing molecules observed in time. Here, we propose to globally or locally weight simulation features based on effective rates. This emphasizes, in a data-driven manner, slow degrees of freedom that often report on the metastable states sampled by the molecular system. We couple this idea to several unsupervised learning protocols. Our approach unmasks slow side chain dynamics within the native state of a miniprotein and reveals additional metastable conformations of a protein. The approach can be combined with most algorithms for clustering or dimensionality reduction.

  14. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  15. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  16. Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π-Stack.

    PubMed

    Kaufmann, Christina; Kim, Woojae; Nowak-Król, Agnieszka; Hong, Yongseok; Kim, Dongho; Würthner, Frank

    2018-03-28

    An adequately designed, bay-tethered perylene bisimide (PBI) dimer Bis-PBI was synthesized by Pd/Cu-catalyzed Glaser-type oxidative homocoupling of the respective PBI building block. This newly synthesized PBI dimer self-assembles exclusively and with high binding constants of up to 10 6 M -1 into a discrete π-stack of four chromophores. Steady-state absorption and emission spectra show the signatures of H-type excitonic coupling among the dye units. Broadband fluorescence upconversion spectroscopy (FLUPS) reveals an ultrafast dynamics in the optically excited state. An initially coherent Frenkel exciton state that is delocalized over the whole quadruple stack rapidly (τ = ∼200 fs) loses its coherence and relaxes into an excimer state. Comparison with Frenkel exciton dynamics in PBI dimeric and oligomeric H-aggregates demonstrates that in the quadruple stack coherent exciton propagation is absent due to its short length of aggregates, thereby it has only one relaxation pathway to the excimer state. Furthermore, the absence of pump-power dependence in transient absorption experiments suggests that multiexciton cannot be generated in the quadruple stack, which is in line with time-resolved fluorescence measurements.

  17. Index Cohesive Force Analysis Reveals That the US Market Became Prone to Systemic Collapses Since 2002

    PubMed Central

    Kenett, Dror Y.; Shapira, Yoash; Madi, Asaf; Bransburg-Zabary, Sharron; Gur-Gershgoren, Gitit; Ben-Jacob, Eshel

    2011-01-01

    Background The 2007–2009 financial crisis, and its fallout, has strongly emphasized the need to define new ways and measures to study and assess the stock market dynamics. Methodology/Principal Findings The S&P500 dynamics during 4/1999–4/2010 is investigated in terms of the index cohesive force (ICF - the balance between the stock correlations and the partial correlations after subtraction of the index contribution), and the Eigenvalue entropy of the stock correlation matrices. We found a rapid market transition at the end of 2001 from a flexible state of low ICF into a stiff (nonflexible) state of high ICF that is prone to market systemic collapses. The stiff state is also marked by strong effect of the market index on the stock-stock correlations as well as bursts of high stock correlations reminiscence of epileptic brain activity. Conclusions/Significance The market dynamical states, stability and transition between economic states was studies using new quantitative measures. Doing so shed new light on the origin and nature of the current crisis. The new approach is likely to be applicable to other classes of complex systems from gene networks to the human brain. PMID:21556323

  18. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl and Ni

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Demchuk, Taras; Jakse, Noël; Wax, Jean-François

    2018-02-01

    Recent findings of pressure-induced emergence of unusual high-frequency contribution to transverse current spectral functions in several simple liquid metals at high pressures raised a question whether similar features can be observed in liquid metals at ambient conditions. We report here analysis of ab initio molecular dynamics-derived longitudinal (L) and transverse (T) current spectral functions and corresponding dispersions of collective excitations in liquid polyvalent metals Al, Tl, Ni. We have not found evidences of the second branch of high-frequency transverse modes in liquid Al and Ni, while in the case of liquid Tl they were clearly present in transverse dynamics. The vibrational density of states for liquid Tl has a pronounced high-frequency shoulder, which is located right in the frequency range of the second high-frequency transverse branch, while for liquid Al and Ni the vibrational density of states has only a weak indication of possible high-frequency shoulder. The origin of specific behavior of transverse excitations in liquid Tl is discussed.

  19. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    NASA Astrophysics Data System (ADS)

    da, Lin-Tai; Pardo-Avila, Fátima; Xu, Liang; Silva, Daniel-Adriano; Zhang, Lu; Gao, Xin; Wang, Dong; Huang, Xuhui

    2016-04-01

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3'-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3'-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  20. State diagram for adhesion dynamics of deformable capsules under shear flow.

    PubMed

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca < 0.0075), whole-capsule deformation confers the capsule a flattened bottom in contact with the functionalized surface, which hence promotes the rolling-to-firm-adhesion transition. It is consistent with the observations from previous studies that cell deformation promotes the adhesion of cells lying in the rolling regime. However, it is surprising to find that, at relatively high capillary numbers (e.g. 0.0075 < Ca < 0.0175), the effect of capsule deformability on its adhesion dynamics is far more complex than just promoting adhesion. High deformability of capsules makes their bottom take a concave shape with no adhesion bond formation in the middle. The appearance of this specific capsule shape inhibits the transitions of both rolling-to-firm-adhesion and detachment-to-rolling, and it means that capsule deformation no longer promotes the capsule adhesion. Besides, it is interesting to note that, when the capillary number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape.

  1. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  2. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    PubMed

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  3. Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme

    PubMed Central

    Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W.; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A.A.; Kitahara, Ryo

    2015-01-01

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. 13C and 1H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. PMID:25564860

  4. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.

    PubMed

    Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A A; Kitahara, Ryo

    2015-01-06

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.

    PubMed

    Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P

    2012-12-07

    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

  6. Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser

    NASA Astrophysics Data System (ADS)

    Wang, Heilong; Yu, Yong; Chang, Yao; Su, Shu; Yu, Shengrui; Li, Qinming; Tao, Kai; Ding, Hongli; Yang, Jaiyue; Wang, Guanglei; Che, Li; He, Zhigang; Chen, Zhichao; Wang, Xingan; Zhang, Weiqing; Dai, Dongxu; Wu, Guorong; Yuan, Kaijun; Yang, Xueming

    2018-03-01

    Photodissociation dynamics of H2O via the F ˜ state at 111.5 nm were investigated using the high resolution H-atom Rydberg "tagging" time-of-flight (TOF) technique, in combination with the tunable vacuum ultraviolet free electron laser at the Dalian Coherent Light Source. The product translational energy distributions and angular distributions in both parallel and perpendicular directions were derived from the recorded TOF spectra. Based on these distributions, the quantum state distributions and angular anisotropy parameters of OH (X) and OH (A) products have been determined. For the OH (A) + H channel, highly rotationally excited OH (A) products have been observed. These products are ascribed to a fast direct dissociation on the B ˜ 1A1 state surface after multi-step internal conversions from the initial excited F ˜ state to the B ˜ state. While for the OH (X) + H channel, very highly rotationally excited OH (X) products with moderate vibrational excitation are revealed and attributed to the dissociation via a nonadiabatic pathway through the well-known two conical intersections between the B ˜ -state and the X ˜ -state surfaces.

  7. Aging and rejuvenation of active matter under topological constraints

    DOE PAGES

    Janssen, Liesbeth M. C.; Kaiser, Andreas; Lowen, Hartmut

    2017-07-18

    The coupling of active, self-motile particles to topological constraints can give rise to novel nonequilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these nonequilibrium processes,more » and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. In conclusion, our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.« less

  8. Aging and rejuvenation of active matter under topological constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Liesbeth M. C.; Kaiser, Andreas; Lowen, Hartmut

    The coupling of active, self-motile particles to topological constraints can give rise to novel nonequilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these nonequilibrium processes,more » and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. In conclusion, our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.« less

  9. Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan

    By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.

  10. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  11. State-selected chemical reaction dynamics at the S matrix level - Final-state specificities of near-threshold processes at low and high energies

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1992-01-01

    State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.

  12. Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires

    PubMed Central

    2017-01-01

    Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits. PMID:28081604

  13. On the prospects of application and development of solid-state photomultipliers for the task of analog detecting of pulsed optical signals

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Kolobov, N. A.; Levin, E. V.; Pozdnyakov, Y. I.; Shubin, V. E.; Shushakov, D. A.; Sitarsky, K. Yu.; Torgovnikov, R. A.

    2018-02-01

    In this paper, we analyze the influence of the crosstalk level and the dynamic range on the basic characteristics of a silicon solid-state photomultiplier and demonstrate their importance for detecting of optical signals with backlight illumination, in particular, for LIDAR application. Experimental results obtained in the study of threshold and fluctuation parameters of detectors with different levels of crosstalk and dynamic range are presented. It is shown that the detector design combining a high dynamic range with a small crosstalk gives a noticeable advantage in such applications.

  14. EEG and chaos: Description of underlying dynamics and its relation to dissociative states

    NASA Technical Reports Server (NTRS)

    Ray, William J.

    1994-01-01

    The goal of this work is the identification of states especially as related to the process of error production and lapses of awareness as might be experienced during aviation. Given the need for further articulation of the characteristics of 'error prone state' or 'hazardous state of awareness,' this NASA grant focused on basic ground work for the study of the psychophysiology of these states. In specific, the purpose of this grant was to establish the necessary methodology for addressing three broad questions. The first is how the error prone state should be conceptualized, and whether it is similar to a dissociative state, a hypnotic state, or absent mindedness. Over 1200 subjects completed a variety of psychometric measures reflecting internal states and proneness to mental lapses and absent mindedness; the study suggests that there exists a consistency of patterns displayed by individuals who self-report dissociative experiences such that those individuals who score high on measures of dissociation also score high on measures of absent mindedness, errors, and absorption, but not on scales of hypnotizability. The second broad question is whether some individuals are more prone to enter these states than others. A study of 14 young adults who scored either high or low on the dissociation experiences scale performed a series of six tasks. This study suggests that high and low dissociative individuals arrive at the experiment in similar electrocortical states and perform cognitive tasks (e.g., mental math) in a similar manner; it is in the processing of internal emotional states that differences begin to emerge. The third question to be answered is whether recent research in nonlinear dynamics, i.e., chaos, offer an addition and/or alternative to traditional signal processing methods, i.e., fast Fourier transforms, and whether chaos procedures can be modified to offer additional information useful in identifying brain states. A preliminary review suggests that current nonlinear dynamical techniques such as dimensional analysis can be successfully applied to electrocortical activity. Using the data set developed in the study of the young adults, chaos analyses using the Farmer algorithm were performed; it is concluded that dimensionality measures reflect information not contained in traditional EEG Fourier analysis.

  15. Full State Feedback Control for Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less

  16. Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    PubMed Central

    Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi

    2010-01-01

    In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879

  17. State transitions of actin cortices in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  18. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev

    2018-05-01

    The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yu; Scheeres, D. J.; Busch, Michael W.

    The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar telescopes. In this paper, Toutatis' spin state dynamics are estimated from observations of five flybys between 1992 and 2008. Observations were used to fit Toutatis' spin state dynamics in a least-squares sense, with the solar and terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis'more » Euler angles, angular velocity, moments of inertia, and the center-of-mass-center-of-figure offset. The spin state dynamics as well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate observations.« less

  20. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  1. Robust fixed order dynamic compensation for large space structure control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Byrns, Edward V., Jr.

    1989-01-01

    A simple formulation for designing fixed order dynamic compensators which are robust to both uncertainty at the plant input and structured uncertainty in the plant dynamics is presented. The emphasis is on designing low order compensators for systems of high order. The formulation is done in an output feedback setting which exploits an observer canonical form to represent the compensator dynamics. The formulation also precludes the use of direct feedback of the plant output. The main contribution lies in defining a method for penalizing the states of the plant and of the compensator, and for choosing the distribution on initial conditions so that the loop transfer matrix approximates that of a full state design. To improve robustness to parameter uncertainty, the formulation avoids the introduction of sensitivity states, which has led to complex formulations in earlier studies where only structured uncertainty has been considered.

  2. Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions

    NASA Astrophysics Data System (ADS)

    Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang

    2018-06-01

    The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.

  3. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera.

    PubMed

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W L; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-07

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C 2 F 3 I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  4. Autonomous learning by simple dynamical systems with delayed feedback.

    PubMed

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  5. Dynamics Sampling in Transition Pathway Space.

    PubMed

    Zhou, Hongyu; Tao, Peng

    2018-01-09

    The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.

  6. The Dynamics of Study-Work Choice and Its Effect on Intended and Actual University Attainment

    ERIC Educational Resources Information Center

    Gong, Xiaodong

    2017-01-01

    We study the dynamics of study-work choices of Australian high school students and how these choices affect intended and actual enrolment in universities when they finish their school education. A dynamic random effect multi-equation model is constructed and estimated. We find that study-work choices are state dependent, driven by student…

  7. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis

    PubMed Central

    2017-01-01

    During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers. PMID:28339470

  8. Phase-Space Detection of Cyber Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J

    Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The datamore » analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.« less

  9. Near-infrared light-responsive dynamic wrinkle patterns.

    PubMed

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less

  11. Reduced Perceptual Exclusivity during Object and Grating Rivalry in Autism

    PubMed Central

    Freyberg, J.; Robertson, C.E.; Baron-Cohen, S.

    2015-01-01

    Background The dynamics of binocular rivalry may be a behavioural footprint of excitatory and inhibitory neural transmission in visual cortex. Given the presence of atypical visual features in Autism Spectrum Conditions (ASC), and evidence in support of the idea of an imbalance in excitatory/inhibitory neural transmission in ASC, we hypothesized that binocular rivalry might prove a simple behavioural marker of such a transmission imbalance in the autistic brain. In support of this hypothesis, we previously reported a slower rate of rivalry in ASC, driven by reduced perceptual exclusivity. Methods We tested whether atypical dynamics of binocular rivalry in ASC are specific to certain stimulus features. 53 participants (26 with ASC, matched for age, sex and IQ) participated in binocular rivalry experiments in which the dynamics of rivalry were measured at two levels of stimulus complexity, low (grayscale gratings) and high (coloured objects). Results Individuals with ASC experienced a slower rate of rivalry, driven by longer transitional states between dominant percepts. These exaggerated transitional states were present at both low and high levels of stimulus complexity, suggesting that atypical rivalry dynamics in autism are robust with respect to stimulus choice. Interactions between stimulus properties and rivalry dynamics in autism indicate that achromatic grating stimuli produce stronger group differences. Conclusion These results confirm the finding of atypical dynamics of binocular rivalry in ASC. These dynamics were present for stimuli of both low and high levels of visual complexity, suggesting an imbalance in competitive interactions throughout the visual system of individuals with ASC. PMID:26382002

  12. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  13. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin

    NASA Astrophysics Data System (ADS)

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.

  14. Molecular Dynamics Simulation of the Three-Dimensional Ordered State in Laser-Cooled Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke

    A molecular dynamics simulation is performed to study the formation of three-dimensional ordered beams by laser cooling in a cooler storage ring. Ultralow-temperature heavy-ion beams are generated by transverse cooling with displaced Gaussian lasers and resonant coupling. A three-dimensional ordered state of the ion beam is attained at a high line density. The ordered beam exhibits several unique characteristics different from those of an ideal crystalline beam.

  15. Breaking down barriers in cooperative fault management: Temporal and functional information displays

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1994-01-01

    At the highest level, the fundamental question addressed by this research is how to aid human operators engaged in dynamic fault management. In dynamic fault management there is some underlying dynamic process (an engineered or physiological process referred to as the monitored process - MP) whose state changes over time and whose behavior must be monitored and controlled. In these types of applications (dynamic, real-time systems), a vast array of sensor data is available to provide information on the state of the MP. Faults disturb the MP and diagnosis must be performed in parallel with responses to maintain process integrity and to correct the underlying problem. These situations frequently involve time pressure, multiple interacting goals, high consequences of failure, and multiple interleaved tasks.

  16. Excited state dynamics of thiophene and bithiophene: new insights into theoretically challenging systems.

    PubMed

    Prlj, Antonio; Curchod, Basile F E; Corminboeuf, Clémence

    2015-06-14

    The computational elucidation and proper description of the ultrafast deactivation mechanisms of simple organic electronic units, such as thiophene and its oligomers, is as challenging as it is contentious. A comprehensive excited state dynamics analysis of these systems utilizing reliable electronic structure approaches is currently lacking, with earlier pictures of the photochemistry of these systems being conceived based upon high-level static computations or lower level dynamic trajectories. Here a detailed surface hopping molecular dynamics of thiophene and bithiophene using the algebraic diagrammatic construction to second order (ADC(2)) method is presented. Our findings illustrate that ring puckering plays an important role in thiophene photochemistry and that the photostability increases when going upon dimerization into bithiophene.

  17. From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

    NASA Astrophysics Data System (ADS)

    Henkel, Christof

    2017-03-01

    We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an Itô-diffusion price processes in the large market limit.

  18. The Birth and Death of Redundancy in Decoherence and Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Riedel, Charles; Zurek, Wojciech; Zwolak, Michael

    2012-02-01

    Understanding the quantum-classical transition and the identification of a preferred classical domain through quantum Darwinism is based on recognizing high-redundancy states as both ubiquitous and exceptional. They are produced ubiquitously during decoherence, as has been demonstrated by the recent identification of very general conditions under which high-redundancy states develop. They are exceptional in that high-redundancy states occupy a very narrow corner of the global Hilbert space; states selected at random are overwelming likely to exhibit zero redundancy. In this letter, we examine the conditions and time scales for the transition from high-redundancy states to zero-redundancy states in many-body dynamics. We identify sufficient condition for the development of redundancy from product states and show that the destruction of redundancy can be accomplished even with highly constrained interactions.

  19. Dynamic functional connectivity and its behavioral correlates beyond vigilance.

    PubMed

    Patanaik, Amiya; Tandi, Jesisca; Ong, Ju Lynn; Wang, Chenhao; Zhou, Juan; Chee, Michael W L

    2018-04-25

    Fluctuations in resting-state functional connectivity and global signal have been found to correspond with vigilance fluctuations, but their associations with other behavioral measures are unclear. We evaluated 52 healthy adolescents after a week of adequate sleep followed by five nights of sleep restriction to unmask inter-individual differences in cognition and mood. Resting state scans obtained at baseline only, analyzed using sliding window analysis, consistently yielded two polar dynamic functional connectivity states (DCSs) corresponding to previously reported 'low arousal' and 'high arousal' states. We found that the relative temporal preponderance of two dynamic connectivity states (DCS) in well-rested participants, indexed by a median split of participants, based on the relative time spent in these DCS, revealed highly significant group differences in vigilance at baseline and its decline following multiple nights of sleep restriction. Group differences in processing speed and working memory following manipulation but not at baseline suggest utility of DCS in predicting cognitive vulnerabilities unmasked by a stressor like sleep restriction. DCS temporal predominance was uninformative about mood and sleepiness speaking to specificity in its behavioral predictions. Global signal fluctuation provided information confined to vigilance. This appears to be related to head motion, which increases during periods of low arousal. Copyright © 2018. Published by Elsevier Inc.

  20. Avalanche dynamics for active matter in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C. J. O.; Reichhardt, C.

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  1. Avalanche dynamics for active matter in heterogeneous media

    DOE PAGES

    Reichhardt, C. J. O.; Reichhardt, C.

    2017-12-21

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  2. Avalanche dynamics for active matter in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-02-01

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent of β =1.46. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.

  3. Inferring Toxicological Responses of HepG2 Cells from ToxCast High Content Imaging Data (SOT)

    EPA Science Inventory

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 differe...

  4. Single-Molecule Spectroscopy and Imaging Studies of Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2012-04-01

    Enzymatic reactions and protein-protein interactions are traditionally studied at the ensemble level, despite significant static and dynamic inhomogeneities. Subtle conformational changes play a crucial role in protein functions, and these protein conformations are highly dynamic rather than being static. We applied AFM-enhanced single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of T4 lysozyme and HPPK enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation. Our new approach is applicable to a wide range of single-molecule FRET measurements for protein conformational changes under enzymatic reactions.

  5. The Study of Dynamical Potentials of Highly Excited Vibrational States of HOBr

    PubMed Central

    Wang, Aixing; Sun, Lifeng; Fang, Chao; Liu, Yibao

    2013-01-01

    The vibrational nonlinear dynamics of HOBr in the bending and O–Br stretching coordinates with anharmonicity and Fermi 2:1 coupling are studied with dynamical potentials in this article. The result shows that the H–O stretching vibration mode has significantly different effects on the coupling between the O–Br stretching mode and the H–O–Br bending mode under different Polyad numbers. The dynamical potentials and the corresponding phase space trajectories are obtained when the Polyad number is 27, for instance, and the fixed points in the dynamical potentials of HOBr are shown to govern the various quantal environments in which the vibrational states lie. Furthermore, it is also found that the quantal environments could be identified by the numerical values of action integrals, which is consistent with former research. PMID:23462512

  6. Epidemic Dynamics in Open Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  7. The nearby triple star HIP 101955

    NASA Astrophysics Data System (ADS)

    Fang, Xia

    2018-04-01

    The nearby triple star HIP 101955 with strongly inclined orbit still remains. Thus the long-term dynamical stability deserves to be discussed based on the new dynamical state parameters (component masses and kinematic parameters) derived from fitting the accurate three-body model to the radial velocity, the Hipparcos Intermediate Astrometric Data (HIAD), and the accumulated speckle and visual data. It is found that the three-body system remains integrated and most likely undergoes Kozai cycles. With the already accumulated high-precision data, the three-body effects cannot always be neglected in the determination of the dynamical state. And it is expected that this will be the general case under the available Gaia data.

  8. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    PubMed Central

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  9. Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

    PubMed Central

    Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro

    2015-01-01

    Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045

  10. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE PAGES

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; ...

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  11. Quantum-state-resolved CO2 scattering dynamics at the gas-liquid interface: dependence on incident angle.

    PubMed

    Perkins, Bradford G; Nesbitt, David J

    2007-08-09

    Energy transfer dynamics at the gas-liquid interface have been probed with a supersonic molecular beam of CO2 and a clean perfluorinated-liquid surface in vacuum. High-resolution infrared spectroscopy measures both the rovibrational state populations and the translational distributions for the scattered CO2 flux. The present study investigates collision dynamics as a function of incident angle (thetainc = 0 degrees, 30 degrees, 45 degrees, and 60 degrees), where column-integrated quantum state populations are detected along the specular-scattering direction (i.e., thetascat approximately thetainc). Internal state rovibrational and Doppler translational distributions in the scattered CO2 yield clear evidence for nonstatistical behavior, providing quantum-state-resolved support for microscopic branching of the gas-liquid collision dynamics into multiple channels. Specifically, the data are remarkably well described by a two-temperature model, which can be associated with both a trapping desorption (TD) component emerging at the surface temperature (Trot approximately TS) and an impulsive scattering (IS) component appearing at hyperthermal energies (Trot > TS). The branching ratio between the TD and IS channels is found to depend strongly on thetainc, with the IS component growing dramatically with increasingly steeper angle of incidence.

  12. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.

    PubMed

    Nishimura, Naoko; Iwasaki, Ken-ichi; Ogawa, Yojiro; Aoki, Ken

    2010-05-01

    Effects of hypoxia on cerebral circulation are important for occupational, high-altitude, and aviation medicine. Increased risk of fainting might be attributable to altered cerebral circulation by hypoxia. Dynamic cerebral autoregulation is reportedly impaired immediately by mild hypoxia. However, continuous exposure to hypoxia causes hyperventilation, resulting in hypocapnia. This hypocapnia is hypothesized to restore impaired dynamic cerebral autoregulation with reduced steady-state cerebral blood flow (CBF). However, no studies have examined hourly changes in alterations of dynamic cerebral autoregulation and steady-state CBF during sustained hypoxia. We therefore examined cerebral circulation during 5-h exposure to 15% O2 hypoxia and 21% O2 in 13 healthy volunteers in a sitting position. Waveforms of blood pressure and CBF velocity in the middle cerebral artery were measured using finger plethysmography and transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis. As expected, steady-state CBF velocity decreased significantly from 2 to 5 h of hypoxia, accompanying 2- to 3-Torr decreases in end-tidal CO2 (ETCO2). Furthermore, transfer function gain and coherence in the very-low-frequency range increased significantly at the beginning of hypoxia, indicating impaired dynamic cerebral autoregulation. However, contrary to the proposed hypothesis, indexes of dynamic cerebral autoregulation showed no significant restoration despite ETCO2 reductions, resulting in persistent higher values of very-low-frequency power of CBF velocity variability during hypoxia (214+/-40% at 5 h of hypoxia vs. control) without significant increases in blood pressure variability. These results suggest that sustained mild hypoxia reduces steady-state CBF and continuously impairs dynamic cerebral autoregulation, implying an increased risk of shortage of oxygen supply to the brain.

  13. The Dynamical Balance of the Brain at Rest

    PubMed Central

    Deco, Gustavo; Corbetta, Maurizio

    2014-01-01

    We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530

  14. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues.

    PubMed

    Zhou, Zhongneng; Zhou, Xueyao; Wang, Xueli; Jiang, Bin; Li, Yongle; Chen, Jinquan; Xu, Jianhua

    2017-04-13

    Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S 1 ) state below the first allowed ππ* (S 2 ) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S 1 ) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S 1 ) state to ground state. Two dark nπ* states (S 1 and S 2 ) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S 3 ) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.

  15. Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.

    PubMed

    Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2013-09-26

    Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.

  16. Probing the solvation structure and dynamics in ionic liquids by time-resolved infrared spectroscopy of 4-(dimethylamino)benzonitrile.

    PubMed

    Ando, Rômulo A; Brown-Xu, Samantha E; Nguyen, Lisa N Q; Gustafson, Terry L

    2017-09-20

    In this work we demonstrate the use of the push-pull model system 4-(dimethylamino)benzonitrile (DMABN) as a convenient molecular probe to investigate the local solvation structure and dynamics by means of time-resolved infrared spectroscopy (TRIR). The photochemical features associated with this system provide several advantages due to the high charge separation between the ground and charge transfer states involving the characteristic nitrile bond, and an excited state lifetime that is long enough to observe the slow solvation dynamics in organic solvents and ionic liquids. The conversion from a locally excited state to an intramolecular charge transfer state (LE-ICT) in ionic liquids shows similar kinetic lifetimes in comparison to organic solvents. This similarity confirms that such conversion depends solely on the intramolecular reorganization of DMABN in the excited state, and not by the dynamics of solvation. In contrast, the relative shift of the ν(CN) vibration during the relaxation of the ICT state reveals two distinct lifetimes that are sensitive to the solvent environment. This study reveals a fast time component which is attributed to the dipolar relaxation of the solvent and a slower time component related to the rotation of the dimethylamino group of DMABN.

  17. On the transient dynamics of piezoelectric-based, state-switched systems

    NASA Astrophysics Data System (ADS)

    Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.

    2018-01-01

    This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.

  18. Classification of Dynamical Diffusion States in Single Molecule Tracking Microscopy

    PubMed Central

    Bosch, Peter J.; Kanger, Johannes S.; Subramaniam, Vinod

    2014-01-01

    Single molecule tracking of membrane proteins by fluorescence microscopy is a promising method to investigate dynamic processes in live cells. Translating the trajectories of proteins to biological implications, such as protein interactions, requires the classification of protein motion within the trajectories. Spatial information of protein motion may reveal where the protein interacts with cellular structures, because binding of proteins to such structures often alters their diffusion speed. For dynamic diffusion systems, we provide an analytical framework to determine in which diffusion state a molecule is residing during the course of its trajectory. We compare different methods for the quantification of motion to utilize this framework for the classification of two diffusion states (two populations with different diffusion speed). We found that a gyration quantification method and a Bayesian statistics-based method are the most accurate in diffusion-state classification for realistic experimentally obtained datasets, of which the gyration method is much less computationally demanding. After classification of the diffusion, the lifetime of the states can be determined, and images of the diffusion states can be reconstructed at high resolution. Simulations validate these applications. We apply the classification and its applications to experimental data to demonstrate the potential of this approach to obtain further insights into the dynamics of cell membrane proteins. PMID:25099798

  19. Climate Prediction Center - Seasonal Outlook

    Science.gov Websites

    SEASONAL CLIMATE VARIABILITY, INCLUDING ENSO, SOIL MOISTURE, AND VARIOUS STATE-OF-THE-ART DYNAMICAL MODEL ACROSS PARTS OF THE EAST-CENTRAL CONUS CENTERED ON THE MISSISSIPPI RIVER. THIS IS DUE TO VERY HIGH SOIL TRENDS, NEGATIVE SOIL MOISTURE ANOMALIES, LAGGED ENSO REGRESSIONS, AND DYNAMICAL MODEL GUIDANCE ARE ALL

  20. Surface state-dominated photoconduction and THz-generation in topological Bi2Te2Se-nanowires

    NASA Astrophysics Data System (ADS)

    Seifert, Paul; Vaklinova, Kristina; Kern, Klaus; Burghard, Marko; Holleitner, Alexander

    Topological insulators constitute a fascinating class of quantum materials with non-trivial, gapless states on the surface and trivial, insulating bulk states. In revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se-nanowires allows to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface state dynamics on the different timescales gives rise to a surprising physical property of Bi2Te2Se-nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se-nanowires can be used as THz-generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se-nanowires as active modules in optoelectronic high-frequency and THz-circuits. We acknowledge financial support by the ERC Grant NanoReal (n306754).

  1. Exploring sensitivity of a multistate occupancy model to inform management decisions

    USGS Publications Warehouse

    Green, A.W.; Bailey, L.L.; Nichols, J.D.

    2011-01-01

    Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  2. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  3. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  4. High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification

    NASA Astrophysics Data System (ADS)

    Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime

    2017-01-01

    Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".

  5. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677

  6. Spectral functions of a time-periodically driven Falicov-Kimball model: Real-space Floquet dynamical mean-field theory study

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Hofstetter, Walter

    2017-08-01

    We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.

  7. Analysis of propulsion system dynamics in the validation of a high-order state space model of the UH-60

    NASA Technical Reports Server (NTRS)

    Kim, Frederick D.

    1992-01-01

    Frequency responses generated from a high-order linear model of the UH-60 Black Hawk have shown that the propulsion system influences significantly the vertical and yaw dynamics of the aircraft at frequencies important to high-bandwidth control law designs. The inclusion of the propulsion system comprises the latest step in the development of a high-order linear model of the UH-60 that models additionally the dynamics of the fuselage, rotor, and inflow. A complete validation study of the linear model is presented in the frequency domain for both on-axis and off-axis coupled responses in the hoverflight condition, and on-axis responses for forward speeds of 80 and 120 knots.

  8. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that range from ~0.1 to several μs, for these model PM-Sp-PM chromophores, and renders new insights to evolve bespoke photophysical properties for low optical bandgap π-conjugated polymers and molecules based on proquinoidal conjugation motifs.« less

  9. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE PAGES

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.; ...

    2017-06-07

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that range from ~0.1 to several μs, for these model PM-Sp-PM chromophores, and renders new insights to evolve bespoke photophysical properties for low optical bandgap π-conjugated polymers and molecules based on proquinoidal conjugation motifs.« less

  10. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.

    PubMed

    Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol

    2017-01-01

    Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.

  11. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  12. Asymmetry in Time Evolution of Magnetization in Magnetic Nanostructures

    DOE PAGES

    Tóbik, Jaroslav; Cambel, Vladimir; Karapetrov, Goran

    2015-07-22

    Strong interest in nanomagnetism stems from the promise of high storage densities of information through control of ever smaller and smaller ensembles of spins. There is a broad consensus that the Landau-Lifshitz-Gilbert equation reliably describes the magnetization dynamics on classical phenomenological level. On the other hand, it is not so evident that the magnetization dynamics governed by this equation contains built-in asymmetry in the case of broad topology sets of symmetric total energy functional surfaces. The magnetization dynamics in such cases shows preference for one particular state from many energetically equivalent available minima. Here, we demonstrate this behavior on amore » simple one-spin model which can be treated analytically. Depending on the ferromagnet geometry and material parameters, this asymmetric behavior can be robust enough to survive even at high temperatures opening simplified venues for controlling magnetic states of nanodevices in practical applications. Using micromagnetic simulations we demonstrate the asymmetry in magnetization dynamics in a real system with reduced symmetry such as Pacman-like nanodot. Finally, exploiting the built-in asymmetry in the dynamics could lead to practical methods of preparing desired spin configurations on nanoscale. Introduction« less

  13. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  14. Theoretical and Experimental Studies in Reactive Scattering.

    DTIC Science & Technology

    1986-08-11

    dynamics 3. Three-dimensional reaction dynamics 4. Anisotropic potentials for He + C02, OCS, CS2 .. 5. Production of a high intensity-high energy beam of...involving beams of He atoms, H atoms and metastable H molecules aimed at the determination of potential energy surfaces involving these systems. 2... energy of 0.3 ’, Kcal/mole below the top of the barrier, the reaction probability from ground S"t vibrational state reagent to ground vibrational

  15. Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.

    2003-01-01

    A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.

  16. Monte Carlo wave packet study of negative ion mediated vibrationally inelastic scattering of NO from the metal surface

    NASA Astrophysics Data System (ADS)

    Li, Shenmin; Guo, Hua

    2002-09-01

    The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.

  17. Fundamental limits on dynamic inference from single-cell snapshots

    PubMed Central

    Weinreb, Caleb; Tusi, Betsabeh K.; Socolovsky, Merav

    2018-01-01

    Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements. PMID:29463712

  18. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is improved slightly, SAFIRe yields up to 100-fold improved signal visibility by essentially removing obscuring, unmodulated background (Richards, C. I.; J. Am. Chem. Soc. 2009, 131, 4619). While SAFIRe exhibits a wide, linear dynamic range, we have demonstrated single-molecule signal recovery buried within 200 nM obscuring dye. In addition to enabling signal recovery through background reduction, each dye exhibits a characteristic modulation frequency indicative of its photophysical dynamics. Thus, these characteristic time scales offer opportunities not only to expand the dimensionality of fluorescence imaging by using dark-state lifetimes but also to distinguish the dynamics of subpopulations on the basis of photophysical versus diffusional time scales, even within modulatable populations. The continued development of modulation for signal recovery and observation of biological dynamics holds great promise for studying a range of transient biological phenomena in natural environments. Through the development of a wide range of fluorescent proteins, organic dyes, and inorganic emitters that exhibit significant dark-state populations under steady-state illumination, we can drastically expand the applicability of fluorescence imaging to probe lower-abundance complexes and their dynamics.

  19. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  20. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865

  1. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  2. Tunable nonequilibrium dynamics of field quenches in spin ice

    PubMed Central

    Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.

    2014-01-01

    We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372

  3. Molecular Dynamics Simulation of Telomere and TRF1

    NASA Astrophysics Data System (ADS)

    Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru

    Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.

  4. Two liquid states of matter: a dynamic line on a phase diagram.

    PubMed

    Brazhkin, V V; Fomin, Yu D; Lyapin, A G; Ryzhov, V N; Trachenko, K

    2012-03-01

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "nonrigid" liquids. Rigid to nonrigid transition corresponds to the condition τ≈τ(0), where τ is the liquid relaxation time and τ(0) is the minimal period of transverse quasiharmonic waves. This condition defines a new dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all available frequencies and, consequently, to the qualitative change in many important liquid properties. We analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2k(B) per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase diagram "Frenkel line".

  5. Molecular dynamics study on the microscopic details of the evaporation of water.

    PubMed

    Mason, Phillip E

    2011-06-16

    Molecular dynamics simulations were conducted on a drop of water (containing 4890 TIP3P waters) at 350 K. About 70 evaporation events were found and characterized in enough detail to determine significant patterns relating to the mechanism of evaporation. It was found that in almost all evaporation events that a single, high-energy state immediately preceded the evaporation event. In ∼50% of the cases, this high-energy state involved a short oxygen-oxygen distance, suggesting a van der Waals collision, whereas in the remaining cases, a short hydrogen-hydrogen distance was found, suggesting an electrostatic "collision". Of the high-energy states that led to evaporation, about half occurred when the coordination number of water was 1, and about half, when the coordination number was 2. It was found that the 1-coordinated waters (∼1% of the surface waters) and 2-coordinated waters (6% of the surface waters) were responsible for almost all the evaporation events. © 2011 American Chemical Society

  6. Relation between native ensembles and experimental structures of proteins

    PubMed Central

    Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580

  7. Comprehensive dynamic on-resistance assessments in GaN-on-Si MIS-HEMTs for power switching applications

    NASA Astrophysics Data System (ADS)

    Chou, Po-Chien; Hsieh, Ting-En; Cheng, Stone; del Alamo, Jesús A.; Chang, Edward Yi

    2018-05-01

    This study comprehensively analyzed the reliability of trapping and hot-electron effects responsible for the dynamic on-resistance (Ron) of GaN-based metal–insulator–semiconductor high electron mobility transistors. Specifically, this study performed the following analyses. First, we developed the on-the-fly Ron measurement to analyze the effects of traps during stress. With this technique, the faster one (with a pulse period of 20 ms) can characterize the degradation; the transient behavior could be monitored accurately by such short measurement pulse. Then, dynamic Ron transients were investigated under different bias conditions, including combined off state stress conditions, back-gating stress conditions, and semi-on stress conditions, in separate investigations of surface- and buffer-, and hot-electron-related trapping effects. Finally, the experiments showed that the Ron increase in semi-on state is significantly correlated with the high drain voltage and relatively high current levels (compared with the off-state current), involving the injection of greater amount of hot electrons from the channel into the AlGaN/insulator interface and the GaN buffer. These findings provide a path for device engineering to clarify the possible origins for electron traps and to accelerate the development of emerging GaN technologies.

  8. Near-infrared light–responsive dynamic wrinkle patterns

    PubMed Central

    Hou, Honghao; Yin, Jie

    2018-01-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light–responsive dynamic wrinkles by using a carbon nanotube (CNT)–containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics. PMID:29740615

  9. Deconstructing the “Resting” State: Exploring the Temporal Dynamics of Frontal Alpha Asymmetry as an Endophenotype for Depression

    PubMed Central

    Allen, John J. B.; Cohen, Michael X

    2010-01-01

    Asymmetry in frontal electrocortical alpha-band (8–13 Hz) activity recorded during resting situations (i.e., in absence of a specific task) has been investigated in relation to emotion and depression for over 30 years. This asymmetry reflects an aspect of endogenous cortical dynamics that is stable over repeated measurements and that may serve as an endophenotype for mood or other psychiatric disorders. In nearly all of this research, EEG activity is averaged across several minutes, obscuring transient dynamics that unfold on the scale of milliseconds to seconds. Such dynamic states may ultimately have greater value in linking brain activity to surface EEG asymmetry, thus improving its status as an endophenotype for depression. Here we introduce novel metrics for characterizing frontal alpha asymmetry that provide a more in-depth neurodynamical understanding of recurrent endogenous cortical processes during the resting-state. The metrics are based on transient “bursts” of asymmetry that occur frequently during the resting-state. In a sample of 306 young adults, 143 with a lifetime diagnosis of major depressive disorder (62 currently symptomatic), three questions were addressed: (1) How do novel peri-burst metrics of dynamic asymmetry compare to conventional fast-Fourier transform-based metrics? (2) Do peri-burst metrics adequately differentiate depressed from non-depressed participants? and, (3) what EEG dynamics surround the asymmetry bursts? Peri-burst metrics correlated with traditional measures of asymmetry, and were sensitive to both current and past episodes of major depression. Moreover, asymmetry bursts were characterized by a transient lateralized alpha suppression that is highly consistent in phase across bursts, and a concurrent contralateral transient alpha enhancement that is less tightly phase-locked across bursts. This approach opens new possibilities for investigating rapid cortical dynamics during resting-state EEG. PMID:21228910

  10. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction

    NASA Astrophysics Data System (ADS)

    Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg

    2018-04-01

    We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.

  12. Intermittent Chaos in the Bray-Liebhafsky Oscillator. Dependence of Dynamic States on the Iodate Concentration

    NASA Astrophysics Data System (ADS)

    Bubanja, I. N.; Ivanović-Šašić, A.; Čupić, Ž.; Anić, S.; Kolar-Anić, Lj.

    2017-12-01

    Chaotic dynamic states with intermittent oscillations were generated in a Bray-Liebhafsky (BL) oscillatory reaction in an isothermal open reactor i.e., in the continuously-fed well-stirred tank reactor (CSTR) when the inflow concentration of potassium iodate was the control parameter. They are found between periodic oscillations obtained when [KIO3]0 < 3.00 × 10-2 M and stable steady states when [KIO3]0 > 4.10 × 10-2 M. It was shown that the most chaotic states obtained experimentally somewhere in the middle of this region are in high correlation with results obtained by means of largest Lyapunov exponents and phenomenological analysis based on the quantitative characteristics of intermittent oscillations.

  13. Dynamical emergence of the Universe into the false vacuum

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann; Birrell, Jeremiah

    2015-11-01

    We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=langle hrangle, even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v1, v2 can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccua due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.

  14. A symmetry breaking phase transition-triggered high-temperature solid-state quadratic nonlinear optical switch coupled with a switchable dielectric constant in an organic-inorganic hybrid compound.

    PubMed

    Mei, Guang-Quan; Zhang, Han-Yue; Liao, Wei-Qiang

    2016-09-25

    An organic-inorganic hybrid compound, [NH3(CH2)5NH3]SbCl5, exhibits a switchable second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states and tunable dielectric behaviors between high and low dielectric states, connected with the changes in the dynamics of 1,5-pentanediammonium cations during its centrosymmetric-to-noncentrosymmetric symmetry breaking phase transition at 365.4 K.

  15. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    NASA Astrophysics Data System (ADS)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  16. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  17. Use of the quasi-geostrophic dynamical framework to reconstruct the 3-D ocean state in a high-resolution realistic simulation of North Atlantic.

    NASA Astrophysics Data System (ADS)

    Fresnay, Simon; Ponte, Aurélien

    2017-04-01

    The quasi-geostrophic (QG) framework has been, is and will be still for years to come a cornerstone method linking observations with estimates of the ocean circulation and state. We have used here the QG framework to reconstruct dynamical variables of the 3-D ocean in a state-of-the-art high-resolution (1/60 deg, 300 vertical levels) numerical simulation of the North Atlantic (NATL60). The work was carried out in 3 boxes of the simulation: Gulf Stream, Azores and Reykjaness Ridge. In a first part, general diagnostics describing the eddying dynamics have been performed and show that the QG scaling verifies in general, at depths distant from mixed layer and bathymetric gradients. Correlations with surface observables variables (e.g. temperature, sea level) were computed and estimates of quasi-geostrophic potential vorticity (QGPV) were reconstructed by the means of regression laws. It is shown that that reconstruction of QGPV exhibits valuable skill for a restricted scale range, mainly using sea level as the variable of regression. Additional discussion is given, based on the flow balanced with QGPV. This work is part of the DIMUP project, aiming to improve our ability to operationnaly estimate the ocean state.

  18. Model projections of rapid sea-level rise on the northeast coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.

    2009-04-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  19. Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schlesinger, M.; Stouffer, R. J.

    2009-12-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  20. Ultrafast multiphoton ionization dynamics and control of NaK molecules

    NASA Astrophysics Data System (ADS)

    Davidsson, Jan; Hansson, Tony; Mukhtar, Emad

    1998-12-01

    The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.

  1. Sensitivity vector fields in time-delay coordinate embeddings: theory and experiment.

    PubMed

    Sloboda, A R; Epureanu, B I

    2013-02-01

    Identifying changes in the parameters of a dynamical system can be vital in many diagnostic and sensing applications. Sensitivity vector fields (SVFs) are one way of identifying such parametric variations by quantifying their effects on the morphology of a dynamical system's attractor. In many cases, SVFs are a more effective means of identification than commonly employed modal methods. Previously, it has only been possible to construct SVFs for a given dynamical system when a full set of state variables is available. This severely restricts SVF applicability because it may be cost prohibitive, or even impossible, to measure the entire state in high-dimensional systems. Thus, the focus of this paper is constructing SVFs with only partial knowledge of the state by using time-delay coordinate embeddings. Local models are employed in which the embedded states of a neighborhood are weighted in a way referred to as embedded point cloud averaging. Application of the presented methodology to both simulated and experimental time series demonstrates its utility and reliability.

  2. Modeling T-cell activation using gene expression profiling and state-space models.

    PubMed

    Rangel, Claudia; Angus, John; Ghahramani, Zoubin; Lioumi, Maria; Sotheran, Elizabeth; Gaiba, Alessia; Wild, David L; Falciani, Francesco

    2004-06-12

    We have used state-space models to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a well-established model of T-cell activation. State space models are a class of dynamic Bayesian networks that assume that the observed measurements depend on some hidden state variables that evolve according to Markovian dynamics. These hidden variables can capture effects that cannot be measured in a gene expression profiling experiment, e.g. genes that have not been included in the microarray, levels of regulatory proteins, the effects of messenger RNA and protein degradation, etc. Bootstrap confidence intervals are developed for parameters representing 'gene-gene' interactions over time. Our models represent the dynamics of T-cell activation and provide a methodology for the development of rational and experimentally testable hypotheses. Supplementary data and Matlab computer source code will be made available on the web at the URL given below. http://public.kgi.edu/~wild/LDS/index.htm

  3. Estimating Power System Dynamic States Using Extended Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less

  4. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng

    2010-11-15

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression canmore » be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.« less

  5. Effect of bioaugmented inoculation on microbiota dynamics during solid-state fermentation of Daqu starter using autochthonous of Bacillus, Pediococcus, Wickerhamomyces and Saccharomycopsis.

    PubMed

    Li, Pan; Lin, Weifeng; Liu, Xiong; Wang, Xiaowen; Gan, Xing; Luo, Lixin; Lin, Wei-Tie

    2017-02-01

    Daqu, a traditional fermentation starter that is used for Chinese liquor and vinegar production, is still manufactured through a traditional spontaneous solid-state fermentation process with no selected microorganisms are intentionally inoculated. The aim of this work was to analyze the microbiota dynamics during the solid-state fermentation process of Daqu using a traditional and bioaugmented inoculation with autochthonous of Bacillus, Pediococcus, Saccharomycopsis and Wickerhamomyces at an industrial scale. Highly similar dynamics of physicochemical parameters, enzymatic activities and microbial communities were observed during the traditional and bioaugmented solid-state fermentation processes. Both in the two cases, groups of Streptophyta, Rickettsiales and Xanthomonadales only dominated the first two days, but Bacillales and Eurotiales became predominant members after 2 and 10 days fermentation, respectively. Phylotypes of Enterobacteriales, Lactobacillales, Saccharomycetales and Mucorales dominated the whole fermentation process. No significant difference (P > 0.05) in microbial structure was observed between the traditional and bioaugmented fermentation processes. However, slightly higher microbial richness was found during the bioaugmented fermentation process after 10 days fermentation. Our results reinforced the microbiota dynamic stability during the solid-state fermentation process of Daqu, and might aid in controlling the traditional Daqu manufacturing process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.

    PubMed

    Lei, Hongxing; Wu, Chun; Liu, Haiguang; Duan, Yong

    2007-03-20

    High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The protein folded consistently to the native state; the lowest C(alpha)-rmsd from the x-ray structure was 0.46 A, and the C(alpha)- rmsd of the center of the most populated cluster was 1.78 A at 300 K. ab initio simulations have previously not reached this level. The folding landscape of HP35 can be partitioned into the native, denatured, and two intermediate-state regions. The native state is separated from the major folding intermediate state by a small barrier, whereas a large barrier exists between the major folding intermediate and the denatured states. The melting temperature T(m) = 339 K extracted from the heat-capacity profile was in close agreement with the experimentally derived T(m) = 342 K. A comprehensive picture of the kinetics and thermodynamics of HP35 folding emerges when the results from replica exchange and conventional molecular dynamics simulations are combined.

  7. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  8. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  9. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    PubMed

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  10. Dynamic spin injection into a quantum well coupled to a spin-split bound state

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.

    2018-05-01

    We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.

  11. Dynamic Jahn-Teller effect in the parent insulating state of the molecular superconductor Cs₃C₆₀.

    PubMed

    Klupp, Gyöngyi; Matus, Péter; Kamarás, Katalin; Ganin, Alexey Y; McLennan, Alec; Rosseinsky, Matthew J; Takabayashi, Yasuhiro; McDonald, Martin T; Prassides, Kosmas

    2012-06-19

    The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the dynamic Jahn-Teller effect as the source of the dramatic change in electronic structure occurring during the transition from the metallic to the localized state. We apply infrared spectroscopy, which can detect subtle changes in the shape of the C(60)3- ion due to the Jahn-Teller distortion. The temperature dependence of the spectra in the insulating phase can be explained by the gradual transformation from two temperature-dependent solid-state conformers to a single one, typical and unique for Jahn-Teller systems. These results unequivocally establish the relevance of the dynamic Jahn-Teller effect to overcoming Hund's rule and forming a low-spin state, leading to a magnetic Mott-Jahn-Teller insulator.

  12. Phase-sensitive atomic dynamics in quantum light

    NASA Astrophysics Data System (ADS)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  13. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    PubMed

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  14. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  15. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    PubMed

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  16. Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model

    PubMed Central

    McDonnell, Mark D.; Ward, Lawrence M.

    2014-01-01

    Abstract Directed random graph models frequently are used successfully in modeling the population dynamics of networks of cortical neurons connected by chemical synapses. Experimental results consistently reveal that neuronal network topology is complex, however, in the sense that it differs statistically from a random network, and differs for classes of neurons that are physiologically different. This suggests that complex network models whose subnetworks have distinct topological structure may be a useful, and more biologically realistic, alternative to random networks. Here we demonstrate that the balanced excitation and inhibition frequently observed in small cortical regions can transiently disappear in otherwise standard neuronal-scale models of fluctuation-driven dynamics, solely because the random network topology was replaced by a complex clustered one, whilst not changing the in-degree of any neurons. In this network, a small subset of cells whose inhibition comes only from outside their local cluster are the cause of bistable population dynamics, where different clusters of these cells irregularly switch back and forth from a sparsely firing state to a highly active state. Transitions to the highly active state occur when a cluster of these cells spikes sufficiently often to cause strong unbalanced positive feedback to each other. Transitions back to the sparsely firing state rely on occasional large fluctuations in the amount of non-local inhibition received. Neurons in the model are homogeneous in their intrinsic dynamics and in-degrees, but differ in the abundance of various directed feedback motifs in which they participate. Our findings suggest that (i) models and simulations should take into account complex structure that varies for neuron and synapse classes; (ii) differences in the dynamics of neurons with similar intrinsic properties may be caused by their membership in distinctive local networks; (iii) it is important to identify neurons that share physiological properties and location, but differ in their connectivity. PMID:24743633

  17. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2015-01-01

    Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  18. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, Nick

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less

  19. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework

    PubMed Central

    Stokes, Mark G.

    2015-01-01

    Working memory (WM) provides the functional backbone to high-level cognition. Maintenance in WM is often assumed to depend on the stationary persistence of neural activity patterns that represent memory content. However, accumulating evidence suggests that persistent delay activity does not always accompany WM maintenance but instead seems to wax and wane as a function of the current task relevance of memoranda. Furthermore, new methods for measuring and analysing population-level patterns show that activity states are highly dynamic. At first glance, these dynamics seem at odds with the very nature of WM. How can we keep a stable thought in mind while brain activity is constantly changing? This review considers how neural dynamics might be functionally important for WM maintenance. PMID:26051384

  20. Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics

    PubMed Central

    McClean, Jarrod R.; Parkhill, John A.; Aspuru-Guzik, Alán

    2013-01-01

    We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics. PMID:24062428

  1. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  2. A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation.

    PubMed

    Ruff, Emily F; Muretta, Joseph M; Thompson, Andrew R; Lake, Eric W; Cyphers, Soreen; Albanese, Steven K; Hanson, Sonya M; Behr, Julie M; Thomas, David D; Chodera, John D; Levinson, Nicholas M

    2018-02-21

    Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases. © 2018, Ruff et al.

  3. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  4. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less

  5. Preparing and probing many-body correlated systems in a Quantum Gas Microscope by engineering arbitrary landscape potentials

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus

    2015-05-01

    Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.

  6. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    PubMed Central

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  7. Density of states and dynamical crossover in a dense fluid revealed by exponential mode analysis of the velocity autocorrelation function

    NASA Astrophysics Data System (ADS)

    Bellissima, S.; Neumann, M.; Guarini, E.; Bafile, U.; Barocchi, F.

    2017-01-01

    Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015), 10.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave vectors.

  8. From microscopic rules to macroscopic dynamics with active colloidal snakes

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Yan, Jing; Granick, Steve

    Seeking to learn about self-assembly far from equilibrium, these imaging experiments inspect self-propelled colloidal particles whose heads and tails attract other particles reversibly as they swim. We observe processes akin to polymerization (short times) and chain scission and recombination (long times). The steady-state of dilute systems consists of discrete rings rotating in place with largely quenched dynamics, but when concentration is high, the system dynamics share features with turbulence. The dynamical rules of this model system appear to be scale-independent and hence potentially relevant more generally.

  9. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  10. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation.

    PubMed

    Chakraborty, Srirupa; Zheng, Wenjun

    2015-01-27

    We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.

  11. Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.

    PubMed

    Valenza, Gaetano; Nardelli, Mimma; Lanata', Antonio; Gentili, Claudio; Bertschy, Gilles; Kosel, Markus; Scilingo, Enzo Pasquale

    2016-04-20

    Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t1, t2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.

  12. Low-dimensional manifold of actin polymerization dynamics

    NASA Astrophysics Data System (ADS)

    Floyd, Carlos; Jarzynski, Christopher; Papoian, Garegin

    2017-12-01

    Actin filaments are critical components of the eukaryotic cytoskeleton, playing important roles in a number of cellular functions, such as cell migration, organelle transport, and mechanosensation. They are helical polymers with a well-defined polarity, composed of globular subunits that bind nucleotides in one of three hydrolysis states (ATP, ADP-Pi, or ADP). Mean-field models of the dynamics of actin polymerization have succeeded in, among other things, determining the nucleotide profile of an average filament and resolving the mechanisms of accessory proteins. However, these models require numerical solution of a high-dimensional system of nonlinear ordinary differential equations. By truncating a set of recursion equations, the Brooks-Carlsson (BC) model reduces dimensionality to 11, but it still remains nonlinear and does not admit an analytical solution, hence, significantly hindering understanding of its resulting dynamics. In this work, by taking advantage of the fast timescales of the hydrolysis states of the filament tips, we propose two model reduction schemes: the quasi steady-state approximation model is five-dimensional and nonlinear, whereas the constant tip (CT) model is five-dimensional and linear, resulting from the approximation that the tip states are not dynamic variables. We provide an exact solution of the CT model and use it to shed light on the dynamical behaviors of the full BC model, highlighting the relative ordering of the timescales of various collective processes, and explaining some unusual dependence of the steady-state behavior on initial conditions.

  13. Entropy, energy, and entanglement of localized states in bent triatomic molecules

    NASA Astrophysics Data System (ADS)

    Yuan, Qiang; Hou, Xi-Wen

    2017-05-01

    The dynamics of quantum entropy, energy, and entanglement is studied for various initial states in an important spectroscopic Hamiltonian of bent triatomic molecules H2O, D2O, and H2S. The total quantum correlation is quantified in terms of the mutual information and the entanglement by the concurrence borrowed from the theory of quantum information. The Pauli entropy and the intramolecular energy usually used in the theory of molecules are calculated to establish a possible relationship between both theories. Sections of two quantities among these four quantities are introduced to visualize such relationship. Analytic and numerical simulations demonstrate that if an initial state is taken to be the stretch- or the bend-vibrationally localized state, the mutual information, the Pauli entropy, and the concurrence are dominant-positively correlated while they are dominantly anti-correlated with the interacting energy among three anharmonic vibrational modes. In particular, such correlation is more distinct for the localized state with high excitations in the bending mode. The nice quasi-periodicity of those quantities in D2O molecule reveals that this molecule prepared in the localized state in the stretching or the bending mode can be more appreciated for molecular quantum computation. However, the dynamical correlations of those quantities behave irregularly for the dislocalized states. Moreover, the hierarchy of the mutual information and the Pauli entropy is explicitly proved. Quantum entropy and energy in every vibrational mode are investigated. Thereby, the relation between bipartite and tripartite entanglements is discussed as well. Those are useful for the understanding of quantum correlations in high-dimensional states in polyatomic molecules from quantum information and intramolecular dynamics.

  14. Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness

    PubMed Central

    Liu, Xiping; Pillay, Siveshigan

    2015-01-01

    Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200

  15. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin

    PubMed Central

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-01-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)-ubiquitin interaction. However, the underlying mechanism of the phospho-ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho-ubiquitin-bound states. In the Parkin monomer state, high structural flexibilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin-like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho-ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1-UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full-length Parkin in monomer and phospho-ubiquitin-bound states, providing insights into designing potential therapeutics against Parkinson's disease. PMID:28765939

  16. Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations.

    PubMed

    Kortkhonjia, Ekaterine; Brandman, Relly; Zhou, Joe Zhongxiang; Voelz, Vincent A; Chorny, Ilya; Kabakoff, Bruce; Patapoff, Thomas W; Dill, Ken A; Swartz, Trevor E

    2013-01-01

    The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.

  17. Efficient implementation of a real-time estimation system for thalamocortical hidden Parkinsonian properties

    NASA Astrophysics Data System (ADS)

    Yang, Shuangming; Deng, Bin; Wang, Jiang; Li, Huiyan; Liu, Chen; Fietkiewicz, Chris; Loparo, Kenneth A.

    2017-01-01

    Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özdemir, Semra Bayat; Demiralp, Metin

    The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.

  19. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  20. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.

    PubMed

    Rohlman, C E; Blanco, M R; Walter, N G

    2016-01-01

    The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly. © 2016 Elsevier Inc. All rights reserved.

  1. Teachers' Critical Evaluations of Dynamic Geometry Software Implementation in 1:1 Classrooms

    ERIC Educational Resources Information Center

    Ware, Jennifer; Stein, Sarah

    2014-01-01

    Although the use of dynamic software in high school mathematics in the United States has emerged as a research topic, little research has been conducted on how teachers integrate new software in relation to at-home technology networks. Interviews with eight mathematics teachers from four North Carolina counties participating in 1:1 laptop…

  2. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    PubMed

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  3. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates

    PubMed Central

    Cilento, Federico; Manzoni, Giulia; Sterzi, Andrea; Peli, Simone; Ronchi, Andrea; Crepaldi, Alberto; Boschini, Fabio; Cacho, Cephise; Chapman, Richard; Springate, Emma; Eisaki, Hiroshi; Greven, Martin; Berciu, Mona; Kemper, Alexander F.; Damascelli, Andrea; Capone, Massimo; Giannetti, Claudio; Parmigiani, Fulvio

    2018-01-01

    Many puzzling properties of high–critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu–O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu–O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates. PMID:29507885

  4. Reduced size first-order subsonic and supersonic aeroelastic modeling

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.

  5. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal approach, a method using measured vibration amplitudes and measured or calculated modal characteristics of the model system is developed to correct for dynamic bias errors in the model attitude measurements. The correction method is verified through dynamic response tests on two model systems and actual wind tunnel test data.

  6. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence

    PubMed Central

    Kelly, David; Majda, Andrew J.; Tong, Xin T.

    2015-01-01

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335

  7. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    PubMed

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  8. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, Willie

    2016-02-11

    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  9. 1981 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics and Explosion Research, 16-20 November 1981, Clearwater Beach, Florida

    DTIC Science & Technology

    1981-09-01

    Atomi:Mation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air StreamsIi J. Schetz VPI and State University 9:00 Turbulent Mixing and...Aeronautical Laboratories (AFWAL) 8:35 Injection, Atomt:ation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air Streams J...State University Transverse injection of liquid and/or liquid -slurry jets into high speed airstreams finds application in several propulsion-related

  10. Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)

    NASA Technical Reports Server (NTRS)

    Matalanis, Claude G.; Bowles, Patrick O.; Jee, Solkeun; Min, Byung-Young; Kuczek, Andrzej E.; Croteau, Paul F.; Wake, Brian E.; Crittenden, Thomas; Glezer, Ari; Lorber, Peter F.

    2016-01-01

    Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.

  11. Dynamics and Steady States in Excitable Mobile Agent Systems

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando; Sibona, Gustavo J.

    2008-04-01

    We study the spreading of excitations in 2D systems of mobile agents where the excitation is transmitted when a quiescent agent keeps contact with an excited one during a nonvanishing time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover, the coupling between exposition time (ω) and agent-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR, and, for high CR, a novel third regime, model dependent, where S scales with an exponent ξ-1, with ξ being the scaling exponent of ω with CR.

  12. Dynamic Resting-State Functional Connectivity in Major Depression.

    PubMed

    Kaiser, Roselinde H; Whitfield-Gabrieli, Susan; Dillon, Daniel G; Goer, Franziska; Beltzer, Miranda; Minkel, Jared; Smoski, Moria; Dichter, Gabriel; Pizzagalli, Diego A

    2016-06-01

    Major depressive disorder (MDD) is characterized by abnormal resting-state functional connectivity (RSFC), especially in medial prefrontal cortical (MPFC) regions of the default network. However, prior research in MDD has not examined dynamic changes in functional connectivity as networks form, interact, and dissolve over time. We compared unmedicated individuals with MDD (n=100) to control participants (n=109) on dynamic RSFC (operationalized as SD in RSFC over a series of sliding windows) of an MPFC seed region during a resting-state functional magnetic resonance imaging scan. Among participants with MDD, we also investigated the relationship between symptom severity and RSFC. Secondary analyses probed the association between dynamic RSFC and rumination. Results showed that individuals with MDD were characterized by decreased dynamic (less variable) RSFC between MPFC and regions of parahippocampal gyrus within the default network, a pattern related to sustained positive connectivity between these regions across sliding windows. In contrast, the MDD group exhibited increased dynamic (more variable) RSFC between MPFC and regions of insula, and higher severity of depression was related to increased dynamic RSFC between MPFC and dorsolateral prefrontal cortex. These patterns of highly variable RSFC were related to greater frequency of strong positive and negative correlations in activity across sliding windows. Secondary analyses indicated that increased dynamic RSFC between MPFC and insula was related to higher levels of recent rumination. These findings provide initial evidence that depression, and ruminative thinking in depression, are related to abnormal patterns of fluctuating communication among brain systems involved in regulating attention and self-referential thinking.

  13. Dynamical emergence of the Universe into the false vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafelski, Johann; Birrell, Jeremiah, E-mail: rafelski@physics.arizona.edu, E-mail: jbirrell@email.arizona.edu

    We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=( h), even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v{sub 1}, v{sub 2} can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccuamore » due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.« less

  14. Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements

    PubMed Central

    Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin

    2017-01-01

    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629

  15. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  16. Push or Pull? -- Cryo-Electron Microscopy of Microtubule's Dynamic Instability and Its Roles in the Kinetochore

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei

    2009-03-01

    Microtubule is a biopolymer made up of alpha-beta-tubulin heterodimers. The tubulin dimers assemble head-to-tail as protofilaments and about 13 protofilaments interact laterally to form a hollow cylindrical structure which is the microtubule. As the major cytoskeleton in all eukaryotic cells, microtubules have the intrinsic property to switch stochastically between growth and shrinkage phases, a phenomenon termed as their dynamic instability. Microtubule's dynamic instability is closely related to the types of nucleotide (GTP or GDP) that binds to the beta-tubulin. We have biochemically trapped two types of assembly states of tubulin with GTP or GDP bound representing the polymerizing and depolymerizing ends of microtubules respectively. Using cryo-electron microscopy, we have elucidated the structures of these intermediate assemblies, showing that tubulin protofilaments demonstrate various curvatures and form different types of lateral interactions depending on the nucleotide states of tubulin and the temperature. Our work indicates that during the microtubule's dynamic cycle, tubulin undergoes various assembly states. These states, different from the straight microtubule, lend the highly dynamic and complicated behavior of microtubules. Our study of microtubule's interaction with certain kinetochore complexes suggests that the intermediate assemblies are responsible for specific mechanical forces that are required during the mitosis or meiosis. Our discoveries strongly suggest that a microtubule is a molecular machine rather than a simple cellular scaffold.

  17. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  18. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site

    PubMed Central

    Stafford, Kate A.; Palmer III, Arthur G.

    2014-01-01

    Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold. PMID:25075292

  19. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation

    PubMed Central

    Wen, Han; Qin, Feng; Zheng, Wenjun

    2016-01-01

    As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state vs. the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. PMID:27699868

  20. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2014-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.

  1. Effects of dynamical grouping on cooperation in N-person evolutionary snowdrift game

    NASA Astrophysics Data System (ADS)

    Ji, M.; Xu, C.; Hui, P. M.

    2011-09-01

    A population typically consists of agents that continually distribute themselves into different groups at different times. This dynamic grouping has recently been shown to be essential in explaining many features observed in human activities including social, economic, and military activities. We study the effects of dynamic grouping on the level of cooperation in a modified evolutionary N-person snowdrift game. Due to the formation of dynamical groups, the competition takes place in groups of different sizes at different times and players of different strategies are mixed by the grouping dynamics. It is found that the level of cooperation is greatly enhanced by the dynamic grouping of agents, when compared with a static population of the same size. As a parameter β, which characterizes the relative importance of the reward and cost, increases, the fraction of cooperative players fC increases and it is possible to achieve a fully cooperative state. Analytically, we present a dynamical equation that incorporates the effects of the competing game and group size distribution. The distribution of cooperators in different groups is assumed to be a binomial distribution, which is confirmed by simulations. Results from the analytic equation are in good agreement with numerical results from simulations. We also present detailed simulation results of fC over the parameter space spanned by the probabilities of group coalescence νm and group fragmentation νp in the grouping dynamics. A high νm and low νp promotes cooperation, and a favorable reward characterized by a high β would lead to a fully cooperative state.

  2. Modeling the Dynamics of Disease States in Depression

    PubMed Central

    Demic, Selver; Cheng, Sen

    2014-01-01

    Major depressive disorder (MDD) is a common and costly disorder associated with considerable morbidity, disability, and risk for suicide. The disorder is clinically and etiologically heterogeneous. Despite intense research efforts, the response rates of antidepressant treatments are relatively low and the etiology and progression of MDD remain poorly understood. Here we use computational modeling to advance our understanding of MDD. First, we propose a systematic and comprehensive definition of disease states, which is based on a type of mathematical model called a finite-state machine. Second, we propose a dynamical systems model for the progression, or dynamics, of MDD. The model is abstract and combines several major factors (mechanisms) that influence the dynamics of MDD. We study under what conditions the model can account for the occurrence and recurrence of depressive episodes and how we can model the effects of antidepressant treatments and cognitive behavioral therapy within the same dynamical systems model through changing a small subset of parameters. Our computational modeling suggests several predictions about MDD. Patients who suffer from depression can be divided into two sub-populations: a high-risk sub-population that has a high risk of developing chronic depression and a low-risk sub-population, in which patients develop depression stochastically with low probability. The success of antidepressant treatment is stochastic, leading to widely different times-to-remission in otherwise identical patients. While the specific details of our model might be subjected to criticism and revisions, our approach shows the potential power of computationally modeling depression and the need for different type of quantitative data for understanding depression. PMID:25330102

  3. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju

    2015-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826

  4. A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinghe; Welch, Greg; Bishop, Gary

    2014-04-01

    As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practicemore » the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.« less

  5. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  6. A juvenile-adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects.

    PubMed

    Veprauskas, Amy; Cushing, J M

    2017-03-01

    We study a discrete time, structured population dynamic model that is motivated by recent field observations concerning certain life history strategies of colonial-nesting gulls, specifically the glaucous-winged gull (Larus glaucescens). The model focuses on mechanisms hypothesized to play key roles in a population's response to degraded environment resources, namely, increased cannibalism and adjustments in reproductive timing. We explore the dynamic consequences of these mechanics using a juvenile-adult structure model. Mathematically, the model is unusual in that it involves a high co-dimension bifurcation at [Formula: see text] which, in turn, leads to a dynamic dichotomy between equilibrium states and synchronized oscillatory states. We give diagnostic criteria that determine which dynamic is stable. We also explore strong Allee effects caused by positive feedback mechanisms in the model and the possible consequence that a cannibalistic population can survive when a non-cannibalistic population cannot.

  7. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    PubMed

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  8. Topological solitons in helical strings

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano; Balatsky, Alexander V.

    2015-06-01

    The low-energy physics of (quasi)degenerate one-dimensional systems is typically understood as the particle-like dynamics of kinks between stable, ordered structures. Such dynamics, we show, becomes highly nontrivial when the ground states are topologically constrained: a dynamics of the domains rather than on the domains which the kinks separate. Motivated by recently reported observations of charged polymers physio-adsorbed on nanotubes, we study kinks between helical structures of a string wrapping around a cylinder. While their motion cannot be disentangled from domain dynamics, and energy and momentum is not concentrated in the solitons, the dynamics of the domains can be folded back into a particle-like description of the local excitations.

  9. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  10. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  11. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    NASA Astrophysics Data System (ADS)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; Donner, Leo; Golaz, Jean-Christophe; Seman, Charles

    2017-12-01

    We define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, and high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. We find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.

  12. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE PAGES

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; ...

    2017-11-16

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  13. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  14. High-performance holographic technologies for fluid-dynamics experiments

    PubMed Central

    Orlov, Sergei S.; Abarzhi, Snezhana I.; Oh, Se Baek; Barbastathis, George; Sreenivasan, Katepalli R.

    2010-01-01

    Modern technologies offer new opportunities for experimentalists in a variety of research areas of fluid dynamics. Improvements are now possible in the state-of-the-art in precision, dynamic range, reproducibility, motion-control accuracy, data-acquisition rate and information capacity. These improvements are required for understanding complex turbulent flows under realistic conditions, and for allowing unambiguous comparisons to be made with new theoretical approaches and large-scale numerical simulations. One of the new technologies is high-performance digital holography. State-of-the-art motion control, electronics and optical imaging allow for the realization of turbulent flows with very high Reynolds number (more than 107) on a relatively small laboratory scale, and quantification of their properties with high space–time resolutions and bandwidth. In-line digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 frames per second) over a relatively large spatial area with high spatial (1–10 μm) and temporal (better than a few nanoseconds) resolution, and can give accurate quantitative description of the fluid flows, including those of multi-phase and unsteady conditions. This technology can be applied in a variety of problems to study fundamental properties of flow–particle interactions, rotating flows, non-canonical boundary layers and Rayleigh–Taylor mixing. Some of these examples are discussed briefly. PMID:20211881

  15. Conflict for Resources: Water in the Lake Chad Basin

    DTIC Science & Technology

    2009-01-01

    Security 19 (1994), http://www.library.utoronto.ca/pcs/evidence (accessed 10 February 2009). 11 Miriam Lowi, Water and Power (Cambridge, UK : Cambridge...states wage wars and how scarce natural resources influence the states. Carl von Clausewitz’s treatise, On War serves as a starting point for any...has lots of water, very little of it is freshwater. Miriam Lowi, author of Water and Power describes political dynamics of high and low politics. High

  16. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  17. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    PubMed

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  18. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  19. A new ODE tumor growth modeling based on tumor population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  20. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  1. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  2. Who Is Overeducated and Why? Probit and Dynamic Mixed Multinomial Logit Analyses of Vertical Mismatch in East and West Germany

    ERIC Educational Resources Information Center

    Boll, Christina; Leppin, Julian Sebastian; Schömann, Klaus

    2016-01-01

    Overeducation potentially signals a productivity loss. With Socio-Economic Panel data from 1984 to 2011 we identify drivers of educational mismatch for East and West medium and highly educated Germans. Addressing measurement error, state dependence and unobserved heterogeneity, we run dynamic mixed multinomial logit models for three different…

  3. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    PubMed Central

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-01-01

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164

  4. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    PubMed

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-09-02

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  5. Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Shu, Wenjun

    2017-03-01

    The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.

  6. Organic semiconductors: Dynamic duos

    NASA Astrophysics Data System (ADS)

    Wasielewski, Michael R.

    2017-02-01

    The discovery of intermediate high-spin multiexciton states with surprisingly long lifetimes provides new opportunities for engineering singlet fission, which may also provide an intriguing route to quantum information and spintronic applications.

  7. Sub-femtosecond quantum dynamics of the strong-field ionization of water to the X ̃(2)B1 and Ã(2)A1 states of the cation.

    PubMed

    Jayachander Rao, B; Varandas, A J C

    2015-03-07

    Motivated by recent efforts to achieve sub-femtosecond structural resolution in various molecular systems, we have performed a femtosecond quantum dynamics study of the water cation in the X ̃(2)B1 and Ã(2)A1 electronic states. Autocorrelation functions for H2O(+) and D2O(+) are calculated for such electronic states by solving numerically the time-dependent Schrödinger equation. From the ratio of the squared autocorrelation functions of D2O(+) and H2O(+), the high-order harmonic generation signals are calculated. Substantial vibrational dynamics is found in the Ã(2)A1 state as compared to the one in X ̃(2)B1, which supports recent experimental findings of Farrell et al., Phys. Rev. Lett., 2011, 107, 083001. Maxima in the above ratio are also predicted at ∼1.1 fs and ∼1.6 fs for the X ̃(2)B1 and Ã(2)A1 states, respectively. The expectation values of the positions of the atoms in H2O(+) as a function of time reveal a strong excitation of the bending mode in the Ã(2)A1 state, which explains the observed vibrational dynamics. The peaks in the ratios of the squared autocorrelation functions are also explained in terms of the evolving geometries of the water cation.

  8. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients.

    PubMed

    Miller, Robyn L; Yaesoubi, Maziar; Turner, Jessica A; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject's trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls.

  9. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients

    PubMed Central

    Miller, Robyn L.; Yaesoubi, Maziar; Turner, Jessica A.; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D.

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject’s trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls. PMID:26981625

  10. School Finance Reform: Do Equalized Expenditures Imply Equalized Teacher Salaries?

    ERIC Educational Resources Information Center

    Streams, Meg; Butler, J. S.; Cowen, Joshua; Fowles, Jacob; Toma, Eugenia F.

    2011-01-01

    Kentucky is a poor, relatively rural state that contrasts greatly with the relatively urban and wealthy states typically the subject of education studies employing large-scale administrative data. For this reason, Kentucky's experience of major school finance and curricular reform is highly salient for understanding teacher labor market dynamics.…

  11. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  12. Clustering Effect on the Dynamics in a Spatial Rock-Paper-Scissors System

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tsuyoshi; Sato, Kazunori; Ichinose, Genki; Miyazaki, Rinko; Tainaka, Kei-ichi

    2018-01-01

    The lattice dynamics for rock-paper-scissors games is related to population theories in ecology. In most cases, simulations are performed by local and global interactions. It is known in the former case that the dynamics is usually stable. We find two types of non-random distributions in the stationary state. One is a cluster formation of endangered species: when the density of a species approaches zero, its clumping degree diverges to infinity. The other is the strong aggregations of high-density species. Such spatial pattern formations play important roles in population dynamics.

  13. Cybersecurity Dynamics

    DTIC Science & Technology

    2014-08-20

    of Cybersecurity Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack...Dynamics emerged. Intuitively, Cybersecurity Dynamics describes the evolution of cybersecurity state as caused by cyber attack-defense interactions...evolution of cyberse- curity state as caused by cyber attack-defense interactions. By studying Cybersecurity Dynamics, we can characterize the

  14. A Markov Environment-dependent Hurricane Intensity Model and Its Comparison with Multiple Dynamic Models

    NASA Astrophysics Data System (ADS)

    Jing, R.; Lin, N.; Emanuel, K.; Vecchi, G. A.; Knutson, T. R.

    2017-12-01

    A Markov environment-dependent hurricane intensity model (MeHiM) is developed to simulate the climatology of hurricane intensity given the surrounding large-scale environment. The model considers three unobserved discrete states representing respectively storm's slow, moderate, and rapid intensification (and deintensification). Each state is associated with a probability distribution of intensity change. The storm's movement from one state to another, regarded as a Markov chain, is described by a transition probability matrix. The initial state is estimated with a Bayesian approach. All three model components (initial intensity, state transition, and intensity change) are dependent on environmental variables including potential intensity, vertical wind shear, midlevel relative humidity, and ocean mixing characteristics. This dependent Markov model of hurricane intensity shows a significant improvement over previous statistical models (e.g., linear, nonlinear, and finite mixture models) in estimating the distributions of 6-h and 24-h intensity change, lifetime maximum intensity, and landfall intensity, etc. Here we compare MeHiM with various dynamical models, including a global climate model [High-Resolution Forecast-Oriented Low Ocean Resolution model (HiFLOR)], a regional hurricane model (Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model), and a simplified hurricane dynamic model [Coupled Hurricane Intensity Prediction System (CHIPS)] and its newly developed fast simulator. The MeHiM developed based on the reanalysis data is applied to estimate the intensity of simulated storms to compare with the dynamical-model predictions under the current climate. The dependences of hurricanes on the environment under current and future projected climates in the various models will also be compared statistically.

  15. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  16. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    PubMed

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.

  17. Dynamic Forms. Part 2; Application to Aircraft Guidance

    NASA Technical Reports Server (NTRS)

    Meyer, George; Smith, G. Allan

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional, multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions are required to be smooth. The proposed guidance algorithm is based on the inversion of the pure feedback approximation, followed by correction for the effects of zero dynamics. The paper describes the structure and major modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  18. Dynamics in the Fitness-Income plane: Brazilian states vs World countries

    PubMed Central

    Operti, Felipe G.; Pugliese, Emanuele; Andrade, José S.; Pietronero, Luciano

    2018-01-01

    In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the last decade, several indices were introduced to measure the competitiveness of countries by looking at the complexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the other BRIC countries, we introduce a new methodology based on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two regimes are distinguishable: one with high predictability and the other with low predictability, showing a deep analogy with the heterogeneous dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian states according to the Exogenous Fitness with the ranking obtained through two other techniques, namely Endogenous Fitness and Economic Complexity Index. PMID:29874265

  19. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    PubMed

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  20. Dynamics in the Fitness-Income plane: Brazilian states vs World countries.

    PubMed

    Operti, Felipe G; Pugliese, Emanuele; Andrade, José S; Pietronero, Luciano; Gabrielli, Andrea

    2018-01-01

    In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the last decade, several indices were introduced to measure the competitiveness of countries by looking at the complexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the other BRIC countries, we introduce a new methodology based on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two regimes are distinguishable: one with high predictability and the other with low predictability, showing a deep analogy with the heterogeneous dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian states according to the Exogenous Fitness with the ranking obtained through two other techniques, namely Endogenous Fitness and Economic Complexity Index.

  1. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  2. Dynamics and Tolerance of Superionics in Extreme Environment

    NASA Astrophysics Data System (ADS)

    Annamareddy, Venkata Ajay Krishna Choudary

    Superionic conductors are multi-component solid-state systems in which one sub-lattice exhibits exceptional ionic conductivity, which is comparable to molten state; among other things, the high ionic conductivity facilitates their use as solid-state electrolytes. Uranium di-oxide (UO 2)--the material of choice for fuel in most nuclear reactors--also shows superionic behavior, although very little is understood currently on the fast ion transport in UO2, and its implication. This dissertation aims to provide a better understanding of the dynamical characteristics of superionic conductors under both equilibrium and non-equilibrium thermodynamic conditions. In the first part, the emphasis is on equilibrium fluctuations and associated properties of Type II superionic conductors. Using atomistic simulations as well as available neutron and x-ray scattering data, the order-disorder transition or onset of superionic state for Type II conductors at a certain characteristic temperature (Talpha) is first revealed. Talpha marks a structural and kinetic crossover from a crystalline state to a semi-ordered state and is clearly different from the well-known thermodynamic superionic transition (T lambda). Though not favored by entropic forces, collective and cooperative dynamical effects, reminiscent of glassy states, are manifested in the temperature range spanned by Talpha and T lambda. Using atomistic simulations, dynamical heterogeneity (DH)--presence of clustered mobile and immobile regions in a static-homogeneous system--a ubiquitous feature of supercooled liquids and glassy states, is shown to germinate at Talpha. Using reliable metrics, the DH is shown to strengthen with increasing temperature, peak at an intermediate temperature between Talpha and Tlambda , and then recede. This manifestation of DH in superionics markedly differs from that in supercooled liquids through its initial growth against the destabilizing entropic barriers. Atomistic simulations further show that DH in superionics arises from facilitated dynamics, or the phenomenon of dynamic facilitation (DF). Using mobility transfer function, which gives the probability of a neighbor of a mobile ion becoming mobile relative to that of a random ion becoming mobile, it is shown that mobility propagates continuously to the neighboring ions with the strength of the DF increasing at the order-disorder temperature ( Talpha), exhibiting a maximum at an intermediate temperature, and then decreasing as the temperature approaches T lambda. This waxing and waning behavior with temperature is nearly identical to the variation of DH. Thus the close correspondence between DH and DF strongly indicates that DF underpins the heterogeneous dynamics in Type II superionic conductors. In a dynamically facilitated system, a jammed region can become unjammed only if it is physically adjacent to a mobile region. Remarkably, a string-like displacement of ions, the quintessential mode of particle mobility in jammed systems, is shown to operate in Type II superionics as well. The probability distribution of the length of the string is shown to vary exponentially, which is identical to that observed in supercooled and jammed states. Thus the demonstration of DH, DF and string-like cooperative ionic displacements in superionics that closely parallel the dynamic characteristics of supercooled liquids and glassy states, significantly augments the already existing but scant list of phenomenological similarities between these two distinct types of materials. The second part of this dissertation deals with non-equilibrium displacement-cascade simulations of UO2 that is used as a nuclear fuel. UO2 is known to resist amorphization even when subjected to intense nuclear radiations; analysis based on structure and energy does explain this behavior from a thermodynamic perspective. Radiation is inherently dynamic (non-equilibrium), and thus it is pertinent to understand the dynamics of the displaced ions during the annealing process. In this dissertation, the mechanism of dynamic recovery following a radiation knock at the atomistic level is investigated. It is shown that oxygen ions following a radiation perturbation exhibit correlated motion, which is similar to that in high temperature superionic state. Quite remarkably, the displaced oxygen ions also undergo fast recovery to their native lattice sites through collective string-like displacements that show an exponential distribution. Thus the superionic characteristics of UO2 under equilibrium conditions are also instrumental in fast defect recovery following a radiation perturbation.

  3. Noise effects in bacterial motor switch

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    2006-03-01

    The clockwise (CW) or counter clockwise (CCW) spinning of bacterial flagellar motors is controlled by the concentration of a phosphorylated protein CheY-P. In this talk, we represent the stochastic switching behavior of a bacterial flagellar motor by a dynamical two-state (CW and CCW) model, with the energy levels of the two states fluctuating in time according to the variation of the CheY-P concentration in the cell. We show that with a generic normal distribution and a modest amplitude for CheY-P concentration fluctuations, the dynamical two-state model is capable of generating a power-law distribution (as opposed to an exponential Poisson-like distribution) for the durations of the CCW states, in agreement with recent experimental observations of Korobkova et al (Nature, 428, 574(2004)). In addition, we show that the power spectrum for the flagellar motor switching time series is not determined solely by the power-law duration distribution, but also by the temporal correlation between the duration times of different CCW intervals. We point out the intrinsic connection between anomalously large fluctuations of the motor output and the overall high gain of the bacterial chemotaxis system. Suggestions for experimental verification of the dynamical two-state model will also be discussed.

  4. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  5. Two-rate periodic protocol with dynamics driven through many cycles

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki

    2017-02-01

    We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.

  6. Crystallization dynamics on curved surfaces

    NASA Astrophysics Data System (ADS)

    García, Nicolás A.; Register, Richard A.; Vega, Daniel A.; Gómez, Leopoldo R.

    2013-07-01

    We study the evolution from a liquid to a crystal phase in two-dimensional curved space. At early times, while crystal seeds grow preferentially in regions of low curvature, the lattice frustration produced in regions with high curvature is rapidly relaxed through isolated defects. Further relaxation involves a mechanism of crystal growth and defect annihilation where regions with high curvature act as sinks for the diffusion of domain walls. The pinning of grain boundaries at regions of low curvature leads to the formation of a metastable structure of defects, characterized by asymptotically slow dynamics of ordering and activation energies dictated by the largest curvatures of the system. These glassylike ordering dynamics may completely inhibit the appearance of the ground-state structures.

  7. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    2017-10-13

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  8. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  9. Ultrafast dynamics of the lowest-lying neutral states in carbon dioxide

    DOE PAGES

    Wright, Travis W.; Champenois, Elio G.; Cryan, James P.; ...

    2017-02-17

    Here, we present a study of the ultrafast dissociation dynamics of the lowest-lying electronic excited states in CO 2 by using ultraviolet (UV) and extreme-ultraviolet (XUV) pulses from high-order harmonic generation. We observe two primary dissociation channels: a direct dissociation channel along the 1Π g electronically excited manifold, and a second channel which results from the mixing of electronic states. The direct dissociation channel is found to have a lifetime which is shorter than our experimental resolution, whereas the second channel has a significantly longer lifetime of nearly 200 fs. In this long-lived channel we observe a beating of themore » vibrational populations with a period of ~133 fs.« less

  10. Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states.

    PubMed

    Can, Mehmet Tarik; Kurkcuoglu, Zeynep; Ezeroglu, Gokce; Uyar, Arzu; Kurkcuoglu, Ozge; Doruker, Pemra

    2017-01-01

    The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.

  11. Systemic Case Formulation, Individualized Process Monitoring, and State Dynamics in a Case of Dissociative Identity Disorder.

    PubMed

    Schiepek, Günter K; Stöger-Schmidinger, Barbara; Aichhorn, Wolfgang; Schöller, Helmut; Aas, Benjamin

    2016-01-01

    Objective: The aim of this case report is to demonstrate the feasibility of a systemic procedure (synergetic process management) including modeling of the idiographic psychological system and continuous high-frequency monitoring of change dynamics in a case of dissociative identity disorder. The psychotherapy was realized in a day treatment center with a female client diagnosed with borderline personality disorder (BPD) and dissociative identity disorder. Methods: A three hour long co-creative session at the beginning of the treatment period allowed for modeling the systemic network of the client's dynamics of cognitions, emotions, and behavior. The components (variables) of this idiographic system model (ISM) were used to create items for an individualized process questionnaire for the client. The questionnaire was administered daily through an internet-based monitoring tool (Synergetic Navigation System, SNS), to capture the client's individual change process continuously throughout the therapy and after-care period. The resulting time series were reflected by therapist and client in therapeutic feedback sessions. Results: For the client it was important to see how the personality states dominating her daily life were represented by her idiographic system model and how the transitions between each state could be explained and understood by the activating and inhibiting relations between the cognitive-emotional components of that system. Continuous monitoring of her cognitions, emotions, and behavior via SNS allowed for identification of important triggers, dynamic patterns, and psychological mechanisms behind seemingly erratic state fluctuations. These insights enabled a change in management of the dynamics and an intensified trauma-focused therapy. Conclusion: By making use of the systemic case formulation technique and subsequent daily online monitoring, client and therapist continuously refer to detailed visualizations of the mental and behavioral network and its dynamics (e.g., order transitions). Effects on self-related information processing, on identity development, and toward a more pronounced autonomy in life (instead of feeling helpless against the chaoticity of state dynamics) were evident in the presented case and documented by the monitoring system.

  12. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    PubMed

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles

    NASA Astrophysics Data System (ADS)

    Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores

    2011-11-01

    Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.

  14. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGES

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  15. Sparsity enabled cluster reduced-order models for control

    NASA Astrophysics Data System (ADS)

    Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.

    2018-01-01

    Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.

  16. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    NASA Astrophysics Data System (ADS)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  17. The effects of disulfide bonds on the denatured state of barnase.

    PubMed Central

    Clarke, J.; Hounslow, A. M.; Bond, C. J.; Fersht, A. R.; Daggett, V.

    2000-01-01

    The effects of engineered disulfide bonds on protein stability are poorly understood because they can influence the structure, dynamics, and energetics of both the native and denatured states. To explore the effects of two engineered disulfide bonds on the stability of barnase, we have conducted a combined molecular dynamics and NMR study of the denatured state of the two mutants. As expected, the disulfide bonds constrain the denatured state. However, specific extended beta-sheet structure can also be detected in one of the mutant proteins. This mutant is also more stable than would be predicted. Our study suggests a possible cause of the very high stability conferred by this disulfide bond: the wild-type denatured ensemble is stabilized by a nonnative hydrophobic cluster, which is constrained from occurring in the mutant due to the formation of secondary structure. PMID:11206061

  18. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  19. Ultrafast electron diffraction and electron microscopy: present status and future prospects

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.

    2014-07-01

    Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.

  20. Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state

    NASA Astrophysics Data System (ADS)

    Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei

    2018-01-01

    Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.

  1. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  2. Automatic Conversational Scene Analysis in Children with Asperger Syndrome/High-Functioning Autism and Typically Developing Peers

    PubMed Central

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior. PMID:24489674

  3. Design and analysis of a global sub-mesoscale and tidal dynamics admitting virtual ocean.

    NASA Astrophysics Data System (ADS)

    Menemenlis, D.; Hill, C. N.

    2016-02-01

    We will describe the techniques used to realize a global kilometerscale ocean model configuration that includes representation of sea-ice and tidal excitation, and spans scales from planetary gyres to internal tides. A simulation using this model configuration provides a virtual ocean that admits some sub-mesoscale dynamics and tidal energetics not normally represented in global calculations. This extends simulated ocean behavior beyond broadly quasi-geostrophic flows and provides a preliminary example of a next generation computational approach to explicitly probing the interactions between instabilities that are usually parameterized and dominant energetic scales in the ocean. From previous process studies we have ascertained that this can lead to a qualitative improvement in the realism of many significant processes including geostrophic eddy dynamics, shelf-break exchange and topographic mixing. Computationally we exploit high-degrees of parallelism in both numerical evaluation and in recording model state to persistent disk storage. Together this allows us to compute and record a full three-dimensional model trajectory at hourly frequency for a timeperiod of 5 months with less than 9 million core hours of parallel computer time, using the present generation NASA Ames Research Center facilities. We have used this capability to create a 5 month trajectory archive, sampled at high spatial and temporal frequency for an ocean configuration that is initialized from a realistic data-assimilated state and driven with reanalysis surface forcing from ECMWF. The resulting database of model state provides a novel virtual laboratory for exploring coupling across scales in the ocean, and for testing ideas on the relationship between small scale fluxes and large scale state. The computation is complemented by counterpart computations that are coarsened two and four times respectively. In this presentation we will review the computational and numerical technologies employed and show how the high spatio-temporal frequency archive of model state can provide a new and promising tool for researching richer ocean dynamics at scale. We will also outline how computations of this nature could be combined with next generation computer hardware plans to help inform important climate process questions.

  4. Molecular dynamics simulations of human E3 ubiquitin ligase Parkin.

    PubMed

    Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji

    2017-10-01

    Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)‑ubiquitin interaction. However, the underlying mecha-nism of the phospho‑ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho‑ubiquitin‑bound states. In the Parkin monomer state, high structural flexi-bilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin‑like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho‑ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1‑UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full‑length Parkin in monomer and phospho‑ubiquitin‑bound states, providing insights into designing potential therapeutics against Parkinson's disease.

  5. Markov switching of the electricity supply curve and power prices dynamics

    NASA Astrophysics Data System (ADS)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  6. Six-Degree-of-Freedom Trajectory Optimization Utilizing a Two-Timescale Collocation Architecture

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Conway, Bruce A.

    2005-01-01

    Six-degree-of-freedom (6DOF) trajectory optimization of a reentry vehicle is solved using a two-timescale collocation methodology. This class of 6DOF trajectory problems are characterized by two distinct timescales in their governing equations, where a subset of the states have high-frequency dynamics (the rotational equations of motion) while the remaining states (the translational equations of motion) vary comparatively slowly. With conventional collocation methods, the 6DOF problem size becomes extraordinarily large and difficult to solve. Utilizing the two-timescale collocation architecture, the problem size is reduced significantly. The converged solution shows a realistic landing profile and captures the appropriate high-frequency rotational dynamics. A large reduction in the overall problem size (by 55%) is attained with the two-timescale architecture as compared to the conventional single-timescale collocation method. Consequently, optimum 6DOF trajectory problems can now be solved efficiently using collocation, which was not previously possible for a system with two distinct timescales in the governing states.

  7. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

    PubMed Central

    2018-01-01

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495

  8. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.

    PubMed

    Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R

    2018-05-29

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.

  9. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    PubMed

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  10. Ultrafast X-ray Auger probing of photoexcited molecular dynamics

    DOE PAGES

    McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...

    2014-06-23

    Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less

  11. Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram.

    PubMed

    Li, Chen; Nagasaki, Masao; Saito, Ayumu; Miyano, Satoru

    2010-04-01

    With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.

  12. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  13. Quantumness-generating capability of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  14. Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syritsyn, Sergey; Gambhir, Arjun S.; Musch, Bernhard U.

    We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.

  15. A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations

    DTIC Science & Technology

    2008-09-01

    Element Method. Wellesley- Cambridge Press, Wellesly, MA, 1988. [97] E. F. Toro . Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical...introducing additional state variables, are generally asymptotically dual consistent. Numerical results are presented to confirm the results of the analysis...dependence on the state gradient is handled by introducing additional state variables, are generally asymptotically dual consistent. Numerical results are

  16. Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.

    PubMed

    Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L

    2009-04-30

    This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m

  17. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

    PubMed

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  18. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm

    NASA Astrophysics Data System (ADS)

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  19. Recent NASA Research on Aerodynamic Modeling of Post-Stall and Spin Dynamics of Large Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Foster, John V.

    2007-01-01

    A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.

  20. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  1. Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    2018-05-01

    Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.

  2. Second-Chance Forward Isomerization Dynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme

    PubMed Central

    Kim, Peter W.; Freer, Lucy H.; Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark; Larsen, Delmar S.

    2011-01-01

    The primary ultrafast Z-to-E isomerization photodynamics of the phytochrome-related cyanobacteriochrome (CBCR) NpR6012g4 from N. punctiforme were studied by transient absorption pump-dump-probe spectroscopy. A 2-ps dump pulse resonant with the stimulated emission band depleted 21 % of the excited-state population, while the initial photoproduct Lumi-R was depleted by only 11 %. We observe a red-shifted ground-state intermediate (GSI) that we assign to a metastable state that failed to fully isomerize. Multi-component global analysis implicates the generation of additional Lumi-R from GSI via crossing over the ground-state thermal barrier for full isomerization, explaining the discrepancy of excited-state and Lumi-R depletion by the dump pulse. This second-chance ground-state dynamics provides a plausible explanation for the unusually high quantum yield of 40 % for the primary isomerization step in the forward reaction of NpR6012g4. PMID:22107125

  3. Second-chance forward isomerization dynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme.

    PubMed

    Kim, Peter W; Freer, Lucy H; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Larsen, Delmar S

    2012-01-11

    The primary ultrafast Z-to-E isomerization photodynamics of the phytochrome-related cyanobacteriochrome NpR6012g4 from Nostoc punctiforme was studied by transient absorption pump-dump-probe spectroscopy. A 2 ps dump pulse resonant with the stimulated emission band depleted 21% of the excited-state population, while the initial photoproduct Lumi-R was depleted by only 11%. We observed a red-shifted ground-state intermediate (GSI) that we assign to a metastable state that failed to isomerize fully. Multicomponent global analysis implicates the generation of additional Lumi-R from the GSI via crossing over the ground-state thermal barrier for full isomerization, explaining the discrepancy between excited-state and Lumi-R depletion by the dump pulse. This second-chance ground-state dynamics provides a plausible explanation for the unusually high quantum yield of 40% for the primary isomerization step in the forward reaction of NpR6012g4. © 2011 American Chemical Society

  4. Highly Selective Relaxation of the OH Stretching Overtones in Isolated HDO Molecules Observed by Infrared Pump-Repump-Probe Spectroscopy.

    PubMed

    Hutzler, Daniel; Werhahn, Jasper C; Heider, Rupert; Bradler, Maximilian; Kienberger, Reinhard; Riedle, Eberhard; Iglev, Hristo

    2015-07-02

    A quantitative investigation of the relaxation dynamics of higher-lying vibrational states is afforded by a novel method of infrared pump-repump-probe spectroscopy. The technique is used to study the dynamics of OH stretching overtones in NaClO4·HDO monohydrate. We observe a continuous decrease of the energy separation for the first four states, i.e. v01 = 3575 cm(-1), v12 = 3370 cm(-1), and v23 = 3170 cm(-1), respectively. The population lifetime of the first excited state is 7.2 ps, while the one of the second excited state is largely reduced to 1.4 ps. The relaxation of the v = 2 state proceeds nearly quantitatively to the v = 1 state. The new information on the OH stretching overtones demands improved theoretical potentials and modeling of the H bond interactions. This work shows the potential of the new technique for the precise study of complex vibrational relaxation pathways.

  5. Dynamics of human protein kinase Aurora A linked to drug selectivity

    DOE PAGES

    Pitsawong, Warintra; Buosi, Vanessa; Otten, Renee; ...

    2018-06-14

    Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Auroramore » A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.« less

  6. Dynamics of human protein kinase Aurora A linked to drug selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitsawong, Warintra; Buosi, Vanessa; Otten, Renee

    Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Auroramore » A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.« less

  7. Subtle Monte Carlo Updates in Dense Molecular Systems.

    PubMed

    Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper

    2012-02-14

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.

  8. Dynamic structural states of ClpB involved in its disaggregation function.

    PubMed

    Uchihashi, Takayuki; Watanabe, Yo-Hei; Nakazaki, Yosuke; Yamasaki, Takashi; Watanabe, Hiroki; Maruno, Takahiro; Ishii, Kentaro; Uchiyama, Susumu; Song, Chihong; Murata, Kazuyoshi; Iino, Ryota; Ando, Toshio

    2018-06-01

    The ATP-dependent bacterial protein disaggregation machine, ClpB belonging to the AAA+ superfamily, refolds toxic protein aggregates into the native state in cooperation with the cognate Hsp70 partner. The ring-shaped hexamers of ClpB unfold and thread its protein substrate through the central pore. However, their function-related structural dynamics has remained elusive. Here we directly visualize ClpB using high-speed atomic force microscopy (HS-AFM) to gain a mechanistic insight into its disaggregation function. The HS-AFM movies demonstrate massive conformational changes of the hexameric ring during ATP hydrolysis, from a round ring to a spiral and even to a pair of twisted half-spirals. HS-AFM observations of Walker-motif mutants unveil crucial roles of ATP binding and hydrolysis in the oligomer formation and structural dynamics. Furthermore, repressed and hyperactive mutations result in significantly different oligomeric forms. These results provide a comprehensive view for the ATP-driven oligomeric-state transitions that enable ClpB to disentangle protein aggregates.

  9. Lattice dynamics in elemental modulated Sb 2 Te 3 films: Lattice dynamics in elemental modulated Sb 2 Te 3 films

    DOE PAGES

    Bessas, D.; Winkler, M.; Sergueev, I.; ...

    2015-09-03

    We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulkmore » Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.« less

  10. Numerical simulations of loop quantum Bianchi-I spacetimes

    NASA Astrophysics Data System (ADS)

    Diener, Peter; Joe, Anton; Megevand, Miguel; Singh, Parampreet

    2017-05-01

    Due to the numerical complexities of studying evolution in an anisotropic quantum spacetime, in comparison to the isotropic models, the physics of loop quantized anisotropic models has remained largely unexplored. In particular, robustness of bounce and the validity of effective dynamics have so far not been established. Our analysis fills these gaps for the case of vacuum Bianchi-I spacetime. To efficiently solve the quantum Hamiltonian constraint we perform an implementation of the Cactus framework which is conventionally used for applications in numerical relativity. Using high performance computing, numerical simulations for a large number of initial states with a wide variety of fluctuations are performed. Big bang singularity is found to be replaced by anisotropic bounces for all the cases. We find that for initial states which are sharply peaked at the late times in the classical regime and bounce at a mean volume much greater than the Planck volume, effective dynamics is an excellent approximation to the underlying quantum dynamics. Departures of the effective dynamics from the quantum evolution appear for the states probing deep Planck volumes. A detailed analysis of the behavior of this departure reveals a non-monotonic and subtle dependence on fluctuations of the initial states. We find that effective dynamics in almost all of the cases underestimates the volume and hence overestimates the curvature at the bounce, a result in synergy with earlier findings in the isotropic case. The expansion and shear scalars are found to be bounded throughout the evolution.

  11. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests

    Treesearch

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...

  12. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.

    2015-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.

  13. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    PubMed

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

  14. Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice

    PubMed Central

    Diniz Behn, Cecilia G.; Klerman, Elizabeth B.; Mochizuki, Takatoshi; Lin, Shih-Chieh; Scammell, Thomas E.

    2010-01-01

    Study Objectives: Narcolepsy with cataplexy is caused by a loss of orexin (hypocretin) signaling, but the physiologic mechanisms that result in poor maintenance of wakefulness and fragmented sleep remain unknown. Conventional scoring of sleep cannot reveal much about the process of transitioning between states or the variations within states. We developed an EEG spectral analysis technique to determine whether the state instability in a mouse model of narcolepsy reflects abnormal sleep or wake states, faster movements between states, or abnormal transitions between states. Design: We analyzed sleep recordings in orexin knockout (OXKO) mice and wild type (WT) littermates using a state space analysis technique. This non-categorical approach allows quantitative and unbiased examination of sleep/wake states and state transitions. Measurements and Results: OXKO mice spent less time in deep, delta-rich NREM sleep and in active, theta-rich wake and instead spent more time near the transition zones between states. In addition, while in the midst of what should be stable wake, OXKO mice initiated rapid changes into NREM sleep with high velocities normally seen only in transition regions. Consequently, state transitions were much more frequent and rapid even though the EEG progressions during state transitions were normal. Conclusions: State space analysis enables visualization of the boundaries between sleep and wake and shows that narcoleptic mice have less distinct and more labile states of sleep and wakefulness. These observations provide new perspectives on the abnormal state dynamics resulting from disrupted orexin signaling and highlight the usefulness of state space analysis in understanding narcolepsy and other sleep disorders. Citation: Diniz Behn CG; Klerman EB; Mochizuki T; Lin S; Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. SLEEP 2010;33(3):297-306. PMID:20337187

  15. Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage

    NASA Astrophysics Data System (ADS)

    Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe

    2013-07-01

    We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.

  16. Faithful solid state optical memory with dynamically decoupled spin wave storage.

    PubMed

    Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe

    2013-07-12

    We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.

  17. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    PubMed

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  18. Observation of g/u-symmetry mixing in the high-n Rydberg states of HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprecher, Daniel; Merkt, Frédéric, E-mail: frederic.merkt@phys.chem.ethz.ch

    2014-03-28

    The structure and dynamics of high-n Rydberg states belonging to series converging to the (v{sup +} = 0, N{sup +} = 0–2) levels of the X{sup +2}Σ{sub g}{sup +} electronic ground state of HD{sup +} were studied by high-resolution spectroscopy from the GK{sup 1}Σ{sub g}{sup +} (v= 1, N = 1) state under field-free conditions. Three effects of g/u-symmetry breaking were detected: (i) Single-photon transitions from the GK (v = 1, N = 1) state of gerade symmetry to the 30d2{sub 1} and 31g2{sub 2} Rydberg states of gerade symmetry were observed after careful compensation of the stray electric fields. (ii)more » The singlet 61p1{sub 2} Rydberg state of ungerade symmetry was found to autoionize to the N{sup +} = 0, ℓ = 2 ionization continuum of gerade symmetry with a lifetime of 77(10) ns. (iii) Shifts of up to 20 MHz induced by g/u-symmetry mixing were measured for members of the np1{sub 1} Rydberg series which lie close to nd2{sub 1} Rydberg states. These observations were analyzed in the framework of multichannel quantum-defect theory. From the observed level shifts, the off-diagonal eigenquantum-defect element μ{sub pd} of singlet-π symmetry was determined to be 0.0023(3) and the corresponding autoionization dynamics could be characterized. The ionization energy of the GK (v = 1, N = 1) state of HD was determined to be 12 710.544 23(10) cm{sup −1}.« less

  19. Comparative Implementation of High Performance Computing for Power System Dynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng

    Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less

  20. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  1. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-01

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  2. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less

  3. Swap intensified WDR CMOS module for I2/LWIR fusion

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Noguier, Vincent

    2015-05-01

    The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.

  4. Dynamics and control of twisting bi-stable structures

    NASA Astrophysics Data System (ADS)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states of the bi-stable twisting I-beam structures. The obtained optimal piezoelectric actuator positioning is not necessarily intuitive and when used with the proposed dynamic actuation strategy serve as a blueprint for the actuation of such multi-stable compliant structures to produce fast and large deflections with highly embeddable actuators. This class of structures has potential applications in aerospace systems and soft/compliant robotics.

  5. Sliding mode control for Mars entry based on extended state observer

    NASA Astrophysics Data System (ADS)

    Lu, Kunfeng; Xia, Yuanqing; Shen, Ganghui; Yu, Chunmei; Zhou, Liuyu; Zhang, Lijun

    2017-11-01

    This paper addresses high-precision Mars entry guidance and control approach via sliding mode control (SMC) and Extended State Observer (ESO). First, differential flatness (DF) approach is applied to the dynamic equations of the entry vehicle to represent the state variables more conveniently. Then, the presented SMC law can guarantee the property of finite-time convergence of tracking error, which requires no information on high uncertainties that are estimated by ESO, and the rigorous proof of tracking error convergence is given. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.

  6. Statistical properties of fluctuating enzymes with dynamic cooperativity using a first passage time distribution formalism.

    PubMed

    Singh, Divya; Chaudhury, Srabanti

    2017-04-14

    We study the temporal fluctuations in catalytic rates for single enzyme reactions undergoing slow transitions between two active states. We use a first passage time distribution formalism to obtain the closed-form analytical expressions of the mean reaction time and the randomness parameter for reaction schemes where conformational fluctuations are present between two free enzyme conformers. Our studies confirm that the sole presence of free enzyme fluctuations yields a non Michaelis-Menten equation and can lead to dynamic cooperativity. The randomness parameter, which is a measure of the dynamic disorder in the system, converges to unity at a high substrate concentration. If slow fluctuations are present between the enzyme-substrate conformers (off-pathway mechanism), dynamic disorder is present at a high substrate concentration. Our results confirm that the dynamic disorder at a high substrate concentration is determined only by the slow fluctuations between the enzyme-substrate conformers and the randomness parameter is greater than unity. Slow conformational fluctuations between free enzymes are responsible for the emergence of dynamic cooperativity in single enzymes. Our theoretical findings are well supported by comparison with experimental data on the single enzyme beta-galactosidase.

  7. Down syndrome's brain dynamics: analysis of fractality in resting state.

    PubMed

    Hemmati, Sahel; Ahmadlou, Mehran; Gharib, Masoud; Vameghi, Roshanak; Sajedi, Firoozeh

    2013-08-01

    To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.

  8. An Evaluation of Career Selection Education in Thirteen Project Schools of the Western States Small Schools Project.

    ERIC Educational Resources Information Center

    Cragun, John R.; Kartchner, Eugene C.

    The Western States Small Schools Project (WSSSP) developed the Career Selection Education (CSE) program to provide students from small high schools in Arizona, Colorado, Nevada, New Mexico, and Utah with: (1) knowledge about self, broad occupational groupings, the institution and dynamics of society which generate, define, and lend meaning to…

  9. Uncertainty in a Markov state model with missing states and rates: Application to a room temperature kinetic model obtained using high temperature molecular dynamics.

    PubMed

    Chatterjee, Abhijit; Bhattacharya, Swati

    2015-09-21

    Several studies in the past have generated Markov State Models (MSMs), i.e., kinetic models, of biomolecular systems by post-analyzing long standard molecular dynamics (MD) calculations at the temperature of interest and focusing on the maximally ergodic subset of states. Questions related to goodness of these models, namely, importance of the missing states and kinetic pathways, and the time for which the kinetic model is valid, are generally left unanswered. We show that similar questions arise when we generate a room-temperature MSM (denoted MSM-A) for solvated alanine dipeptide using state-constrained MD calculations at higher temperatures and Arrhenius relation — the main advantage of such a procedure being a speed-up of several thousand times over standard MD-based MSM building procedures. Bounds for rate constants calculated using probability theory from state-constrained MD at room temperature help validate MSM-A. However, bounds for pathways possibly missing in MSM-A show that alternate kinetic models exist that produce the same dynamical behaviour at short time scales as MSM-A but diverge later. Even in the worst case scenario, MSM-A is found to be valid longer than the time required to generate it. Concepts introduced here can be straightforwardly extended to other MSM building techniques.

  10. Multiphoton Rydberg and valence dynamics of CH3Br probed by mass spectrometry and slice imaging.

    PubMed

    Hafliðason, Arnar; Glodic, Pavle; Koumarianou, Greta; Samartzis, Peter C; Kvaran, Ágúst

    2018-06-18

    The multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra. Kinetic energy release spectra (KERs) were derived from slice and photoelectron images and anisotropy parameters were extracted from the angular distributions of the ions to identify the processes and the dynamics involved. At all wavelengths we observe three-photon excitations, via the two-photon resonant transitions to molecular Rydberg states, forming metastable, superexcited (CH3Br#) states which dissociate to form CH3 Rydberg states (CH3**) along with Br/Br*. A correlation between the parent Rydberg states excited and CH3** formed is evident. For the three highest excitation energies used, the CH3Br# metastable states also generate high kinetic energy fragments of CH3(X) and Br/Br*. In addition for two out of these three wavelengths we also measure one-photon photolysis of CH3Br in the A band forming CH3(X) in various vibrational modes and bromine atoms in the ground (Br) and spin-orbit excited (Br*) states.

  11. PAGOSA physics manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weseloh, Wayne N.; Clancy, Sean P.; Painter, James W.

    2010-08-01

    PAGOSA is a computational fluid dynamics computer program developed at Los Alamos National Laboratory (LANL) for the study of high-speed compressible flow and high-rate material deformation. PAGOSA is a three-dimensional Eulerian finite difference code, solving problems with a wide variety of equations of state (EOSs), material strength, and explosive modeling options.

  12. Using ToxCast data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure

    EPA Science Inventory

    AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging...

  13. Model of resonant high harmonic generation in multi-electron systems

    NASA Astrophysics Data System (ADS)

    Redkin, P. V.; Ganeev, R. A.

    2017-09-01

    We extend the 4-step analytical model of resonant enhancement of high harmonic generation to the systems possessing resonant transitions of inner-shell electrons. Resonant enhancement is explained by lasing without inversion in a three-level system of ground, excited and shifted resonant states, which are coupled to the fundamental field and its high harmonics. The role of inelastic scattering is studied by simulation of an excited state’s population dynamics. It is shown that maximal gain is achieved when the energy shift between the excited state and resonant state is close to the energy of the fundamental photon. To prove the concept we demonstrate the enhancement of harmonics in the In plasma using different pumps.

  14. [EEG-correlates of pilots' functional condition in simulated flight dynamics].

    PubMed

    Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M

    2015-01-01

    The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.

  15. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    NASA Astrophysics Data System (ADS)

    Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien

    2017-11-01

    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.

  16. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications.

    PubMed

    Romeira, Bruno; Figueiredo, José M L; Javaloyes, Julien

    2017-11-01

    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.

  17. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  18. Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.

    2018-01-01

    The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics such as intermittent hibernating dynamics.

  19. Viscous versus inviscid exact coherent states in high Reynolds number wall flows

    NASA Astrophysics Data System (ADS)

    Montemuro, Brandon; Klewicki, Joe; White, Chris; Chini, Greg

    2017-11-01

    Streamwise-averaged motions consisting of streamwise-oriented streaks and vortices are key components of exact coherent states (ECS) arising in incompressible wall-bounded shear flows. These invariant solutions are believed to provide a scaffold in phase space for the turbulent dynamics realized at large Reynolds number Re . Nevertheless, many ECS, including upper-branch states, have a large- Re asymptotic structure in which the effective Reynolds number governing the streak and roll dynamics is order unity. Although these viscous ECS very likely play a role in the dynamics of the near-wall region, they cannot be relevant to the inertial layer, where the leading-order mean dynamics are known to be inviscid. In particular, viscous ECS cannot account for the observed regions of quasi-uniform streamwise momentum and interlaced internal shear layers (or `vortical fissures') within the inertial layer. In this work, a large- Re asymptotic analysis is performed to extend the existing self-sustaining-process/vortex-wave-interaction theory to account for largely inviscid ECS. The analysis highlights feedback mechanisms between the fissures and uniform momentum zones that can enable their self-sustenance at extreme Reynolds number. NSF CBET Award 1437851.

  20. Robust adaptive cruise control of high speed trains.

    PubMed

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Local cortical dynamics of burst suppression in the anaesthetized brain.

    PubMed

    Lewis, Laura D; Ching, Shinung; Weiner, Veronica S; Peterfreund, Robert A; Eskandar, Emad N; Cash, Sydney S; Brown, Emery N; Purdon, Patrick L

    2013-09-01

    Burst suppression is an electroencephalogram pattern that consists of a quasi-periodic alternation between isoelectric 'suppressions' lasting seconds or minutes, and high-voltage 'bursts'. It is characteristic of a profoundly inactivated brain, occurring in conditions including hypothermia, deep general anaesthesia, infant encephalopathy and coma. It is also used in neurology as an electrophysiological endpoint in pharmacologically induced coma for brain protection after traumatic injury and during status epilepticus. Classically, burst suppression has been regarded as a 'global' state with synchronous activity throughout cortex. This assumption has influenced the clinical use of burst suppression as a way to broadly reduce neural activity. However, the extent of spatial homogeneity has not been fully explored due to the challenges in recording from multiple cortical sites simultaneously. The neurophysiological dynamics of large-scale cortical circuits during burst suppression are therefore not well understood. To address this question, we recorded intracranial electrocorticograms from patients who entered burst suppression while receiving propofol general anaesthesia. The electrodes were broadly distributed across cortex, enabling us to examine both the dynamics of burst suppression within local cortical regions and larger-scale network interactions. We found that in contrast to previous characterizations, bursts could be substantially asynchronous across the cortex. Furthermore, the state of burst suppression itself could occur in a limited cortical region while other areas exhibited ongoing continuous activity. In addition, we found a complex temporal structure within bursts, which recapitulated the spectral dynamics of the state preceding burst suppression, and evolved throughout the course of a single burst. Our observations imply that local cortical dynamics are not homogeneous, even during significant brain inactivation. Instead, cortical and, implicitly, subcortical circuits express seemingly different sensitivities to high doses of anaesthetics that suggest a hierarchy governing how the brain enters burst suppression, and emphasize the role of local dynamics in what has previously been regarded as a global state. These findings suggest a conceptual shift in how neurologists could assess the brain function of patients undergoing burst suppression. First, analysing spatial variation in burst suppression could provide insight into the circuit dysfunction underlying a given pathology, and could improve monitoring of medically-induced coma. Second, analysing the temporal dynamics within a burst could help assess the underlying brain state. This approach could be explored as a prognostic tool for recovery from coma, and for guiding treatment of status epilepticus. Overall, these results suggest new research directions and methods that could improve patient monitoring in clinical practice.

  2. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin

    2014-11-01

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.

  3. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    NASA Astrophysics Data System (ADS)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem-climate interactions.

  4. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, N.

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics inmore » the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.« less

  5. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Hua, Jia-Chen; Barnhill, Will; Gunaratne, Gemunu H.; Gord, James R.

    2015-01-01

    Analytical and computational studies of reacting flows are extremely challenging due in part to nonlinearities of the underlying system of equations and long-range coupling mediated by heat and pressure fluctuations. However, many dynamical features of the flow can be inferred through low-order models if the flow constituents (e.g., eddies or vortices) and their symmetries, as well as the interactions among constituents, are established. Modal decompositions of high-frequency, high-resolution imaging, such as measurements of species-concentration fields through planar laser-induced florescence and of velocity fields through particle-image velocimetry, are the first step in the process. A methodology is introduced for deducing the flow constituents and their dynamics following modal decomposition. Proper orthogonal (POD) and dynamic mode (DMD) decompositions of two classes of problems are performed and their strengths compared. The first problem involves a cellular state generated in a flat circular flame front through symmetry breaking. The state contains two rings of cells that rotate clockwise at different rates. Both POD and DMD can be used to deconvolve the state into the two rings. In POD the contribution of each mode to the flow is quantified using the energy. Each DMD mode can be associated with an energy as well as a unique complex growth rate. Dynamic modes with the same spatial symmetry but different growth rates are found to be combined into a single POD mode. Thus, a flow can be approximated by a smaller number of POD modes. On the other hand, DMD provides a more detailed resolution of the dynamics. Two classes of reacting flows behind symmetric bluff bodies are also analyzed. In the first, symmetric pairs of vortices are released periodically from the two ends of the bluff body. The second flow contains von Karman vortices also, with a vortex being shed from one end of the bluff body followed by a second shedding from the opposite end. The way in which DMD can be used to deconvolve the second flow into symmetric and von Karman vortices is demonstrated. The analyses performed illustrate two distinct advantages of DMD: (1) Unlike proper orthogonal modes, each dynamic mode is associated with a unique complex growth rate. By comparing DMD spectra from multiple nominally identical experiments, it is possible to identify "reproducible" modes in a flow. We also find that although most high-energy modes are reproducible, some are not common between experimental realizations; in the examples considered, energy fails to differentiate between reproducible and nonreproducible modes. Consequently, it may not be possible to differentiate reproducible and nonreproducible modes in POD. (2) Time-dependent coefficients of dynamic modes are complex. Even in noisy experimental data, the dynamics of the phase of these coefficients (but not their magnitude) are highly regular. The phase represents the angular position of a rotating ring of cells and quantifies the downstream displacement of vortices in reacting flows. Thus, it is suggested that the dynamical characterizations of complex flows are best made through the phase dynamics of reproducible DMD modes.

  6. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2014-02-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.

  7. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  8. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  9. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    PubMed

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  10. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  11. Line Narrowing of Excited-State Transitions in Nonlinear Polarization Spectroscopy: Application to Water-Soluble Chlorophyll-Binding Protein

    NASA Astrophysics Data System (ADS)

    Schoth, Mario; Richter, Marten; Knorr, Andreas; Renger, Thomas

    2012-04-01

    The homogeneous linewidth of dye aggregates like photosynthetic light-harvesting complexes contains important information about energy transfer and relaxation times that is, however, masked by inhomogeneous broadening caused by static disorder. Whereas there exist line narrowing techniques for the study of low-energy exciton states, the homogeneous linewidth of the high-energy states is not so easy to decipher. Here we present a microscopic theory for nonlinear polarization spectroscopy in the frequency domain that contains a dynamic aggregate selection revealing the homogeneous linewidth of these states. The theory is applied to the water-soluble chlorophyll-binding protein for which the high-energy exciton state was predicted to exhibit a sub-100-fs lifetime.

  12. Fire - Southern Oscillation relations in the southwestern United States

    USGS Publications Warehouse

    Swetnam, T.W.; Betancourt, J.L.

    1990-01-01

    Fire scar and tree growth chronologies (1700 to 1905) and fire statistics (since 1905) from Arizona and New Mexico show that small areas burn after wet springs associated with the low phase of the Southern Oscillation (SO), whereas large areas burn after dry springs associated with the high phase of the SO. Through its synergistic influence on spring weather and fuel conditions, climatic variability in the tropical Pacific significantly influences vegetation dynamics in the southwestern United States. Synchrony of fire-free and severe fire years across diverse southwestern forests implies that climate forces fire regimes on a subcontinental scale; it also underscores the importance of exogenous factors in ecosystem dynamics.

  13. An Assessment of the State-of-the-art in Multidisciplinary Aeromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2008-01-01

    This paper presents a survey of the current state-of-the-art in multidisciplinary aeromechanical analyses which integrate advanced Computational Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) methods. The application areas to be surveyed include fixed wing aircraft, turbomachinery, and rotary wing aircraft. The objective of the authors in the present paper, together with a companion paper on requirements, is to lay out a path for a High Performance Computing (HPC) based next generation comprehensive rotorcraft analysis. From this survey of the key technologies in other application areas it is possible to identify the critical technology gaps that stem from unique rotorcraft requirements.

  14. Encoding quantum information in a stabilized manifold of a superconducting cavity

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  15. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; ...

    2015-12-10

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the firstmore » experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering techniques on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. Furthermore, these complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness X rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. This set of studies demonstrates our ability to measure fundamental thermodynamic properties that determine the state of matter in the high-energy density physics regime.« less

  16. The diminishing role of hubs in dynamical processes on complex networks.

    PubMed

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M A

    2013-11-06

    It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.

  17. Finite-temperature time-dependent variation with multiple Davydov states

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-01

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  18. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less

  19. Exciton-Polariton Dynamics of a Monolayer Semiconductor Coupled to a Microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.; Cain, Jeffrey D.; Dravid, Vinayak P.

    Strong light-matter interactions, evidenced by exciton-polariton states, have been observed in the two-dimensional limit with monolayer transition metal dichalcogenides (TMDs) embedded in a microcavity. Because of the valley degree of freedom in monolayer TMDs, these hybrid light-matter states can exhibit valley polarization as in a bare monolayer, with strongly-coupled dynamics determined by the relative rates of exciton relaxation and intervalley scattering, which can be highly modified in on-resonant cavities. Here, we test this intuitive picture of the polarized exciton-polariton dynamics with monolayer MoS2 coupled to detuned cavities. Upper and lower polariton branches exhibit distinct decay rates indicative of different cavity dynamics. As with on-resonant, strongly-coupled exciton-polaritons, the weakly-coupled regime causes exciton-polariton valley polarization to persist at room temperature, demonstrating that dynamics of valley-polarized excitations can be controlled by engineering light-matter interactions. This work is supported by the U.S. Department of Energy (BES DE-SC0012130) and the National Science Foundation MRSEC program (DMR-1121262). N.P.S. is an Alfred P. Sloan Research Fellow.

  20. Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Baity, P. G.; Sasagawa, T.; Popović, Dragana

    2018-04-01

    The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.

  1. Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation

    NASA Astrophysics Data System (ADS)

    Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François

    2014-05-01

    One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.

  2. [A novel quantitative approach to study dynamic anaerobic process at micro scale].

    PubMed

    Zhang, Zhong-Liang; Wu, Jing; Jiang, Jian-Kai; Jiang, Jie; Li, Huai-Zhi

    2012-11-01

    Anaerobic digestion is attracting more and more interests because of its advantages such as low cost and recovery of clean energy etc. In order to overcome the drawbacks of the existed methods to study the dynamic anaerobic process, a novel microscopical quantitative approach at the granule level was developed combining both the microdevice and the quantitative image analysis techniques. This experiment displayed the process and characteristics of the gas production at static state for the first time and the results indicated that the method was of satisfactory repeatability. The gas production process at static state could be divided into three stages including rapid linear increasing stage, decelerated increasing stage and slow linear increasing stage. The rapid linear increasing stage was long and the biogas rate was high under high initial organic loading rate. The results showed that it was feasible to make the anaerobic process to be carried out in the microdevice; furthermore this novel method was reliable and could clearly display the dynamic process of the anaerobic reaction at the micro scale. The results are helpful to understand the anaerobic process.

  3. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  4. Molecular dynamics simulation of bovine pancreatic ribonuclease A-CpA and transition state-like complexes.

    PubMed

    Formoso, Elena; Matxain, Jon M; Lopez, Xabier; York, Darrin M

    2010-06-03

    The mechanisms of enzymes are intimately connected with their overall structure and dynamics in solution. Experimentally, it is considerably challenging to provide detailed atomic level information about the conformational events that occur at different stages along the chemical reaction path. Here, theoretical tools may offer new potential insights that complement those obtained from experiments that may not yield an unambiguous mechanistic interpretation. In this study, we apply molecular dynamics simulations of bovine pancreatic ribonuclease A, an archetype ribonuclease, to study the conformational dynamics, structural relaxation, and differential solvation that occur at discrete stages of the transesterification and cleavage reaction. Simulations were performed with explicit solvation with rigorous electrostatics and utilize recently developed molecular mechanical force field parameters for transphosphorylation and hydrolysis transition state analogues. Herein, we present results for the enzyme complexed with the dinucleotide substrate cytidilyl-3',5'-adenosine (CpA) in the reactant, and transphosphorylation and hydrolysis transition states. A detailed analysis of active site structures and hydrogen-bond patterns is presented and compared. The integrity of the overall backbone structure is preserved in the simulations and supports a mechanism whereby His12 stabilizes accumulating negative charge at the transition states through hydrogen-bond donation to the nonbridge oxygens. Lys41 is shown to be highly versatile along the reaction coordinate and can aid in the stabilization of the dianionic transition state, while being poised to act as a general acid catalyst in the hydrolysis step.

  5. Molecular Dynamics Simulation of Bovine Pancreatic Ribonuclease A - CpA and Transition State-like Complexes

    PubMed Central

    Formoso, Elena; Matxain, Jon M.; Lopez, Xabier; York, Darrin M.

    2010-01-01

    The mechanisms of enzymes are intimately connected with their overall structure and dynamics in solution. Experimentally it is considerably challenging to provide detailed atomic level information about the conformational events that occur at different stages along the chemical reaction path. Here, theoretical tools may offer new potential insights that complement those obtained from experiments that may not yield an unambiguous mechanistic interpretation. In this study we apply molecular dynamics simulations of bovine pancreatic ribonuclease A, an archetype ribonuclease, in order to study the conformational dynamics, structural relaxation, and differential solvation that occurs at discreet stages of the transesterification and cleavage reaction. Simulations were performed with explicit solvation with rigorous electrostatics, and utilize recently developed molecular mechanical force field parameters for transphosphorylation and hydrolysis transition state analogs. Herein, we present results for the enzyme complexed with the dinucleotide substrate cytidilyl-3′,5′-adenosine (CpA) in the reactant, and transphosphorylation and hydrolysis transition states. A detailed analysis of active site structures and hydrogen bond patterns are presented and compared. The integrity of the overall backbone structure is preserved in the simulations, and support a mechanism whereby His12 stabilizes accumulating negative charge at the transition states through hydrogen bond donation to the non-bridge oxygens. Lys41 is shown to be highly versatile along the reaction coordinate, and can aid in the stabilization of the dianionic transition state, while being poised to act as a general acid catalyst in the hydrolysis step. PMID:20455590

  6. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  7. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pineau, Nicolas

    2016-01-01

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  8. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    NASA Astrophysics Data System (ADS)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  9. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.

    PubMed

    Sachs, Nicholas A; Ruiz-Torres, Ricardo; Perreault, Eric J; Miller, Lee E

    2016-02-01

    It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor's proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  10. A Continuum Model for the Effect of Dynamic Recrystallization on the Stress⁻Strain Response.

    PubMed

    Kooiker, H; Perdahcıoğlu, E S; van den Boogaard, A H

    2018-05-22

    Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress⁻strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend.

  11. Dynamic large eddy simulation: Stability via realizability

    NASA Astrophysics Data System (ADS)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  12. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Hédoux, Alain; Paccou, Laurent; Guinet, Yannick

    2014-06-01

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein-trehalose interactions in the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation.

  13. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE PAGES

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; ...

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  14. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  15. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    PubMed Central

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  16. Bethe lattice approach and relaxation dynamics study of spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Oke, Toussaint Djidjoho; Hontinfinde, Félix; Boukheddaden, Kamel

    2015-07-01

    Dynamical properties of Prussian blue analogs and spin-crossover materials are investigated in the framework of a Blume-Emery-Griffiths (BEG) spin-1 model, where states ±1 and 0 represent the high-spin (HS) state and the low-spin state, respectively. The quadrupolar interaction depends on the temperature in the form . Magnetic interactions are controlled by a factor such that for (), magnetic ordering is not expected. The model is exactly solved using the Bethe lattice approach for the equilibrium properties. The results are closer to those calculated by numerical simulations with suitable Arrhenius-type transition rates. The study of relaxation processes of non-equilibrium HS states revealed one-step nonlinear sigmoidal relaxation curves of the HS fraction at low temperatures. We found that increasing the magnetic interactions leads to the appearance of a plateau in the thermal hysteresis as well as in the relaxation curves of the HS fraction at low temperature.

  17. Dynamic response of an artificial square spin ice

    DOE PAGES

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; ...

    2016-03-02

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  18. Dynamic response of an artificial square spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  19. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  20. Exceeding the Asymptotic Limit of Polymer Drag Reduction.

    PubMed

    Choueiri, George H; Lopez, Jose M; Hof, Björn

    2018-03-23

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  1. Exceeding the Asymptotic Limit of Polymer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Lopez, Jose M.; Hof, Björn

    2018-03-01

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  2. Modeling the Car Crash Crisis Management System Using HiLA

    NASA Astrophysics Data System (ADS)

    Hölzl, Matthias; Knapp, Alexander; Zhang, Gefei

    An aspect-oriented modeling approach to the Car Crash Crisis Management System (CCCMS) using the High-Level Aspect (HiLA) language is described. HiLA is a language for expressing aspects for UML static structures and UML state machines. In particular, HiLA supports both a static graph transformational and a dynamic approach of applying aspects. Furthermore, it facilitates methodologically turning use case descriptions into state machines: for each main success scenario, a base state machine is developed; all extensions to this main success scenario are covered by aspects. Overall, the static structure of the CCCMS is modeled in 43 classes, the main success scenarios in 13 base machines, the use case extensions in 47 static and 31 dynamic aspects, most of which are instantiations of simple aspect templates.

  3. Mechanical Overstimulation of Hair Bundles: Suppression and Recovery of Active Motility

    PubMed Central

    Kao, Albert; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2013-01-01

    We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461

  4. Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation

    NASA Astrophysics Data System (ADS)

    Kerry, Colette; Powell, Brian; Roughan, Moninya; Oke, Peter

    2016-10-01

    As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent "best estimate" of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6 cm for sea surface height (SSH) and 0.4 °C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9 °C between water depths of 100 and 300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8-1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.

  5. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Potential energy surfaces and reaction dynamics of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Tyng

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogenmore » atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.« less

  7. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation.

    PubMed

    Wen, Han; Qin, Feng; Zheng, Wenjun

    2016-12-01

    As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  9. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  10. Dynamics in atomic signaling games.

    PubMed

    Fox, Michael J; Touri, Behrouz; Shamma, Jeff S

    2015-07-07

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Energy Landscape of the Prion Protein Helix 1 Probed by Metadynamics and NMR

    PubMed Central

    Camilloni, Carlo; Schaal, Daniel; Schweimer, Kristian; Schwarzinger, Stephan; De Simone, Alfonso

    2012-01-01

    The characterization of the structural dynamics of proteins, including those that present a substantial degree of disorder, is currently a major scientific challenge. These dynamics are biologically relevant and govern the majority of functional and pathological processes. We exploited a combination of enhanced molecular simulations of metadynamics and NMR measurements to study heterogeneous states of proteins and peptides. In this way, we determined the structural ensemble and free-energy landscape of the highly dynamic helix 1 of the prion protein (PrP-H1), whose misfolding and aggregation are intimately connected to a group of neurodegenerative disorders known as transmissible spongiform encephalopathies. Our combined approach allowed us to dissect the factors that govern the conformational states of PrP-H1 in solution, and the implications of these factors for prion protein misfolding and aggregation. The results underline the importance of adopting novel integrated approaches that take advantage of experiments and theory to achieve a comprehensive characterization of the structure and dynamics of biological macromolecules. PMID:22225810

  12. Real and financial market interactions in a multiplier-accelerator model: Nonlinear dynamics, multistability and stylized facts

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Naimzada, A.; Pecora, N.

    2017-10-01

    In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.

  13. Real and financial market interactions in a multiplier-accelerator model: Nonlinear dynamics, multistability and stylized facts.

    PubMed

    Cavalli, F; Naimzada, A; Pecora, N

    2017-10-01

    In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.

  14. Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain.

    PubMed

    Tauste Campo, Adrià; Principe, Alessandro; Ley, Miguel; Rocamora, Rodrigo; Deco, Gustavo

    2018-04-01

    Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations occur and generate seizures is still lacking. Here, we provide crossvalidated evidence that such changes are initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial electroencephalography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent network states become less variable ("degenerate"), and this phase is followed by a global functional connectivity reduction before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network instances and is shown to be particularly associated with the activity of the resected regions in patients with validated postsurgical outcome. Our approach characterizes preseizure network dynamics as a cascade of 2 sequential events providing new insights into seizure prediction and control.

  15. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    PubMed

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized to achieve tension between local and global interactions. These basic examples appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally, phi appears to be a useful metric to characterize the capacity of any physical system to integrate information.

  16. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  17. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH( X ˜ / A ˜ ) products in the B-band photodissociation of H2O

    NASA Astrophysics Data System (ADS)

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-01

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH( X ˜ / A ˜ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH( X ˜ , v = 0) exhibit very different characteristics. The A' states, produced mostly via the B ˜ → X ˜ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ˜ → A ˜ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH( X ˜ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ˜ → X ˜ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH( A ˜ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  18. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X̃/Ã) products in the B-band photodissociation of H2O.

    PubMed

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-28

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X̃/Ã) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X̃, v = 0) exhibit very different characteristics. The A' states, produced mostly via the B̃→X̃ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B̃→Ã Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X̃) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B̃→X̃ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(Ã) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  19. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  20. Conceptualization and calibration of anisotropic, dynamic alluvial systems: Pitfalls and biases in current modelling practices

    NASA Astrophysics Data System (ADS)

    Gianni, Guillaume; Doherty, John; Perrochet, Pierre; Brunner, Philip

    2017-04-01

    Physical properties of alluvial environments are typically featuring a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. A literature review on current modelling practice shows that hydrogeological models are often calibrated using isotropic hydraulic conductivity fields and steady state conditions. We aim at understanding how these simplifications affect the predictions of hydraulic heads and exchange fluxes using fully coupled, physically based synthetic models and advanced calibration approaches. Specifically, we present an analysis of the information content provided by averaged, steady state hydraulic data compared to transient data with respect to the determination of aquifer hydraulic properties. We show that the information content in average hydraulic heads is insufficient to inform anisotropic properties of alluvial aquifers and can lead to important biases on the calibrated parameters. We further explore the consequences of these biases on predictions of fluxes and water table dynamics. The results of this synthetic analysis are considered in the calibration of a highly dynamic and anisotropic alluvial aquifer system in Switzerland (the Rhône River). The results of the synthetic and real-world modelling and calibration exercises provide insight on future data acquisition, modelling and calibration strategies for these environments.

  1. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis.

    PubMed

    Chen, Yuanyuan; Wang, Weiwei; Zhao, Xin; Sha, Miao; Liu, Ya'nan; Zhang, Xiong; Ma, Jianguo; Ni, Hongyan; Ming, Dong

    2017-01-01

    Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals ( N = 36, ages 20-25 for the young group; N = 32, ages 60-85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.

  2. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  3. Quantifying Aggregation Dynamics during Myxococcus xanthus Development▿†

    PubMed Central

    Zhang, Haiyang; Angus, Stuart; Tran, Michael; Xie, Chunyan; Igoshin, Oleg A.; Welch, Roy D.

    2011-01-01

    Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms. PMID:21784940

  4. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    PubMed

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  5. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  6. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation.

    PubMed

    Manesso, Erica; Teles, José; Bryder, David; Peterson, Carsten

    2013-03-06

    A very high number of different types of blood cells must be generated daily through a process called haematopoiesis in order to meet the physiological requirements of the organism. All blood cells originate from a population of relatively few haematopoietic stem cells residing in the bone marrow, which give rise to specific progenitors through different lineages. Steady-state dynamics are governed by cell division and commitment rates as well as by population sizes, while feedback components guarantee the restoration of steady-state conditions. In this study, all parameters governing these processes were estimated in a computational model to describe the haematopoietic hierarchy in adult mice. The model consisted of ordinary differential equations and included negative feedback regulation. A combination of literature data, a novel divide et impera approach for steady-state calculations and stochastic optimization allowed one to reduce possible configurations of the system. The model was able to recapitulate the fundamental steady-state features of haematopoiesis and simulate the re-establishment of steady-state conditions after haemorrhage and bone marrow transplantation. This computational approach to the haematopoietic system is novel and provides insight into the dynamics and the nature of possible solutions, with potential applications in both fundamental and clinical research.

  7. Lasting monitoring of immune state in patients with coronary atherosclerosis

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Immune state monitoring is an expensive, invasive and sometimes difficult necessity in patients with different disorders. Immune reaction dynamics study in patients with coronary atherosclerosis provides one of the leading components to complication development, clinical course prognosis and treatment and rehabilitation tactics. We've chosen intravenous glucose injection as metabolic irritant in the following four groups of patients: men with proved coronary atherosclerosis (CA), non insulin dependent diabetes mellitus (NIDDM), men hereditary burden by CA and NIDDM and practically healthy persons with longlivers in generation. Immune state parameters such as quantity of leukocytes and lymphocytes, circulating immune complexes levels, serum immunoglobulin levels, HLA antigen markers were studied at 0, 30 and 60 minutes during glucose loading. To obtain continues time function of studied parameters received data were approximated by polynomials of high degree with after going first derivatives. Time functions analyze elucidate principally different dynamics studied parameters in all chosen groups of patients, which couldn't be obtained from discontinuous data compare. Leukocyte and lymphocyte levels dynamics correlated HLA antigen markers in all studied groups. Analytical estimation of immune state in patients with coronary atherosclerosis shows the functional "margin of safety" of immune system state under glucose disturbance. Proposed method of analytical estimation also can be used in immune system monitoring in other groups of patients.

  8. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications

    NASA Astrophysics Data System (ADS)

    Piłatowicz, Grzegorz; Budde-Meiwes, Heide; Kowal, Julia; Sarfert, Christel; Schoch, Eberhard; Königsmann, Martin; Sauer, Dirk Uwe

    2016-11-01

    Micro-hybrid vehicles (μH) are currently starting to dominate the European market and seize constantly growing share of other leading markets in the world. On the one hand, the additional functionality of μH reduces the CO2 emissions and improves the fuel economy, but, on the other hand, the additional stress imposed on the lead-acid battery reduces significantly its expected service life in comparison to conventional vehicles. Because of that μH require highly accurate battery state detection solutions. They are necessary to ensure the vehicle reliability requirements, prolong service life and reduce warranty costs. This paper presents an electrical model based on Butler-Volmer equation. The main novelty of the presented approach is its ability to predict accurately dynamic response of a battery considering a wide range of discharge current rates, state-of-charges and temperatures. Presented approach is fully implementable and adaptable in state-of-the-art low-cost platforms. Additionally, shown results indicate that it is applicable as a supporting tool for state-of-charge and state-of-health estimation and scalable for the different battery technologies and sizes. Validation using both static pulses and dynamic driving profile resulted in average absolute error of 124 mV regarding cranking current rate of 800 A respectively.

  9. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Predicting the crystalline and porous equations of state for secondary explosives

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan; Damm, David

    2013-06-01

    Accurate simulations of energetic material response necessitate accurate unreacted equations of state at pressures much higher than even the C-J state. Unfortunately, for reactive materials, experimental data at high pressures may be unattainable, and extrapolation from low-pressure data results in unacceptable uncertainty. In addition to being low-pressure, the available data is typically limited to the porous state. The fully-dense, or crystalline, equation of state is required for building mesoscale simulations of the dynamic response of energetic materials. We have used quantum molecular dynamics to predict the Hugoniots and 300 K isotherms of crystalline PETN, HNS, CL-20 and TATB up to pressures not attainable in experiments. The porous Hugoniots for these materials were then analytically obtained and are validated by comparison with available data. Our calculations for TATB confirm the presence of a kink in the Hugoniot, and the softening of the shock response is explained in terms of a change in molecular conformation and the loss of aromaticity.

  11. Metalloid Aluminum Clusters with Fluorine

    DTIC Science & Technology

    2016-12-01

    molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY...high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results

  12. Disturbance ecology of North American boreal forests and associated northern mixed/subalpine forests [Chapter 3

    Treesearch

    James K. Agee

    2000-01-01

    Disturbance dynamics differ in the three subregions of the North American boreal forest (taiga, western United States, and eastern United States) where lynx are found, resulting in a range of potential effects on lynx populations. Fire severity tends to be high in most of the forest types where lynx habitat occurs, although subsequent succession will differ...

  13. Schooling for Newcomers: Variation in Educational Persistence in the Northern United States in 1920

    ERIC Educational Resources Information Center

    Tolnay, Stewart E.; Bailey, Amy Kate

    2006-01-01

    Early in the 20th century, high rates of international migration from Europe and an increasing number of migrants from the South were rapidly changing the composition of cities in the northern United States. Within this dynamic environment, families faced a more complex set of decisions for the preferred economic roles of their members. For…

  14. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI).

    PubMed

    Dimitriadis, Stavros I; Salis, Christos I

    2017-01-01

    The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data ( N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our results revealed a very high prediction of age for eyes-open ( R 2 = 0.60; y = 0.79x + 8.03) and lower for eyes-closed ( R 2 = 0.48; y = 0.71x + 10.91) while we succeeded to correctly classify young vs. middle-age group with 97.8% accuracy in eyes-open and 87.2% for eyes-closed. Our results were reproduced also in a second dataset for further external validation of the whole analysis. The proposed methodology proved valuable for the characterization of the intrinsic properties of dynamic functional connectivity through the age untangling developmental differences using EEG resting-state recordings.

  15. Modeling Photochemical Dynamics in Optically Active Energetic Materials

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Bjorgaard, Josiah; Greenfield, Margo; Bolme, Cindy; Brown, Katie; McGrane, Shawn; Scharff, R. Jason; Tretiak, Sergei

    Most high explosives (HEs) absorb in the UV range, making it difficult to develop HEs that can be excited with standard lasers. The conventional optical initiation mechanisms require high laser intensity and occur via indirect thermal or shock processes. A photochemical initiation mechanism could allow control over the chemistry contributing to decomposition leading to initiation. We combine UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) with Nonadiabatic Excited State Molecular Dynamics (NA-ESMD) to model the photochemical pathways in nitromethane (NM), a low sensitivity HE known to undergo UV photolysis. We investigate the ultrafast photodecomposition of NM from the nπ* state excited at 266 nm. The FSRS photoproduct spectrum points to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of 20 fs were predicted from simulations. Predicted time scales reveal that NO2 dissociation occurs in 81 +/-4 fs and methyl nitrite formation is much slower at 452 +/-9 fs corresponding to the absorption feature in the TA spectrum. The relative time scales are consistent with isomerization by NO2 dissociation and ONO rebinding.

  16. Evaluation of effect of oil film of rotor bearing

    NASA Astrophysics Data System (ADS)

    Alekseeva, L. B.; Maksarov, V. V.

    2018-03-01

    The high-rpm rotors were subjected to the dynamic analysis. Oscillations of a rotor spinning in gapped bearings were considered. It was stated that the rotor necks motion pattern depends on a lot of factors: a ratio of static and dynamic loads on the bearing, radial clearance size, presence of oil film between a neck and a bearing, elastic and inertial properties of a mounting group. The most unfavourable mode where static and dynamic loads are equal was detected without taking into account the oil film impact. The impact of oil film on the bearing assembly dynamics is significant in high-rpm rotors. The presence of oil film can possibly cause rotor buckling failure and self-starting. Rotor motion stability in small was studied. Herewith, various schemes were considered. Expressions, determining the stability zones of a rigid rotor on the fixed support and the supports with elastic and inertial elements, were given.

  17. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions.

    PubMed

    Irons, Linda; Owen, Markus R; O'Dea, Reuben D; Brook, Bindi S

    2018-06-05

    Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  19. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2003-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  20. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2004-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  1. Electronic Properties of High-Tc Superconductors. The Normal and the Superconducting State of High-Tc Materials. Proceedings of the International Winter School held in Kirchberg, Tyrol on March 7 - 14, 1992

    DTIC Science & Technology

    1992-03-14

    overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is

  2. Near Mbar-Level Dynamic Loading of Materials by Direct Laser-Irradiation

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Swift, D. C.; Gammel, J. T.; Luo, S.; Johnson, R. P.

    2003-12-01

    We are developing techniques to perform direct-laser-illumination-driven, dynamic materials experiments at up to Mbar pressures with use of the Trident Laser Laboratory at Los Alamos. By temporally controlling the laser-irradiance, we are able to shape our loading for studies of fast-rise shocks, precursors, or isentropic compression. Laser-driven shock experiments are advantageous when considering the efficiency (fast turnaround), relative ease of sample recovery, taylorable dynamic loading, and in-situ structure diagnostics. Frequently, these experiments last 1-5 nanoseconds, and thus, permit investigation of rate-dependent processes and high strain rate environments. Laser-driven dynamic experiments are an important complement to traditional dynamic (e.g., light-gas gun) and static (e.g., diamond-anvil cell) experiments with certain advantages in studying equation of state, phase transitions and mechanical-chemical properties of Earth and planetary materials. Understanding high-pressure behavior in this regime is critical to phase boundaries for planetary interiors and dynamic properties of impact processes. Although we have studied silicates, oxides, metals, alloys and organic materials, this paper will focus on shocked and isentropically-compressed results obtained for iron in the range of 10-70 GPa (0.1-0.7 Mbar). Free surface velocities are measured using a Velocity Interferometer System for Any Reflector (VISAR). Nanosecond-scale laser experiments were interpreted with careful attention to exaggerated elastic-plastic effects and using accurate new equations of state for the phases of iron. This poster will present our technique, experimental results, and interpretation. *Work performed under the auspices of the US DOE under contract No. W-7405-ENG-36.

  3. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy

    PubMed Central

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R.; Müller-Späth, Sonja; Pfeil, Shawn H.; Hoffmann, Armin; Lipman, Everett A.; Makarov, Dmitrii E.; Schuler, Benjamin

    2012-01-01

    Internal friction, which reflects the “roughness” of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners. PMID:22492978

  4. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy.

    PubMed

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R; Müller-Späth, Sonja; Pfeil, Shawn H; Hoffmann, Armin; Lipman, Everett A; Makarov, Dmitrii E; Schuler, Benjamin

    2012-10-30

    Internal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners.

  5. Dynamic recruitment of resting state sub-networks

    PubMed Central

    O'Neill, George C.; Bauer, Markus; Woolrich, Mark W.; Morris, Peter G.; Barnes, Gareth R.; Brookes, Matthew J.

    2015-01-01

    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease. PMID:25899137

  6. Time-dependent structural transformation analysis to high-level Petri net model with active state transition diagram

    PubMed Central

    2010-01-01

    Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics. PMID:20356411

  7. Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics.

    PubMed

    Bochenkova, Anastasia V; Mooney, Ciarán R S; Parkes, Michael A; Woodhouse, Joanne L; Zhang, Lijuan; Lewin, Ross; Ward, John M; Hailes, Helen C; Andersen, Lars H; Fielding, Helen H

    2017-04-01

    The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry calculations to show that following UV excitation, the ultrafast electron dynamics in the chromophore anion proceeds via an excited shape resonance strongly coupled to the open continuum. The impact of this state is found across the entire 355-315 nm excitation range, from above the first bound-bound transition to below the opening of higher-lying continua. By disentangling the electron dynamics in the photodetachment channels, we provide an important reference for the adiabatic position of the electron gateway state, which is located at 348 nm, and discover the source of the curiously large widths of the photoelectron spectra that have been reported in the literature. By introducing chemical modifications to the GFP chromophore, we show that the detachment threshold and the position of the gateway state, and hence the underlying excited-state dynamics, can be changed systematically. This enables a fine tuning of the intrinsic electron emission properties of the GFP chromophore and has significant implications for its function, suggesting that the biomimetic GFP chromophores are more stable to photooxidation.

  8. Quantum algorithm for energy matching in hard optimization problems

    NASA Astrophysics Data System (ADS)

    Baldwin, C. L.; Laumann, C. R.

    2018-06-01

    We consider the ability of local quantum dynamics to solve the "energy-matching" problem: given an instance of a classical optimization problem and a low-energy state, find another macroscopically distinct low-energy state. Energy matching is difficult in rugged optimization landscapes, as the given state provides little information about the distant topography. Here, we show that the introduction of quantum dynamics can provide a speedup over classical algorithms in a large class of hard optimization problems. Tunneling allows the system to explore the optimization landscape while approximately conserving the classical energy, even in the presence of large barriers. Specifically, we study energy matching in the random p -spin model of spin-glass theory. Using perturbation theory and exact diagonalization, we show that introducing a transverse field leads to three sharp dynamical phases, only one of which solves the matching problem: (1) a small-field "trapped" phase, in which tunneling is too weak for the system to escape the vicinity of the initial state; (2) a large-field "excited" phase, in which the field excites the system into high-energy states, effectively forgetting the initial energy; and (3) the intermediate "tunneling" phase, in which the system succeeds at energy matching. The rate at which distant states are found in the tunneling phase, although exponentially slow in system size, is exponentially faster than classical search algorithms.

  9. Doing "Diversity" at Dynamic High: Problems and Possibilities of Multicultural Education in Practice

    ERIC Educational Resources Information Center

    Ngo, Bic

    2010-01-01

    In this article, I examine how students, teachers and staff understood and addressed cultural difference at an urban, public high school in the United States. My research reveals that the school's multicultural practices contradictorily sustained and exacerbated problems and made teachers resistant to multicultural education. Simultaneously, my…

  10. Poissonian steady states: from stationary densities to stationary intensities.

    PubMed

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  11. Poissonian steady states: From stationary densities to stationary intensities

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  12. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  13. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hihath, Sahar; Department of Physics, University of California, Davis, 1 Shields Ave., Davis, California 95616; Santala, Melissa K.

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO{sub 3} substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisitionmore » during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.« less

  14. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. High power thyristors with 5 kV blocking voltage. Volume 1: Development of high-voltage-thyristors (4.5 kV) with good dynamic properties

    NASA Technical Reports Server (NTRS)

    Lock, K.; Patalong, H.; Platzoeder, K.

    1979-01-01

    Using neutron irradiated silicon with considerably lower spread in resistivity as compared to conventionally doped silicon it was possible to produce power thyristors with breakdown voltages between 3.5 kV and 5.5 kV. The thyristor pellets have a diameter of 50 mm. Maximum average on-state currents of 600 to 800 A can be reached with these elements. The dynamic properties of the thryistors could be improved to allow standard applications up to maximum repetitive voltages of 4.5 kV.

  16. Experimental studies of tuned particle damper: Design and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao

    2018-01-01

    To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.

  17. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.

    PubMed

    Yang, Xueming; Zhang, Dong H

    2008-08-01

    [Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance picture of the F + HD reaction observed in the experiment. It is clear that the dynamics of the F + HD reaction below the threshold was dominated by the ground resonance state. Furthermore, the forward scattering HF (nu' = 3) channel from the F + H 2 ( j = 0) reaction was investigated and was attributed mainly to a slow-down mechanism over the centrifugal exit barrier, with small contributions from a shape resonance mechanism in a narrow collision energy range. A striking effect of the reagent rotational excitation on resonance was also observed in F + H 2 ( j = 1), in comparison with F + H 2 ( j = 0). From these concerted experimental and theoretical studies, a clear physical picture of the reaction resonances in this benchmark reaction has emerged, providing a textbook example of dynamical resonances in elementary chemical reactions.

  18. Influence of confinement on polymer-electrolyte relaxational dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanotti, J.-M.; Smith, L. J.; Price, D. L.

    2004-01-01

    Conception and industrial production of viable high specific energy/power batteries is a central issue for the development of non-polluting vehicles. In terms of stored energy and safety, solid-state devices using polymer electrolytes are highly desirable. One of the most studied systems is PEO (polyethylene oxide) complexed by Li salts. Polymer segmental motions and ionic conductivity are closely related. Bulk PEO is actually a biphasic system where an amorphous and a crystalline state (Tm 335 K) coexist. To improve ionic conduction in those systems requires a significant increase of the amorphous phase fraction where lithium conduction is known to mainly takemore » place. Confinement strongly affects properties of condensed matter and in particular the collective phenomena inducing crystallization. Confinement of the polymer matrix is therefore a possible alternative route to the unpractical use of high temperature. Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N]- (or (POE)8LiTFSI) dynamics are presented. The nano-confining media is Vycor, a silica based hydrophilic porous glass (characteristic size of the 3D pore network 50 {angstrom}). As expected, the presence of Li salt slows down the bulk polymer dynamics. The confinement also affects dramatically the apparent mean-square displacement of the polymer. Local relaxational PEO dynamics is described KWW model. We also present an alternate model and show how the detailed polymer dynamics (correlation times and local geometry of the motions) can be described without the use of such stretched exponentials so as to access a rheology-related meaningful physical quantity: the monomeric friction coefficient.« less

  19. Rapid Configurational Fluctuations in a Model of Methylcellulose

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Dorfman, Kevin

    Methylcellulose is a thermoresponsive polymer that undergoes a phase transition at elevated temperature, forming fibrils of a uniform diameter. However, the gelation mechanism is still unclear, in particular at higher polymer concentrations. We have investigated a coarse-grained model for methylcellulose, proposed by Larson and coworkers, that produces collapsed toroids in dilute solution with a radius close to that in experiments. Using Brownian Dynamics simulations, we demonstrate that this model's dihedral potential generates ``flipping events'', which helps the chain to avoid kinetic traps by undergoing a sudden transition between a coiled and a collapsed state. If the dihedral potential is removed, the chains cannot escape from their collapsed configuration, whereas at high dihedral potentials, the chains cannot stabilize the collapsed state. We will present quantitative results on the effect of the dihedral potential on both chain statistics and dynamic behavior, and discuss the implication of our results on the spontaneous formation of high-aspect ratio fibrils in experiments.

  20. IPA (v1): a framework for agent-based modelling of soil water movement

    NASA Astrophysics Data System (ADS)

    Mewes, Benjamin; Schumann, Andreas H.

    2018-06-01

    In the last decade, agent-based modelling (ABM) became a popular modelling technique in social sciences, medicine, biology, and ecology. ABM was designed to simulate systems that are highly dynamic and sensitive to small variations in their composition and their state. As hydrological systems, and natural systems in general, often show dynamic and non-linear behaviour, ABM can be an appropriate way to model these systems. Nevertheless, only a few studies have utilized the ABM method for process-based modelling in hydrology. The percolation of water through the unsaturated soil is highly responsive to the current state of the soil system; small variations in composition lead to major changes in the transport system. Hence, we present a new approach for modelling the movement of water through a soil column: autonomous water agents that transport water through the soil while interacting with their environment as well as with other agents under physical laws.

  1. Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder.

    PubMed

    Ward, S; Mena, M; Bouillot, P; Kollath, C; Giamarchi, T; Schmidt, K P; Normand, B; Krämer, K W; Biner, D; Bewley, R; Guidi, T; Boehm, M; McMorrow, D F; Rüegg, Ch

    2017-04-28

    The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.

  2. Protein electron transfer: is biology (thermo)dynamic?

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated kinetics, which extends the transition-state theory to dynamically dispersive media. Releasing the grip of thermodynamics in kinetic calculations through nonergodicity provides the mechanism for an efficient optimization between reaction rates and the spectrum of relaxation times of the protein-water thermal bath. Bath dynamics, it appears, play as important role as the free energy in optimizing biology’s performance.

  3. Conformational State Distributions and Catalytically Relevant Dynamics of a Hinge-Bending Enzyme Studied by Single-Molecule FRET and a Coarse-Grained Simulation

    PubMed Central

    Gabba, Matteo; Poblete, Simón; Rosenkranz, Tobias; Katranidis, Alexandros; Kempe, Daryan; Züchner, Tina; Winkler, Roland G.; Gompper, Gerhard; Fitter, Jörg

    2014-01-01

    Over the last few decades, a view has emerged showing that multidomain enzymes are biological machines evolved to harness stochastic kicks of solvent particles into highly directional functional motions. These intrinsic motions are structurally encoded, and Nature makes use of them to catalyze chemical reactions by means of ligand-induced conformational changes and states redistribution. Such mechanisms align reactive groups for efficient chemistry and stabilize conformers most proficient for catalysis. By combining single-molecule Förster resonance energy transfer measurements with normal mode analysis and coarse-grained mesoscopic simulations, we obtained results for a hinge-bending enzyme, namely phosphoglycerate kinase (PGK), which support and extend these ideas. From single-molecule Förster resonance energy transfer, we obtained insight into the distribution of conformational states and the dynamical properties of the domains. The simulations allowed for the characterization of interdomain motions of a compact state of PGK. The data show that PGK is intrinsically a highly dynamic system sampling a wealth of conformations on timescales ranging from nanoseconds to milliseconds and above. Functional motions encoded in the fold are performed by the PGK domains already in its ligand-free form, and substrate binding is not required to enable them. Compared to other multidomain proteins, these motions are rather fast and presumably not rate-limiting in the enzymatic reaction. Ligand binding slightly readjusts the orientation of the domains and feasibly locks the protein motions along a preferential direction. In addition, the functionally relevant compact state is stabilized by the substrates, and acts as a prestate to reach active conformations by means of Brownian motions. PMID:25418172

  4. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  5. Response of an arctic predator guild to collapsing lemming cycles

    PubMed Central

    Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit

    2012-01-01

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153

  6. Response of an arctic predator guild to collapsing lemming cycles.

    PubMed

    Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit

    2012-11-07

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.

  7. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    PubMed

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  8. Very highly excited vibrational states of LiCN using a discrete variable representation

    NASA Astrophysics Data System (ADS)

    Henderson, James R.; Tennyson, Jonathan

    Calculations are presented for the lowest 900 vibrational (J = 0) states of the LiCN floppy system for a two dimensional potential energy surface (rCN frozen). Most of these states lie well above the barrier separating the two linear isomers of the molecule and the point where the classical dynamics of the system becomes chaotic. Analysis of the wavefunctions of individual states in the high energy region shows that while most have an irregular nodal structure, a significant number of states appear regular - corresponding to solutions of standard, 'mode localized' hamiltonians. Motions corresponding in zero-order to Li-CN and Li-NC normal modes as well as free rotor states are identified. The distribution of level spacings is also studied and yields results in good agreement with those obtained by analysing nodal structures.

  9. Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Kwei J.

    2006-12-01

    Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.

  10. The Dynamic Microbiota Profile During Pepper (Piper nigrum L.) Peeling by Solid-State Fermentation.

    PubMed

    Hu, Qisong; Zhang, Jiachao; Xu, Chuanbiao; Li, Congfa; Liu, Sixin

    2017-06-01

    White pepper (Piper nigrum L.), a well-known spice, is the main pepper processing product in Hainan province, China. The solid-state method of fermentation can peel pepper in a highly efficient manner and yield high-quality white pepper. In the present study, we used next-generation sequencing to reveal the dynamic changes in the microbiota during pepper peeling by solid-state fermentation. The results suggested that the inoculated Aspergillus niger was dominant throughout the fermentation stage, with its strains constituting more than 95% of the fungi present; thus, the fungal community structure was relatively stable. The bacterial community structure fluctuated across different fermentation periods; among the bacteria present, Pseudomonas, Tatumella, Pantoea, Acinetobacter, Lactococcus, and Enterobacter accounted for more than 95% of all bacteria. Based on the correlations among the microbial community, we found that Pseudomonas and Acinetobacter were significantly positively related with A. niger, which showed strong synergy with them. In view of the microbial functional gene analysis, we found that these three bacteria and fungi were closely related to the production of pectin esterase (COG4677) and acetyl xylan esterase (COG3458), the key enzymes for pepper peeling. The present research clarifies the solid-state fermentation method of pepper peeling and lays a theoretical foundation to promote the development of the pepper peeling process and the production of high-quality white pepper.

  11. An Experimental Study of Dynamic Stall on Advanced Airfoil Sections. Volume 1. Summary of the Experiment.

    DTIC Science & Technology

    1982-07-01

    Aeronautics and United States Army Space Administration Aviation Research and Ames Remrch Cente Development Command Moffett Field. California 94035 St...appear to be more important than airfoil shape in determining the dynamic- stall airloads. 1. INTRODUCTION Retreating- blade stall limits the high-speed...12.2% Thick R.A.E. Aerofoil Section. RAE Technical Report 68303, Royal Aircraft Establishment, Farnborough Hants, England, Jan. 1969. 14. Fromme, J. A

  12. General three-state model with biased population replacement: Analytical solution and application to language dynamics

    NASA Astrophysics Data System (ADS)

    Colaiori, Francesca; Castellano, Claudio; Cuskley, Christine F.; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca

    2015-01-01

    Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three-state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three-state model, although discussed in terms of language dynamics, are widely applicable.

  13. Full-dimensional quantum dynamics study on the mode-specific unimolecular dissociation reaction of HFCO

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takeshi; Kato, Shigeki

    2000-05-01

    The mode specificity of the unimolecular reaction of HFCO is studied by six-dimensional quantum dynamics calculations. The energy and mode dependency of the dissociation rate is examined by propagating a number of wave packets with a small energy dispersion representing highly excited states with respect to a specific vibrational mode. The wave packets are generated by applying a set of filter operators onto a source vibrational state. All the information necessary for propagating the wave packets is obtained from a single propagation of the source state, thus allowing a significant decrease of computational effort. The relevant spectral peaks are assigned using the three-dimensional CH chromophore Hamiltonian. The resulting dissociation rate of the CH stretching excited state is in agreement with that obtained from a statistical theory, while the rates of the out-of-plane bending excited states are about one order of magnitude smaller than the statistical rates. A local-mode analysis also shows that the relaxation of the out-of-plane excitation proceeds very slowly within 3 ps. These results clearly indicate weak couplings of the out-of-plane bending excited states with other in-plane vibrational states, which is in qualitative agreement with experimental findings. From a computational point of view, a parallel supercomputer is utilized efficiently to handle an ultra large basis set of an order of 108, and 200 Gflops rate on average is achieved in the dynamics calculations.

  14. Subcycle dynamics of high-order-harmonic generation of He atoms excited by attosecond pulses and driven by near-infrared laser fields: A self-interaction-free time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2014-05-01

    In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.

  15. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  16. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  17. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, W. J., E-mail: williamjglover@gmail.com

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weightedmore » schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.« less

  18. Impulsive Collision Dynamics of CO Super Rotors from an Optical Centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Toro, Carlos; Liu, Qingnan; Mullin, Amy S

    2016-11-18

    We report state-resolved collision dynamics for CO molecules prepared in an optical centrifuge and measured with high-resolution transient IR absorption spectroscopy. Time-resolved polarization-sensitive measurements of excited CO molecules in the J=29 rotational state reveal that the oriented angular momentum of CO rotors is relaxed by impulsive collisions. The translational energy gains for molecules in the initial plane of rotation are threefold larger than for randomized angular momentum orientations, indicating the presence of anisotropic kinetic energy. The transient data show enhanced population for CO molecules in the initial plane of rotation immediately following the optical centrifuge pulse. A comparison with previous CO 2 super rotor studies illustrates the behavior of molecular gyroscopes; spatial reorientation of CO 2 J=76 rotors takes substantially longer than that for CO J=29 rotors, despite similarities in classical rotational period and rotational energy gap. High-resolution transient IR absorption measurements of the CO J=29-39 rotational states show that the collisional depopulation rates increase with J quantum number. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2005-01-01

    Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg) and Root Mean Square Deviation (RMSD) have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE), shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here. PMID:15760474

  20. Vibrationally-Resolved Kinetic Isotope Effects in the Proton-Transfer Dynamics of Ground-State Tropolone

    NASA Astrophysics Data System (ADS)

    Chew, Kathryn; Vealey, Zachary; Vaccaro, Patrick

    2015-06-01

    The vibrational and isotopic dependence of the hindered (tunneling-mediated) proton-transfer reaction taking place in the ground electronic state ( X1{A}1) of monodeuterated tropolone (TrOD) has been explored under ambient (bulk-gas) conditions by applying two-color variants of resonant four-wave mixing (RFWM) spectroscopy in conjunction with polarization-resolved detection schemes designed to alleviate spectral complexity and facilitate rovibrational assignments. Full rotation-tunneling analyses of high-resolution spectral profiles acquired for the fundamental and first-overtone bands of a reaction-promoting O-D\\cdotsO deformation/ring-breathing mode, νb{36}(a1), were performed, thereby extracting refined structural and dynamical information that affords benchmarks for the quantitative interpretation of tunneling-induced signatures found in long-range scans of X1{A}1 vibrational levels residing below Etilde{X}vib = 1700 wn}. Observed kinetic isotope effects, which reflect changes in both reaction kinematics and vibrational displacements, will be discussed, with high-level quantum-chemical calculations serving to elucidate state-resolved propensities for proton transfer in TrOH and TrOD.

Top