Science.gov

Sample records for highly dynamic wireless

  1. Dynamic interrogation of wireless antenna sensor

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tjuatja, S.; Huang, H.; Sanders, J.

    2014-03-01

    This paper presents the dynamic interrogation of a wireless antenna sensor for mechanical vibration monitoring. In order to interrogate the antenna resonant frequency at sufficient high speeds, a wireless interrogator that consists of a Frequency Modulated Continuous Wave (FMCW) synthesizer, a signal demodulation unit, and a real-time digital signal processing program was developed. The principle of operation of the dynamic wireless sensing system is first described, followed by the description of the design and implementation of the antenna sensor and the wireless interrogator. After calibrate the antenna sensor response using static tensile tests, dynamic interrogation of the wireless antenna sensor was carried out by subjecting the test specimen to a sinusoidal tensile load. The resonant frequency shifts of the antenna sensor were compared with the strains calculated from the applied loads. A good agreement between the antenna sensor readings and the strain values were achieved. A sampling rate of up to 50 Hz was demonstrated.

  2. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    PubMed Central

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  3. Design of high-encryption wireless network with distributed host management and dynamic key generation

    NASA Astrophysics Data System (ADS)

    Weber, Robert E.

    2001-11-01

    The widespread deployment of wireless networks using the 802.11(b) standard across the country presents a rebirth of age-old network security problems along with a number of new ones. The wireless network, much like a shared network using broadcast devices such as network hubs, travels across a shared medium. Because of the structure any member of the wireless network can observe and intercept data being sent or received by other members. Unlike 'wired' networks there is no means to isolate traffic from other network members. The second security issue for wireless networks is the transmission of data 'clear text' so that if it is intercepted it can be read and used. Wireless networks bring about another problem that compounds the first two concerns that all shared networks must deal with, that is, anyone within the transmission range of the wireless network can join. No longer must a person enter a building to infiltrate a business network, they need only park across the street. The first implementation of network security for wireless was the WEP (Wired Equivalent Privacy) protocol. WEP attempts to make a wireless network at least as secure as a switched 'wired' network. The WEP protocol intends to secure the traffic integrity with the use of a RC4 cipher and a CSC-32 checksum. In the passphrase used for the RC4 encryption is also used as a form of access control. There are several critical faults in the WEP implementation that allow both passive data acquisition and active data modification. At 11 Mbit, capturing approximately 5 hours of clear text data can guarantee the capture of two packets with the same initialization vector (IV). Once the packets are used to get the clear text packet, that information can be used to decrypt any packets with the same IV. Since the IV's are only 24 bits the decryption of entire network becomes only an exercise in patience, with a 24 hours of continuous monitoring the WEP encryption can be defeated completely and a simple

  4. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  5. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  6. High availability of hybrid wireless networks

    NASA Astrophysics Data System (ADS)

    Leitgeb, Erich; Gebhart, Michael; Birnbacher, Ulla; Kogler, Wolfgang; Schrotter, Peter

    2004-09-01

    Free Space Optical (FSO) links offer high bandwidth and the flexibility of wireless communication links. However, the availability of FSO links is limited by weather patterns like fog and heavy snowfall. Microwave based communication links operating at high frequencies (40 - 43 GHz) have similar characteristics like high data rates and needed line-of-sight. Link availability for microwave systems is limited by heavy rain. Combining FSO links with microwave links within a hybrid FSO/microwave communication network has the advantage of added redundancy and higher link availability. Measurements over a period of one year show a combined availability of 99.93% for the climatic region of Graz, Austria) which proves that the combination of both technologies leads to a highly available wireless connection offering high bandwidth.

  7. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  8. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  9. A Token Ring Protocol for Dynamic Ad-hoc Wireless Environments

    SciTech Connect

    Top, P; Kohlhepp, V; Dowla, F

    2005-09-30

    A wireless ad-hoc networking protocol is presented. The protocol is designed to be flexible, easy to use and adaptable to a wide variety of potential applications. The primary considerations in design are small code size, guaranteed bandwidth access, limited delay, and error resilience in a highly dynamic ad-hoc environment. These considerations are achieved through the use of token ring protocol.

  10. Thermoelectric Powered High Temperature Wireless Sensing

    NASA Astrophysics Data System (ADS)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  11. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  12. Dynamic reconfiguration of security policies in wireless sensor networks.

    PubMed

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-01-01

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs).We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093

  13. Dynamic reconfiguration of security policies in wireless sensor networks.

    PubMed

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-03-04

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs).We evaluate our approach using a case study from the intelligent transportation system domain.

  14. Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks

    PubMed Central

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-01-01

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093

  15. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm.

    PubMed

    Ozturk, Celal; Karaboga, Dervis; Gorkemli, Beyza

    2011-01-01

    As the usage and development of wireless sensor networks are increasing, the problems related to these networks are being realized. Dynamic deployment is one of the main topics that directly affect the performance of the wireless sensor networks. In this paper, the artificial bee colony algorithm is applied to the dynamic deployment of stationary and mobile sensor networks to achieve better performance by trying to increase the coverage area of the network. A probabilistic detection model is considered to obtain more realistic results while computing the effectively covered area. Performance of the algorithm is compared with that of the particle swarm optimization algorithm, which is also a swarm based optimization technique and formerly used in wireless sensor network deployment. Results show artificial bee colony algorithm can be preferable in the dynamic deployment of wireless sensor networks. PMID:22163942

  16. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    PubMed Central

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-01-01

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95% of the theoretical optimal throughput and 0.97 of fairness index especially in dynamic and dense networks. PMID:26633421

  17. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  18. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-01-01

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks. PMID:26633421

  19. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  20. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  1. High speed infrared optical wireless for home access networks

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.

    2013-12-01

    The availability of high-bandwidth internet connections to home gateways will place increasing demands on the home access network that provides connections to computers and other devices. In this paper the use of infrared optical wireless to provide connections to user appliances and terminals is discussed. The design and implementation of two demonstration systems operating at hundreds of Mbit/s and above are detailed. Future challenges are also discussed.

  2. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.

    PubMed

    Ibrahim, Ahmed; Farajidavar, Aydin; Kiani, Mehdi

    2015-08-01

    This paper presents the system design of a highly-scalable system-on-a-chip (SoC) to wirelessly and chronically detect the mechanisms underlying gastric dysrhythmias. The proposed wireless implantable gastric-wave recording (WIGR) SoC records gastric slow-wave and spike activities from 256 sites, and establishes transcutaneous data communication with an external reader while being inductively powered. The SoC is highly scalable by employing a modular architecture for the analog front-end (AFE), a near-field pulse-delay modulation (PDM) data transmitter (Tx) that its data rate is proportional to the power carrier frequency (fp), and an adaptive power management equipped with automatic-resonance tuning (ART) that dynamically compensates for environmental and fp variations of the implant power coil. The simulation and measurement results for individual blocks have been presented. PMID:26736846

  3. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.

    PubMed

    Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte

    2016-07-01

    Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ.

  4. FPGA implementation of dynamic channel assignment algorithm for cognitive wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Martínez, Daniela M.; Andrade, Ángel G.

    2015-07-01

    The reliability of wireless sensor networks (WSNs) in industrial applications can be thwarted due to multipath fading, noise generated by industrial equipment or heavy machinery and particularly by the interference generated from other wireless devices operating in the same spectrum band. Recently, cognitive WSNs (CWSNs) were proposed to improve the performance and reliability of WSNs in highly interfered and noisy environments. In this class of WSN, the nodes are spectrum aware, that is, they monitor the radio spectrum to find channels available for data transmission and dynamically assign and reassign nodes to low-interference condition channels. In this work, we present the implementation of a channel assignment algorithm in a field-programmable gate array, which dynamically assigns channels to sensor nodes based on the interference and noise levels experimented in the network. From the results obtained from the performance evaluation of the CWSN when the channel assignment algorithm is considered, it is possible to identify how many channels should be available in the network in order to achieve a desired percentage of successful transmissions, subject to constraints on the signal-to-interference plus noise ratio on each active link.

  5. Study on High Efficient Electric Vehicle Wireless Charging System

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  6. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  7. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  8. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    PubMed Central

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  9. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    PubMed

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved.

  10. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  11. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  12. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  13. High-Performance Wireless Internet Connection to Mount Laguna Observatory

    NASA Astrophysics Data System (ADS)

    Etzel, P. B.; Braun, H.-W.

    2000-12-01

    A 45 Mbit/sec full-duplex wireless Internet backbone is now under construction that will connect SDSU's Mount Laguna Observatory (MLO) to the San Diego Supercomputer Center (SDSC), which is located on the campus of UCSD. The SDSU campus is connected to the SDSC via Abilene/OC3 (Internet2) at 155 Mbit/sec. The MLO-SDSC backbone is part of the High-Performance Wireless Research and Education Network (HPWREN) project. Other scientific applications include earthquake monitoring from a remote array of automated seismic stations operated by researchers at the UCSD Institute for Geophysics and Planetary Physics, and environmental monitoring at Ecology field stations administered by SDSU. Educational initiatives include bringing the Internet to schools and educational centers at remote Indian reservations such as Pala and Rincon. HPWREN will allow SDSU astronomers and their collaborators to transmit CCD images to their home institutions while observations are being made. Archive retrieval of images from on-campus data bases, for comparison purposes, could easily be done. SDSU desires to build a modern, large telescope at MLO. HPWREN would support both robotic and remote observing capabilities for such a telescope. Astronomers could observe at their home institutions with multiple workstations to feed command and control instructions, data, and slow-scan video, which would give them the "feel" of being in a control room next to the telescope. HPWREN was funded by the NSF under grant ANI-0087344.

  14. Pulse wireless photonic power transfer at high irradiance

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Kwok, Philip

    2014-06-01

    Photonic power conversion combined with a high power laser diode, is a high efficiency solution for rapid, wireless transfer of power to dormant sensors, which have sporadic need for electrical power. In particular, these devices replace, thermal/inductive power sources inside a munition shell, leading to a safe non-radiating environment. Experimental results with a 25 F double-layer, super-capacitor, indicate that the surface irradiance and laser power both determine the minimum energy transfer time. At a power level of 4 W, the energy transfer rate reduces from a 1 J/s to 0.35 J/s as the irradiance level changes from 1125 suns to 63 suns.

  15. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Gerasimov, Mark Yu.; Itskov, Vadim V.

    2016-06-01

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  16. Rapid-to-deploy wireless monitoring systems for static and dynamic load testing of bridges: validation on the Grove Street Bridge

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Lynch, Jerome P.

    2006-03-01

    Bridge management officials have expressed a keen interest in the use of low-cost and easy-to-install wireless sensors to record bridge responses during short-term load testing. To illustrate the suitability of wireless sensors for short-term monitoring of highway bridges, a wireless monitoring system is installed upon the Grove Street Bridge to monitor structural responses during static and dynamic load testing. Specifically, load testing of the Grove Street Bridge is conducted after its construction to validate the behavior of a novel jointless bridge deck constructed from a high-performance fiber reinforced cementitious composite (HPFRCC) material. A heterogeneous array of sensing transducers are installed in the bridge including metal foil strain gages, accelerometers and linear variable differential transducers (LVDTs). First, the acceleration response of the bridge is monitored by the wireless system during routine traffic loading. Modal parameters (modal frequencies and mode shapes) are calculated by the wireless sensors so that an analytical model of the bridge constructed in a standard commercial finite element package can be updated off-line. Next, the bridge is closed to traffic and trucks of known weight are parked on the bridge to induce static deformations. The installation strategy of the wireless monitoring system during static load testing is optimized to monitor the strain and rotation response of the HPFRCC deck. The measured static response of the deck is compared to that predicted by the updated analytical model.

  17. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    ERIC Educational Resources Information Center

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  18. Efficient massively parallel simulation of dynamic channel assignment schemes for wireless cellular communications

    NASA Technical Reports Server (NTRS)

    Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.

    1994-01-01

    Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.

  19. Design and Analysis of a Dynamic Mobility Management Scheme for Wireless Mesh Network

    PubMed Central

    Roy, Sudipta

    2013-01-01

    Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC's session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO, M3, and WMM with respect to total cost. PMID:24311982

  20. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  1. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  2. A wireless portable high temperature data monitor for tunnel ovens.

    PubMed

    Mayo Bayón, Ricardo; González Suárez, Víctor M; Mateos Martín, Felipe; Lopera Ronda, Juan M; Álvarez Antón, Juan C

    2014-01-01

    Tunnel ovens are widely used in the food industry to produce biscuits and pastries. In order to obtain a high quality product, it is very important to control the heat transferred to each piece of dough during baking. This paper proposes an innovative, non-distorting, low cost wireless temperature measurement system, called "eBiscuit", which, due to its size, format and location in the metal rack conveyor belt in the oven, is able to measure the temperature a real biscuit experience while baking. The temperature conditions inside the oven are over 200 °C for several minutes, which could damage the "eBiscuit" electronics. This paper compares several thermal insulating materials that can be used in order to avoid exceeding the maximum operational conditions (80 °C) in the interior of the "eBiscuit. The data registered is then transmitted to a base station where information can be processed to obtain an oven model. The experimental results with real tunnel ovens confirm its good performance, which allows detecting production anomalies early on. PMID:25120161

  3. A Wireless Portable High Temperature Data Monitor for Tunnel Ovens

    PubMed Central

    Bayón, Ricardo Mayo; González Suárez, Víctor M.; Martín, Felipe Mateos; Lopera Ronda, Juan M.; Álvarez Antón, Juan C.

    2014-01-01

    Tunnel ovens are widely used in the food industry to produce biscuits and pastries. In order to obtain a high quality product, it is very important to control the heat transferred to each piece of dough during baking. This paper proposes an innovative, non-distorting, low cost wireless temperature measurement system, called “eBiscuit”, which, due to its size, format and location in the metal rack conveyor belt in the oven, is able to measure the temperature a real biscuit experience while baking. The temperature conditions inside the oven are over 200 °C for several minutes, which could damage the “eBiscuit” electronics. This paper compares several thermal insulating materials that can be used in order to avoid exceeding the maximum operational conditions (80 °C) in the interior of the “eBiscuit. The data registered is then transmitted to a base station where information can be processed to obtain an oven model. The experimental results with real tunnel ovens confirm its good performance, which allows detecting production anomalies early on. PMID:25120161

  4. Dynamic Load Balancing Data Centric Storage for Wireless Sensor Networks

    PubMed Central

    Song, Seokil; Bok, Kyoungsoo; Kwak, Yun Sik; Goo, Bongeun; Kwak, Youngsik; Ko, Daesik

    2010-01-01

    In this paper, a new data centric storage that is dynamically adapted to the work load changes is proposed. The proposed data centric storage distributes the load of hot spot areas to neighboring sensor nodes by using a multilevel grid technique. The proposed method is also able to use existing routing protocols such as GPSR (Greedy Perimeter Stateless Routing) with small changes. Through simulation, the proposed method enhances the lifetime of sensor networks over one of the state-of-the-art data centric storages. We implement the proposed method based on an operating system for sensor networks, and evaluate the performance through running based on a simulation tool. PMID:22163472

  5. High density wireless EEG prototype: Design and evaluation against reference equipment.

    PubMed

    Rossi, Stefano; Patki, Shrishail; Passoni, Marco; Perko, Hannes; Gritsch, Gerhard; Ossenblok, Pauly; Yazicioglu, Refet Firat

    2014-01-01

    A high density wireless electroencephalographic (EEG) platform has been designed. It is able to record up to 64 EEG channels with electrode to tissue impedance (ETI) monitoring. The analog front-end is based on two kinds of low power ASICs implementing the active electrodes and the amplifier. A power efficient compression algorithm enables the use of continuous wireless transmission of data through Bluetooth for real-time monitoring with an overall power consumption of about 350 mW. EEG acquisitions on five subjects (one healthy subject and four patients suffering from epilepsy) have been recorded in parallel with a reference system commonly used in clinical practice and data of the wireless prototype and reference system have been processed with an automatic tool for seizure detection and localization. The false alarm rates (0.1-0.5 events per hour) are comparable between the two system and wireless prototype also detected the seizure correctly and allowed its localization.

  6. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    PubMed

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  7. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    PubMed Central

    Sa-ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T. S.

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing. PMID:23112633

  8. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  9. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  10. An Overview of the Development of High Temperature Wireless Smart Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2014-01-01

    The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.

  11. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    PubMed Central

    Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus

    2013-01-01

    This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992

  12. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks

    PubMed Central

    Beulah Jayakumari, R.; Jawahar Senthilkumar, V.

    2015-01-01

    Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN) is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC) protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol. PMID:26504898

  13. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks.

    PubMed

    Jayakumari, R Beulah; Senthilkumar, V Jawahar

    2015-01-01

    Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN) is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC) protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol. PMID:26504898

  14. Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications

    PubMed Central

    Huang, Xianjun; Leng, Ting; Zhu, Mengjian; Zhang, Xiao; Chen, JiaCing; Chang, KuoHsin; Aqeeli, Mohammed; Geim, Andre K.; Novoselov, Kostya S.; Hu, Zhirun

    2015-01-01

    In this paper, we report highly conductive, highly flexible, light weight and low cost printed graphene for wireless wearable communications applications. As a proof of concept, printed graphene enabled transmission lines and antennas on paper substrates were designed, fabricated and characterized. To explore its potentials in wearable communications applications, mechanically flexible transmission lines and antennas under various bended cases were experimentally studied. The measurement results demonstrate that the printed graphene can be used for RF signal transmitting, radiating and receiving, which represents some of the essential functionalities of RF signal processing in wireless wearable communications systems. Furthermore, the printed graphene can be processed at low temperature so that it is compatible with heat-sensitive flexible materials like papers and textiles. This work brings a step closer to the prospect to implement graphene enabled low cost and environmentally friendly wireless wearable communications systems in the near future. PMID:26673395

  15. Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications

    NASA Astrophysics Data System (ADS)

    Huang, Xianjun; Leng, Ting; Zhu, Mengjian; Zhang, Xiao; Chen, Jiacing; Chang, Kuohsin; Aqeeli, Mohammed; Geim, Andre K.; Novoselov, Kostya S.; Hu, Zhirun

    2015-12-01

    In this paper, we report highly conductive, highly flexible, light weight and low cost printed graphene for wireless wearable communications applications. As a proof of concept, printed graphene enabled transmission lines and antennas on paper substrates were designed, fabricated and characterized. To explore its potentials in wearable communications applications, mechanically flexible transmission lines and antennas under various bended cases were experimentally studied. The measurement results demonstrate that the printed graphene can be used for RF signal transmitting, radiating and receiving, which represents some of the essential functionalities of RF signal processing in wireless wearable communications systems. Furthermore, the printed graphene can be processed at low temperature so that it is compatible with heat-sensitive flexible materials like papers and textiles. This work brings a step closer to the prospect to implement graphene enabled low cost and environmentally friendly wireless wearable communications systems in the near future.

  16. High-Temperature SAW Wireless Strain Sensor with Langasite.

    PubMed

    Shu, Lin; Peng, Bin; Yang, Zhengbing; Wang, Rui; Deng, Senyang; Liu, Xingzhao

    2015-01-01

    Two Surface acoustic wave (SAW) resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117°) and (0°, 138.5°, 27°). A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117°) cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%. PMID:26569255

  17. High-Temperature SAW Wireless Strain Sensor with Langasite

    PubMed Central

    Shu, Lin; Peng, Bin; Yang, Zhengbing; Wang, Rui; Deng, Senyang; Liu, Xingzhao

    2015-01-01

    Two Surface acoustic wave (SAW) resonators were fabricated on langasite substrates with Euler angle of (0°, 138.5°, 117°) and (0°, 138.5°, 27°). A dipole antenna was bonded to the prepared SAW resonator to form a wireless sensor. The characteristics of the SAW sensors were measured by wireless frequency domain interrogation methods from 20 °C to 600 °C. Different temperature behaviors of the sensors were observed. Strain sensing was achieved using a cantilever configuration. The sensors were measured under applied strain from 20 °C to 500 °C. The shift of the resonance frequency contributed merely by strain is extracted from the combined effects of temperature and strain. Both the strain factors of the two SAW sensors increase with rising ambient temperature, and the SAW sensor deposited on (0°, 138.5°, 117°) cut is more sensitive to applied strain. The measurement errors of the two sensors are also discussed. The relative errors of the two sensors are between 0.63% and 2.09%. Even at 500 °C, the hysteresis errors of the two sensors are less than 5%. PMID:26569255

  18. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    PubMed Central

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  19. A silicon carbide wireless temperature sensing system for high temperature applications.

    PubMed

    Yang, Jie

    2013-02-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance.

  20. A silicon carbide wireless temperature sensing system for high temperature applications.

    PubMed

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  1. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  2. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  3. Towards Fully Integrated High Temperature Wireless Sensors Using GaN-based HEMT Devices

    SciTech Connect

    Kuruganti, Phani Teja; Islam, Syed K; Huque, Mohammad A

    2008-01-01

    Wireless sensors which are capable of working at extreme environments can significantly improve the efficiency and performance of industrial processes by facilitating better control systems. GaN, a widely researched wide bandgap material, has the potential to be used both as a sensing material and to fabricate control electronics, making it a prime candidate for high temperature integrated wireless sensor fabrication. In this paper we are presenting an experimental study on AlGaN/GaN HEMT's performance at higher temperature (up to 300 C). From test results, DC and microwave parameters at different temperatures were extracted.

  4. Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale

    NASA Astrophysics Data System (ADS)

    Majone, B.; Bellin, A.; Filippi, E.; Ioriatti, L.; Martinelli, M.; Massa, A.; Toller, G.

    2009-12-01

    We describe a recent deployment of soil moisture and temperature sensors in an apple tree orchard aimed at exploring the interaction between soil moisture dynamics and plant physiology. The field is divided into three parcels with different constant irrigation rates. The deployment includes dendrometers which monitor the variations of the trunk diameter. The idea is to monitor continuously and at small time steps soil moisture dynamics, soil temperature and a parameter reflecting plant stress at the parcel scale, in order to better investigate the interaction between plant physiology and soil moisture dynamics. Other sensors monitoring plant physiology can be easily accommodated within the Wireless Sensor Network (WSN). The experimental site is an apple orchard of 5000 m2 located at Cles, province of Trento, Italy, at the elevation of 640 m.a.s.l. In this site about 1200 apple trees are cultivated (cultivar Golden Delicious). The trees have been planted in 2004 in north-south rows 3.5 m apart. The deployment consists of 27 locations connected by a multi hop WSN, each one equipped with 5 soil moisture sensors (capacitance sensors EC-5, decagon Service) at the depths of 10, 20, 30, 50 and 80 cm, and a temperature sensor at the depth of 20 cm, for a total of 135 soil moisture and 27 temperature sensors. The proposed monitoring system is based on totally autonomous sensor nodes which allow both real time and historic data management. The data gathered are then organized in a database on a public web site. The node sensors are connected through an input/output interface to a WSN platform. The power supply consists of a solar panel able to provide 250 mA at 7 V and a 3V DC/DC converter based on a dual frequency high efficient switching regulator. The typical meteorological data are monitored with a weather station located at a distance of approximately 100 m from the experimental site. Great care has been posed to calibration of the capacitance sensors both in the

  5. Designing coherent optical wireless systems for high speed indoor telecom applications

    NASA Astrophysics Data System (ADS)

    Kamalakis, Thomas; Kanakis, Panagiotis; Bogris, Adonis; Dalakas, Vasilis; Dede, Georgia

    2016-01-01

    This paper focuses on several design issues of coherent optical wireless systems as a means of providing high data rate optical links in indoor environments enabling the realization of ultra-broadband wireless local area networks. We show how the performance specifications can be translated into signal-to-noise ratio requirements inside the coverage area, taking into account the laser phase noise mitigation scheme. We then discuss the power budget details using Gaussian beam optics incorporating the transceiver positioning and the optical systems used at the transmitter and receiver side. We also treat the influence of ambient light noise. We show that coherent optical wireless systems are characterized by excellent signal-to-noise performance enabling networking at very high data rates. Our results indicate that 2 Gb/s and 10 Gb/s data rates can be easily sustained at 3 m distances over a circular coverage area of 1 m radius using Class-1 lasers for the transmitter and the local oscillator. We also discuss the power gain compared to intensity modulated/direct detection optical wireless and show that it can be as high as 20 dB, especially near the edge of the coverage area.

  6. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-07-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  7. Dynamic power scheduling system for JPEG2000 delivery over wireless networks

    NASA Astrophysics Data System (ADS)

    Martina, Maurizio; Vacca, Fabrizio

    2003-06-01

    Third generation mobile terminals diffusion is encouraging the development of new multimedia based applications. The reliable transmission of audiovisual content will gain major interest being one of the most valuable services. Nevertheless, mobile scenario is severely power constrained: high compression ratios and refined energy management strategies are highly advisable. JPEG2000 as the source encoding stage assures excellent performance with extremely good visual quality. However the limited power budged imposes to limit the computational effort in order to save as much power as possible. Starting from an error prone environment, as the wireless one, high error-resilience features need to be employed. This paper tries to investigate the trade-off between quality and power in such a challenging environment.

  8. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  9. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  10. Implementation of a wireless sensor network for monitoring the long term soil water dynamics at the hillslope-scale.

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Kögler, Simon; Grau, Thomas; Wollschläger, Ute; Werban, Ulrike; Behrens, Thorsten; Schmidt, Karsten; Dietrich, Peter; Zacharias, Steffen

    2013-04-01

    Knowledge of soil water dynamics at the field scale is an important issue e.g. for water management, understanding runoff generation processes, and for calibration and validation of soil water balance models. There is a clear need for robust and flexible monitoring technologies which are able to capture high-resolution information over large areas. Fast and precise measurements may be obtained from geophysical surveys and distributed in situ sensor networks. The overall aim of the project is to design a spatially optimized monitoring strategy for hillslope-scale soil water dynamics by combining innovative geophysical methods and wireless soil moisture sensing technology. In the Harz Mountains (Central Germany), a 2.5 ha hillslope area was permanently instrumented with a wireless soil moisture and soil temperature monitoring network (SoilNet). Along the slopes, lateral flows are expected to play a relevant role in the runoff process, and the different soil types respond differently to the meteorological forcing. Based on Proximal Soil Sensing (PSS) data from geophysical surveys and the Digital Elevation Model (DEM) of the study site, a conditioned Latin Hypercube Sampling strategy (cLHS) was applied to select 30 locations for the SoilNet nodes. In order to intensify the observations at shorter distances, 10 additional locations were added to the network. In total, 40 network nodes, each comprising 6 sensors, were installed at 3 depths (two repetitions at 5, 25 and 50 cm), providing measurements with high spatial and temporal resolution. A sensor-specific calibration was performed in order to enhance the accuracy of both, soil water content and soil temperature estimation. Therefore, each sensor of the node was calibrated in 7 fluids with several dielectric permittivities. Moreover, a mixture of ice and water was used for temperature calibration. Data are measured at an hourly interval, transferred via UMTS connection, automatically processed and plotted, both as

  11. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  12. Field dynamic testing on a Cyprus concrete highway bridge using Wireless Sensor Network (WSN)

    NASA Astrophysics Data System (ADS)

    Votsis, Renos A.; Kyriakides, Nicholas; Tantele, Elia A.; Chrysostomou, Christis Z.; Onoufriou, Toula

    2014-08-01

    The aims of the bridge management authorities are to ensure that bridges fulfil their purpose and functionality during their design life. So, it is important to identify and quantify the deterioration of the structural condition early so that a timely application of an intervention will avoid more serious problems and increased costs at a later stage. A measure to enhance the effectiveness of the existing structural evaluation by visual inspection is instrumental monitoring using sensors. The activities performed in this process belong to the field of Structural Health Monitoring (SHM). The SHM offers opportunities for continuous or periodic monitoring on bridges and technological advances allow nowadays the employment of wireless sensors networks (WSN) for this task. A SHM application using WSN was implemented on a multi-span reinforced concrete (RC) highway bridge in Limassol with the objective to study its dynamic characteristics and performance. Part of the specific bridge will be replaced and this offered a unique opportunity for measurements before and after construction so that apparent changes in the dynamic characteristics of the bridge will be identified after the repairing work. The measurements provided indications on the frequencies and mode shapes of the bridge and the response amplitude during the passing of traffic. The latter enabled the investigation of the dependency of the bridge's structural damping to the amplitude of vibration induced by the passing of traffic. The results showed that as the excitation increases the magnitude of modal damping increases as well.

  13. Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Campbell, Steven L; Ning, Puqi; Miller, John M; Liang, Zhenxian

    2013-01-01

    In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.

  14. High speed optical wireless data transmission system for particle sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  15. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time.

  16. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    SciTech Connect

    Onunkwo, Uzoma

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  17. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time. PMID:21164867

  18. Motion-related resource allocation in dynamic wireless visual sensor network environments.

    PubMed

    Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E

    2014-01-01

    This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.

  19. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    NASA Astrophysics Data System (ADS)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers

  20. Tragedy of the commons revisited: the high tech-high risk wireless world.

    PubMed

    Sage, Cindy

    2010-01-01

    In 1968, Garrett Hardin, an eminent population ecologist from Santa Barbara, CA published an article in Science titled 'Tragedy of the Commons' that was immediately hailed as a landmark piece of thinking. This paper reshaped prevailing views about our place in the ecological network of the planet and was pivotal in defining how pursuit of our individual actions to maximize self-interest will, across populations all doing the same thing, result in diminished and overused environmental resources. Before sustainability was even a buzzword, Hardin created a way of seeing the world that emphasized how individuals must learn to recognize and to act with more in mind than squeezing one more cow onto the common pasture. He gave us new ways to think about how we might better manage our resources in the face of new technologies. He was not a believer in the technological fix. Those lessons are highly relevant today to the unchecked proliferation of wireless radiofrequency signals, thought by many to cause serious health consequences. PMID:21268444

  1. Tragedy of the commons revisited: the high tech-high risk wireless world.

    PubMed

    Sage, Cindy

    2010-01-01

    In 1968, Garrett Hardin, an eminent population ecologist from Santa Barbara, CA published an article in Science titled 'Tragedy of the Commons' that was immediately hailed as a landmark piece of thinking. This paper reshaped prevailing views about our place in the ecological network of the planet and was pivotal in defining how pursuit of our individual actions to maximize self-interest will, across populations all doing the same thing, result in diminished and overused environmental resources. Before sustainability was even a buzzword, Hardin created a way of seeing the world that emphasized how individuals must learn to recognize and to act with more in mind than squeezing one more cow onto the common pasture. He gave us new ways to think about how we might better manage our resources in the face of new technologies. He was not a believer in the technological fix. Those lessons are highly relevant today to the unchecked proliferation of wireless radiofrequency signals, thought by many to cause serious health consequences.

  2. Characterization of Fibre Channel over Highly Turbulent Optical Wireless Links

    SciTech Connect

    Johnson, G W; Henderer, B D; Wilburn, J W; Ruggiero, A J

    2003-07-28

    We report on the performance characterization and issues associated with using Fibre Channel (FC) over a highly turbulent free-space optical (FSO) link. Fibre Channel is a storage area network standard that provides high throughput with low overhead. Extending FC to FSO links would simplify data transfer from existing high-bandwidth sensors such as synthetic aperture radars and hyperspectral imagers. We measured the behavior of FC protocol at 1 Gbps in the presence of synthetic link dropouts that are typical of turbulent FSO links. Results show that an average bit error rate of less than 2 x 10{sup -8} is mandatory for adequate throughput. More importantly, 10 ns dropouts at a 2 Hz rate were sufficient to cause long (25 s) timeouts in the data transfer. Although no data was lost, this behavior is likely to be objectionable for most applications. Prospects for improvements in hardware and software will be discussed.

  3. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  4. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  5. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  6. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  7. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  8. Characterization of gigabit ethernet over highly turbulent optical wireless links

    NASA Astrophysics Data System (ADS)

    Johnson, Gary W.; Cornish, John P.; Wilburn, Jeffrey W.; Young, Richard A.; Ruggiero, Anthony J.

    2002-12-01

    We report on the performance characterization and issues associated with using Gigabit Ethernet (GigE) over a highly turbulent 1.3 km air-optic lasercom links. Commercial GigE hardware is a cost-effective and scalable physical layer standard that can be applied to air-optic communications. We demonstrate a simple GigE hardware interface to a single-mode fiber-coupled, 1550 nm, WDM air-optic transceiver. TCP/IP serves as a robust and universal foundation protocol that has some tolerance of data loss due to atmospheric fading. Challenges include establishing and maintaining a connection with acceptable throughput under poor propagation conditions. The most useful link performance diagnostic is shown to be scintillation index, where a value of 0.2 is the maximum permissible for adequate GigE throughput. Maximum GigE throughput observed was 49.7% of that obtained with a fiber jumper when scintillation index is 0.1. Shortcomings in conventional measurements such as bit error rate are apparent. Prospects for forward error correction and other link enhancements will be discussed.

  9. Characterization of Gigabit Ethernet Over Highly Turbulent Optical Wireless Links

    SciTech Connect

    Johnson, G W; Cornish, J P; Wilburn, J W; Young, R A; Ruggiero, A J

    2002-07-01

    We report on the performance characterization and issues associated with using Gigabit Ethernet (GigE) over a highly turbulent (C{sub n}{sup 2} > 10{sup -12}) 1.3 km air-optic lasercom links. Commercial GigE hardware is a cost-effective and scalable physical layer standard that can be applied to air-optic communications. We demonstrate a simple GigE hardware interface to a singlemode fiber-coupled, 1550 nm, WDM air-optic transceiver. TCPAP serves as a robust and universal foundation protocol that has some tolerance of data loss due to atmospheric fading. Challenges include establishing and maintaining a connection with acceptable throughput under poor propagation conditions. The most useful link performance diagnostic is shown to be scintillation index, where a value of 0.2 is the maximum permissible for adequate GigE throughput. Maximum GigE throughput observed was 49.7% of that obtained with a fiber jumper when scintillation index is 0.1. Shortcomings in conventional measurements such as bit error rate are apparent. Prospects for forward mor correction and other link enhancements will be discussed.

  10. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  11. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  12. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene.

    PubMed

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, GyeongHo; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-19

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the 'Internet of Things' area. PMID:27166976

  13. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  14. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  15. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  16. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect

    Miller , John M.; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene; Sepe, Raymond B; Steyerl, Anton

    2014-01-01

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  17. A Smart Wirelessly Powered Homecage for Long-Term High-Throughput Behavioral Experiments

    PubMed Central

    Lee, Byunghun; Kiani, Mehdi

    2015-01-01

    A wirelessly powered homecage system, called the EnerCage-HC, that is equipped with multicoil wireless power transfer, closed-loop power control, optical behavioral tracking, and a graphic user interface is presented for longitudinal electrophysiology and behavioral neuroscience experiments. The EnerCage-HC system can wirelessly power a mobile unit attached to a small animal subject and also track its behavior in real-time as it is housed inside a standard homecage. The EnerCage-HC system is equipped with one central and four overlapping slanted wire-wound coils with optimal geometries to form three- and four-coil power transmission links while operating at 13.56 MHz. Utilizing multicoil links increases the power transfer efficiency (PTE) compared with conventional two-coil links and also reduces the number of power amplifiers to only one, which significantly reduces the system complexity, cost, and heat dissipation. A Microsoft Kinect installed 90 cm above the homecage localizes the animal position and orientation with 1.6-cm accuracy. Moreover, a power management ASIC, including a high efficiency active rectifier and automatic coil resonance tuning, was fabricated in a 0.35-μm 4M2P standard CMOS process for the mobile unit. The EnerCage-HC achieves a max/min PTE of 36.3%/16.1% at the nominal height of 7 cm. In vivo experiments were conducted on freely behaving rats by continuously delivering 24 mW to the mobile unit for >7 h inside a standard homecage. PMID:26257586

  18. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  19. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene

    NASA Astrophysics Data System (ADS)

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-01

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b

  20. Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    NASA Astrophysics Data System (ADS)

    Hieu, Dinh Chi; Masuda, Akeo; Rabarijaona, Verotiana Hanitriniala; Shimamoto, Shigeru

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  1. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  2. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks. PMID:27599314

  3. A Comparison of Alternative Distributed Dynamic Cluster Formation Techniques for Industrial Wireless Sensor Networks

    PubMed Central

    Gholami, Mohammad; Brennan, Robert W.

    2016-01-01

    In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency. PMID:26751447

  4. A Comparison of Alternative Distributed Dynamic Cluster Formation Techniques for Industrial Wireless Sensor Networks.

    PubMed

    Gholami, Mohammad; Brennan, Robert W

    2016-01-06

    In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.

  5. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  6. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    SciTech Connect

    Kuznetsov, E. V. Shemyakin, A. V.

    2010-12-15

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  7. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    PubMed Central

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-01-01

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2% in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled. PMID:27438839

  8. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  9. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-01-01

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled. PMID:27438839

  10. A new post-phase rotation based dynamic receive beamforming architecture for smartphone-based wireless ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Park, Minsuk; Kang, Jeeun; Lee, Gunho; Kim, Min; Song, Tai-Kyong

    2016-04-01

    Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.

  11. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    PubMed

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  12. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    PubMed Central

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. PMID:22164005

  13. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    PubMed

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. PMID:22164005

  14. Field-Scale Distributed Wireless Network for Monitoring Dynamic Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Campbell, C. S.; Crupper, J.; Brown, D. J.; Cobos, D. R.; Campbell, G. S.; Uberuaga, D.; Huggins, D. R.; Smith, J. L.; Gill, R. A.

    2007-12-01

    Measuring and monitoring field-scale hydrology is important to understanding the fate of water in the vadoze zone, especially in concert with pedological information. Historically, single point measurements of hydrologic and pedological information have been straightforward to obtain, while monitoring widely distributed locations over time has been more challenging, both in expense and labor. As radios have become more available, distributed wireless networks have been developed and constructed to meet this need. However, there remain relatively few commercially available, inexpensive, and simple options. The objective of this study was to test the viability of a distributed wireless network to monitor soil parameters (moisture, temperature, and electrical conductivity) across a growing season on the 36.5 hectare Cook Agronomy Farm in Eastern Washington. Using landscape analysis, 12 representative sites were selected using a stratified random procedure and sensors were installed at 30, 60, 90, 120, and 150 cm depths. Radio frequency wireless transmitters linked sensors to a central data station where data were made available anywhere in the world via a cell modem link. Data were analyzed to show relationships between soil features, crop type, and water use. Results show that a system can be assembled from commercially available components with excellent reliability across all communication links. Data from the system showed correlations between water use, directly sampled static soil features and crop type.

  15. High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration

    ERIC Educational Resources Information Center

    Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.

    2010-01-01

    In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…

  16. A wireless remote high-power laser device for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gong, Q.; Li, Y. Y.; Li, A. Z.; Zhang, Y. G.; Cao, C. F.; Xu, H. X.; Cui, J.; Gao, J. J.

    2015-04-01

    Optogenetics affords the ability to stimulate genetically targeted neurons in a relatively innocuous manner. Reliable and targetable tools have enabled versatile new classes of investigation in the study of neural systems. However, current hardware systems are generally limited to acute measurements or require external tethering of the system to the light source. Here we provide a low-cost, high-power, remotely controlled blue laser diode (LD) stimulator for the application of optogenetics in neuroscience, focusing on wearable and intelligent devices, which can be carried by monkeys, rats and any other animals under study. Compared with the conventional light emitting diode (LED) device, this LD stimulator has higher efficiency, output power, and stability. Our system is fully wirelessly controlled and suitable for experiments with a large number of animals.

  17. High-dynamic GPS tracking

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Statman, J. I.

    1988-01-01

    The results of comparing four different frequency estimation schemes in the presence of high dynamics and low carrier-to-noise ratios are given. The comparison is based on measured data from a hardware demonstration. The tested algorithms include a digital phase-locked loop, a cross-product automatic frequency tracking loop, and extended Kalman filter, and finally, a fast Fourier transformation-aided cross-product frequency tracking loop. The tracking algorithms are compared on their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. The measured results are shown to agree with simulation results carried out and reported previously.

  18. Analysis and simulation of the dynamic spectrum allocation based on parallel immune optimization in cognitive wireless networks.

    PubMed

    Huixin, Wu; Duo, Mo; He, Li

    2014-01-01

    Spectrum allocation is one of the key issues to improve spectrum efficiency and has become the hot topic in the research of cognitive wireless network. This paper discusses the real-time feature and efficiency of dynamic spectrum allocation and presents a new spectrum allocation algorithm based on the master-slave parallel immune optimization model. The algorithm designs a new encoding scheme for the antibody based on the demand for convergence rate and population diversity. For improving the calculating efficiency, the antibody affinity in the population is calculated in multiple computing nodes at the same time. Simulation results show that the algorithm reduces the total spectrum allocation time and can achieve higher network profits. Compared with traditional serial algorithms, the algorithm proposed in this paper has better speedup ratio and parallel efficiency.

  19. Analysis and Simulation of the Dynamic Spectrum Allocation Based on Parallel Immune Optimization in Cognitive Wireless Networks

    PubMed Central

    Huixin, Wu; Duo, Mo; He, Li

    2014-01-01

    Spectrum allocation is one of the key issues to improve spectrum efficiency and has become the hot topic in the research of cognitive wireless network. This paper discusses the real-time feature and efficiency of dynamic spectrum allocation and presents a new spectrum allocation algorithm based on the master-slave parallel immune optimization model. The algorithm designs a new encoding scheme for the antibody based on the demand for convergence rate and population diversity. For improving the calculating efficiency, the antibody affinity in the population is calculated in multiple computing nodes at the same time. Simulation results show that the algorithm reduces the total spectrum allocation time and can achieve higher network profits. Compared with traditional serial algorithms, the algorithm proposed in this paper has better speedup ratio and parallel efficiency. PMID:25254255

  20. Antenna polarization diversity for high-speed polarization multiplexing wireless signal delivery at W-band.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-03-01

    We propose and experimentally demonstrate a novel architecture for a W-band integrated optical wireless system, which adopts a 2×2 multiple-input multiple-output (MIMO) wireless link based on antenna polarization diversity, and can realize 80 km single-mode fiber-28 transmission and 2 m wireless delivery for up to 39 Gbaud polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal at 100 GHz. Classic constant-modulus-algorithm (CMA) equalization is adopted at the receiver to implement polarization demultiplexing. The 2×2 MIMO wireless link adopts one pair of horizontal-polarization (H-polarization) horn antennas (HAs) and one pair of vertical-polarization (V-polarization) HAs. Because the two pairs of HAs are fully isolated, the wireless cross talk can be effectively avoided. Thus, compared to the 2×2 MIMO wireless link at the same antenna polarization, the adoption of antenna polarization diversity cannot only make the HA adjustment easier but can also reduce the required CMA tap number. After removing 20% forward-error-correction overhead, the 39 Gbaud baud rate corresponds to a net bit rate of 130  Gb/s, which, to our best knowledge, is the highest bit rate per PDM channel demonstrated for wireless signal delivery up to now.

  1. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    PubMed Central

    Aghdasi, Hadi S.; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-01-01

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of video-based sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  2. A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks

    PubMed Central

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-01-01

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008

  3. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    PubMed

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-01-01

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008

  4. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment.

  5. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. PMID:25284768

  6. Gbps wireless transceivers for high bandwidth interconnections in distributed cyber physical systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2015-05-01

    In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transceiver including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transceiver architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transceiver can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes

  7. High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability

    NASA Astrophysics Data System (ADS)

    Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker

    2015-02-01

    A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.

  8. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.

    PubMed

    Qin, Li; Shen, Dandan; Wei, Tanyong; Tan, Qiulin; Luo, Tao; Zhou, Zhaoying; Xiong, Jijun

    2015-07-10

    In this work, a wireless passive LC resonant sensor based on DuPont 951 ceramic is proposed and tested in a developed high-temperature/pressure complex environment. The test results show that the measured resonant frequency varies approximately linearly with the applied pressure; simultaneously, high temperature causes pressure signal drift and changes the response sensitivity. Through the theoretical analysis of the sensor structure model, it is found that the increase in the dielectric constant and the decrease in the Young's modulus of DuPont 951 ceramic are the main causes that affect the pressure signal in high-temperature measurement. Through calculations, the Young's modulus of DuPont 951 ceramic is found to decrease rapidly from 120 GPa to 65 GPa within 400 °C. Therefore, the LC resonant pressure sensor needs a temperature compensation structure to eliminate the impact of temperature on pressure measurement. Finally, a temperature compensation structure is proposed and fabricated, and the pressure response after temperature compensation illustrates that temperature drift is significantly reduced compared with that without the temperature compensation structure, which verifies the feasibility the proposed temperature compensation structure.

  9. Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    PubMed Central

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  10. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    PubMed

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

  11. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  12. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  13. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks.

    PubMed

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-11-30

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost.

  14. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks.

    PubMed

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-01-01

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost. PMID:26633396

  15. Enhanced Two-Factor Authentication and Key Agreement Using Dynamic Identities in Wireless Sensor Networks

    PubMed Central

    Chang, I-Pin; Lee, Tian-Fu; Lin, Tsung-Hung; Liu, Chuan-Ming

    2015-01-01

    Key agreements that use only password authentication are convenient in communication networks, but these key agreement schemes often fail to resist possible attacks, and therefore provide poor security compared with some other authentication schemes. To increase security, many authentication and key agreement schemes use smartcard authentication in addition to passwords. Thus, two-factor authentication and key agreement schemes using smartcards and passwords are widely adopted in many applications. Vaidya et al. recently presented a two-factor authentication and key agreement scheme for wireless sensor networks (WSNs). Kim et al. observed that the Vaidya et al. scheme fails to resist gateway node bypassing and user impersonation attacks, and then proposed an improved scheme for WSNs. This study analyzes the weaknesses of the two-factor authentication and key agreement scheme of Kim et al., which include vulnerability to impersonation attacks, lost smartcard attacks and man-in-the-middle attacks, violation of session key security, and failure to protect user privacy. An efficient and secure authentication and key agreement scheme for WSNs based on the scheme of Kim et al. is then proposed. The proposed scheme not only solves the weaknesses of previous approaches, but also increases security requirements while maintaining low computational cost. PMID:26633396

  16. Design and validation of high-precision wireless strain sensors for structural health monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jo, Hongki; Park, JongWoong; Spencer, B. F., Jr.; Jung, Hyung-Jo

    2012-04-01

    Due to their cost-effectiveness and ease of installation, smart wireless sensors have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for wireless smart sensors (WSS) due to A/D converter resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing the Wheatstone bridge, signal amplification of up to 2507-times can be obtained. Temperature compensation and shunt calibration are implemented. In addition to traditional foil-type strain gages, the sensor board has been designed to accommodate a friction-type magnet strain sensor, facilitating fast and easy deployment. The sensor board has been calibrated using lab-scale tests, and then deployed on a full-scale cable-stayed bridge to verify its performance.

  17. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue

    PubMed Central

    2015-01-01

    Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18–25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments. PMID:26517261

  18. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    PubMed

    Schütte, Kurt H; Maas, Ellen A; Exadaktylos, Vasileios; Berckmans, Daniel; Venter, Rachel E; Vanwanseele, Benedicte

    2015-01-01

    Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  19. A High-Resolution Sensor Network for Monitoring Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Murray, T.; O'Farrell, T.; Rutt, I. C.; Loskot, P.; Martin, I.; Selmes, N.; Aspey, R.; James, T.; Bevan, S. L.; Baugé, T.

    2013-12-01

    Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the

  20. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks.

    PubMed

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  1. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks

    PubMed Central

    Estévez, Francisco José; Glösekötter, Peter; González, Jesús

    2016-01-01

    The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities. PMID:27347962

  2. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  3. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  4. Queuing Theory Based Co-Channel Interference Analysis Approach for High-Density Wireless Local Area Networks.

    PubMed

    Zhang, Jie; Han, Guangjie; Qian, Yujie

    2016-01-01

    Increased co-channel interference (CCI) in wireless local area networks (WLANs) is bringing serious resource constraints to today's high-density wireless environments. CCI in IEEE 802.11-based networks is inevitable due to the nature of the carrier sensing mechanism however can be reduced by resource optimization approaches. That means the CCI analysis is basic, but also crucial for an efficient resource management. In this article, we present a novel CCI analysis approach based on the queuing theory, which considers the randomness of end users' behavior and the irregularity and complexity of network traffic in high-density WLANs that adopts the M/M/c queuing model for CCI analysis. Most of the CCIs occur when multiple networks overlap and trigger channel contentions; therefore, we use the ratio of signal-overlapped areas to signal coverage as a probabilistic factor to the queuing model to analyze the CCI impacts in highly overlapped WLANs. With the queuing model, we perform simulations to see how the CCI influences the quality of service (QoS) in high-density WLANs. PMID:27563896

  5. Queuing Theory Based Co-Channel Interference Analysis Approach for High-Density Wireless Local Area Networks

    PubMed Central

    Zhang, Jie; Han, Guangjie; Qian, Yujie

    2016-01-01

    Increased co-channel interference (CCI) in wireless local area networks (WLANs) is bringing serious resource constraints to today’s high-density wireless environments. CCI in IEEE 802.11-based networks is inevitable due to the nature of the carrier sensing mechanism however can be reduced by resource optimization approaches. That means the CCI analysis is basic, but also crucial for an efficient resource management. In this article, we present a novel CCI analysis approach based on the queuing theory, which considers the randomness of end users’ behavior and the irregularity and complexity of network traffic in high-density WLANs that adopts the M/M/c queuing model for CCI analysis. Most of the CCIs occur when multiple networks overlap and trigger channel contentions; therefore, we use the ratio of signal-overlapped areas to signal coverage as a probabilistic factor to the queuing model to analyze the CCI impacts in highly overlapped WLANs. With the queuing model, we perform simulations to see how the CCI influences the quality of service (QoS) in high-density WLANs. PMID:27563896

  6. Queuing Theory Based Co-Channel Interference Analysis Approach for High-Density Wireless Local Area Networks.

    PubMed

    Zhang, Jie; Han, Guangjie; Qian, Yujie

    2016-08-23

    Increased co-channel interference (CCI) in wireless local area networks (WLANs) is bringing serious resource constraints to today's high-density wireless environments. CCI in IEEE 802.11-based networks is inevitable due to the nature of the carrier sensing mechanism however can be reduced by resource optimization approaches. That means the CCI analysis is basic, but also crucial for an efficient resource management. In this article, we present a novel CCI analysis approach based on the queuing theory, which considers the randomness of end users' behavior and the irregularity and complexity of network traffic in high-density WLANs that adopts the M/M/c queuing model for CCI analysis. Most of the CCIs occur when multiple networks overlap and trigger channel contentions; therefore, we use the ratio of signal-overlapped areas to signal coverage as a probabilistic factor to the queuing model to analyze the CCI impacts in highly overlapped WLANs. With the queuing model, we perform simulations to see how the CCI influences the quality of service (QoS) in high-density WLANs.

  7. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    SciTech Connect

    Onar, Omer C; Seiber, Larry Eugene; White, Cliff P; Chinthavali, Madhu Sudhan; Campbell, Steven L

    2016-01-01

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.

  8. Phase interrogation used for a wireless passive pressure sensor in an 800 °C high-temperature environment.

    PubMed

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-23

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment.

  9. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  10. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect

    Miller, John M; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene

    2014-01-01

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  11. Optical Wireless Communication system for particle detectors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell`Orso, R.; Messineo, A.; Palla, F.

    2016-07-01

    Optical Wireless Communication (OWC) system for particles detector can be a viable solution for reducing the complexity of the optical fibre network used to extract the data from the detector. In this work we present the initial study of the tolerance to misalignment for the OWC system under investigation. We observed that using collimators of beam waist from 0.35 mm to 3.5 mm we can obtain tolerance in range from ± 0.25 mm to ± 0.8 mm. We also observed using ray trace simulation that both transmitting power and tolerance can be improved by using optimized lens at the receiver having VCSEL as transmitting source.

  12. Evaluation of a wireless wearable tongue-computer interface by individuals with high-level spinal cord injuries.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2010-04-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue-computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2-C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course.

  13. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2010-01-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552

  14. Evaluation of a wireless wearable tongue-computer interface by individuals with high-level spinal cord injuries

    NASA Astrophysics Data System (ADS)

    Huo, Xueliang; Ghovanloo, Maysam

    2010-04-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue-computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2-C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course.

  15. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  16. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    PubMed

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  17. High dynamic GPS receiver validation demonstration

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.

    1985-01-01

    The Validation Demonstration establishes that the high dynamic Global Positioning System (GPS) receiver concept developed at JPL meets the dynamic tracking requirements for range instrumentation of missiles and drones. It was demonstrated that the receiver can track the pseudorange and pseudorange rate of vehicles with acceleration in excess of 100 g and jerk in excess of 100 g/s, dynamics ten times more severe than specified for conventional High Dynamic GPS receivers. These results and analytic extensions to a complete system configuration establish that all range instrumentation requirements can be met. The receiver can be implemented in the 100 cu in volume required by all missiles and drones, and is ideally suited for transdigitizer or translator applications.

  18. Wireless Andrew.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Describes the use of the Internet and laptops help Carnegie Mellon University students carry out sophisticated research anywhere on campus. How the university became a wireless community is discussed. (GR)

  19. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    PubMed Central

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  20. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    PubMed Central

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  1. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  2. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  3. Development and application of a modified wireless tracer for disaster prevention

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Su, Chih Chiang

    2016-04-01

    Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.

  4. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  5. Wireless power-receiving assembly for a telemetry system in a high-temperature environment of a combustion turbine engine

    DOEpatents

    Bevly, III, Alex J.; McConkey, Joshua S.

    2016-08-16

    In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and a last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.

  6. Virtually transparent epidermal imagery (VTEI): on new approaches to in vivo wireless high-definition video and image processing.

    PubMed

    Anderson, Adam L; Lin, Bingxiong; Sun, Yu

    2013-12-01

    This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures. PMID:24473549

  7. Virtually transparent epidermal imagery (VTEI): on new approaches to in vivo wireless high-definition video and image processing.

    PubMed

    Anderson, Adam L; Lin, Bingxiong; Sun, Yu

    2013-12-01

    This work first overviews a novel design, and prototype implementation, of a virtually transparent epidermal imagery (VTEI) system for laparo-endoscopic single-site (LESS) surgery. The system uses a network of multiple, micro-cameras and multiview mosaicking to obtain a panoramic view of the surgery area. The prototype VTEI system also projects the generated panoramic view on the abdomen area to create a transparent display effect that mimics equivalent, but higher risk, open-cavity surgeries. The specific research focus of this paper is on two important aspects of a VTEI system: 1) in vivo wireless high-definition (HD) video transmission and 2) multi-image processing-both of which play key roles in next-generation systems. For transmission and reception, this paper proposes a theoretical wireless communication scheme for high-definition video in situations that require extremely small-footprint image sensors and in zero-latency applications. In such situations the typical optimized metrics in communication schemes, such as power and data rate, are far less important than latency and hardware footprint that absolutely preclude their use if not satisfied. This work proposes the use of a novel Frequency-Modulated Voltage-Division Multiplexing (FM-VDM) scheme where sensor data is kept analog and transmitted via "voltage-multiplexed" signals that are also frequency-modulated. Once images are received, a novel Homographic Image Mosaicking and Morphing (HIMM) algorithm is proposed to stitch images from respective cameras, that also compensates for irregular surfaces in real-time, into a single cohesive view of the surgical area. In VTEI, this view is then visible to the surgeon directly on the patient to give an "open cavity" feel to laparoscopic procedures.

  8. Wireless steganography

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Akopian, David; D'Souza, Sunil

    2006-02-01

    Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.

  9. Shadow Attenuation With High Dynamic Range Images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shadow often interferes with accurate image analysis. To mitigate shadow effects in near-earth imagery (2 m above ground level), we created high dynamic range (HDR) nadir images and used them to measure grassland ground cover. HDR composites were created by merging three differentially-exposed image...

  10. Dynamic control of adsorption sensitivity for photo-EMF-based ammonia gas sensors using a wireless network.

    PubMed

    Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen

    2011-01-01

    This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  11. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  12. High degree-of-freedom dynamic manipulation

    NASA Astrophysics Data System (ADS)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  13. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  14. Design of a wireless sensor network with nanosecond time resolution for mapping of high-energy cosmic ray shower events

    NASA Astrophysics Data System (ADS)

    Frank, Michael P.; Junnarkar, Sachin S.; Fagan, Triesha; O'Neal, Ray H.; Takai, Helio

    2010-04-01

    We describe a low-cost, low-power wireless sensor network we are developing for high time-resolution (ns-scale) characterization of particle showers produced by ultra-high-energy (UHE) cosmic rays, to infer shower direction at sites where hard-wired data connections may be inconvenient to install. The front-end particle detector is a scintillator block monitored by a photomultiplier tube (PMT). We keep the sensor nodes synchronized to within 1 ns using periodic highintensity optical pulses from a light-emitting-diode (LED) overdriven at very high current (~30 A) in short (4 ns) bursts. With minimal optics, this signal is resolvable under free-space transmission in ambient light conditions at multi-meter distances using a high-speed avalanche photodiode (APD) receiver at each node. PMT pulse waveforms are digitized relative to this precise time reference on a Field Programmable Gate Array (FPGA) using a Time-over-Threshold (ToT)/Time-to-Digital Converter (TDC) digitizer developed at BNL. A central server receives timestamped, digitized PMT pulse waveforms from the sensor nodes via Wi-Fi and performs real-time data visualization & analysis. Total cost per sensor node is a few thousand dollars, with total power consumption per sensor node under 1 Watt, suitable for, e.g., solar-powered installations at remote field locations.

  15. A high reliability module with thermoelectric device by molding technology for M2M wireless sensor network

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Tanaka, T.; Suzuki, T.

    2015-10-01

    This paper presents the fabrication of a new energy harvesting module that uses a thermoelectric device (TED) by using molding technology. Through molding technology, the TED and circuit board can be properly protected and a heat-radiating fin structure can be simultaneously constructed. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8 mV K-1, similar to the result with the aluminum heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on a damp heat test, which is an aging test under high temperature and high humidity, highly accelerated temperature, and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments, cold test and thermal cycle test to evaluate degrading characteristics by cycling through two temperatures. All test results indicate that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology because the output voltage of after-tested modules is reduced by less than 5%. This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks.

  16. A high Reliability Module with Thermoelectric Device by Molding Technology for M2M Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Tanaka, T.; Suzuki, T.

    2014-11-01

    This paper presents the fabrication of a new energy harvesting module that used the thermoelectric device (TED) by using molding technology. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8mV/K and similar to the result with the aluminium heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on damp heat test that is an aging test under high temperature and high humidity, cold test and highly accelerated temperature and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments. Every result of tests indicates that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology, because the output voltage of after tested modules is reduced by less than 5%.This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks

  17. Wireless Protection.

    ERIC Educational Resources Information Center

    Conforti, Fred

    2003-01-01

    Discusses wireless access-control equipment in the school and university setting, particularly the integrated reader lock at the door with a panel interface module at the control panel. Describes its benefits, how it works, and its reliability and security. (EV)

  18. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  19. Wireless Tots

    ERIC Educational Resources Information Center

    Scott, Lee-Allison

    2003-01-01

    The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in…

  20. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    NASA Astrophysics Data System (ADS)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  1. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  2. Compact Wireless Microscope for In-Situ Time Course Study of Large Scale Cell Dynamics within an Incubator

    NASA Astrophysics Data System (ADS)

    Jin, Di; Wong, Dennis; Li, Junxiang; Luo, Zhang; Guo, Yiran; Liu, Bifeng; Wu, Qiong; Ho, Chih-Ming; Fei, Peng

    2015-12-01

    Imaging of live cells in a region of interest is essential to life science research. Unlike the traditional way that mounts CO2 incubator onto a bulky microscope for observation, here we propose a wireless microscope (termed w-SCOPE) that is based on the “microscope-in-incubator” concept and can be easily housed into a standard CO2 incubator for prolonged on-site observation of the cells. The w-SCOPE is capable of tunable magnification, remote control and wireless image transmission. At the same time, it is compact, measuring only ~10 cm in each dimension, and cost-effective. With the enhancement of compressive sensing computation, the acquired images can achieve a wide field of view (FOV) of ~113 mm2 as well as a cellular resolution of ~3 μm, which enables various forms of follow-up image-based cell analysis. We performed 12 hours time-lapse study on paclitaxel-treated MCF-7 and HEK293T cell lines using w-SCOPE. The analytic results, such as the calculated viability and therapeutic window, from our device were validated by standard cell detection assays and imaging-based cytometer. In addition to those end-point detection methods, w-SCOPE further uncovered the time course of the cell’s response to the drug treatment over the whole period of drug exposure.

  3. Compact Wireless Microscope for In-Situ Time Course Study of Large Scale Cell Dynamics within an Incubator

    PubMed Central

    Jin, Di; Wong, Dennis; Li, Junxiang; Luo, Zhang; Guo, Yiran; Liu, Bifeng; Wu, Qiong; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    Imaging of live cells in a region of interest is essential to life science research. Unlike the traditional way that mounts CO2 incubator onto a bulky microscope for observation, here we propose a wireless microscope (termed w-SCOPE) that is based on the “microscope-in-incubator” concept and can be easily housed into a standard CO2 incubator for prolonged on-site observation of the cells. The w-SCOPE is capable of tunable magnification, remote control and wireless image transmission. At the same time, it is compact, measuring only ~10 cm in each dimension, and cost-effective. With the enhancement of compressive sensing computation, the acquired images can achieve a wide field of view (FOV) of ~113 mm2 as well as a cellular resolution of ~3 μm, which enables various forms of follow-up image-based cell analysis. We performed 12 hours time-lapse study on paclitaxel-treated MCF-7 and HEK293T cell lines using w-SCOPE. The analytic results, such as the calculated viability and therapeutic window, from our device were validated by standard cell detection assays and imaging-based cytometer. In addition to those end-point detection methods, w-SCOPE further uncovered the time course of the cell’s response to the drug treatment over the whole period of drug exposure. PMID:26681552

  4. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications.

    PubMed

    Zhao, Jianming; Yao, Lei; Xue, Rui-Feng; Li, Peng; Je, Minkyu; Xu, Yong Ping

    2016-02-01

    This paper describes a 13.56-MHz wireless power recovery system with bidirectional data link for high-compliance-voltage neural/muscle stimulator. The power recovery circuit includes a 2-stage rectifier, 2 LDOs and a high voltage charge pump to provide 3 DC outputs: 1.8 V, 3.3 V and 20 V for the stimulator. A 2-stage time division based rectifier is proposed to provide 3 DC outputs simultaneously. It improves the power efficiency without introducing any impact on the forward data recovery. The 20 V output is generated by a modified low ripple charge pump that reduces the ripple voltage by 40%. The power management system shows 49% peak power efficiency. The data link includes a clock and data recovery (CDR) circuit and a load shift keying (LSK) modulator for bidirectional data telemetry. The forward and backward data rates of the data telemetry are 61.5 kbps and 33.3 kbps, respectively. In addition, a power monitor circuit for closed-loop power control is implemented. The whole system has been fabricated in a 24 V HV LDMOS option 1.8 μ m CMOS process, occupying a core area of around 3.5 mm (2).

  5. Flight Dynamics of High Altitude Research Balloons

    NASA Astrophysics Data System (ADS)

    Sohl, Ian

    2010-10-01

    Dramatic motions have been observed by instrumentation loaded in payloads attached to high altitude weather balloons. Several HARBOR flights have been completed with six-axis attitude sensors and a high definition video camera that allowed us to analyze the balloon's motion. Turbulence in the atmosphere, especially near the jet stream, results in dramatic oscillations---sometimes swinging the payload above the balloon. Other unexpected motions include rapid spinning (as in a barrel roll) of the entire package. We are correlating these motions with observed atmospheric conditions and addressing issues related to payload safety, mission tracking, and recovery. Also of interest are the dynamics of balloon rupture at low atmospheric pressure and the response of the parachute recovery system to that environment. HARBOR (High Altitude Reconnaissance Balloon for Outreach and Research) is a program in which scientific payloads are designed, constructed, and flown by students using weather balloons to reach the edge of space. These flights are similar to the hundreds of weather balloons launched twice a day by the National Oceanic and Atmospheric Administration for which very little is actually known about the flight dynamics.

  6. High dynamic range fusion for enhanced vision

    NASA Astrophysics Data System (ADS)

    Liu, Yuchi; Li, Yipeng; Dai, Qionghai

    2012-06-01

    Fusing multispectral images, Enhanced Vision (EV) has been proven helpful to improve pilot's Situation Awareness (SA) under Degraded Vision Environment (DVE), such as low visibility or adverse observation conditions, which caused by fog, dust, weak light, backlighting, etc. Numerous methods are applied to enhance and fuse optical and infrared (IR) images for visual details to provide pilot with enough information as far as possible. However, most existing optical and IR imaging devices, for their inherent defects, fail to acquire wide span of light and only generate Low Dynamic Range images (LDR, Dynamic Range: range between the lightest and darkest areas), which causes the loss of useful details. Normal display devices can't reveal HDR details as well. The proposed paper introduces and expands High Dynamic Range (HDR) technologies to fuse optical and IR images, which has rarely been involved in the study of HDR Imaging to our knowledge, for Enhanced Vision to better pilot's Situation Awareness. Two major problems should be discussed. (1) The way to generate fused image with HDR information under DVE. (2) The method to effectively display fused HDR image with normal LDR monitors. Aiming at application environment, HDR fusion scheme is proposed and relevant methods are explored. The experimental results prove that our scheme is effective and would be beneficial to enhancing pilot's Situation Awareness under DVE.

  7. Multiple views of the October 2003 Cedar Fires captured by the High Performance Wireless Research and Education Network

    NASA Astrophysics Data System (ADS)

    Morikawa, E.; Nayak, A.; Vernon, F.; Braun, H.; Matthews, J.

    2004-12-01

    Late October 2003 brought devastating fires to the entire Southern California region. The NSF-funded High Performance Wireless Research and Education Network (HPWREN - http://hpwren.ucsd.edu/) cameras captured the development and progress of the Cedar fire in San Diego County. Cameras on Mt. Laguna, Mt. Woodson, Ramona Airport, and North Peak, recording one frame every 12 seconds, allowed for a time-lapse composite showing the fire's formation and progress from its beginnings on October 26th, to October 30th. The time-lapse camera footage depicts gushing smoke formations during the day, and bright orange walls of fire at night. The final video includes time synchronized views from multiple cameras, and an animated map highlighting the progress of the fire over time, and a directional indicator for each of the displaying cameras. The video is narrated by the California Department of Forestry and Fire Protection Fire Captain Ron Serabia (retd.) who was working then as a Air Tactical Group Supervisor with the aerial assault on the Cedar Fire Sunday October 26, 2004. The movie will be made available for download from the Scripps Institution of Oceanography Visualization Center Visual Objects library (supported by the OptIPuter project) at http://www.siovizcenter.ucsd.edu.

  8. Low power consumption high speed CMOS dual-modulus 15/16 prescaler for optical and wireless communications

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Min; Zhang, Xiao-Xing; Dai, Yu-Jie; Lv, Ying-Jie

    2011-09-01

    Frequency synthesizer is an important part of optical and wireless communication system. Low power comsumption prescaler is one of the most critical unit of frequency synthesizer. For the frequency divider, it must be programmable for channel selection in multi-channel communication systems. A dual-modulus prescaler (DMP) is needed to provide variable division ratios. DMP is considered as a critical power dissipative block since it always operates at full speed. This paper introduces a high speed and low power complementary metal oxide semiconductor (CMOS) 15/16 DMP based on true single-phase-clock (TSPC) and transmission gates (TGs) cell. A conventional TSPC is optimized in terms of devices size, and it is resimulated. The TSPC is used in the synchronous and asynchronous counter. TGs are used in the control logic. The DMP circuit is implemented in 0.18 μm CMOS process. The simulation results are provided. The results show wide operating frequency range from 7.143 MHz to 4.76 GHz and it comsumes 3.625 mW under 1.8 V power supply voltage at 4.76 GHz.

  9. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser.

    PubMed

    Xu, Jing; Song, Yuhang; Yu, Xiangyu; Lin, Aobo; Kong, Meiwei; Han, Jun; Deng, Ning

    2016-04-18

    We first study the transmission property of red light in water in terms of extinction coefficient and channel bandwidth via Monte Carlo simulation, with an interesting finding that red light outperforms blue-green light in highly turbid water. We further propose and experimentally demonstrate a broadband underwater wireless optical communication system based on a simple and cost-effective TO56 red-light laser diode. We demonstrate a 1.324-Gb/s transmission at a bit error rate (BER) of 2.02 × 10-3 over a 6-m underwater channel, by using 128-QAM OFDM signals and a low-cost 150-MHz positive-intrinsic-negative photodetector, with a record spectral efficiency higher than 7.32 bits/Hz. By using an avalanche photodetector and 32-QAM OFDM signals, we have achieved a record bit rate of 4.883 Gb/s at a BER of 3.20 × 10-3 over a 6-m underwater channel. PMID:27137249

  10. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser.

    PubMed

    Xu, Jing; Song, Yuhang; Yu, Xiangyu; Lin, Aobo; Kong, Meiwei; Han, Jun; Deng, Ning

    2016-04-18

    We first study the transmission property of red light in water in terms of extinction coefficient and channel bandwidth via Monte Carlo simulation, with an interesting finding that red light outperforms blue-green light in highly turbid water. We further propose and experimentally demonstrate a broadband underwater wireless optical communication system based on a simple and cost-effective TO56 red-light laser diode. We demonstrate a 1.324-Gb/s transmission at a bit error rate (BER) of 2.02 × 10-3 over a 6-m underwater channel, by using 128-QAM OFDM signals and a low-cost 150-MHz positive-intrinsic-negative photodetector, with a record spectral efficiency higher than 7.32 bits/Hz. By using an avalanche photodetector and 32-QAM OFDM signals, we have achieved a record bit rate of 4.883 Gb/s at a BER of 3.20 × 10-3 over a 6-m underwater channel.

  11. GPS high dynamic receiver tracking demonstration results

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.

    1985-01-01

    Demonstration results are presented for a high dynamic GPS receiver. The receiver tested is a breadboard unit capable of tracking one simulated satellite signal in pseudorange and range rate. The receiver makes approximate maximum likelihood estimates of pseudorange and range rate each 20 ms, and tracks these observables using a third order filter with a time constant of 0.14 s. Carrier phase is not tracked, which eliminates the typical failure mode of loss of carrier lock associated with PLLs at high dynamics. The receiver tracks with pseudorange lag errors of under 0.06 m when subjected to simulated 50 g turns with 40 g/s peak jerk. Pseudorange errors due to receiver noise alone are approximately 0.6 m rms at a carrier power to noise spectral density ratio of 34 dB-Hz. The tracking threshold SNR is approximately 28 dB-Hz, which provides 12 dB margin relative to the 40 dB-Hz that occurs with minimum specified satellite signal strength, 3.5 dB system noise figure, and 0 dBi antenna gain.

  12. EMIR high-dynamic range readout modes

    NASA Astrophysics Data System (ADS)

    Nuñez, Miguel; Gago, Fernando; Garzón, Francisco; Díaz, José J.; Barreto, Mary; Patrón, Jesús; González-Fenández, Carlos; Hammersley, Peter L.; López, Luis; Castro, Nieves

    2012-07-01

    EMIR is the NIR imager and multiobject spectrograph being built as a common user instrument for the GTC and it is currently entering in the integration and verification phase at system level. EMIR is being built by a Consortium of Spanish and French institutes led by the IAC. In this paper we describe the readout modes of EMIR detector, a Hawaii2 FPA, after two full calibrations campaigns. Besides the standard set of modes (reset-read, CDS, Fowler, Follow-up the ramp), the modified SDSU-III hardware and home made software will also offer high dynamic range readout modes, which will improve the ability of the instrument to sound densely populated areas which often are made of objects with large differences in brightness. These new high dynamic range modes are: single readout with very short integration time, window mode and combination of both. The results show that the new modes behave linearly with different exposition times, improve the maximum frame rate and increase the saturation limit in image mode for EMIR instrument.

  13. Dynamic shear deformation in high purity Fe

    SciTech Connect

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P; Lopez, Mike F; Gray, George T

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  14. Terahertz oscillators and receivers using electron devices for high-capacity wireless communication

    NASA Astrophysics Data System (ADS)

    Suzuki, Safumi; Asada, Masahiro

    2015-05-01

    Recent progress in room-temperature resonant-tunneling-diode (RTD) terahertz (THz) oscillators and high-electron-mobility- transistor (HEMT) THz receivers is reported in this paper. In this study, oscillations up to 1.86 THz were obtained using an optimized antenna and RTD. Using a two-element oscillator array, high output power of 0.6 mW at 620 GHz was obtained. THz communication up to 3 Gbps was demonstrated. A structure for high-speed direct modulation was fabricated, and the intensity modulation up to 30 GHz was achieved. A novel oscillator structure was proposed and fabricated for extraction of output power without using a Si lens. A short-gate InGaAs HEMT detector integrated with a broadband bow-tie antenna was fabricated, and a high current sensitivity of ~5 A/W was obtained at 280 GHz.

  15. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  16. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  17. High temperature dynamic engine seal technology development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  18. High speed simulation of flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Jacot, A. D.; Jones, R. E.; Juengst, C. D.

    1987-01-01

    A multiflexible body dynamics code intended for fast turnaround control design trades is described. Nonlinear rigid body dynamics and linearized flexible dynamics combine to provide efficient solution of the equations of motion. Comparison with results from the DISCOS code provide verification of accuracy.

  19. Research on characterization of wireless LANs traffic

    NASA Astrophysics Data System (ADS)

    Feng, Huifang; Shu, Yantai; Yang, Oliver W. W.

    2011-08-01

    In this paper, we employ actual wireless data that draw from well known archives of network traffic traces and investigate the characterization of the wireless LANs traffic. Firstly, useful preliminary information regarding the general wireless traffic dynamics is obtained using one standard statistical technique named Fourier power spectrum. Then the estimation of the parameters, such as the correlation dimension, the largest Lyapunov exponent and the principal components analysis indicate the existence of low-dimensional deterministic chaos in wireless traffic time series. Our results also show that the parameters selection of the phase space reconstruction influence the value of the correlation dimension and the largest Lyapunov exponent, but can not influence on diagnosis of chaotic nature of wireless traffic.

  20. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhilong; Wang, Biao; Tong, Weichao

    2015-08-01

    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  1. Wireless Data Communications Prototyping: A Flexible, High-Quality, and Cost-Effective Information System for Education.

    ERIC Educational Resources Information Center

    Juliano, Benjoe A.; Sheel, Stephen J.

    In this paper, potential applications of wireless data communications and mobile satellite technology are described which aim at improving education. The motivation behind this work is that the technology now exists for providing today's teachers and students with not only better access to educational facilities, but also instantaneous…

  2. Information Assurance in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  3. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. Wireless power technology for application-specific scenarios of high-altitude airships

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Lillehei, Peter T.

    2006-03-01

    A new power concept has been contemplated for High Altitude Airship (HAA) under the consideration of direct energy conversion cycles, such as photovoltaic (PV) cells and advanced thermoelectric (ATE) generator. The HAA has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. Both PV cells and an ATE system were briefly compared to identify the advantages of ATE for HAA applications in this study. Utilizing the estimated high efficiency of a threestaged ATE in a tandem mode, the ATE generates a higher quantity of harvested energy than PV cells for mission scenarios. The ATE's performance figure of merit of 5 was considered to estimate the cascaded efficiency of a three-staged ATE system. The estimated efficiency of a tandem system appears to be greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined. Conventional photovoltaic cells have been used for NASA's long duration airplanes, the solar-powered Pathfinder, and remotely piloted aircraft [1]. However, the cost and weight of high efficiency photovoltaic cells pose a shortcoming for wide and unlimited applications. Among others is the fuel cell, but it is a fuel-carrying power generation system. A conceptual study for the HAA power budget plan has been done at NASA Langley Research Center by utilizing new nanomaterials for solar power harvesting.

  5. Real-time dynamic PC image generation techniques for high performance and high dynamic range fidelity

    NASA Astrophysics Data System (ADS)

    Bunfield, Dennis H.; Trimble, Darian E.; Fronckowiak, Thomas, Jr.; Ballard, Gary; Morris, Joesph

    2008-04-01

    AMRDEC has developed and implemented new techniques for rendering real-time 32-bit floating point energy-conserved dynamic scenes using commercial-off-the-shelf (COTS) Personal Computer (PC) based hardware and high performance nVidia Graphics Processing Units (GPU). The AMRDEC IGStudio rendering framework with the real-time Joint Scientific Image Generator (JSIG) core has been integrated into numerous AMRDEC Hardware-in-the-loop (HWIL) facilities, successfully replacing the lower fidelity legacy SGI hardware and software. JSIG uses high dynamic range unnormalized radiometric 32-bit floating point rendering through the use of GPU frame buffer objects (FBOs). A high performance nested zoom anti-aliasing (NZAA) technique was developed to address performance and geometric errors of past zoom anti-aliasing (ZAA) implementations. The NZAA capability for multi-object and occluded object representations includes: cluster ZAA, object ZAA, sub-object ZAA, and point source generation for unresolved objects. This technique has an optimal 128x128 pixel asymmetrical field-of-view zoom. The current NZAA capability supports up to 8 objects in real-time with a near future capability of increasing to a theoretical 128 objects in real-time. JSIG performs other dynamic entity effects which are applied in vertex and fragment shaders. These effects include floating point dynamic signature application, dynamic model ablation heating models, and per-material thermal emissivity rolloff interpolated on a per-pixel zoomed window basis. JSIG additionally performs full scene per-pixel effects in a post render process. These effects include real-time convolutions, optical scene corrections, per-frame calibrations, and energy distribution blur used to compensate for projector element energy limitations.

  6. Application of an automated wireless structural monitoring system for long-span suspension bridges

    SciTech Connect

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-06-23

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  7. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  8. Performance Analysis of Cooperative Wireless Backhaul Networks Operating at Extremely High Frequencies

    NASA Astrophysics Data System (ADS)

    Sakarellos, Vasileios K.; Chortatou, Maria; Skraparlis, Dimitrios; Panagopoulos, Athanasios D.; Kanellopoulos, John D.

    2011-04-01

    Extremely high frequency (EHF) bands above 50 GHz have been proposed to be used as backhaul links of modern cellular mobile networks. They provide interconnectivity between the base stations and the core network. In this paper, we propose the employment of cooperative techniques in backhaul networks. More specifically, the outage performance analysis of a simple cooperative diversity system operating at EHF bands is presented. The destination node combines the direct link with the signal received through a regenerative relay using selection combining. A combined statiform and convective model of rainfall rate for the rain attenuation prediction is considered. The correlation properties and the joint statistics among the microwave paths are also calculated. Numerical results present the impact of the geometrical parameters and the climatic conditions on the outage performance.

  9. Wireless Local Area Networks: The Next Evolutionary Step.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2001-01-01

    The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…

  10. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Harris, Nick; Cranny, Andy; Klaus, Julian; Pfister, Laurent

    2016-04-01

    Quantifying the travel times, pathways and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor) potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for three stream reaches in Luxembourg. Sensor results are comparable to data obtained from more expensive electrical conductivity meters and allow spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  11. Patient and healthcare professional satisfaction with a new, high accuracy blood glucose meter with color range indicator and wireless connectivity.

    PubMed

    Katz, Laurence B; Grady, Mike; Stewart, Lorna; Cameron, Hilary

    2016-07-01

    Accurate self-monitoring of blood glucose is a key component of effective self-management of glycemic control. The OneTouch VerioFlex(™) (OTVF) blood glucose monitoring system (BGMS) was evaluated for accuracy in a clinical setting. Patients also used OTVF for a 1-wk trial period and reported their level of satisfaction with meter features. In a separate study, healthcare professionals used an on-line simulator of the BGMS and answered questions about its potential utility to their patients. OTVF was accurate over a wide glucose range and met lay user and system accuracy blood glucose standards described in ISO15197:2013 as well as the accuracy requirements to fulfill US FDA expectations for 510(k) clearance of BGMS. Patients and healthcare professionals felt the features of OTVF, which has the capability to connect wirelessly to mobile devices and interact wirelessly with diabetes management software, could provide significant benefits to them or their patients.

  12. Comparative analysis of wireless systems as alternative to high-voltage power lines for global terrestrial power transmission

    SciTech Connect

    Smakhtin, A.P.; Rybakov, V.V.

    1996-12-31

    This paper discusses the problem of creating the global terrestrial power transmission system, the method to analyze alternative systems including such non traditional systems as wireless power transmission systems. From the above discussion it appears that using microwave beam power transmission with an orbital reflector may be more effective in the case of power transportation between two very distant regions on the Earth, right up to the power transportation between two continents.

  13. HermesD: A High-Rate Long-Range Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications.

    PubMed

    Miranda, Henrique; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Meng, Teresa H

    2010-06-01

    HermesD is a high-rate, low-power wireless transmission system to aid research in neural prosthetic systems for motor disabilities and basic motor neuroscience. It is the third generation of our "Hermes systems" aimed at recording and transmitting neural activity from brain-implanted electrode arrays. This system supports the simultaneous transmission of 32 channels of broadband data sampled at 30 ks/s, 12 b/sample, using frequency-shift keying modulation on a carrier frequency adjustable from 3.7 to 4.1 GHz, with a link range extending over 20 m. The channel rate is 24 Mb/s and the bit stream includes synchronization and error detection mechanisms. The power consumption, approximately 142 mW, is low enough to allow the system to operate continuously for 33 h, using two 3.6-V/1200-mAh Li-SOCl2 batteries. The transmitter was designed using off-the-shelf components and is assembled in a stack of three 28 mm ? 28-mm boards that fit in a 38 mm ? 38 mm ? 51-mm aluminum enclosure, a significant size reduction over the initial version of HermesD. A 7-dBi circularly polarized patch antenna is used as the transmitter antenna, while on the receiver side, a 13-dBi circular horn antenna is employed. The advantages of using circularly polarized waves are analyzed and confirmed by indoor measurements. The receiver is a stand-alone device composed of several submodules and is interfaced to a computer for data acquisition and processing. It is based on the superheterodyne architecture and includes automatic frequency control that keeps it optimally tuned to the transmitter frequency. The HermesD communications performance is shown through bit-error rate measurements and eye-diagram plots. The sensitivity of the receiver is -83 dBm for a bit-error probability of 10(-9). Experimental recordings from a rhesus monkey conducting multiple tasks show a signal quality comparable to commercial acquisition systems, both in the low-frequency (local field potentials) and upper-frequency bands

  14. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  15. Wireless gigabit data telemetry for large-scale neural recording.

    PubMed

    Kuan, Yen-Cheng; Lo, Yi-Kai; Kim, Yanghyo; Chang, Mau-Chung Frank; Liu, Wentai

    2015-05-01

    Implantable wireless neural recording from a large ensemble of simultaneously acting neurons is a critical component to thoroughly investigate neural interactions and brain dynamics from freely moving animals. Recent researches have shown the feasibility of simultaneously recording from hundreds of neurons and suggested that the ability of recording a larger number of neurons results in better signal quality. This massive recording inevitably demands a large amount of data transfer. For example, recording 2000 neurons while keeping the signal fidelity ( > 12 bit, > 40 KS/s per neuron) needs approximately a 1-Gb/s data link. Designing a wireless data telemetry system to support such (or higher) data rate while aiming to lower the power consumption of an implantable device imposes a grand challenge on neuroscience community. In this paper, we present a wireless gigabit data telemetry for future large-scale neural recording interface. This telemetry comprises of a pair of low-power gigabit transmitter and receiver operating at 60 GHz, and establishes a short-distance wireless link to transfer the massive amount of neural signals outward from the implanted device. The transmission distance of the received neural signal can be further extended by an externally rendezvous wireless transceiver, which is less power/heat-constraint since it is not at the immediate proximity of the cortex and its radiated signal is not seriously attenuated by the lossy tissue. The gigabit data link has been demonstrated to achieve a high data rate of 6 Gb/s with a bit-error-rate of 10(-12) at a transmission distance of 6 mm, an applicable separation between transmitter and receiver. This high data rate is able to support thousands of recording channels while ensuring a low energy cost per bit of 2.08 pJ/b.

  16. Wireless gigabit data telemetry for large-scale neural recording.

    PubMed

    Kuan, Yen-Cheng; Lo, Yi-Kai; Kim, Yanghyo; Chang, Mau-Chung Frank; Liu, Wentai

    2015-05-01

    Implantable wireless neural recording from a large ensemble of simultaneously acting neurons is a critical component to thoroughly investigate neural interactions and brain dynamics from freely moving animals. Recent researches have shown the feasibility of simultaneously recording from hundreds of neurons and suggested that the ability of recording a larger number of neurons results in better signal quality. This massive recording inevitably demands a large amount of data transfer. For example, recording 2000 neurons while keeping the signal fidelity ( > 12 bit, > 40 KS/s per neuron) needs approximately a 1-Gb/s data link. Designing a wireless data telemetry system to support such (or higher) data rate while aiming to lower the power consumption of an implantable device imposes a grand challenge on neuroscience community. In this paper, we present a wireless gigabit data telemetry for future large-scale neural recording interface. This telemetry comprises of a pair of low-power gigabit transmitter and receiver operating at 60 GHz, and establishes a short-distance wireless link to transfer the massive amount of neural signals outward from the implanted device. The transmission distance of the received neural signal can be further extended by an externally rendezvous wireless transceiver, which is less power/heat-constraint since it is not at the immediate proximity of the cortex and its radiated signal is not seriously attenuated by the lossy tissue. The gigabit data link has been demonstrated to achieve a high data rate of 6 Gb/s with a bit-error-rate of 10(-12) at a transmission distance of 6 mm, an applicable separation between transmitter and receiver. This high data rate is able to support thousands of recording channels while ensuring a low energy cost per bit of 2.08 pJ/b. PMID:25823050

  17. Ultra-miniature wireless temperature sensor for thermal medicine applications

    NASA Astrophysics Data System (ADS)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-03-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  18. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    NASA Astrophysics Data System (ADS)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  19. High dynamic range infrared radiometry and imaging

    NASA Technical Reports Server (NTRS)

    Coon, Darryl D.; Karunasiri, R. P. G.; Bandara, K. M. S. V.

    1988-01-01

    The use is described of cryogenically cooled, extrinsic silicon infrared detectors in an unconventional mode of operation which offers an unusually large dynamic range. The system performs intensity-to-frequency conversion at the focal plane via simple circuits with very low power consumption. The incident IR intensity controls the repetition rate of short duration output pulses over a pulse rate dynamic range of about 10(6). Theory indicates the possibility of monotonic and approx. linear response over the full dynamic range. A comparison between the theoretical and the experimental results shows that the model provides a reasonably good description of experimental data. Some measurements of survivability with a very intense IR source were made on these devices and found to be very encouraging. Evidence continues to indicate that some variations in interpulse time intervals are deterministic rather than probabilistic.

  20. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  1. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  2. Efficient data communication protocols for wireless networks

    NASA Astrophysics Data System (ADS)

    Zeydan, Engin

    In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to

  3. MAC layer security issues in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  4. Adaptive Routing Algorithm in Wireless Communication Networks Using Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Wu, Qinghua; Cai, Zhihua

    At present, mobile communications traffic routing designs are complicated because there are more systems inter-connecting to one another. For example, Mobile Communication in the wireless communication networks has two routing design conditions to consider, i.e. the circuit switching and the packet switching. The problem in the Packet Switching routing design is its use of high-speed transmission link and its dynamic routing nature. In this paper, Evolutionary Algorithms is used to determine the best solution and the shortest communication paths. We developed a Genetic Optimization Process that can help network planners solving the best solutions or the best paths of routing table in wireless communication networks are easily and quickly. From the experiment results can be noted that the evolutionary algorithm not only gets good solutions, but also a more predictable running time when compared to sequential genetic algorithm.

  5. Potential uses of a wireless network in physical security systems.

    SciTech Connect

    Witzke, Edward L.

    2010-07-01

    Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.

  6. High Dynamic Range Digital Imaging of Spacecraft

    NASA Technical Reports Server (NTRS)

    Karr, Brian A.; Chalmers, Alan; Debattista, Kurt

    2014-01-01

    The ability to capture engineering imagery with a wide degree of dynamic range during rocket launches is critical for post launch processing and analysis [USC03, NNC86]. Rocket launches often present an extreme range of lightness, particularly during night launches. Night launches present a two-fold problem: capturing detail of the vehicle and scene that is masked by darkness, while also capturing detail in the engine plume.

  7. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  8. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  9. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  10. Wireless Communications in Reverberant Environments

    NASA Astrophysics Data System (ADS)

    Measel, Ryan Thomas

    wireless communications in presence of high levels of multipath interference, and a methodology for experimentation in reverberant environments.

  11. A high-density wireless underground sensor network (WUSN) to quantify hydro-ecological interactions for a UK floodplain; project background and initial results

    NASA Astrophysics Data System (ADS)

    Verhoef, A.; Choudhary, B.; Morris, P. J.; McCann, J.

    2012-04-01

    Floodplain meadows support some of the most diverse vegetation in the UK, and also perform key ecosystem services, such as flood storage and sediment retention. However, the UK now has less than 1500 ha of this unique habitat remaining. In order to conserve and better exploit the services provided by this grassland, an improved understanding of its functioning is essential. Vegetation functioning and species composition are known to be tightly correlated to the hydrological regime, and related temperature and nutrient regime, but the mechanisms controlling these relationships are not well established. The FUSE* project aims to investigate the spatiotemporal variability in vegetation functioning (e.g. photosynthesis and transpiration) and plant community composition in a floodplain meadow near Oxford, UK (Yarnton Mead), and their relationship to key soil physical variables (soil temperature and moisture content), soil nutrient levels and the water- and energy-balance. A distributed high density Wireless Underground Sensor Network (WUSN) is in the process of being established on Yarnton Mead. The majority, or ideally all, of the sensing and transmitting components will be installed below-ground because Yarnton Mead is a SSSI (Site of Special Scientific Interest, due to its unique plant community) and because occasionally sheep or cattle are grazing on it, and that could damage the nodes. This prerequisite has implications for the maximum spacing between UG nodes and their communications technologies; in terms of signal strength, path losses and requirements for battery life. The success of underground wireless communication is highly dependent on the soil type and water content. This floodplain environment is particularly challenging in this context because the soil contains a large amount of clay near the surface and is therefore less favourable to EM wave propagation than sandy soils. Furthermore, due to high relative saturation levels (as a result of high

  12. Trophic dynamics influence climate at high latitudes

    NASA Astrophysics Data System (ADS)

    Oksanen, L.; Tuomi, M.; Hoset, K.; Oksanen, T.; Olofsson, J.; Dahlgren, J.; Nordic Center of Excellence-Tundra

    2011-12-01

    Abundance relationships between tall woody plants and low herbaceous plants influence ground albedo. Increasing abundance of erect woody plants on the tundra increase the amount of solar energy converted to heat, thus speeding up global warming. By transplanting vegetation blocks from an island with predatory mammals and gray-sided voles (Myodes rufocanus) to similar habitats on islands with gray-sided voles but no resident predators and to islands with neither voles nor predators, we show that changing trophic dynamics radically change the abundance relationships between woody and herbaceous plants. Impacts of food limited gray-sided voles result to devastation of all erect woody plants, regardless of their palatability, thus differing both quantitatively and qualitatively from the selective impacts of the same species in the presence of predators. The shift from vegetation dominated by erect woody plants to vegetation dominated by herbs or trailing dwarf shrubs also increases ground albedo. The relationship between climate and trophic dynamics is thus no one way street. Rather than responding passively to changes in climate, food webs can also influence climate via their impacts on ground albedo.

  13. Wireless technologies for robotic endoscope in gastrointestinal tract.

    PubMed

    Gao, P; Yan, G; Wang, Z; Liu, H

    2012-07-01

    This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.

  14. Dynamic Open Inquiry Performances of High-School Biology Students

    ERIC Educational Resources Information Center

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological scientific understanding…

  15. Model tracks sediment dynamics for highly curved meandering rivers

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    Understanding the dynamics of meandering rivers—the twisting, turning, and wandering of waterways over time—is of concern to water managers and civil engineers. How curved a river is affects how it moves, and Ottevanger et al. built on existing models to improve representations of meandering dynamics for highly curved rivers.

  16. Development of a wireless intra-vaginal transducer for monitoring intra-abdominal pressure in women

    PubMed Central

    Coleman, Tanner J.; Thomsen, Jens C.; Maass, Sean D.; Hsu, Yvonne; Nygaard, Ingrid E.

    2011-01-01

    Pelvic floor disorders (PFD) affect one of every four women in the United States. Elevated intra-abdominal pressure (IAP) during daily activity or strenuous physical activity has been identified as a risk factor in the prevalence of PFD. However, the relationship between IAP and physical activity is poorly understood and oftentimes activity restrictions are prescribed by physicians without clinical evidence linking various activities to elevated IAP. There are currently no pressure transducers capable of monitoring IAP non-invasively out of a clinical environment. To overcome this shortcoming, a novel intra-vaginal pressure transducer (IVT) was developed to continuously monitor IAP. Improvements were made to the first generation IVT by incorporating wireless capability to enhance the device’s mobility while creating a more robust IAP monitoring system. To ensure the changes maintained the functionality of the original device design, comparison testing with standard clinical pressure transducers in both bench top and clinical settings was conducted. The wireless device was found to have high linearity, robust signal transmission, and dynamic response that outperforms the clinical standard rectal transducer and is similar to the original first generation non-wireless design. The wireless IVT presented here is a mobile wireless device capable of measuring, storing and transmitting IAP data during various physical activities. PMID:22147020

  17. High performance computations using dynamical nucleation theory

    SciTech Connect

    Windus, Theresa L.; Kathmann, Shawn M.; Crosby, Lonnie D.

    2008-07-14

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities are described. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A "master-slave" solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are also described. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  18. High spectral efficient W-band optical/wireless system employing single-sideband single-carrier modulation.

    PubMed

    Ho, Chun-Hung; Lin, Chun-Ting; Cheng, Yu-Hsuan; Huang, Hou-Tzu; Wei, Chia-Chien; Chi, Sien

    2014-02-24

    With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved. PMID:24663711

  19. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  20. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  1. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  2. High-Dynamic Range Fiberoptic Links for Antenna Remoting Applications

    NASA Technical Reports Server (NTRS)

    Gee, C. M.; Chen, T. R.; Chen, P. C.; Paslaski, J.; Lau, K. Y.; Logan, R. T.; Calhoun, M. D.; Lutes, G.

    1993-01-01

    In recent years, the performance and cost effectiveness of analog fiberoptic communication systems have improved so that many applications including antenna remoting which requires high dynamic range can now benefit from the many advantages of fiber optics.

  3. Wireless Power Transfer

    SciTech Connect

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  4. Wireless Power Transfer

    ScienceCinema

    None

    2016-07-12

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  5. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  6. Biomonitoring with Wireless Communications

    SciTech Connect

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  7. A sensitive and high dynamic range cw laser power meter

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Bindra, K. S.; Oak, S. M.

    2008-12-01

    We report the design of a cost effective, highly sensitive cw laser power meter with a large dynamic range based on a photodiode. The power meter consists of a photodiode, a current to voltage converter circuit, an offset balancing circuit, a microcontroller, an analog to digital converter, reed relays, and an alphanumeric liquid crystal display. The power meter can record absolute laser power levels as low as 1 pW. The dynamic range measured with a cw laser at a wavelength of 532 nm is 8×1010. The high sensitivity and large dynamic range are achieved by the implementation of an analog background balancing circuit and autoranging.

  8. How to model wireless mesh networks topology

    NASA Astrophysics Data System (ADS)

    Sanni, M. L.; Hashim, A. A.; Anwar, F.; Ahmed, G. S. M.; Ali, S.

    2013-12-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches.

  9. High precision measurements in crustal dynamic studies

    NASA Technical Reports Server (NTRS)

    Wyatt, F.; Berger, J.

    1984-01-01

    The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.

  10. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    SciTech Connect

    Liu, Xingbo

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  11. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  12. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  13. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  14. New Highly Dynamic Approach for Thrust Vector Control

    NASA Astrophysics Data System (ADS)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  15. High dynamic range optical projection tomography (HDR-OPT).

    PubMed

    Fei, Peng; Yu, Zhilong; Wang, Xu; Lu, Peter J; Fu, Yusi; He, Zi; Xiong, Jingwei; Huang, Yanyi

    2012-04-01

    Traditional optical projection tomography (OPT) acquires a single image at each rotation angle, thereby suffering from limitations in CCD dynamic range; this conventional usage cannot resolve features in samples with highly heterogeneous absorption, such as in small animals with organs of varying size. We present a novel technique, applying multiple-exposure high dynamic range (HDR) imaging to OPT, and demonstrate its ability to resolve fine details in zebrafish embryos, without complicated chemical clearing. We implement the tomographic reconstruction algorithm on the GPU, yielding a performance increase of two orders of magnitude. These features give our method potential application in high-throughput, high-resolution in vivo 3D imaging.

  16. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  17. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  18. Wireless security in mobile health.

    PubMed

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats. PMID:23234427

  19. DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS

    SciTech Connect

    Tamayo, D.; Nicholson, P. D.; Burns, J. A.; Hamilton, D. P.

    2013-03-01

    High-inclination circumplanetary orbits that are gravitationally perturbed by the central star can undergo Kozai oscillations-large-amplitude, coupled variations in the orbital eccentricity and inclination. We first study how this effect is modified by incorporating perturbations from the planetary oblateness. Tremaine et al. found that, for planets with obliquities >68. Degree-Sign 875, orbits in the equilibrium local Laplace plane are unstable to eccentricity perturbations over a finite radial range and execute large-amplitude chaotic oscillations in eccentricity and inclination. In the hope of making that treatment more easily understandable, we analyze the problem using orbital elements, confirming this threshold obliquity. Furthermore, we find that orbits inclined to the Laplace plane will be unstable over a broader radial range, and that such orbits can go unstable for obliquities less than 68. Degree-Sign 875. Finally, we analyze the added effects of radiation pressure, which are important for dust grains and provide a natural mechanism for particle semimajor axes to sweep via Poynting-Robertson drag through any unstable range. For low-eccentricity orbits in the equilibrium Laplace plane, we find that generally the effect persists; however, the unstable radial range is shifted and small retrograde particles can avoid the instability altogether. We argue that this occurs because radiation pressure modifies the equilibrium Laplace plane.

  20. Qualitative Features of High Lift Hovering Dynamics and Inertial Manifolds

    NASA Astrophysics Data System (ADS)

    Gustafson, K.; Leben, R.; McArthur, J.; Mundt, M.

    1996-03-01

    Hovering aerodynamics, such as that practiced by dragonflys, hummingbirds, and certain other small insects, utilizes special patterns of vorticity to generate high lift flows. Such lift as we measure it computationally on the airfoil surface is in good agreement with downstream thrust measured in the physical laboratory. In this paper we examine the qualitative signatures of this dynamical system. A connection to the theory of inertial manifolds, more specifically the instance of time-dependent slow manifolds, is initiated. Additional interest attaches to the fact that in our compact computational domain, the forcing is on the boundary. Because of its highly oscillatory nature, in this dynamics one proceeds rapidly up the bifurcation ladder at relatively low Reynolds numbers. Thus, aside from its intrinsic interest, the hover model provides an attractive vehicle for a better understanding of dynamical system attractor dynamics and inertial manifold theory.

  1. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  2. High dynamic range diamond magnetometry for time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Nusran, N. M.; Gurudev Dutt, M. V.

    2012-02-01

    Nitrogen-Vacancy (NV) centers in diamond have become a topic of great interest in recent years due to their promising applications in high resolution nanoscale magnetometry and quantum information processing devices at ambient conditions. We will present our recent progress on implementing novel phase estimation algorithms with a single electron spin qubit associated with the NV center, in combination with dynamical decoupling techniques, to improve the dynamic range and sensitivity of magnetometry with time-varying magnetic fields.

  3. Dynamics and rheology of high molar mass polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Shetty, Abhishek; Solomon, Michael

    2009-03-01

    We report dynamic light scattering (DLS), bulk rheology and turbulent drag reduction (TDR) measurements that investigate the structure and dynamics of high molar mass PEO solutions. Steady shear rheology of high molar mass PEO solutions, when modeled by the FENE-P constitutive equation, was consistent with viscoelastic relaxation times much larger than predicted by single polymer, dilute solution theory. DLS of dilute PEO solutions showed a single relaxation mode in the decay time distribution, which scales as q-3 rather than the q-2 scaling expected of diffusive dynamics. We interpret this result as consistent with the internal dynamics of large multichain domains, clusters or aggregates in the high molar mass PEO solutions. By means of DLS, we also show that the aggregation state of dilute solutions of high molar mass PEO can be manipulated by addition of the chaotropic salt guanidine sulfate or the divalent salt magnesium sulfate. Addition of these salts shifts the power law scaling of the relaxation time from q-3 to q-2. This shift of relaxation time scaling from one indicative of aggregate dynamics (q-3) to one characteristic of polymer center-of-mass diffusion (q-2) shows that these salts are effective de-aggregation agents for PEO. We discuss the results in light of the potential connection between aggregation behavior and polymer TDR of high molar mass PEO.

  4. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  5. Improved bi-lateral filter in high dynamic range compression

    NASA Astrophysics Data System (ADS)

    Li, Zhijiang; Huang, Jing; Wang, Qiang

    2007-11-01

    The dynamic range of many real-world environments exceeds the capabilities of current display technology by several orders of magnitude. To obtain reasonable reproduction, a large number of high-quality tone-mapping operators are currently available. All of these methods can be divided into three kinds: global operation, local operation and temporal-related algorithm. As an effective local operation to avoid halo artifacts, bi-lateral filter is presented and discussed in recent years. After analysis in-depth, this paper presents an improved bi-lateral filter in high dynamic range compression focused on four points: calculating efficiency, vision theory support, scales and parameters. Experiments indicate that the new operator can generate reasonable reproduction of high dynamic range images.

  6. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  7. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    NASA Astrophysics Data System (ADS)

    Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao

    2011-06-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.

  8. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  9. Wireless Inclinometer Calibration System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A special system was fabricated to properly calibrate the wireless inclinometer, a new device that will measure the Orbiter s hang angle. The wireless inclinometer has a unique design and method of attachment to the Orbiter that will improve the accuracy of the measurements, as well as the safety and ease of the operation. The system properly calibrates the four attached inclinometers, in both the horizontal and vertical axes, without needing to remove any of the component parts. The Wireless Inclinometer Calibration System combines (1) a calibration fixture that emulates the point of attachment to the Orbiter in both the horizontal and vertical axes and the measurement surfaces, (2) an application-specific software program that accepts calibration data such as dates, zero functions, or offsets and tables, and (3) a wireless interface module that enables the wireless inclinometer to communicate with a calibration PC.

  10. Wireless Wonders.

    ERIC Educational Resources Information Center

    George, Katherine L.

    1995-01-01

    Cellular phones are becoming indispensable to school employees. There are three types: mobile, transportable, and hand-held, pocket-sized phones. Conversion from analog to digital technology has improved service and gained new customers. A Texas junior high school's new minicellular system allows teachers phone access to parents and has improved…

  11. Exposure time optimization for highly dynamic star trackers.

    PubMed

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-03-11

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.

  12. A novel compound chaotic block cipher for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun; Wang, Zhu; Liu, Yang; Zhang, Miao; Xu, Lianjie

    2015-05-01

    The nodes of wireless sensor network (WSN) have limited calculation and communication ability. Traditional encryption algorithms need large amounts of resources, so they cannot be applied to the wireless sensor network. To solve this problem, this paper proposes a block cipher algorithm for wireless sensor network based on compound chaotic map. The algorithm adopts Feistel network and constructs a Cubic function including discretized chaotic map, and its key is generated by the compound chaotic sequence. Security and performance tests show that the algorithm has high security and efficiency, low resource depletion. So the novel chaotic algorithm is suitable for the wireless sensor networks.

  13. Real-time high dynamic range laser scanning microscopy.

    PubMed

    Vinegoni, C; Leon Swisher, C; Fumene Feruglio, P; Giedt, R J; Rousso, D L; Stapleton, S; Weissleder, R

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  14. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  15. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  16. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  17. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  18. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  19. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  20. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  1. Wireless augmented reality communication system

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2006-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  2. Self-Powered Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali

    2008-01-01

    NASA's integrated vehicle health management (IVHM) program offers the potential to improve aeronautical safety, reduce cost and improve performance by utilizing networks of wireless sensors. Development of sensor systems for engine hot sections will provide real-time data for prognostics and health management of turbo-engines. Sustainable power to embedded wireless sensors is a key challenge for prolong operation. Harvesting energy from the environment has emerged as a viable technique for power generation. Thermoelectric generators provide a direct conversion of heat energy to electrical energy. Micro-power sources derived from thermoelectric films are desired for applications in harsh thermal environments. Silicon based alloys are being explored for applications in high temperature environments containing oxygen. Chromium based p-type Si/Ge alloys exhibit Seebeck coefficients on the order of 160 micro V/K and low thermal conductance of 2.5 to 5 W/mK. Thermoelectric properties of bulk and thin film silicides will be discussed

  3. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2016-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  4. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2014-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  5. Dynamic high pressure: Why it makes metallic fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Nellis, W. J.

    2015-09-01

    Metallic fluid H has been made by dynamic compression decades after Wigner and Huntington (WH) predicted its existence in 1935. The density at which it was made is within a few percent of the density predicted by WH. Metallic fluid H was achieved by multiple-shock compression of liquid H2, which is quasi-isentropic and thermally equilibrated. That is, the compressions were isentropic but for enough temperature and entropy to drive the crossover to completion from H2 to H at 9-fold compression. The metallic fluid is highly degenerate: T/TF≈0.014. The basic ideas of dynamic compression, also known as supersonic, adiabatic, nonlinear hydrodynamics, were developed in the last half of the Nineteenth Century in European universities. Today dynamic compression is generally unfamiliar to the scientific community, which impedes general understanding as to why fluid H becomes metallic at a pressure observable in a laboratory. The purposes of this paper are to (i) present a brief review of dynamic compression and its affects on materials, (ii) review considerations that led to the sample holder designed specifically to make metallic fluid H, and (iii) present a brief inter-comparison of dynamic and static methods to achieve high pressure relative to their prospects for making metallic H.

  6. Highly excited and exotic meson spectrum from dynamical lattice QCD

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas

    2009-12-01

    Using a new quark-field construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to identify the continuum spin of extracted states. This method allows us to extract, with confidence, excited states, states of high spin and states with exotic quantum numbers, including, for the first time, spin-four states.

  7. New visualization method for high dynamic range images in low dynamic range devices

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Hyung; Kim, Hoon; Ko, Sung-Jea

    2011-10-01

    Various tone reproduction operators have been proposed to display high dynamic range images on low dynamic range (LDR) devices. The gradient domain operator is a good candidate due to its capability of reducing the dynamic range and avoiding common artifacts including halos and loss of image details. However the gradient domain operator requires high computational complexity and often introduces low-frequency artifacts such as reversal of contrast between distant image patches. In order to solve these problems we present a new gradient domain tone reproduction method which adopts an energy functional with two terms one for preserving global contrast and the other for enhancing image details. In the proposed method the LDR image is obtained by minimizing the proposed energy functional through a numerical method. Simulation results demonstrate that the proposed method can not only achieve the significantly reduced computational complexity but also exhibit better visual quality as compared with conventional algorithms.

  8. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  9. New Applications for the Testing and Visualization of Wireless Networks

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac

    2005-01-01

    Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.

  10. High-speed AFM for Studying Dynamic Biomolecular Processes

    NASA Astrophysics Data System (ADS)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  11. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  12. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  13. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  14. Method to Sense Changes in Network Parameters with High-Speed, Nonlinear Dynamical Nodes

    NASA Astrophysics Data System (ADS)

    Callan, Kristine E.

    The study of dynamics on networks has been a major focus of nonlinear science over the past decade. Inferring network properties from the nodal dynamics is both a challenging task and of growing importance for applied network science. A subset of this broad question is: How can one determine changes to the coupling strength between elements in a small network of chaotic oscillators just by measuring the dynamics of one of the elements (nodes) in the network? In this dissertation, I propose and report on an implementation of a method to simultaneously determine: (1) which link is affected and (2) by how much it is attenuated when the coupling strength along one of the links in a small network of dynamical nodes is changed. After proper calibration, realizing this method involves only measurements of the dynamical features of a single node. Previous attempts to solve this problem focus mainly on synchronization-based approaches implemented in low-speed, homogeneous experimental systems. In contrast, the experimental apparatus I use to implement my method comprises two high-speed (ps-timescale), heterogeneous optoelectronic oscillators (OEOs). Each OEO constitutes a node, and a network is formed by mutually coupling two nodes. I find that the correlation properties of the chaotic dynamics generated by the nodes, which are heavily influenced by the propagation time delays in the network, change in a quantifiable way when the coupling strength along either the input or output link is attenuated. By monitoring multiple aspects of the correlation properties, which I call "time delay signatures'' (TDSs), I find that the affected link can be determined for changes in coupling strength greater than 20% +/- 10%. Due to the sensitivity with which the TDSs change, it is also feasible to determine approximately the time-varying coupling strength for large enough attenuations. I also verify that the TDSs' sensitivity to changes in coupling strength are captured by a simple

  15. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect

    Ning, Puqi; Miller, John M; Onar, Omer C; White, Cliff P

    2013-01-01

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  16. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  17. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  18. Dynamic high pressure: why it makes metallic fluid hydrogen

    NASA Astrophysics Data System (ADS)

    Nellis, William

    2015-06-01

    Metallic fluid H (MFH) was made by dynamic compression decades after Wigner and Huntington (WH) predicted it in 1935. The density of MFH is within a few percent of the density predicted by WH. MFH was made by multiple-shock compression of liquid H2, which process is quasi-isentropic and thermally equilibrated. The compressions were isentropic but produced enough dissipation as temperature T and entropy S to drive the crossover from insulating H2 to metallic H at 9-fold compressed atomic H density. T and S were tuned by temporally shaping the applied pressure pulse such that H2 dissociated to H at sufficiently high density to make a highly degenerate metal. The basic ideas of dynamic compression, also known as supersonic, adiabatic, nonlinear hydrodynamics, were developed in the last half of the Nineteenth Century. Our purposes are to (i) present a brief review of dynamic compression and its affects on materials, (ii) review considerations that led to the sample holder designed specifically to make MFH, and (iii) present a inter-comparison of dynamic and static methods relative to their prospects for making metallic H.

  19. High dynamic range image display with halo and clipping prevention.

    PubMed

    Guarnieri, Gabriele; Marsi, Stefano; Ramponi, Giovanni

    2011-05-01

    The dynamic range of an image is defined as the ratio between the highest and the lowest luminance level. In a high dynamic range (HDR) image, this value exceeds the capabilities of conventional display devices; as a consequence, dedicated visualization techniques are required. In particular, it is possible to process an HDR image in order to reduce its dynamic range without producing a significant change in the visual sensation experienced by the observer. In this paper, we propose a dynamic range reduction algorithm that produces high-quality results with a low computational cost and a limited number of parameters. The algorithm belongs to the category of methods based upon the Retinex theory of vision and was specifically designed in order to prevent the formation of common artifacts, such as halos around the sharp edges and clipping of the highlights, that often affect methods of this kind. After a detailed analysis of the state of the art, we shall describe the method and compare the results and performance with those of two techniques recently proposed in the literature and one commercial software. PMID:21078576

  20. Implementing dynamic arrays: a challenge for high-performance machines

    SciTech Connect

    Mago, G.; Partain, W.

    1986-01-01

    There is an increasing need for high-performance AI machines. What is unusual about AI is that its programs are typically dynamic in the way their execution unfolds and in the data structures they use. AI therefore needs machines that are late-binding. Multiprocessors are often held out as the answer to AI's computing requirements. However, most success with multiprocessing has come from exploiting numerical computations' basic data structure - the static array (as in FORTRAN). A static array's structure does not change, so its elements (and the processing on them) may be readily distributed. In AI, the ability to change and manipulate the structure of data is paramount; hence, the pre-eminence of the LISP list. Unfortunately, the traditional pointer-based list has serious drawbacks for distributed processing. The dynamic array is a data structure that allows random access to its elements (like static arrays) yet whose structure - size and dimensions - can be easily changed, i.e., bound and re-bound at run - time. It combines the flexibility that AI requires with the potential for high performance through parallel operation. A machine's implementation of dynamic arrays gives a good insight into its potential usefulness for AI applications. Therefore, the authors outline the implementation of dynamic arrays on a machine that we are developing.

  1. Collisional quenching dynamics and reactivity of highly vibrationally excited molecules

    NASA Astrophysics Data System (ADS)

    Liu, Qingnan

    Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine

  2. Runaway electron dynamics in tokamak plasmas with high impurity content

    SciTech Connect

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-15

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  3. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGESBeta

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation HI. If the scale of Peccei-Quinn (PQ) breaking fa is greater than HI/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation fI require either late-time dilution of the axion abundance or highly super-Planckian fI that somehowmore » does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow fa close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  4. Runaway electron dynamics in tokamak plasmas with high impurity content

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  5. Phase patterns of coupled oscillators with application to wireless communication

    SciTech Connect

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  6. The dynamics of a high-speed Jovian jet

    NASA Technical Reports Server (NTRS)

    Maxworthy, T.

    1984-01-01

    New measurements of the velocity field in the neighborhood of the high-speed jet located at approximately 24 deg N latitude in the Jovian atmosphere are presented. The maximum zonal velocity is found to be 182 + or - 10 m/s, located at 23.7 + or - 0.2 deg N and representing the largest velocity measured on the planet. The distinctive cloud markings found close to this latitude are discussed and possible dynamical consequences presented.

  7. Nike Black Brant V high altitude dynamic instability characteristics

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  8. Studying Interactions by Molecular Dynamics Simulations at High Concentration

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Toppo, Stefano; Tosatto, Silvio C. E.; Viglino, Paolo; Ursini, Fulvio; Esposito, Gennaro

    2012-01-01

    Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples. PMID:22500085

  9. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  10. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  11. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  12. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  13. Color transfer between high-dynamic-range images

    NASA Astrophysics Data System (ADS)

    Hristova, Hristina; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi

    2015-09-01

    Color transfer methods alter the look of a source image with regards to a reference image. So far, the proposed color transfer methods have been limited to low-dynamic-range (LDR) images. Unlike LDR images, which are display-dependent, high-dynamic-range (HDR) images contain real physical values of the world luminance and are able to capture high luminance variations and finest details of real world scenes. Therefore, there exists a strong discrepancy between the two types of images. In this paper, we bridge the gap between the color transfer domain and the HDR imagery by introducing HDR extensions to LDR color transfer methods. We tackle the main issues of applying a color transfer between two HDR images. First, to address the nature of light and color distributions in the context of HDR imagery, we carry out modifications of traditional color spaces. Furthermore, we ensure high precision in the quantization of the dynamic range for histogram computations. As image clustering (based on light and colors) proved to be an important aspect of color transfer, we analyze it and adapt it to the HDR domain. Our framework has been applied to several state-of-the-art color transfer methods. Qualitative experiments have shown that results obtained with the proposed adaptation approach exhibit less artifacts and are visually more pleasing than results obtained when straightforwardly applying existing color transfer methods to HDR images.

  14. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, P.

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  15. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, Pavel

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  16. Dynamic Thermal Management for High-Performance Storage Systems

    SciTech Connect

    Kim, Youngjae; Gurumurthi, Dr Sudhanva; Sivasubramaniam, Anand

    2012-01-01

    Thermal-aware design of disk drives is important because high temperatures can cause reliability problems. Dynamic Thermal Management (DTM) techniques have been proposed to operate the disk at the average case temperature, rather than at the worse case by modulating the activities to avoid thermal emergencies. The thermal emergencies can be caused by unexpected events, such as fan-breaks, increased inlet air temperature, etc. One of the DTM techniques is a delay-based approach that adjusts the disk seek activities, cooling down the disk drives. Even if such a DTM approach could overcome thermal emergencies without stopping disk activity, it suffers from long delays when servicing the requests. Thus, in this chapter, we investigate the possibility of using a multispeed disk-drive (called dynamic rotations per minute (DRPM)) that dynamically modulates the rotational speed of the platter for implementing the DTM technique. Using a detailed performance and thermal simulator of a storage system, we evaluate two possible DTM policies (- time-based and watermark-based) with a DRPM disk-drive and observe that dynamic RPM modulation is effective in avoiding thermal emergencies. However, we find that the time taken to transition between different rotational speeds of the disk is critical for the effectiveness of the DRPM based DTM techniques.

  17. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  18. High-frequency longitudinal and transverse dynamics in water

    SciTech Connect

    Pontecorvo, E.; Ruocco, G.; Krisch, M.; Monaco, G.; Mermet, A.; Verbeni, R.; Sette, F.; Cunsolo, A.

    2005-01-01

    High-resolution, inelastic x-ray scattering measurements of the dynamic structure factor S(Q,{omega}) of liquid water have been performed for wave vectors Q between 4 and 30 nm{sup -1} in distinctly different thermodynamic conditions (T=263-420 K; at, or close to, ambient pressure and at P=2 kbar). In agreement with previous inelastic x-ray and neutron studies, the presence of two inelastic contributions (one dispersing with Q and the other almost nondispersive) is confirmed. The study of their temperature and Q dependence provides strong support for a dynamics of liquid water controlled by the structural relaxation process. A viscoelastic analysis of the Q-dispersing mode, associated with the longitudinal dynamics, reveals that the sound velocity undergoes a complete transition from the adiabatic sound velocity (c{sub 0}) (viscous limit) to the infinite-frequency sound velocity (c{sub {infinity}}) (elastic limit). On decreasing Q, as the transition regime is approached from the elastic side, we observe a decrease of the intensity of the second, weakly dispersing feature, which completely disappears when the viscous regime is reached. These findings unambiguously identify the second excitation to be a signature of the transverse dynamics with a longitudinal symmetry component, which becomes visible in S(Q,{omega}) as soon as the purely viscous regime is left.

  19. High Dynamic Range Processing for Magnetic Resonance Imaging

    PubMed Central

    Sukerkar, Preeti A.; Meade, Thomas J.

    2013-01-01

    Purpose To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and TE to generate an image with increased dynamic range. Materials and Methods High Dynamic Range (HDR) processing techniques from the field of photography were applied to a series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested. T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a 7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence. Results HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and T2 in phantoms and revealed more anatomical features in vivo. Conclusions We have developed and tested a method to apply HDR processing to MR images. The increased dynamic range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by magnetization recovery or low SNR. PMID:24250788

  20. Simulation of transition dynamics to high confinement in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Xu, G. S.; Madsen, J.; Naulin, V.; Juul Rasmussen, J.; Wan, B. N.

    2015-12-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced at proper parameters. The model recovers the power threshold for the L-H transition as well as the decrease in power threshold switching from single to double null configuration observed experimentally. The results are highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.

  1. Data-Centric Routing for Intra Wireless Body Sensor Networks.

    PubMed

    Bangash, Javed Iqbal; Khan, Abdul Waheed; Abdullah, Abdul Hanan

    2015-09-01

    A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art.

  2. Data-Centric Routing for Intra Wireless Body Sensor Networks.

    PubMed

    Bangash, Javed Iqbal; Khan, Abdul Waheed; Abdullah, Abdul Hanan

    2015-09-01

    A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art. PMID:26242749

  3. High-performance holographic technologies for fluid-dynamics experiments

    PubMed Central

    Orlov, Sergei S.; Abarzhi, Snezhana I.; Oh, Se Baek; Barbastathis, George; Sreenivasan, Katepalli R.

    2010-01-01

    Modern technologies offer new opportunities for experimentalists in a variety of research areas of fluid dynamics. Improvements are now possible in the state-of-the-art in precision, dynamic range, reproducibility, motion-control accuracy, data-acquisition rate and information capacity. These improvements are required for understanding complex turbulent flows under realistic conditions, and for allowing unambiguous comparisons to be made with new theoretical approaches and large-scale numerical simulations. One of the new technologies is high-performance digital holography. State-of-the-art motion control, electronics and optical imaging allow for the realization of turbulent flows with very high Reynolds number (more than 107) on a relatively small laboratory scale, and quantification of their properties with high space–time resolutions and bandwidth. In-line digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 frames per second) over a relatively large spatial area with high spatial (1–10 μm) and temporal (better than a few nanoseconds) resolution, and can give accurate quantitative description of the fluid flows, including those of multi-phase and unsteady conditions. This technology can be applied in a variety of problems to study fundamental properties of flow–particle interactions, rotating flows, non-canonical boundary layers and Rayleigh–Taylor mixing. Some of these examples are discussed briefly. PMID:20211881

  4. A Wireless World: Charles County Public Schools Makes Wireless Universal

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2007-01-01

    Wireless connectivity in schools is all the rage, and many school systems have at least gotten their feet wet with a wireless lab or a few portable laptop carts. But Bijaya Devkota, the chief information officer of Charles County Public Schools, has done what many school systems only dream of--implemented universal wireless access throughout his…

  5. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  6. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  7. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  8. High Velocity Videoculography to Determination of the Pupil Dynamics

    SciTech Connect

    Villamar, Luis A.; Suaste, E.

    2008-08-11

    The characterization and determination of the dynamics pupillary in normal subjects, we can help to more accurately determine the behavior of the pupil; the videoculography is a tool that allows us to study the eye and especially the pupil to 30 frames per second in traditional form with the videoculography at high speed allows us to discuss our case in the pupil at 928 frames per second, this speed can determine with greater accuracy and precision dynamics eye, analyzing the movement pupillary each 1 ms approximately. This work shows the results of the capture and escape pupillary through this methodology, the results more accurately taking the capture of images between 5 and 7 ms about using a pulse with duration of 200 ms stimulation.

  9. Static and dynamic high pressure experiments on cerium

    SciTech Connect

    Jensen, Brian J; Velisavljevic, Nenad; Cherne, Frank J; Stevens, Gerald; Tschauner, Oliver

    2011-01-25

    There is a scientific need to obtain dynamic data to develop and validate multi phase equation-of-state (EOS) models for metals. Experiments are needed to examine the relevant pure phases, to locate phase boundaries and the associated transition kinetics, and other material properties such as strength. Cerium is an ideal material for such work because it exhibits a complex multiphase diagram at relatively moderate pressures readily accessible using standard shock wave methods. In the current work, shock wave (dynamic) and diamond anvil cell (static) experiments were performed to examine the high pressure, low temperature region of the phase diagram to obtain EOS data and to search for the {alpha}-{var_epsilon} boundary. Past work examining the shock-melt transition and the low-pressure {gamma}-{alpha} transition will be presented in brief followed by details of recent results obtained from DAC and double-shock experiments.

  10. High-resolution dynamic speech imaging with deformation estimation.

    PubMed

    Maojing Fu; Barlaz, Marissa S; Shosted, Ryan K; Zhi-Pei Liang; Sutton, Bradley P

    2015-08-01

    Dynamic speech magnetic resonance imaging (DSMRI) is a promising technique for visualizing articulatory motion in real time. However, many existing applications of DSMRI have been limited by slow imaging speed and the lack of quantitative motion analysis. In this paper, we present a novel DS-MRI technique to simultaneously estimate dynamic image sequence of speech and the associated deformation field. Extending on our previous Partial Separability (PS) model-based methods, the proposed technique visualizes both speech motion and deformation with a spatial resolution of 2.2 × 2.2 mm(2) and a nominal frame rate of 100 fps. Also, the technique enables direct analysis of articulatory motion through the deformation fields. Effectiveness of the method is systematically examined via in vivo experiments. Utilizing the obtained high-resolution images and deformation fields, we also performed a phonetics study on Brazilian Portuguese to show the method's practical utility. PMID:26736572

  11. Shed a light of wireless technology on portable mobile design of NIRS

    NASA Astrophysics Data System (ADS)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  12. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  13. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  14. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  15. Calving dynamics at Helheim Glacier from a high-resolution observational network.

    NASA Astrophysics Data System (ADS)

    Selmes, Nick; Aspey, Robin; Baugé, Tim; Bevan, Suzanne; Edwards, Stuart; Everett, Alistair; James, Timothy; Loskot, Pavel; Luckman, Adrian; Martin, Ian; Murray, Tavi; O'Farrell, Tim; Rutt, Ian

    2014-05-01

    Calving glaciers play a crucial role in the mass balance of the Greenland Ice Sheet; acceleration of these glaciers results in increased mass loss from the ice sheet interior and a corresponding rise in sea level. Understanding the controls on calving is crucial for predicting the dynamic response of tidewater glaciers to environmental change, but understanding of calving is hindered by the difficulty of obtaining appropriate field measurements, and by the complexity of the system being observed. We designed and deployed a wireless network of GPS nodes which transmit to off-glacier base stations every few seconds, allowing observations right up to node loss through calving. We ran a network of 20 sensors over the period July - September 2013 on the highly crevassed surface of Helheim Glacier, one of the largest and fastest flowing of the Greenland outlets. Topographic change, additional velocities, and calving flux were provided by two sets of stereo time-lapse cameras, TanDEM-X satellite imagery, repeat airborne lidar, and airborne and spaceborne optical remotely-sensed imagery. At the start of our field season we observed the expression on the fjord surface of a point-source subglacial meltwater plume. We monitored the evolution of the plume and its effect on the exposed calving face and ice mélange from time-lapse cameras, optical remotely-sensed imagery and lidar data. We compare these observations to our record of frontal positions to study the plume's role in controlling the spatial extent of iceberg calving. Our 53 day study period contained several large calving events which resulted in frontal retreat of ~1.5 km. We present the glacier's dynamic and topographic response to these calving events through this very large and rich dataset. Typically the glacier ice flows down slope and speeds up as ice progresses towards the calving front, with notable acceleration after each calving event. Intriguingly we see periods where sensors behave in unexpected ways

  16. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  17. Wireless Sensor Node for Surface Seawater Density Measurements

    PubMed Central

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  18. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  19. Wireless avionics for space applications of fundamental physics

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  20. A High-Performance LC Wireless Passive Pressure Sensor Fabricated Using Low-Temperature Co-Fired Ceramic (LTCC) Technology

    PubMed Central

    Li, Chen; Tan, Qiulin; Xue, Chenyang; Zhang, Wendong; Li, Yunzhi; Xiong, Jijun

    2014-01-01

    An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated using low-temperature co-fired ceramic (LTCC) technology, and a fugitive film is used to create a completed sealed embedded cavity without an evacuation channel. The experimental results show that the frequency drift of the sensor versus the temperature is approximately 0.75 kHz/°C, and the responsivity of the sensor can be up to 31 kHz/bar within the pressure range from atmospheric pressure to 60 bar. PMID:25490593

  1. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.

    PubMed

    Li, Chen; Tan, Qiulin; Xue, Chenyang; Zhang, Wendong; Li, Yunzhi; Xiong, Jijun

    2014-12-05

    An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated using low-temperature co-fired ceramic (LTCC) technology, and a fugitive film is used to create a completed sealed embedded cavity without an evacuation channel. The experimental results show that the frequency drift of the sensor versus the temperature is approximately 0.75 kHz/°C, and the responsivity of the sensor can be up to 31 kHz/bar within the pressure range from atmospheric pressure to 60 bar.

  2. WMSA for wireless communication applications

    NASA Astrophysics Data System (ADS)

    Vats, Monika; Agarwal, Alok; Kumar, Ravindra

    2016-03-01

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f0 = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  3. Passive Wireless SAW Sensors for IVHM

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Perey, Daniel F.; Atkinson, Gary M.; Barclay, Rebecca O.

    2008-01-01

    NASA aeronautical programs require integrated vehicle health monitoring (IVHM) to ensure the safety of the crew and the vehicles. Future IVHM sensors need to be small, light weight, inexpensive, and wireless. Surface acoustic wave (SAW) technology meets all of these constraints. In addition it operates in harsh environments and over wide temperature ranges, and it is inherently radiation hardened. This paper presents a survey of research opportunities for universities and industry to develop new sensors that address anticipated IVHM needs for aerospace vehicles. Potential applications of passive wireless SAW sensors from ground testing to high altitude aircraft operations are presented, along with some of the challenges and issues of the technology.

  4. Hadron dynamics in high-energy pion-nucleus scattering

    SciTech Connect

    Johnson, M.B.

    1992-12-31

    It is argued that pion-nucleus scattering at high energy (above 300 MeV) is likely to be easier to interpret than it has been at lower energies where the {Delta}{sub 33} resonance dominates. We establish this by examining the relative importance of various dynamic ingredients of scattering theory for high-energy pions and comparing different versions of the theory: a ``model-exact`` microscopic optical model and an eikonal approximation. For nuclei as heavy as Ca, the eikonal theory is an excellent approximation to the full theory for the angular distribution out to the position of the second minimum in the cross section. The prospects for using high-energy pions to examine modifications of nucleons and baryon resonances in nuclei, nuclear structure, exchange currents, short-range correlations, and to characterize pion propagation are discussed.

  5. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  6. Dynamical thermoelectric coefficients of bulk semiconductor crystals: Towards high thermoelectric efficiency at high frequencies

    SciTech Connect

    Ezzahri, Younès Joulain, Karl

    2014-06-14

    We investigate in this work the fundamental behavior of the dynamical thermoelectric coefficients of a bulk cubic semiconductor (SC) crystal. The treatment is based on solving Boltzmann electron transport equation in the frequency domain after simultaneous excitations by dynamical temperature and electric potential gradients, within the framework of the single relaxation time approximation. The SC crystal is assumed to be a linear, elastic homogenous, and isotropic medium having a parabolic energy band structure. We further assume to deal with one type of carriers (electrons or holes) that reside in a single energy band, and we neglect any phonon drag effect. Our approach allows us to obtain very compact expressions for the different dynamical thermoelectric coefficients that nicely capture the essential features of the dynamics of electron transport. We emphasize our study about the dynamical behavior of the thermoelectric figure of merit ZT(Ω) of the SC crystal by considering the coupled electron-phonon transport. Our study revealed a very interesting and compelling result in which ZT increases in the high frequency regime with respect to its steady-state value. The fundamental reason of this enhancement is due to the intrinsic uncoupling in the dynamics of electrons and phonons in the high frequency regime.

  7. Relationship between viscosity change and specificity in protein binding reaction studied by high-frequency wireless and electrodeless MEMS biosensor

    NASA Astrophysics Data System (ADS)

    Shagawa, Tomohiro; Torii, Hiroomi; Kato, Fumihito; Ogi, Hirotsugu; Hirao, Masahiko

    2015-06-01

    This study proposes a methodology for evaluating specific binding behavior between proteins using a resonance acoustic microbalance with a naked-embedded quartz (RAMNE-Q) biosensor. We simultaneously measured the frequency responses of fundamental (58 MHz) and third-order (174 MHz) modes during multi step injections of proteins and deduced the thickness and viscosity evolutions of the protein layer. The viscosity increases with the progress of the binding reaction in nonspecific binding, but it markedly decreases in specific-binding cases. Thus, the high-frequency RAMNE-Q biosensor can be a powerful tool for evaluating specificity between proteins without measuring dissipation.

  8. Cavity dynamics in high-speed water entry

    NASA Astrophysics Data System (ADS)

    Lee, M.; Longoria, R. G.; Wilson, D. E.

    1997-03-01

    A method is presented for modeling the cavity formation and collapse induced by high-speed impact and penetration of a rigid projectile into water. The approach proposes that high-speed water-entry is characterized by a cavity that experiences a deep closure prior to closure at the surface. This sequence in the physical events of the induced cavity dynamics is suggested by the most recent high-speed water-entry experimental data, by results from numerical experiments using a hydrocode, and by an understanding of the fundamental physics of the processes that govern surface closure. The analytical model, which specifies the energy transfer for cavity production as equivalent to the energy dissipated by velocity-dependent drag on the projectile, provides accurate estimates for variables that are important in characterizing the cavity dynamics, and reveals useful knowledge regarding magnitudes and trends. In particular, it is found that the time of deep closure is essentially constant and independent of the impact velocity for a given projectile size, while the location of deep closure has a weak dependence on impact velocity. Comparison of these analytical results with experimental results from the literature and with results from numerical simulations verifies the analytical solutions.

  9. Water and polymer dynamics in highly crosslinked polyamide membranes

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  10. Quantitative evolutionary dynamics using high-resolution lineage tracking.

    PubMed

    Levy, Sasha F; Blundell, Jamie R; Venkataram, Sandeep; Petrov, Dmitri A; Fisher, Daniel S; Sherlock, Gavin

    2015-03-12

    Evolution of large asexual cell populations underlies ∼30% of deaths worldwide, including those caused by bacteria, fungi, parasites, and cancer. However, the dynamics underlying these evolutionary processes remain poorly understood because they involve many competing beneficial lineages, most of which never rise above extremely low frequencies in the population. To observe these normally hidden evolutionary dynamics, we constructed a sequencing-based ultra high-resolution lineage tracking system in Saccharomyces cerevisiae that allowed us to monitor the relative frequencies of ∼500,000 lineages simultaneously. In contrast to some expectations, we found that the spectrum of fitness effects of beneficial mutations is neither exponential nor monotonic. Early adaptation is a predictable consequence of this spectrum and is strikingly reproducible, but the initial small-effect mutations are soon outcompeted by rarer large-effect mutations that result in variability between replicates. These results suggest that early evolutionary dynamics may be deterministic for a period of time before stochastic effects become important.

  11. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  12. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.

  13. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure.

    PubMed

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-01-01

    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  14. An 802.11 n wireless local area network transmission scheme for wireless telemedicine applications.

    PubMed

    Lin, C F; Hung, S I; Chiang, I H

    2010-10-01

    In this paper, an 802.11 n transmission scheme is proposed for wireless telemedicine applications. IEEE 802.11n standards, a power assignment strategy, space-time block coding (STBC), and an object composition Petri net (OCPN) model are adopted. With the proposed wireless system, G.729 audio bit streams, Joint Photographic Experts Group 2000 (JPEG 2000) clinical images, and Moving Picture Experts Group 4 (MPEG-4) video bit streams achieve a transmission bit error rate (BER) of 10-7, 10-4, and 103 simultaneously. The proposed system meets the requirements prescribed for wireless telemedicine applications. An essential feature of this proposed transmission scheme is that clinical information that requires a high quality of service (QoS) is transmitted at a high power transmission rate with significant error protection. For maximizing resource utilization and minimizing the total transmission power, STBC and adaptive modulation techniques are used in the proposed 802.11 n wireless telemedicine system. Further, low power, direct mapping (DM), low-error protection scheme, and high-level modulation are adopted for messages that can tolerate a high BER. With the proposed transmission scheme, the required reliability of communication can be achieved. Our simulation results have shown that the proposed 802.11 n transmission scheme can be used for developing effective wireless telemedicine systems. PMID:21138238

  15. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  16. Dynamic Jahn-Teller coupling and high T c superconductivity

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Johnson, Keith H.; McHenry, Michael E.

    1989-12-01

    Based on the cooperative dynamic Jahn-Teller effect, a universal model of superconductivity is sketched which accounts for many aspects of conventional BCS and high T c superconductors. Within the quasi-molecular approximation, a real space vibronic coupling of degenerate (or nearly degenerate) electronic states to anharmonically mixed nuclear distortions is shown to lead to electron pairing. The crossover from electron-phonon behavior to electronic behavior as a function of Jahn-Teller coupling and anharmonic mixing is illustrated for the case of a CuO 4 cluster having D 4 h symmetry.

  17. High Speed Optical Tomography System for Imaging Dynamic Transparent Media

    NASA Astrophysics Data System (ADS)

    McMackin, Lenore; Hugo, Ronald J.; Pierson, R. E.; Truman, C. R.

    1997-11-01

    We describe the design and operation of a high speed optical tomography system for measuring two-dimensional images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. The tomographic reconstructions have a spatial resolution of approximately 2.0 mm and can measure temperature variations across the flow with an accuracy of about 0.7 C. Series of animated reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  18. Single-element based ultra-wideband antenna array concepts for wireless high-precision 2-D local positioning

    NASA Astrophysics Data System (ADS)

    Gardill, M.; Fischer, G.; Weigel, R.; Koelpin, A.

    2013-07-01

    We generally categorize the approaches for ultra-wideband antenna array design, and consequently propose simplified concepts for antenna arrays for a high-precision, ultra-wideband FMCW radar 2-D local positioning system to obtain robustness against multi path interference, perform angle of arrival analysis, as well as instantaneous heading estimation. We focus on low-cost and mechanical robust, industrial-application ready antennas. The antenna arrays are optimized for operation in the 5 GHz to 8 GHz frequency range and are designed towards supporting full omnidirectional 360° as well as partial half-plane direction of arrival estimation. Two different concepts for vehicle- as well as wall-mounted antenna array systems are proposed and discussed. We propose a wideband unidirectional bow-tie antenna array element having 97% impedance and 37% pattern bandwidth and a robust vehicle mounted omnidirectional antenna element having more than 85% impedance and pattern bandwidth.

  19. Terahertz (THz) Wireless Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.

    2013-01-01

    NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.

  20. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  1. Dynamics of Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2000-01-01

    A series of active flow control experiments were recently conducted at high Reynolds numbers on a generic separated configuration. The model simulates the upper surface of a 20% thick Glauert-Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. The main motivation for the experiments is to generate a comprehensive data base for validation of unsteady numerical simulation as a first step in the development of a CFD design tool, without which it would not be possible to effectively utilize the great potential of unsteady flow control. This paper focuses on the dynamics of several key features of the baseline as well as the controlled flow. It was found that the thickness of the upstream boundary layer has a negligible effect on the flow dynamics. It is speculated that separation is caused mainly by the highly convex surface while viscous effects are less important. The two-dimensional separated flow contains unsteady waves centered on a reduced frequency of 0.8, while in the three dimensional separated flow, frequencies around a reduced frequency of 0.3 and 1 are active. Several scenarios of resonant wave interaction take place at the separated shear-layer and in the pressure recovery region. The unstable reduced frequency bands for periodic excitation are centered on 1.5 and 5, but these reduced frequencies are based on the length of the baseline bubble that shortens due to the excitation. The conventional swept wing-scaling works well for the coherent wave features. Reproduction of these dynamic effects by a numerical simulation would provide benchmark validation.

  2. On the high inclination KBOs common dynamical formation

    NASA Astrophysics Data System (ADS)

    De Oliveira Brasil, Pedro Ivo I.; Gomes, Rodney S.; Nesvorny, David

    2014-11-01

    The Kuiper belt is a dynamically intriguing region. Different "classes" of objects can be defined, according to their orbital properties. These are: the classic belt (with the subclasses of cold & hot objects), resonant objects, scattered disk and extended scattered disk. In this work, we seek to investigate possible common origins, during the orbital conformation of the giant planets, for the formation of classes of objects with moderate or high inclination. Interesting results were obtained for the hot objects of the Kuiper belt and the objects belonging to the extended scattered disk. The general mechanism found for the formation of these objects can be summarized as: (i) scattering phase due to the interaction with the giant planets, during the LHB; (ii) capture into mean motion resonances (MMR) with Neptune; (iii) capture into Kozai resonance/mode; (iv) escape FROM both resonances into a mode known as "hibernation mode", in which the object has low eccentricity and high inclination; (v) fossilization in an orbit outside the resonant semi-major axis due to residual migration of Neptune. The results show good consistency between known objects with the model of dynamical formation.

  3. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  4. High beta plasma in the dynamic Jovian current sheet

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Kivelson, M. G.; Schardt, A. W.

    1978-01-01

    The equatorial current sheet, which Pioneer 10 repeatedly encountered on its outbound pass through the Jovian magnetosphere, frequently was associated with intense fluxes of energetic protons. Simultaneous observations of the changes in the energetic proton flux and in the magnetic-field magnitude demonstrate that the current sheet is embedded in a high-beta plasma in which high-energy (above 60 keV) ions frequently are the dominant constituents. Large differences in the plasma temperature and the thickness of this plasma sheet between encounters only 10 hours apart indicate that the Jovian plasma sheet is very dynamic on a time scale of hours. Occasional observations of significant temporal variations in the magnetic field and particle populations during periods within the plasma sheet may represent in situ observations of Jovian magnetic disturbances. Comparison with previous observations suggests that low-energy (not more than 5 keV) plasma contributes less than 3% to the current-sheet energy density.

  5. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.

    2011-12-01

    It is generally accepted that dynamic-weakening is essential for earthquake instability, and many experimental works have documented this weakening. Recent observations revealed also opposite trends of dynamic-strengthening in experiments (Reches & Lockner, 2010). We present here our experimental results of this dynamic-strengthening and discuss possible implications to earthquake behavior. We ran hundreds of experiments on experimental faults made of siliceous rock including granite, syenite, diorite, and quartzite. The experimental fault is comprised of two solid cylindrical blocks with a raised-ring contact of 7 cm diameter and 1 cm width. We recognized general, three regimes of strength-velocity relations: (I) Dynamic weakening (drop of 20-60% of static strength) as slip velocity increased from ~0.0003 m/s (lowest experimental velocity) to a critical velocity, Vc=0.008-0.16 m/s; (II) Abrupt transition to dynamic strengthening regime during which the fault strength almost regains its static strength; and (III) Quasi-constant strength with further possible drops as velocity approaches ~1 m/s. The critical velocity depends on the sample lithology: Vc is ~0.06 m/s for granite, ~0.008 m/s for syenite, ~0.01 m/s for diorite, and ~0.16 m/s for quartzite. The strengthening stage is associated with temperature increase, wear-rate increase, and the occurrence of intense, high frequency stick-slip events (Reches & Lockner, 2010). Sammis et al., (this meeting) attributed this strengthening to dehydration of the thin water layer that covers the gouge particles as the temperature increases. On the other hand, we note that tens of experiments with dolomite samples (non-siliceous), which were deformed under similar conditions, did not exhibit the velocity strengthening (unpublished). Based on the analyses by Andrews (2004, 2005), we speculate that velocity strengthening may bound the slip velocity. The numerical models of Andrews show that the slip velocity along a slip

  6. Wireless Luminescence Integrated Sensors (WLIS)

    SciTech Connect

    Simpson, M.L.; Sayler, G.S.

    2003-11-10

    The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security).

  7. Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring

    PubMed Central

    Ozbey, Burak; Unal, Emre; Ertugrul, Hatice; Kurc, Ozgur; Puttlitz, Christian M.; Erturk, Vakur B.; Altintas, Ayhan; Demir, Hilmi Volkan

    2014-01-01

    We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-field excitation response, which is highly sensitive to the displaced comb-teeth over a wide separation, the wireless sensing system exhibits a relatively high resolution (<1 μm) and a large dynamic range (over 7 mm), along with high levels of linearity (R2 > 0.99 over 5 mm) and sensitivity (>12.7 MHz/mm in the 1–3 mm range). The sensor is also shown to be working in the linear region in a scenario where it is attached to a standard structural reinforcing bar. Because of its wireless and passive nature, together with its low cost, the proposed system enabled by the metamaterial probes holds a great promise for applications in remote structural health monitoring. PMID:24445416

  8. Dynamic high-temperature Kolsky tension bar techniques

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; Bignell, John; Ulrich, George B; George, Easo P

    2015-01-01

    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. As an example, the high-temperature Kolsky tension bar was used to characterize a DOP-26 iridium alloy in high-strain-rate tension at 860 s(-1)/1030 degrees C.

  9. Dynamic high-temperature Kolsky tension bar techniques

    NASA Astrophysics Data System (ADS)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Kolsky tension bar techniques were modified for dynamic high-temperature tensile characterization of thin-sheet alloys. An induction coil heater was used to heat the specimen while a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends of the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. As an example, the high-temperature Kolsky tension bar was used to characterize a DOP-26 iridium alloy in high-strain-rate tension at 860 s-1/1030 ∘C.

  10. High-Resolution Force Balance Analyses of Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Hamilton, G. S.; O'Neel, S.

    2015-12-01

    Changes in glacier velocity, thickness, and terminus position have been used to infer the dynamic response of tidewater glaciers to environmental perturbations, yet few analyses have attempted to quantify the associated variations in the glacier force balance. Where repeat high-resolution ice thickness and velocity estimates are available, force balance time series can be constructed to investigate the redistribution of driving and resistive forces associated with changes in terminus position. Comparative force balance analyses may, therefore, help us understand the variable dynamic response observed for glaciers in close proximity to each other. Here we construct force balance time series for Helheim Glacier, SE Greenland, and Columbia Glacier, SE Alaska, to investigate differences in dynamic sensitivity to terminus position change. The analysis relies on in situ and remotely sensed observations of ice thickness, velocity, and terminus position. Ice thickness time series are obtained from stereo satellite image-derived surface elevation and continuity-derived bed elevations that are constrained by airborne radar observations. Surface velocity time series are obtained from interferometric synthetic aperture radar (InSAR) observations. Approximately daily terminus positions are from a combination of satellite images and terrestrial time-lapse photographs. Helheim and Columbia glaciers are two of the best-studied Arctic tidewater glaciers with comprehensive high-resolution observational time series, yet we find that bed elevation uncertainties and poorly-constrained stress-coupling length estimates still hinder the analysis of spatial and temporal force balance variations. Here we use a new observationally-based method to estimate the stress-coupling length which successfully reduces noise in the derived force balance but preserves spatial variations that can be over-smoothed when estimating the stress-coupling length as a scalar function of the ice thickness

  11. High temporal resolution dynamics of wintertime soil CO2 flux

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; McArthur, G. S.; Nickerson, N. R.; Beltrami, H.

    2009-12-01

    Few studies have undertaken soil CO2 flux measurements during winter, despite the fact that even in temperate zones, winter-like conditions may persist for one-third of the year or more. When growing season monitoring equipment is stowed for the winter, we potentially miss a large portion of the carbon budget, and may also fail to develop an adequate appreciation of winter c production dynamics. These are critical gaps, especially with respect to soil carbon stability and CO2 emissions in northern and permafrost areas, which are expected to accelerate as a consequence of climate change and which may create a positive feedback on atmospheric CO2 concentrations. This study undertakes a thorough examination of overwinter soil CO2 dynamics at two contrasting sites; one with deeply frozen soils where snow cover is absent as a result of sustained high winds; and another site with heavy snow load (>150 cm typical) where soils underneath remain frost-free because of snowpack insulation. Our overwinter soil-surface CO2 flux measurements were facilitated by use of a new instrumental technique called Continuous Timeseries - Forced Diffusion (CT-FD) to record soil CO2 fluxes continuously at a temporal resolution of 60 seconds. The high frequency monitoring allows us to look not only at magnitudes of change and carbon budgets, but also in detail at the temporal characteristics of response to environmental forcings. Here, we concentrate our analysis on rates of change near critical thresholds such as freeze-thaw. At the deep snowpack site where soil frost was absent, we observed pronounced diurnal cyclicity in CO2 flux even under a >150 cm snowpack, marked moisture response after midwinter rain events, and a springtime respiratory burst that began slightly before full snowpack melt. The CO2 emission dynamics from the frozen soils of the snow-free site were dominated by respiratory bursts at freeze-thaw thresholds when solar heating and warm air temperatures created a thin active

  12. Dynamics and sensitivity analysis of high-frequency conduction block

    NASA Astrophysics Data System (ADS)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  13. High frequency magnetization dynamics of ferromagnetic nano-structures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan

    The development of smaller high frequency magnetic devices with new functionalities requires a more thorough understanding of magnetization dynamics. This thesis documents research into ultrafast magnetization dynamics in ferromagnetic nanoscale materials and summarizes the theoretical foundations and measurement techniques. We present our investigation into the microwave properties of monodisperse, superparamagnetic Fe2O3 nanoparticle arrays using broadband ferromagnetic resonance. We identified a novel field-for resonance relationship in the films. Compared with ferromagnetic films of equal magnetization, resonance frequencies are decreased for in-plane magnetization and increased for out-of-plane magnetization, over the range 0--8 Ghz. The behavior identified is that of a superparamagnetic thin film, where thin-film dipolar fields act on a gradually saturating magnetization described by the Langevin function. Resonance linewidths can be described by the natural dispersion in properties of the system. The second section addresses magnetization dynamics in metalic heterostructures, where the component ultrathin films have nanometer scale dimensions. We have searched for a signature of nonlocal magnetization dynamics, or magnetization dynamics driven by pure spin currents ("spin pumping"), in magnetically soft, polycrystalline Ni81Fe19/Cu/Co93Zr7 tri-layers using ferromagnetic resonance. An interface-related enhancement of damping is expected for each ferromagnetic layer when incorporated in a tri-layer; the enhancement should be absent where layer resonances overlap. While size effects in Gilbert damping have been identified, we note that expectations specific to spin pumping are not confirmed. We have also observed this effect in Ni81Fe19/Cu/Ni81Fe19/Mn 50Fe50 exchange biased spin valves with clearly defined giant magneto-resistance (GMR). Finally, we have investigated the dynamic effects in these films using a novel time-resolved x-ray technique. The reciprocal

  14. Geographic wormhole detection in wireless sensor networks.

    PubMed

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols. PMID:25602616

  15. Geographic wormhole detection in wireless sensor networks.

    PubMed

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols.

  16. Geographic Wormhole Detection in Wireless Sensor Networks

    PubMed Central

    Sookhak, Mehdi; Akhundzada, Adnan; Sookhak, Alireza; Eslaminejad, Mohammadreza; Gani, Abdullah; Khurram Khan, Muhammad; Li, Xiong; Wang, Xiaomin

    2015-01-01

    Wireless sensor networks (WSNs) are ubiquitous and pervasive, and therefore; highly susceptible to a number of security attacks. Denial of Service (DoS) attack is considered the most dominant and a major threat to WSNs. Moreover, the wormhole attack represents one of the potential forms of the Denial of Service (DoS) attack. Besides, crafting the wormhole attack is comparatively simple; though, its detection is nontrivial. On the contrary, the extant wormhole defense methods need both specialized hardware and strong assumptions to defend against static and dynamic wormhole attack. The ensuing paper introduces a novel scheme to detect wormhole attacks in a geographic routing protocol (DWGRP). The main contribution of this paper is to detect malicious nodes and select the best and the most reliable neighbors based on pairwise key pre-distribution technique and the beacon packet. Moreover, this novel technique is not subject to any specific assumption, requirement, or specialized hardware, such as a precise synchronized clock. The proposed detection method is validated by comparisons with several related techniques in the literature, such as Received Signal Strength (RSS), Authentication of Nodes Scheme (ANS), Wormhole Detection uses Hound Packet (WHOP), and Wormhole Detection with Neighborhood Information (WDI) using the NS-2 simulator. The analysis of the simulations shows promising results with low False Detection Rate (FDR) in the geographic routing protocols. PMID:25602616

  17. The Wireless Revolution.

    ERIC Educational Resources Information Center

    Olsen, Florence

    2000-01-01

    Reports on the increasing numbers of colleges and universities which are establishing wireless networks to allow student and faculty with laptop computers to connect to the college network and the Internet from anywhere on campus. Discusses the design of these networks, effects of "nomadic" learning environments, design problems, and the declining…

  18. Building the Wireless Campus

    ERIC Educational Resources Information Center

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  19. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  20. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  1. Dynamic interpretation of slug tests in highly permeable aquifers

    USGS Publications Warehouse

    Zurbuchen, B.R.; Zlotnik, V.A.; Butler, J.J.

    2002-01-01

    Considerable progress has been made in developing a theoretical framework for modeling slug test responses in formations with high hydraulic conductivity K. However, several questions of practical significance remain unresolved. Given the rapid and often oscillatory nature of test responses, the traditional hydrostatic relationship between the water level and the transducer-measured head in the water column may not be appropriate. A general dynamic interpretation is proposed that describes the relationship between water level response and transducer-measured head. This theory is utilized to develop a procedure for transforming model-generated water level responses to transducer readings. The magnitude of the difference between the actual water level position and the apparent position based on the transducer measurement is a function of the acceleration and velocity of the water column, test geometry, and depth of the transducer. The dynamic approach explains the entire slug test response, including the often-noted discrepancy between the actual initial water level displacement and that measured by a transducer in the water column. Failure to use this approach can lead to a significant underestimation of K when the transducer is a considerable distance below the static water level. Previous investigators have noted a dependence of test responses on the magnitude of the initial water level displacement and have developed various approximate methods for analyzing such data. These methods are re-examined and their limitations clarified. Practical field guidelines are proposed on the basis of findings of this work. The soundness of the dynamic approach is demonstrated through a comparison of K profiles from a series of multilevel slug tests with those from dipole-flow tests performed in the same wells.

  2. Dynamics of charged current sheets at high-latitude magnetopause

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  3. Informatics in Radiology (infoRAD): mobile wireless DICOM server system and PDA with high-resolution display: feasibility of group work for radiologists.

    PubMed

    Nakata, Norio; Kandatsu, Susumu; Suzuki, Naoki; Fukuda, Kunihiko

    2005-01-01

    A novel mobile system has been developed for use by radiologists in managing Digital Imaging and Communications in Medicine (DICOM) image data. The system consists of a mobile DICOM server (MDS) and personal digital assistants (PDAs), including a Linux PDA with a video graphics array (VGA) display (307,200 pixels, 3.7 inches). The MDS weighs 410 g, has a 60-GB hard disk drive and a built-in wireless local area network (LAN) access point, and supports a DICOM server (Central Test Node). The Linux-based MDS can be accessed with personal computers (PCs) and PDAs by means of a wireless or wired LAN, and client-server communications can be established at any time. DICOM images can be displayed by using any PDA or PC by means of a Web browser. Simultaneous access to the MDS is possible for multiple authenticated users. With most PDAs, image compression is necessary for complete display of DICOM images; however, the VGA screen can display a 512 x 512-pixel DICOM image almost in its entirety. This wireless system allows efficient management of heavy loads of lossless DICOM image data and will be useful for collaborative work by radiologists in education, conferences, and research.

  4. Fluid Dynamics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. High aspect-ratio jet acoustic results (aspect-ratios from 100 to 3,000) from a related study showed that the jet noise of this type of jet was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were performed in the present study on the high aspect-ratio nozzle to gain understanding of the flow characteristics in an effort to relate the acoustic results to flow parameters. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation measurements were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  5. Flicker reduction in tone mapped high dynamic range video

    NASA Astrophysics Data System (ADS)

    Guthier, Benjamin; Kopf, Stephan; Eble, Marc; Effelsberg, Wolfgang

    2011-01-01

    In order to display a high dynamic range (HDR) video on a regular low dynamic range (LDR) screen, it needs to be tone mapped. A great number of tone mapping (TM) operators exist - most of them designed to tone map one image at a time. Using them on each frame of an HDR video individually leads to flicker in the resulting sequence. In our work, we analyze three tone mapping operators with respect to flicker. We propose a criterion for the automatic detection of image flicker by analyzing the log average pixel brightness of the tone mapped frame. Flicker is detected if the difference between the averages of two consecutive frames is larger than a threshold derived from Stevens' power law. Fine-tuning of the threshold is done in a subjective study. Additionally, we propose a generic method to reduce flicker as a post processing step. It is applicable to all tone mapping operators. We begin by tone mapping a frame with the chosen operator. If the flicker detection reports a visible variation in the frame's brightness, its brightness is adjusted. As a result, the brightness variation is smoothed over several frames, becoming less disturbing.

  6. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  7. Pupil dilation dynamics track attention to high-level information.

    PubMed

    Kang, Olivia E; Huffer, Katherine E; Wheatley, Thalia P

    2014-01-01

    It has long been thought that the eyes index the inner workings of the mind. Consistent with this intuition, empirical research has demonstrated that pupils dilate as a consequence of attentional effort. Recently, Smallwood et al. (2011) demonstrated that pupil dilations not only provide an index of overall attentional effort, but are time-locked to stimulus changes during attention (but not during mind-wandering). This finding suggests that pupil dilations afford a dynamic readout of conscious information processing. However, because stimulus onsets in their study involved shifts in luminance as well as information, they could not determine whether this coupling of stimulus and pupillary dynamics reflected attention to low-level (luminance) or high-level (information) changes. Here, we replicated the methodology and findings of Smallwood et al. (2011) while controlling for luminance changes. When presented with isoluminant digit sequences, participants' pupillary dilations were synchronized with stimulus onsets when attending, but not when mind-wandering. This replicates Smallwood et al. (2011) and clarifies their finding by demonstrating that stimulus-pupil coupling reflects online cognitive processing beyond sensory gain.

  8. Parellel beam dynamics calculations on high performance computers

    SciTech Connect

    Ryne, R.; Habib, S.

    1996-12-01

    Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10`s of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.

  9. Parallel beam dynamics calculations on high performance computers

    NASA Astrophysics Data System (ADS)

    Ryne, Robert; Habib, Salman

    1997-02-01

    Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10's of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.

  10. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  11. High-Performance Wireless Telemetry

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer; Nawash, Nuha; Buckley, James

    2011-01-01

    Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to the stationary section. From there, a cable conveys the serial data to the remote rack, where it is reconditioned to logic level specifications, de-serialized, and converted back to analog. In the rotating electronics are code generators to indicate the beginning of files for data synchronization.

  12. Spin nano-oscillator-based wireless communication

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Seok; Kang, Sun Yool; Cho, Seong Jun; Oh, Inn-Yeal; Shin, Mincheol; Park, Hyuncheol; Jang, Chaun; Min, Byoung-Chul; Kim, Sang-Il; Park, Seung-Young; Park, Chul Soon

    2014-06-01

    Spin-torque nano-oscillators (STNOs) have outstanding advantages of a high degree of compactness, high-frequency tunability, and good compatibility with the standard complementary metal-oxide-semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage-controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non-coherent demodulation, we demonstrate STNO-based wireless communication with 200-kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1-ns turn-on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs.

  13. An underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2009-08-01

    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  14. A wireless time synchronized event control system

    NASA Astrophysics Data System (ADS)

    Klug, Robert; Williams, Jonathan; Scheffel, Peter

    2014-05-01

    McQ has developed a wireless, time-synchronized, event control system to control, monitor, and record events with precise timing over large test sites for applications such as high speed rocket sled payload testing. Events of interest may include firing rocket motors and launch sleds, initiating flares, ejecting bombs, ejecting seats, triggering high speed cameras, measuring sled velocity, and triggering events based on a velocity window or other criteria. The system consists of Event Controllers, a Launch Controller, and a wireless network. The Event Controllers can be easily deployed at areas of interest within the test site and maintain sub-microsecond timing accuracy for monitoring sensors, electronically triggering other equipment and events, and providing timing signals to other test equipment. Recorded data and status information is reported over the wireless network to a server and user interface. Over the wireless network, the user interface configures the system based on a user specified mission plan and provides real time command, control, and monitoring of the devices and data. An overview of the system, its features, performance, and potential uses is presented.

  15. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  16. Parsimonious description for predicting high-dimensional dynamics

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Takeuchi, Tomoya; Horai, Shunsuke; Suzuki, Hideyuki; Aihara, Kazuyuki

    2015-10-01

    When we observe a system, we often cannot observe all its variables and may have some of its limited measurements. Under such a circumstance, delay coordinates, vectors made of successive measurements, are useful to reconstruct the states of the whole system. Although the method of delay coordinates is theoretically supported for high-dimensional dynamical systems, practically there is a limitation because the calculation for higher-dimensional delay coordinates becomes more expensive. Here, we propose a parsimonious description of virtually infinite-dimensional delay coordinates by evaluating their distances with exponentially decaying weights. This description enables us to predict the future values of the measurements faster because we can reuse the calculated distances, and more accurately because the description naturally reduces the bias of the classical delay coordinates toward the stable directions. We demonstrate the proposed method with toy models of the atmosphere and real datasets related to renewable energy.

  17. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  18. Parsimonious description for predicting high-dimensional dynamics

    PubMed Central

    Hirata, Yoshito; Takeuchi, Tomoya; Horai, Shunsuke; Suzuki, Hideyuki; Aihara, Kazuyuki

    2015-01-01

    When we observe a system, we often cannot observe all its variables and may have some of its limited measurements. Under such a circumstance, delay coordinates, vectors made of successive measurements, are useful to reconstruct the states of the whole system. Although the method of delay coordinates is theoretically supported for high-dimensional dynamical systems, practically there is a limitation because the calculation for higher-dimensional delay coordinates becomes more expensive. Here, we propose a parsimonious description of virtually infinite-dimensional delay coordinates by evaluating their distances with exponentially decaying weights. This description enables us to predict the future values of the measurements faster because we can reuse the calculated distances, and more accurately because the description naturally reduces the bias of the classical delay coordinates toward the stable directions. We demonstrate the proposed method with toy models of the atmosphere and real datasets related to renewable energy. PMID:26510518

  19. Worm epidemics in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Nekovee, Maziar

    2007-06-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  20. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members.

    PubMed

    Ozbey, Burak; Erturk, Vakur B; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-01-01

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615

  1. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    PubMed Central

    Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-01-01

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615

  2. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    PubMed Central

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  3. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    PubMed

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  4. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  5. High-Precision Computation: Mathematical Physics and Dynamics

    SciTech Connect

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  6. Electromagnetic effects on dynamics of high-beta filamentary structures

    DOE PAGESBeta

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; Krasheninnikov, Sergei I.

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation,more » it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.« less

  7. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.; Krasheninnikov, Sergei I.

    2015-01-12

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.

  8. High-Frequency Dynamics of Ultrasound Contrast Agents

    PubMed Central

    Sun, Yang; Kruse, Dustin E.; Dayton, Paul A.; Ferrara, Katherine W.

    2006-01-01

    Ultrasound contrast agents enhance echoes from the microvasculature and enable the visualization of flow in smaller vessels. Here, we optically and acoustically investigate microbubble oscillation and echoes following insonation with a 10 MHz center frequency pulse. A high-speed camera system with a temporal resolution of 10 ns, which provides two-dimensional (2-D) frame images and streak images, is used in optical experiments. Two confocally aligned transducers, transmitting at 10 MHz and receiving at 5 MHz, are used in acoustical experiments in order to detect subharmonic components. Results of a numerical evaluation of the modified Rayleigh-Plesset equation are used to predict the dynamics of a microbubble and are compared to results of in vitro experiments. From the optical observations of a single microbubble, nonlinear oscillation, destruction, and radiation force are observed. The maximum bubble expansion, resulting from insonation with a 20-cycle, 10-MHz linear chirp with a peak negative pressure of 3.5 MPa, has been evaluated. For an initial diameter ranging from 1.5 to 5 μm, a maximum diameter less than 8 μm is produced during insonation. Optical and acoustical experiments provide insight into the mechanisms of destruction, including fragmentation and active diffusion. High-frequency pulse transmission may provide the opportunity to detect contrast echoes resulting from a single pulse, may be robust in the presence of tissue motion, and may provide the opportunity to incorporate high-frequency ultrasound into destruction-replenishment techniques. PMID:16422410

  9. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems

    PubMed Central

    CHIU, MATT; HERBORDT, MARTIN C.

    2011-01-01

    The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA’s resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD. PMID:21660208

  10. Electromagnetic effects on dynamics of high-beta filamentary structures

    SciTech Connect

    Lee, Wonjae; Krasheninnikov, Sergei I.; Umansky, Maxim V.; Angus, J. R.

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  11. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  12. High Speed Motion Neutron Radiography Of Dynamic Events

    NASA Astrophysics Data System (ADS)

    Robinson, A. H.; Bossi, R. H.; Barton, J. P.

    1983-03-01

    This paper describes the development of a technique that enables the neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds. The key to the technique is the use of a neutron pulse that is broad enough to span the duration of the brief event of interest and intense enough to permit recording of the results on a high-speed movie film at frame rates up to 10,000 frames/second. A system has been developed which utilizes the pulsing capability of the OSU TRIGA reactor. The system consists of the Oregon State University TRIGA reactor (pulsing to 3000 MW peak power), a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 1011 n/cm2s with a pulse, full width at half maximum, of 9 ms. The system has been operated in the range of 2000 to 10,000 frames/second and has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow.

  13. Dynamically supported geoid highs over hotspots: Observation and theory

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Hager, B. H.; Sleep, N. H.

    1986-01-01

    Hotspots are associated with long wavelength geoid highs, an association that is even stronger when the geoid highs associated with subduction zones are removed. These associations are quantified by expanding the hotspot distribution in spherical harmonics and calculating correlation coefficients as a function of harmonic degree. The hotspot distribution spectrum is essentially white, with peaks at degrees 2 and 6. It is correlated positively with the slab residual geoid for degrees 2 to 6, with low seismic velocity in the lower mantle at degree 2, and with low seismic velocity in the upper mantle at degree 6. A variety of fluid mechanical models were tested for hotspots, including lithospheric delamination and hot plumes, by calculating their predicted dynamic geoid responses and comparing them to the observations. These models include the effects of temperature dependent rheology. The preferred hotspot model, based on observations of the geoid and seismic tomography, has plumes preferentially occurring in regions of large scale background temperature highs in a mantle with substantial viscosity increase with depth, although other models are possible.

  14. High-bandwidth, high-dynamic-range, analog optical guided-wave systems for physics instrumentation

    NASA Astrophysics Data System (ADS)

    Lowry, M.; Haigh, R.; Hugenberg, K.; Masquelier, D.; McConaghy, C.; McCammon, K.; Nelson, D.; Roeske, F.

    1992-07-01

    Two remote measurement systems that efficiently exploit the information transmission capacity of optical guided-wave technology are developed. The first system, which operates at 820 nm, was developed for nuclear weapons measurements and emphasizes high-bandwidth high-dynamic range information transmission. The second system was developed for the detector readout at the Super-Conducting Super Collider (SSC); this system emphasizes high charge sensitivity measurement transmission and operates at 1320 nm. Most of the component design (including modeling), fabrication, packaging, characterization, and system integration was done at Lawrence Livermore National Laboratory (LLNL) specifically for these specialized physics measurements applications.

  15. High-bandwidth, high-dynamic-range, analog optical guided-wave systems for physics instrumentation

    SciTech Connect

    Lowry, M.; Haigh, R.; Hugenberg, K.; Masquelier, D.; McConaghy, C.; McCammon, K.; Nelson, D.; Roeske, F.

    1992-07-01

    We have developed two remote measurement systems that efficiently exploit the information transmission capacity of optical guided-wave technology. The first system, which operates at 820 nm, was developed for nuclear weapons measurements and emphasizes high-bandwidth high-dynamic range information transmission. The second system was developed for the detector readout at the Super-Conducting Super Collider (SSC); this system emphasizes high charge sensitivity measurement transmission and operates at 1320 nm. Most of the component design (including modeling), fabrication, packaging, characterization, and system integration was done at LLNL specifically for these specialized physics measurements applications.

  16. Challenges for Wireless Mesh Networks to provide reliable carrier-grade services

    NASA Astrophysics Data System (ADS)

    von Hugo, D.; Bayer, N.

    2011-08-01

    Provision of mobile and wireless services today within a competitive environment and driven by a huge amount of steadily emerging new services and applications is both challenge and chance for radio network operators. Deployment and operation of an infrastructure for mobile and wireless broadband connectivity generally requires planning effort and large investments. A promising approach to reduce expenses for radio access networking is offered by Wireless Mesh Networks (WMNs). Here traditional dedicated backhaul connections to each access point are replaced by wireless multi-hop links between neighbouring access nodes and few gateways to the backbone employing standard radio technology. Such a solution provides at the same time high flexibility in both deployment and the amount of offered capacity and shall reduce overall expenses. On the other hand currently available mesh solutions do not provide carrier grade service quality and reliability and often fail to cope with high traffic load. EU project CARMEN (CARrier grade MEsh Networks) was initiated to incorporate different heterogeneous technologies and new protocols to allow for reliable transmission over "best effort" radio channels, to support a reliable mobility and network management, self-configuration and dynamic resource usage, and thus to offer a permanent or temporary broadband access at high cost efficiency. The contribution provides an overview on preliminary project results with focus on main technical challenges from a research and implementation point of view. Especially impact of mesh topology on the overall system performance in terms of throughput and connection reliability and aspects of a dedicated hybrid mobility management solution will be discussed.

  17. Cost-effective multi-camera array for high quality video with very high dynamic range

    NASA Astrophysics Data System (ADS)

    Keinert, Joachim; Wetzel, Marcus; Schöberl, Michael; Schäfer, Peter; Zilly, Frederik; Bätz, Michel; Fößel, Siegfried; Kaup, André

    2014-03-01

    Temporal bracketing can create images with higher dynamic range than the underlying sensor. Unfortunately, moving objects cause disturbing artifacts. Moreover, the combination with high frame rates is almost unachiev­ able since a single video frame requires multiple sensor readouts. The combination of multiple synchronized side-by-side cameras equipped with different attenuation filters promises a remedy, since all exposures can be performed at the same time with the same duration using the playout video frame rate. However, a disparity correction is needed to compensate the spatial displacement of the cameras. Unfortunately, the requirements for a high quality disparity correction contradict the goal to increase dynamic range. When using two cameras, disparity correction needs objects to be properly exposed in both cameras. In contrast, a dynamic range in­crease needs the cameras to capture different luminance ranges. As this contradiction has not been addressed in literature so far, this paper proposes a novel solution based on a three camera setup. It enables accurate de­ termination of the disparities and an increase of the dynamic range by nearly a factor of two while still limiting costs. Compared to a two camera solution, the mean opinion score (MOS) is improved by 13.47 units in average for the Middleburry images.

  18. Passive wireless wall shear stress sensors

    NASA Astrophysics Data System (ADS)

    Sells, Jeremy

    The design and realization of the first ever passive wireless wall shear stress sensors are presented. The sensors are capable of directly measuring shear forces, 4 mPa to 4 Pa, created at the solid-fluid boundary of a flow. To capture the spatially small structures of a turbulent flow, a micromachined, variable-capacitor floating element sensor is designed. Passive wireless capability is achieved with the addition of an inductive coil and interrogating antenna. These sensors will enable characterization of complex flow phenomena. The primary benefit of the system is that the sensors operate without the need of a direct electrical connection. This simplifies installation of the sensors and enables their placement in locations where the rest of the system either will not fit or cannot survive. By using a passive wireless technique, a power source is not required, extending the life of the sensor and simplifying fabrication. The system makes use of frequency separation, allowing one interrogating antenna to query multiple sensors configured as an array simultaneously. Two generations of the wireless sensor are presented. The design, fabrication, packaging, and characterization of two first-generation sensors have dynamic ranges of 37 and 52 dB. Following this work, specific design improvements were identified and integrated into a second-generation sensor design, resulting in an improvement to 62 dB dynamic range and an order of magnitude reduction in parasitic capacitance and humidity sensitivity. Ideas for a third generation are presented, but realization of this design is left for future work.

  19. Prospective Motion Correction using Inductively-Coupled Wireless RF Coils

    PubMed Central

    Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland

    2013-01-01

    Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444

  20. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    SciTech Connect

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  1. Development of fast wireless detection system for fixed offshore platform

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high

  2. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  3. Spin nano–oscillator–based wireless communication

    PubMed Central

    Choi, Hyun Seok; Kang, Sun Yool; Cho, Seong Jun; Oh, Inn-Yeal; Shin, Mincheol; Park, Hyuncheol; Jang, Chaun; Min, Byoung-Chul; Kim, Sang-Il; Park, Seung-Young; Park, Chul Soon

    2014-01-01

    Spin–torque nano–oscillators (STNOs) have outstanding advantages of a high degree of compactness, high–frequency tunability, and good compatibility with the standard complementary metal–oxide–semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage–controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non–coherent demodulation, we demonstrate STNO–based wireless communication with 200–kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1–ns turn–on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs. PMID:24976064

  4. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  5. Passive wireless MEMS microphones for biomedical applications.

    PubMed

    Sezen, A S; Sivaramakrishnan, S; Hur, S; Rajamani, R; Robbins, W; Nelson, B J

    2005-11-01

    This paper introduces passive wireless telemetry based operation for high frequency acoustic sensors. The focus is on the development, fabrication, and evaluation of wireless, battery-less SAW-IDT MEMS microphones for biomedical applications. Due to the absence of batteries, the developed sensors are small and as a result of the batch manufacturing strategy are inexpensive which enables their utilization as disposable sensors. A pulse modulated surface acoustic wave interdigital transducer (SAW-IDT) based sensing strategy has been formulated. The sensing strategy relies on detecting the ac component of the acoustic pressure signal only and does not require calibration. The proposed sensing strategy has been successfully implemented on an in-house fabricated SAW-IDT sensor and a variable capacitor which mimics the impedance change of a capacitive microphone. Wireless telemetry distances of up to 5 centimeters have been achieved. A silicon MEMS microphone which will be used with the SAW-IDT device is being microfabricated and tested. The complete passive wireless sensor package will include the MEMS microphone wire-bonded on the SAW substrate and interrogated through an on-board antenna. This work on acoustic sensors breaks new ground by introducing high frequency (i.e., audio frequencies) sensor measurement utilizing SAW-IDT sensors. The developed sensors can be used for wireless monitoring of body sounds in a number of different applications, including monitoring breathing sounds in apnea patients, monitoring chest sounds after cardiac surgery, and for feedback sensing in compression (HFCC) vests used for respiratory ventilation. Another promising application is monitoring chest sounds in neonatal care units where the miniature sensors will minimize discomfort for the newborns.

  6. Seasonal Climate Dynamics Inferred From High Resolution Modern Diatom Data

    NASA Astrophysics Data System (ADS)

    Hausmann, S.; Pientiz, R.

    2004-12-01

    keywords: seasonal, sediment-traps, diatoms, lakes To understand and predict future climatic changes, we study past climate dynamics, using subfossil diatoms deposited in lake sediments. A training set consisting of surface lake sediments integrating diatom assemblages over recent years is the classical approach to reconstruct past environmental conditions in palaeolimnological research. However, not only annual temperatures and average limnological conditions are relevant but also seasonal thermal and limnological variability, as evidenced by spring and autumn diatom blooms. As high temporal resolution plays an important role in understanding the diatom ecology and its use in palaeolimnological reconstructions, we investigated diatom succession and seasonal limnological variability on a bi-weekly basis using sediment traps. In order to better understand the impact of climate on the seasonality of diatoms we studied 6 lakes distributed over an altitudinal gradient from 330 to 950 m a.s.l., in the Laurentides Provincial Park region north of Quebec-City, Canada. Multivariate statistics was applied to explore the main biological and limnological patterns in the modern data, revealing that the climatic gradient explained most of the biological variance. One advantage of sediment traps is that, compared to surface sediment samples, the time of deposition is exactly known, thus changes in environmental variables can be better related to shifts in the biological assemblages. From one of the study lakes, at 830 m altitude, a sediment core was taken. Fossil diatoms of the past 9500 years were analysed at high resolution (about 15 years/sample) and modern seasonal diatom distribution was used to interpret changes in fossil diatom assemblages. From ca. 9.5 until ca. 8 ka cal. BP, spring bloom species that are presently found in the low altitude lakes occurred with ca. 30%, whereas an autumn bloom species typical of autumnal diatom communities in the highest elevation lake

  7. Electronic structure and dynamics of elements at high pressures

    NASA Astrophysics Data System (ADS)

    Mao, Ho-Kwang

    2011-03-01

    Electronic structure and dynamics information of materials under high pressure has been very scarce due to the experimental difficulties. The standard electronic probes using electron energy loss spectroscopy (EELS) is limited to vacuum pressures. The optical probes that can reach high-pressure samples through the diamond windows, on the other hand, are limited by the energy accessibility (5 eV) andnear - zeromomentumtransfer , q = (4 π /λ0) sinθ . Theseproblemscanbeovercomebythenewlyadvanced , two - photon , inelastic , xray , scattering (IXS) spectroscopywhichuseshighenergyxrays (~ 10 4 eV) toprovidetheatomic - levelmomentumtransferandtoenter (withenergy E) andexit (withenergy E0) thepressurevessel . Theelectronicspectraarerevealedbyanalyzingthexrayenergylossbetweenthetwophotons , ω = E -E0 . UsingIXSfacilitiesatthird - generationsynchrotronsource , westudiedelectronicstructureanddynamicsoftwoelementsathighpressuresinadiamond - anvilcell : i . e . , He , thewidest - gapinsulator , andNa , thearchetypalfree - electronmetal . At 11.9 - 17.9 GPainasinglecrystal 4 He , weobservedrichelectronexcitationspectra , includingacut - offedgeabove 23 eV , asharpexcitonpeakshowinglinearvolumedependence , andaseriesofexcitationsandcontinuumat 26 to 45 eV . Wedeterminedelectronicdispersionalongthe 100 directionovertwoBrillouinzones , andprovidedaquantitativepictureoftheheliumexcitonbeyondthesimplifiedWannier - Frenkeldescription . At 1.6 - 4.39 GPainapolycrystallineNasample , weobservedthesharpplasmonpeakatlow q anditsdispersionbeyondthecritical q c . Theplasmonshiftstohigherenergyundercompressionanddrasticreductionof rs . Ab-initio theoretical calculations are conducted for interpretation of the experimental results. The speaker would like to acknowledge collaborating researchers: R. Ahuja, Y. Cai, P. Chow, Y. Ding, P. Eng, R.J. Hemley, C.C. Kao, S. Lebegue, W.L. Mao, E.L. Shirley, J. Shu, & Y. Xiao.

  8. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  9. High-order computational fluid dynamics tools for aircraft design.

    PubMed

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items.

  10. High-order computational fluid dynamics tools for aircraft design

    PubMed Central

    Wang, Z. J.

    2014-01-01

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. PMID:25024419

  11. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI. PMID:26698723

  12. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect

    Mitchell, T. J. Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  13. High dynamic range coherent imaging using compressed sensing.

    PubMed

    He, Kuan; Sharma, Manoj Kumar; Cossairt, Oliver

    2015-11-30

    In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI.

  14. Vorticity dynamics for transient high-pressure liquid injectiona)

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, D.; Sirignano, W. A.

    2014-10-01

    The liquid jet from a round orifice during the transient start-up and steady mass flux periods of a high pressure injector is studied via Navier-Stokes and level-set computations. Via post-processing, the role of vorticity dynamics is examined and shown to reveal crucial new insights. A brief review of relevant literature is made. An unsteady, axisymmetric full-jet case is solved. Then, a less computationally intensive case is studied with a segment of the jet core undergoing temporal instability; agreement with the full-jet calculation is satisfactory justifying the segment analysis for three-dimensional computation. The results for surface-shape development are in agreement with experimental observations and other three-dimensional computations; the initial, axisymmetric waves at the jet surface created by Kelvin-Helmholtz (KH) instability distort to cone shapes; next, three-dimensional character develops through an azimuthal instability that leads to the creation of streamwise vorticity, lobe shapes on the cones, and formation of liquid ligaments which extend from lobes on the cones. The cause of this azimuthal instability has been widely described as a Rayleigh-Taylor instability. However, additional and sometimes more important causes are identified here. Counter-rotating, streamwise vortices within and around the ligaments show a relationship in the instability behavior for jets flowing into like-density fluid; thus, density difference cannot explain fully the three-dimensional instability as previously suggested. Furthermore, the formation of ligaments that eventually break into droplets and the formation of streamwise vorticity are caused by the same vortical dynamics. Waviness is identified on the ligaments which should result in droplet formation. The nonlinear development of the shorter azimuthal waves and ligament waves explains the experimental results that droplet sizes are usually smaller than KH wavelengths. The higher the relative velocity and

  15. Method for collecting thermocouple data via secured shell over a wireless local area network in real time.

    PubMed

    Arnold, F; DeMallie, I; Florence, L; Kashinski, D O

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples. PMID:25832280

  16. Method for collecting thermocouple data via secured shell over a wireless local area network in real time.

    PubMed

    Arnold, F; DeMallie, I; Florence, L; Kashinski, D O

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  17. Method for collecting thermocouple data via secured shell over a wireless local area network in real time

    NASA Astrophysics Data System (ADS)

    Arnold, F.; DeMallie, I.; Florence, L.; Kashinski, D. O.

    2015-03-01

    This manuscript addresses the design, hardware details, construction, and programming of an apparatus allowing an experimenter to monitor and record high-temperature thermocouple measurements of dynamic systems in real time. The apparatus uses wireless network technology to bridge the gap between a dynamic (moving) sample frame and the static laboratory frame. Our design is a custom solution applied to samples that rotate through large angular displacements where hard-wired and typical slip-ring solutions are not practical because of noise considerations. The apparatus consists of a Raspberry PI mini-Linux computer, an Arduino micro-controller, an Ocean Controls thermocouple multiplexer shield, and k-type thermocouples.

  18. Dynamic and failure properties of high damping rubber bearing under high axial stress

    SciTech Connect

    Ishizuka, Hidetake; Murota, Nobuo; Fukumori, Takeshi

    1995-12-01

    Seismic isolation bearings have been used under axial stresses less than 100(kgf/cm{sup 2}) for many years. If higher axial loads can be applied, however, a larger period shift will be achieved and the size of the isolation devices may be reduced resulting in a cost reduction of the bearing. This paper describes experimental studies of dynamic and failure properties of high damping rubber bearings (HDR) under high axial stress of over 120(kgf/cm{sup 2}) compared with the conventional stress of 65(kgf/cm{sup 2}). The results show that HDR continues to have stable performance under high axial stress with high shear strain. It indicates that high axial stress over 100(kgf/cm{sup 2}) is within the capability of the BDR isolation bearing.

  19. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO s principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  20. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO's principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  1. Lunar Wireless Power Transfer Feasibility Study

    SciTech Connect

    Sheldon Freid, et al.

    2008-06-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  2. Free-space optical wireless links with topology control

    NASA Astrophysics Data System (ADS)

    Milner, Stuart D.; Ho, Tzung-Hsien; Smolyaninov, Igor I.; Trisno, Sugianto; Davis, Christopher C.

    2002-12-01

    The worldwide demand for broadband communications is being met in many places through the use of installed single-mode fiber networks. However, there is still a significant 'first-mile' problem, which seriously limits the availability of broadband Internet access. Free-space optical wireless communication has emerged as a technique of choice for bridging gaps in the existing high data rate communication networks, and as a backbone for rapidly deployable mobile wireless communication infrastructure. Because free space laser communication links can be easily and rapidly redirected, optical wireless networks can be autonomously reconfigured in a multiple-connected topology to provide improved network performance. In this paper we describe research designed to improve the performance of such networks. Using topology control algorithms, we have demonstrated that multiply-connected, rapidly reconfigurable optical wireless networks can provide robust performance, and a high quality of service at high data rates (up to and beyond 1 Gbps). These systems are also very cost-effective. We have designed and tested on the University of Maryland campus a prototype four-node optical wireless network, where each node could be connected to the others via steerable optical wireless links. The design and performance of this network and the topology control is discussed.

  3. Seismic imaging of esker structures from a combination of high-resolution broadband multicomponent streamer and wireless sensors, Turku-Finland

    NASA Astrophysics Data System (ADS)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2015-04-01

    Eskers and glaciofluvial interlobate formations, mainly composed of sands and gravels and deposited in winding ridges, define the locations of glacial melt-water streams. These sediments, porous and permeable, form the most important aquifers in Finland and are often used as aggregates or for artificial aquifer recharge. The Virttaankangas interlobate suite and artificial aquifer recharge plant provides the entire water supply for the city of Turku and therefore an accurate delineation of the aquifer is critical for long term planning and sustainable use of these natural resources. The study area is part of the Säkylänharju-Virttaankangas Glaciofluvial esker-chain complex and lies on an igneous, crystalline basement rocks. To provide complementary information to existing boreholes and GPR studies at the site, such as identification of potential esker cores, planning for a water extraction, fractured bedrock and possible kettle holes, a new seismic investigation was designed and carried out during summer 2014. Two seismic profiles each about 1 km long were acquired using a newly developed 200 m long prototype, comprising of 80-3C MEMs-based, landstreamer system. To provide velocity information at larger depths (and longer offsets), fifty-two 10-Hz 1C wireless sensors spaced at about every 20 m were used. A Bobcat mounted drop-hammer source, generating three hits per source location, was used as the seismic source. This proved to be a good choice given the attenuative nature of the dry sediments down to about 20 m depth. One of the seismic lines overlaps an existing streamer survey and thus allows a comparison between the system used in this study and the one employed before. Except at a few places where the loose sands mixed with leaves affected the coupling, the data quality is excellent with several reflections identifiable in the raw shot gathers. First arrivals were easily identifiable in almost all the traces and shots and this allowed obtaining velocity

  4. Comminution of Ceramic Materials Under High-Shear Dynamic Compaction

    NASA Astrophysics Data System (ADS)

    Homel, Michael; Loiseau, Jason; Higgins, Andrew; Herbold, Eric; Hogan, Jamie

    The post-failure ``granular flow'' response of high-strength lightweight ceramics has important implications on the materials' effectiveness for ballistic protection. We study the dynamic compaction and shear flow of ceramic fragments and powders using computational and experimental analysis of a collapsing thick-walled cylinder geometry. Using newly developed tools for mesoscale simulation of brittle materials, we study the effect of fracture, comminution, shear-enhanced dilatation, and frictional contact on the continuum compaction response. Simulations are directly validated through particle Doppler velocimetry measurements at the inner surface of the cylindrical powder bed. We characterize the size distribution and morphologies of the initial and compacted material fragments to both validate the computational model and to elucidate the dominant failure processes. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-ABS-678862.

  5. Hopf Method Applied to Low and High Dimensional Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Ma, Seungwook; Marston, Brad

    2004-03-01

    With an eye towards the goal of directly extracting statistical information from general circulation models (GCMs) of climate, thereby avoiding lengthy time integrations, we investigate the usage of the Hopf functional method(Uriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov) (Cambridge University Press, 1995) chapter 9.5.. We use the method to calculate statistics over low-dimensional attractors, and for fluid flow on a rotating sphere. For the cases of the 3-dimensional Lorenz attractor, and a 5-dimensional nonlinear system introduced by Orszag as a toy model of turbulence(Steven Orszag in Fluid Dynamics: Les Houches (1977))., a comparison of results obtained by low-order truncations of the cumulant expansion against statistics calculated by direct numerical integration forward in time shows surprisingly good agreement. The extension of the Hopf method to a high-dimensional barotropic model of inviscid fluid flow on a rotating sphere, which employs Arakawa's method to conserve energy and enstrophy(Akio Arakawa, J. Comp. Phys. 1), 119 (1966)., is discussed.

  6. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  7. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  8. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel; Douglas, David R.; Legg, Robert A.; Tennant, Christopher D.

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  9. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect

    Evtushenko, Pavel E.; Douglas, David R.

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  10. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  11. Advances to Dynamic Mechanical Analysis: High Frequencies and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Foreman, Jonathon

    2002-03-01

    In dynamic mechanical analysis (DMA) the sample is deformed and released sinusoidally providing information about the modulus and damping behaviors with respect to temperature, time, oscillation frequency and amplitude of motion. It offers exceptional sensitivity to glass transitions and secondary relaxations. Recent developments have increased the frequency range up to 1000 Hz, which allow properties measurements under actual end-use conditions. Furthermore high frequencies enhance the ability to determine the kinetics of viscoelastic relaxations. Another recent development allows DMA measurements while samples are immersed in fluids or enveloped in gases. Most significant is the ability to alter the furnace control parameters to account for the thermal properties of the environment used. This configuration allows temperature-controlled measurements (both heating and isothermal profiles) on a wide range of sample shapes and sizes. Environmental DMA is easier to interpret than standard DMA (in air or inert gas) on preconditioned samples because such samples often lose the conditioning solvent or gas during the measurement. Examples will show real-time property changes from the interaction of unconditioned materials with conditioning environments and experiments on pre-conditioned materials that are heated while immersed in conditioning environments. -------------------------------------------------------------

  12. High-frequency dynamics of liquid and supercritical water

    SciTech Connect

    Bencivenga, F.; Cunsolo, A.; Ruocco, G.

    2007-05-15

    The dynamic structure factor S(Q,{omega}) of water has been determined by high-resolution inelastic x-ray scattering (IXS) in a momentum (Q) and energy (E) transfer range extending from 2 to 4 nm{sup -1} and from {+-}40 meV. IXS spectra have been recorded along an isobaric path (400 bar) in a temperature (T) interval ranging from ambient up to supercritical (T>647 K) conditions. The experimental data have been described in the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach. This model allows identifying the active relaxation processes which affect the time decay of density fluctuations, as well as a direct determination of the Q, T, and density ({rho}) dependencies of the involved transport parameters. The experimental spectra are well described by considering three different relaxation processes: the thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the microscopic mechanism responsible for the structural relaxation is no longer related to the making and breaking of intermolecular bonds, but to binary intermolecular collisions.

  13. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring

  14. Robust message routing for mobile (wireless) ad hoc networks.

    SciTech Connect

    Goldsby, Michael E.; Johnson, Michael M.; Kilman, Dominique Marie; Bierbaum, Neal Robert; Chen, Helen Y.; Ammerlahn, Heidi R.; Tsang, Rose P.; Nicol, David M.

    2004-01-01

    This report describes the results of research targeting improvements in the robustness of message transport in wireless ad hoc networks. The first section of the report provides an analysis of throughput and latency in the wireless medium access control (MAC) layer and relates the analysis to the commonly used 802.11 protocol. The second section describes enhancements made to several existing models of wireless MAC and ad hoc routing protocols; the models were used in support of the work described in the following section. The third section of the report presents a lightweight transport layer protocol that is superior to TCP for use in wireless networks. In addition, it introduces techniques that improve the performance of any ad hoc source routing protocol. The fourth section presents a novel, highly scalable ad hoc routing protocol that is based on geographic principles but requires no localization hardware.

  15. Compressed Sensing Based Fingerprint Identification for Wireless Transmitters

    PubMed Central

    Zhao, Caidan; Wu, Xiongpeng; Huang, Lianfen; Yao, Yan; Chang, Yao-Chung

    2014-01-01

    Most of the existing fingerprint identification techniques are unable to distinguish different wireless transmitters, whose emitted signals are highly attenuated, long-distance propagating, and of strong similarity to their transient waveforms. Therefore, this paper proposes a new method to identify different wireless transmitters based on compressed sensing. A data acquisition system is designed to capture the wireless transmitter signals. Complex analytical wavelet transform is used to obtain the envelope of the transient signal, and the corresponding features are extracted by using the compressed sensing theory. Feature selection utilizing minimum redundancy maximum relevance (mRMR) is employed to obtain the optimal feature subsets for identification. The results show that the proposed method is more efficient for the identification of wireless transmitters with similar transient waveforms. PMID:24892053

  16. REVIEW ARTICLE: The high-frequency dynamics of liquid water

    NASA Astrophysics Data System (ADS)

    Ruocco, Giancarlo; Sette, Francesco

    1999-06-01

    This article is dedicated to reviewing the recent inelastic x-ray scattering (IXS) work on the high-frequency collective dynamics in liquid water. The results obtained with the IXS technique are directly compared with existing ones from inelastic neutron scattering (INS) and molecular dynamics simulation investigations that were carried out with the aim of achieving an understanding of the collective properties of water at the microscopic level. The IXS work has made it possible to demonstrate experimentally the existence, in the range of exchange momentum (Q) examined (1-10 nm-1), of two branches of collective modes: one linearly dispersing with Q (with the apparent sound velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>3200 m s-1) and the other at almost constant energy (5-7 meV). It has been possible to show that the dispersing branch originates from an upwards bend of the ordinary sound branch observed in low-frequency measurements. The study of this sound velocity dispersion, marking a transition from the ordinary sound, co, to the `fast' sound, cicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/>, as a function of temperature, has made it possible to relate the origin of this phenomenon to a structural relaxation process, which presents many analogies with those observed for glass-forming systems. The possibility of estimating from the IXS data the value of the relaxation time, icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>, as a function of temperature leads to a relating of the relaxation process to the structural rearrangements induced by the making and breaking of hydrogen bonds. In this framework, it is then possible to recognize a hydrodynamical `normal' regime, i.e. one for which the density fluctuations have a period of oscillation that is on a timescale that is long with respect to icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>, and a solid-like regime in the opposite limit. In the latter regime, the density

  17. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-01

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  18. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-01

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216

  19. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  20. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the

  1. Rotational dynamics of thiocyanate ions in highly concentrated aqueous solutions.

    PubMed

    Kim, Heejae; Park, Sungnam; Cho, Minhaeng

    2012-05-14

    The thiocyanate (SCN(-)) anion is known as one of the best denaturants, which is also capable of breaking the hydrogen-bond network of water and destabilizing native structures of proteins. Despite prolonged efforts to understand the underlying mechanism of such Hofmeister effects, detailed dynamics of the ions in a highly concentrated solution have not been fully elucidated yet. Here, we used a dispersive IR pump-probe spectroscopic method to study the dependence of vibrational lifetimes and rotational relaxation times of thiocyanate ions on KSCN concentration in D(2)O. The nitrile stretch mode is used as a vibrational probe for dispersed IR pump-probe and FTIR measurements. To avoid possible self-attenuation of the IR pump-probe signal by highly concentrated SCN(-) ions, we added a small amount of (13)C-isotope-labeled thiocyanate ions (S(13)CN(-)) and focused on the excited-state absorption contribution to the IR pump-probe signal of the (13)C-isotope-labeled nitrile stretch mode. Quite unexpectedly, the vibrational lifetime of S(13)CN(-) ions is independent of the total KSCN concentration in the range from 0.46 m (molality) to 11.8 m while the rotational relaxation time of S(13)CN(-) ions is linearly dependent on the total KSCN concentration. By combining the present experimental findings with the fact that the dissolved ions of KSCN salt have a strong tendency to form a large ion cluster in a highly concentrated aqueous solution, we believe that the ion clusters consisting of potassium and thiocyanate ion pairs in D(2)O behave like ionic liquids and the ions inside ion clusters are weakly bound by electrostatic Coulombic interactions. The ability of SCN(-) ions to form ion clusters in aqueous protein solutions seems to be a key to understand the Hofmeister ion effect. We anticipate that the present experimental results provide a clue for further elucidating the underlying mechanism of the Hofmeister ion effects on protein stability in the future. PMID:22407336

  2. Wireless networking for international safeguards.

    SciTech Connect

    Smartt, Heidi Anne; Caskey, Susan Adele

    2003-06-01

    Wireless networking using the IEEE 802.11standards is a viable alternative for data communications in safeguards applications. This paper discusses the range of 802.11-based networking applications, along with their advantages and disadvantages. For maximum performance, safety, and security, Wireless networking should be implemented only after a comprehensive site survey has determined detailed requirements, hazards, and threats.

  3. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  4. Launching a Wireless Laptop Program

    ERIC Educational Resources Information Center

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  5. SHER: a colored petri net based random mobility model for wireless communications.

    PubMed

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network's behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors

  6. SHER: a colored petri net based random mobility model for wireless communications.

    PubMed

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network's behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors

  7. Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshiaki; Ueda, Tetsuro; Obana, Sadao

    As one of the dynamic spectrum access technologies, “cognitive radio technology,” which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.

  8. High-Resolution Monitoring of Glacier Dynamics During Calving Events at Helheim Glacier South-East Greenland

    NASA Astrophysics Data System (ADS)

    Murray, T.; Rutt, I. C.; O'Farrell, T.; Edwards, S.; Selmes, N.; Martin, I.; James, T.; Aspey, R.; Bevan, S. L.; Loskot, P.; Baugé, T.

    2013-12-01

    By bringing together expertise in glaciology, GNSS (Global Navigation Satellite System) technology and processing, and wireless networks we have designed, installed and operated a wireless network of GNSS sensors very close to the margin of the heavily crevassed and fast-flowing Helheim Glacier in south-east Greenland. In 2012, we undertook field trials installing 3 GNSS sensors on the glacier's flowline, and observed the dynamic effects of a major calving event. In 2013, a full 20 node wireless network was installed together with 5 oblique cameras, instrumenting an area ~16 km^2 of the glacier margin. The network will run throughout the summer months. In combination with auxiliary data, such as airborne lidar measurement of surface topography, crevasse spacing and calving rates, oblique photogrammetry, and DEMs and velocity fields from TanDEM-X satellite imagery, the network provides velocity and elevation data of unprecedented resolution in time and space for the key marginal area of the glacier, where recent changes in glacier dynamics appear to have initiated. We present data showing the glacier's dynamic and topographic response to calving events. These data will provide rich opportunities for testing calving models and to improve understanding of the controls on the contribution of these tidewater glaciers to sea-level rise. The network has low energy consumption and a novel base-station topology providing diversity and redundancy: it is also robust to the loss of nodes as the glacier calves. Such a network would also be suitable for data collection in a number of harsh environmental settings such as earthquake, landslide or volcano monitoring.

  9. NASA’s new High Dynamic Range Camera Records Rocket Test

    NASA Video Gallery

    This is footage of Orbital ATK’s QM-2 solid rocket booster test taken by NASA’s High Dynamic Range Stereo X (HiDyRS-X) camera. HiDyRS-X records high speed, high dynamic range footage in multiple ex...

  10. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  11. The Wireless Data Acquisition System for the Vibration Table

    NASA Astrophysics Data System (ADS)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides

  12. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.

    PubMed

    Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S

    2014-01-01

    Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research.

  13. Dynamics of a high speed impeller - Analysis and experimental verification

    NASA Astrophysics Data System (ADS)

    Straub, F. K.; Ngo, H.; Silverthorn, L. J.; Ruopsa, J. A.

    1993-04-01

    Centrifugal compressors are used on numerous aircraft as an efficient and lightweight source of air. The impeller is the key compressor component, both from an aerodynamic and structural dynamics point of view. The present paper investigates the structural dynamics of the blades of a particular impeller, using analytical and experimental methods. Correlation of results show good agreement. The analytical model is then used for design studies to improve the fatigue life of the impeller blades.

  14. TinyOS-based quality of service management in wireless sensor networks

    USGS Publications Warehouse

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  15. Wireless Technology in K-12 Education

    ERIC Educational Resources Information Center

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an instant…

  16. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  17. Deployable wireless Fresnel lens

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  18. Wireless passive radiation sensor

    SciTech Connect

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  19. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  20. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGESBeta

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  1. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for

  2. Wireless control and selection of forces and torques - towards wireless engines

    PubMed Central

    Boyvat, M.; Hafner, C.; Leuthold, J.

    2014-01-01

    Powering and manipulating translational and rotational motions of objects wirelessly, and controlling several objects independently is of significant importance in numerous fields such as robotics, medicine, biology, fluid dynamics, optics. We propose a method based on coupled LC resonators, to control objects selectively by steering the frequency of an external magnetic field. This concept does not need any magnetic materials and it brings a rich variety of features concerning forces and torques. We theoretically and experimentally show that the forces can be enhanced by the interaction of resonators and that both direction and magnitude of forces can be controlled by the frequency of the applied external magnetic field. Moreover, we demonstrate interesting rotational effects, such as bi-directionally controllable torques, controllable stable orientations, and spinning, which leads to a wirelessly powered motor. PMID:25034467

  3. Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Chengyin; Fang, Kun; Teng, Jun

    2015-11-01

    With the rapid advancements in smart sensing technology and wireless communication technology, the wireless sensor network (WSN) offers an alternative solution to structural health monitoring (SHM). In WSNs, dense deployment of wireless nodes aids the identification of structural dynamic characteristics, while data transmission is a significant issue since wireless channels typically have a lower bandwidth and a limited power supply. This paper provides a wireless sensor deployment optimization scheme for SHM, in terms of both energy consumption and modal identification accuracy. A spherical energy model is established to formulate the energy consumption within a WSN. The optimal number of sensors and their locations are obtained through solving a multi-objective function with weighting factors on energy consumption and modal identification accuracy using a genetic algorithm (GA). Simulation and comparison results with traditional sensor deployment methods demonstrate the efficiency of the proposed optimization scheme.

  4. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  5. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  6. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    NASA Astrophysics Data System (ADS)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  7. Wireless data over RAM's Mobitex network

    NASA Astrophysics Data System (ADS)

    Khan, M. Mobeen

    1995-12-01

    Mobitex is a mobile data technology standard created by Eritel, now a wholly owned subsidiary of Ericsson, that has been in existence for about a decade. Originally designed as a low speed (1.2 kbps) data system with a voice dispatch overlay, it was significantly enhanced in 1990 for use in North America and the UK. The enhanced system is a data-only system using cellular architecture and multi-channel frequency reuse, store-and-forward capability, and an 8 kbps over-the-air data rate. The mission of RAM Mobile Data USA Limited Partnership ('RAM') is to provide high quality, cost efficient, wireless data communications solutions in its targeted market segments. RAM's Mobitex network is currently one of the two networks providing two way wireless data services nationwide using a long distance service provider of the customer's choice.

  8. Wireless Nde Sensor System for Continuous Monitoring

    NASA Astrophysics Data System (ADS)

    Dib, G.; Mhamdi, L.; Khan, T.; Udpa, L.; Lajnef, N.; Hong, J.-W.; Udpa, S.; Ramuhalli, P.; Balasubramaniam, K.

    2011-06-01

    For continuous monitoring of power-plant components, the use of in-situ sensors (i.e., sensors that are permanently mounted on the structure) is necessary. In-situ wired sensors require an unrealistic amount of cabling for power and data transfer, which can drive up costs of installation and maintenance. In addition, the use of cabling in hostile environments (high temperature/pressure environments) is not a viable option. This paper presents a wireless system for continuous monitoring, identification of anomalous events, NDE data acquisition and data transfer. NDE sensors are integrated with a wireless radio unit such as a MICA mote. Measurements from the sensors are typically acquired at prescribed intervals, encoded and compressed, and transmitted to a central processing server, where appropriate signal processing techniques may be used to filter out noise in the measurements, enhance the desired signal and quantify the damage in terms of severity.

  9. Photonic generation for multichannel THz wireless communication.

    PubMed

    Shams, Haymen; Fice, Martyn J; Balakier, Katarzyna; Renaud, Cyril C; van Dijk, Frédéric; Seeds, Alwyn J

    2014-09-22

    We experimentally demonstrate photonic generation of a multichannel THz wireless signal at carrier frequency 200 GHz, with data rate up to 75 Gbps in QPSK modulation format, using an optical heterodyne technique and digital coherent detection. BER measurements were carried out for three subcarriers each modulated with 5 Gbaud QPSK or for two subcarriers modulated with 10 Gbaud QPSK, giving a total speed of 30 Gbps or 40 Gbps, respectively. The system evaluation was also performed with three subcarriers modulated with 12.5 Gbaud QPSK (75 Gbps total) without and with 40 km fibre transmission. The proposed system enhances the capacity of high-speed THz wireless transmission by using spectrally efficient modulated subcarriers spaced at the baud rate. This approach increases the overall transmission capacity and reduces the bandwidth requirement for electronic devices.

  10. System identification of a tied arch bridge using reference-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hietbrink, Colby; Whelan, Matthew J.

    2012-04-01

    Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for

  11. Chaos in high-dimensional dissipative dynamical systems

    PubMed Central

    Ispolatov, Iaroslav; Madhok, Vaibhav; Allende, Sebastian; Doebeli, Michael

    2015-01-01

    For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE’s with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10−5 − 10−4 for d = 3 to essentially one for d ~ 50. In the limit of large d, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos. PMID:26224119

  12. A feasibility study on image-based control of surgical robot using a 60-GHz wireless communication system.

    PubMed

    Takizawa, Kenichi; Omori, Shigeru; Harada, Hideo; Nakamura, Ryoichi; Muragaki, Yoshihiro; Iseki, Hiroshi

    2009-01-01

    This paper presents an evaluation study on the feasibility of introducing wireless connection into a neurosurgical robot, which is controlled by an image-based navigation system. The wireless connection introduced into the robotic system is based on amplitude shift keying (ASK) at 60 GHz. With this wireless connection, data transmission at the bit-rate of 1 Gbps or more is possible, and here high-definition video images (1080i/1080p) can be transmitted. Such a wireless connection system is implemented in the surgical robot replaces the cable connection between the digital video camera and the controller. In this study, the wireless robotic surgical system is evaluated in terms of its accuracy of navigation using the transmitted video images. The results of a wireless connection test under a line-of-sight (LOS) environment show that navigation accuracy observed when using this wireless surgical robot is comparable to that when using a wired robotic system. PMID:19963666

  13. Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Beggs, John H.; Salud, Maria Theresa P.

    2003-01-01

    To address the concern for cellular phone electromagnetic interference to aircraft radios, a radiated emission measurement process was developed for two dominant digital standards of wireless handsets. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective radiated power. Eight representative handsets (four from each digital standard) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation of other portable transmitters using a variety of wireless transmission protocols. Aircraft interference path loss and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using these data, a preliminary risk assessment is provided for wireless phone interference to aircraft Localizer, Glideslope, Very High Frequency Omni directional Range, and Global Positioning Satellite radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, interference path loss, and navigation radio interference thresholds need to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  14. Bubble dynamics in high-amplitude ultrasound therapies

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Mancia, Lauren

    2015-11-01

    Cavitation plays an important role in certain therapeutic ultrasound procedures, such as histotripsy in which megahertz pressure pulses are used to destroy tissue. The large tensions (> 25 MPa) nucleate bubbles in the tissue, which rapidly grow to radii on the order of hundreds of microns and subsequently collapse. To better understand potential cavitation-induced damage, we developed a numerical framework for spherical bubble dynamics in soft tissue that includes liquid compressibility and full thermal effects, as well as a comprehensive viscoelastic model with elasticity, relaxation, viscosity and various nonlinearities. This framework has enabled us to understand the effects of the viscoelastic and thermal properties of the tissue on the bubble dynamics, and compute stress and temperature fields in the surroundings. Results indicate that different viscoelastic properties affect the bubble dynamics differently, but that overall the viscoelastic nature of tissue produces larger stresses and increased heating on the surroundings, compared to bubble dynamics in purely viscous liquids. This work was supported by NSF grant number CBET 1253157 and NIH grant number 1R01HL110990-01A1.

  15. High pressure dynamics of polymer/plasticizer mixtures

    NASA Astrophysics Data System (ADS)

    Schwartz, Gustavo Ariel; Paluch, Marian; Alegría, Ángel; Colmenero, Juan

    2009-07-01

    Plasticizers are usually added to polymers to give them the desired flexibility and processability by changing the dynamical properties of the polymer chains. It is therefore important to give a quantitative description about how the dynamic behavior of a given polymer is modified by the incorporation of a second component. We analyze in this work, by means of dielectric spectroscopy, the dynamics of poly(vinyl acetate)/diethyl phthalate mixtures, at different concentrations, over a broad range of frequency, pressure, and temperature. The dynamics of these particular mixtures show only one main relaxation process contrarily to what is observed in athermal miscible polymer mixtures. From the dielectric spectra the maximum relaxation time as a function of pressure and temperature was obtained and analyzed. We studied the pressure dependence of the glass transition temperature as well as the fragility of both the neat components and the mixtures at different concentrations (on the rich polymer range). Finally, the experimental data were rationalized within the framework of an Adam-Gibbs (AG) based approach recently developed [G. A. Schwartz et al., J. Chem. Phys. 127, 154907 (2007)]. The model, originally developed for athermal blends, is here modified to take into account the non-negligible interaction between polymer and plasticizer. We found that the temperature-pressure dependence of the α-relaxation time is very well described by this AG extended model.

  16. Dynamic nurse leadership in high-pressure situations.

    PubMed

    Lloyd, Adam; Clegg, Gareth; Crouch, Robert

    2015-06-01

    Traditionally, healthcare professionals have been expected to acquire technical skills while minimal attention has been paid to the non-technical skills (NTS) they require to work in complex health environments, such as resuscitation rooms. This article explains the importance of NTS in improving patient outcomes and why a model of dynamic nurse leadership is useful in resuscitative care.

  17. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  18. Challenges for Environmental Wireless Sensor Networks (WSNs) (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Davis, T. W.

    2013-12-01

    There are many challenges posed to researchers looking to collect eco-hydrological information with monitoring systems exposed to the natural environment due, in part, to the unpredictable interactions between the environment and the wireless hardware and the scale of the deployment. While wireless sensor network technology has introduced autonomy and pervasiveness to studying the environment, it is not a panacea for outdoor monitoring systems. Despite the fact that each outdoor deployment will encounter its own unique set of challenges, it is often a benefit to researchers to know what problems were faced during other deployments and how these problems were mitigated or solved. This work examines a long-term (i.e., multi-year) environmental wireless sensor network which was deployed in a forested hill-sloped region of western Pennsylvania, USA and the main challenges that were encountered. These include: (1) the startup and maintenance costs of the wireless network; (2) the data collection system and remote access to the network; (3) the security of the network hardware and software; and (4) the reliability of wireless network connectivity. Based on our field study, it was found that while wireless sensor networks (WSNs) have less expensive startup costs compared to similarly sized wired systems (such as data logging), the WSN has relatively high maintenance costs as it requires frequent site visits (mean of 38 days per wireless node). One possible way to reduce the maintenance costs is by adjusting the sampling and/or collection frequency of the wireless nodes. In addition to the high maintenance costs, wireless communications, especially over complex networks, have low success rates of data capture from the field (approximately 50%). Environmental conditions, such as background noise, interference and weather conditions, may significantly influence the wireless communications. Technological advancements (such as smart sampling and data compression) are being

  19. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  20. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009