Science.gov

Sample records for highly efficient antiviral

  1. AVPpred: collection and prediction of highly effective antiviral peptides.

    PubMed

    Thakur, Nishant; Qureshi, Abid; Kumar, Manoj

    2012-07-01

    In the battle against viruses, antiviral peptides (AVPs) had demonstrated the immense potential. Presently, more than 15 peptide-based drugs are in various stages of clinical trials. Emerging and re-emerging viruses further emphasize the efforts to accelerate antiviral drug discovery efforts. Despite, huge importance of the field, no dedicated AVP resource is available. In the present study, we have collected 1245 peptides which were experimentally checked for antiviral activity targeting important human viruses like influenza, HIV, HCV and SARS, etc. After removing redundant peptides, 1056 peptides were divided into 951 training and 105 validation data sets. We have exploited various peptides sequence features, i.e. motifs and alignment followed by amino acid composition and physicochemical properties during 5-fold cross validation using Support Vector Machine. Physiochemical properties-based model achieved maximum 85% accuracy and 0.70 Matthew's Correlation Coefficient (MCC). Performance of this model on the experimental validation data set showed 86% accuracy and 0.71 MCC which is far better than the general antimicrobial peptides prediction methods. Therefore, AVPpred-the first web server for predicting the highly effective AVPs would certainly be helpful to researchers working on peptide-based antiviral development. The web server is freely available at http://crdd.osdd.net/servers/avppred. PMID:22638580

  2. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter. PMID:26434534

  3. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  4. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK cells.

    PubMed

    Frensing, Timo; Seitz, Claudius; Heynisch, Bjoern; Patzina, Corinna; Kochs, Georg; Reichl, Udo

    2011-09-22

    Influenza B virus infections are mainly restricted to humans, which is partially caused by the inability of influenza B virus NS1 protein to counteract the innate immune response of other species. However, for cell culture-based influenza vaccine production non-human cells, such as Madin-Darby canine kidney (MDCK) cells, are commonly used. Therefore, the impact of cellular pathogen defence mechanisms on influenza B virus propagation in MDCK cells was analysed in this study. Activation of the cellular antiviral defence by interferon stimulation slowed down influenza B virus replication at early time points but after 48h the same virus titres were reached in stimulated and control cells. Furthermore, suppression of the antiviral host defence by transient expression of a viral antagonist, the rabies virus phosphoprotein, could not increase influenza B virus replication. Finally, canine Myxovirus resistance (Mx) proteins showed no antiviral activity in an influenza B virus-specific minireplicon assay in contrast to the murine Mx1 protein. Taken together, these results indicate that an insufficient antiviral defence in MDCK cells promotes efficient influenza B virus replication favouring the use of MDCK cells in influenza vaccine production.

  5. Efficient Suppression of Hepatitis C Virus Replication by Combination Treatment with miR-122 Antagonism and Direct-acting Antivirals in Cell Culture Systems

    PubMed Central

    Liu, Fanwei; Shimakami, Tetsuro; Murai, Kazuhisa; Shirasaki, Takayoshi; Funaki, Masaya; Honda, Masao; Murakami, Seishi; Yi, Minkyung; Tang, Hong; Kaneko, Shuichi

    2016-01-01

    Direct-acting antivirals (DAAs) against Hepatitis C virus (HCV) show effective antiviral activity with few side effects. However, the selection of DAA-resistance mutants is a growing problem that needs to be resolved. In contrast, miR-122 antagonism shows extensive antiviral effects among all HCV genotypes and a high barrier to drug resistance. In the present study, we evaluated three DAAs (simeprevir, daclatasvir, and sofosbuvir) in combination with anti-miR-122 treatment against HCV genotype 1a in cell cultures. We found that combination treatments with anti-miR-122 and a DAA had additive or synergistic antiviral effects. The EC50 values of simeprevir in simeprevir-resistant mutants were significantly decreased by combining simeprevir with anti-miR-122. A similar reduction in EC50 in daclatasvir-resistant mutants was achieved by combining daclatasvir with anti-miR-122. Combination treatment in HCV-replicating cells with DAA and anti-miR-122 sharply reduced HCV RNA amounts. Conversely, DAA single treatment with simeprevir or daclatasvir reduced HCV RNA levels initially, but the levels later rebounded. DAA-resistant mutants were less frequently observed in combination treatments than in DAA single treatments. In summary, the addition of miR-122 antagonism to DAA single treatments had additive or synergistic antiviral effects and helped to efficiently suppress HCV replication and the emergence of DAA-resistant mutants. PMID:27484655

  6. Gutsy Microbes Fly High in the Antiviral War.

    PubMed

    Robalino, Javier; Wu, Louisa

    2016-01-01

    The importance of microbiomes in health and disease is now well appreciated. New work from Sansone and colleagues adds to this understanding by showing that gut microbes are key for the local induction of an ERK-dependent antiviral response in flies. PMID:26690611

  7. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum

    PubMed Central

    Liang, Jian-Jong; Wei, Jiun-Chiou; Lee, Yi-Ling; Lin, Jiang-Jen

    2014-01-01

    ABSTRACT Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV

  8. Efficient Virus Extinction by Combinations of a Mutagen and Antiviral Inhibitors

    PubMed Central

    Pariente, Nonia; Sierra, Saleta; Lowenstein, Pedro R.; Domingo, Esteban

    2001-01-01

    The effect of combinations of the mutagenic base analog 5-fluorouracil (FU) and the antiviral inhibitors guanidine hydrochloride (G) and heparin (H) on the infectivity of foot-and-mouth disease virus (FMDV) in cell culture has been investigated. Related FMDV clones differing up to 106-fold in relative fitness in BHK-21 cells have been compared. Systematic extinction of intermediate fitness virus was attained with a combination of FU and G but not with the mutagen or the inhibitor alone. Systematic extinction of high-fitness FMDV required the combination of FU, G, and H. FMDV showing high relative fitness in BHK-21 cells but decreased replicative ability in CHO cells behaved as a low-fitness virus with regard to extinction mutagenesis in CHO cells. This confirms that relative fitness, rather than a specific genomic sequence, determines the FMDV response to enhanced mutagenesis. Mutant spectrum analysis of several genomic regions from a preextinction population showed a statistically significant increase in the number of mutations compared with virus passaged in parallel in the absence of FU and inhibitors. Also, in a preextinction population the types of mutations that can be attributed to the mutagenic action of FU were significantly more frequent than other mutation types. The results suggest that combinations of mutagenic agents and antiviral inhibitors can effectively drive high-fitness virus into extinction. PMID:11559805

  9. A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus

    PubMed Central

    Wang, Lingyan; Li, Wenjun; Li, Shitao

    2016-01-01

    Influenza A virus (IAV) is a human respiratory pathogen that causes seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. Currently approved treatments against influenza are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets with which to develop novel antiviral drugs. The common strategy to discover new drug targets and antivirals is high throughput screening. However, most current screenings for IAV rely on the engineered virus carrying a reporter, which prevents the application to newly emerging wild type flu viruses, such as 2009 pandemic H1N1 flu. Here we developed a simple and sensitive screening assay for wild type IAV by quantitatively analyzing viral protein levels using a Dot Blot Assay in combination with the LI-COR Imaging System (DBALIS). We first validated DBALIS in overexpression and RNAi assays, which are suitable methods for screening host factors regulating viral infection. More importantly, we also validated and initiated drug screening using DBALIS. A pilot compound screening identified a small molecule that inhibited IAV infection. Taken together, our method represents a reliable and convenient high throughput assay for screening novel host factors and antiviral compounds. PMID:27375580

  10. Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

    PubMed Central

    Caroline, Amy L.; Powell, Diana S.; Bethel, Laura M.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2014-01-01

    Background Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route. Methodology/Principal Findings Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease. Conclusions/Significance Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug. PMID:24722586

  11. Assay development and high throughput antiviral drug screening against Bluetongue virus

    PubMed Central

    Li, Qianjun; Maddox, Clinton; Rasmussen, Lynn; Hobrath, Judith V.; White, Lucile E.

    2009-01-01

    Bluetongue virus (BTV) infection is one of the most important diseases of domestic livestock. There are no antivirals available against BTV disease. In this paper, we present the development, optimization and validation of an in vitro cell-based high-throughput screening (HTS) assay using the luminescent-based CellTiter-Glo reagent to identify novel antivirals against BTV. Conditions of the cytopathic effect (CPE)-based assay were optimized at cell density of 5 000 cells/well in medium containing 1% FBS and a multiplicity of infection at 0.01 in 384-well plate, with Z'-values ≥ 0.70, Coefficient of Variations ≥ 5.68 and signal-to-background ratio ≥ 7.10. This assay was further validated using a 9 532 compound library. The fully validated assay was then used to screen the 194 950 compound collection, which identified 693 compounds with > 30% CPE inhibition. The ten-concentration dose response assay identified 185 structures with IC50 ≤ 100 μM, out of which 42 compounds were grouped into six analog series corresponding to six scaffolds enriched within the active set compared to their distribution in the library. The CPE-based assay development demonstrated its robustness and reliability, and its application in the HTS campaign will make significant contribution to the antiviral drug discovery against BTV disease. PMID:19559054

  12. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  13. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  14. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  15. [Pulmonary vasculitis as a clinical mask of HCV infection: efficiency of interferon-free antiviral therapy].

    PubMed

    Stelmakh, V V; Kozlov, V K; Sukhanov, D S; Skipsky, I M

    2014-01-01

    The paper describes a clinical case of pulmonary vasculitis caused by hepatitis C virus (HCV). Its diagnosis was established on the basis of in-depth laboratory testing and an investigation of the molecular biological markers of viremia (polymerase chain reaction--PCR--HCV RNA) in peripheral blood mononuclear cells. By taking into account of extrahepatic HCV replication and contraindications to interferon therapy, the female patient was given an interferon-free antiviral therapy cycle using an interferonogenic inductor in combination with ribavirin. Pathogenic therapy (methylpred and ursodeoxycholic acid) was additionally performed. An interferon-free regimen of cycloferon + ribavirin led to sustained remission of HCV infection running with its systemic manifestations. The therapy could improve the function of not only the liver, but also the lung. In suspected extrahepatic HCV infections, an investigation of molecular biological markers for viremia (HCV RNA PCR) in the peripheral blood mononuclear cells is an essential diagnostic technique. Interferonogenic inductors, cycloferon in particular, should be used in combination with ribavirin when a chronic hepatitis C patient with the extrahepatic manifestations of HCV infection has contraindications to conventional therapy with recombinant interferon-α. PMID:25715495

  16. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  17. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  18. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  19. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  20. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  1. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  2. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization.

  3. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  4. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  5. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  6. Synthesis and antiviral activity of the carbocyclic analogue of the highly potent and selective anti-VZV bicyclo furano pyrimidines.

    PubMed

    Migliore, Marco D; Zonta, Nicola; McGuigan, Christopher; Henson, Geoffrey; Andrei, Graciela; Snoeck, Robert; Balzarini, Jan

    2007-12-27

    Carbocyclic nucleoside analogues are catabolically stable since they are resistant to phosphorolytic cleavage by pyrimidine nucleoside phosphorylase enzymes. The carbocyclic analogue (C-BCNA) of the highly potent and selective anti-VZV bicyclic nucleoside analogue (BCNA) 6-pentylphenylfuro[2,3-d]pyrimidine-2'-deoxyribose was synthesized using carbocyclic 2'-deoxyuridine as starting material. C-BCNA was found to be chemically more stable than the furano lead, but it was shown to be significantly less antivirally active than its parent nucleoside analogue. It was noted to have a 10-fold lower inhibitory activity against the VZV-encoded thymidine kinase. This reduction of activity may be attributed to the different conformation of the sugar and base, as predicted by computational studies and supported by NMR studies. However, other factors besides affinity for VZV-TK must account for the greatly reduced antiviral potency. PMID:18052321

  7. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  8. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  9. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  10. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  11. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors

    PubMed Central

    Kilianski, Andy; Baker, Susan C.

    2014-01-01

    To combat the public health threat from emerging coronaviruses (CoV), the development of antiviral therapies with either virus-specific or pan-CoV activities is necessary. An important step in antiviral drug development is the screening of potential inhibitors in cell-based systems. The recent emergence of the Middle East respiratory syndrome (MERS)-CoV necessitates adapting methods that have been used to identify antivirals against the severe, acute respiratory syndrome (SARS)-CoV and developing new approaches to more efficiently screen antiviral drugs. In this article we review cell-based assays using infectious virus (BSL-3) and surrogate assays (BSL-2) that can be implemented to accelerate antiviral development against MERS-CoV and future emergent coronaviruses. This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:24269477

  12. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  13. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  14. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  15. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  16. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  17. Tracking TCRβ Sequence Clonotype Expansions during Antiviral Therapy Using High-Throughput Sequencing of the Hypervariable Region

    PubMed Central

    Robinson, Mark W.; Hughes, Joseph; Wilkie, Gavin S.; Swann, Rachael; Barclay, Stephen T.; Mills, Peter R.; Patel, Arvind H.; Thomson, Emma C.; McLauchlan, John

    2016-01-01

    To maintain a persistent infection viruses such as hepatitis C virus (HCV) employ a range of mechanisms that subvert protective T cell responses. The suppression of antigen-specific T cell responses by HCV hinders efforts to profile T cell responses during chronic infection and antiviral therapy. Conventional methods of detecting antigen-specific T cells utilize either antigen stimulation (e.g., ELISpot, proliferation assays, cytokine production) or antigen-loaded tetramer staining. This limits the ability to profile T cell responses during chronic infection due to suppressed effector function and the requirement for prior knowledge of antigenic viral peptide sequences. Recently, high-throughput sequencing (HTS) technologies have been developed for the analysis of T cell repertoires. In the present study, we have assessed the feasibility of HTS of the TCRβ complementarity determining region (CDR)3 to track T cell expansions in an antigen-independent manner. Using sequential blood samples from HCV-infected individuals undergoing antiviral therapy, we were able to measure the population frequencies of >35,000 TCRβ sequence clonotypes in each individual over the course of 12 weeks. TRBV/TRBJ gene segment usage varied markedly between individuals but remained relatively constant within individuals across the course of therapy. Despite this stable TRBV/TRBJ gene segment usage, a number of TCRβ sequence clonotypes showed dramatic changes in read frequency. These changes could not be linked to therapy outcomes in the present study; however, the TCRβ CDR3 sequences with the largest fold changes did include sequences with identical TRBV/TRBJ gene segment usage and high junction region homology to previously published CDR3 sequences from HCV-specific T cells targeting the HLA-B*0801-restricted 1395HSKKKCDEL1403 and HLA-A*0101-restricted 1435ATDALMTGY1443 epitopes. The pipeline developed in this proof of concept study provides a platform for the design of future

  18. Pandemic H1N1 2009 Influenza A Virus Induces Weak Cytokine Responses in Human Macrophages and Dendritic Cells and Is Highly Sensitive to the Antiviral Actions of Interferons ▿

    PubMed Central

    Österlund, Pamela; Pirhonen, Jaana; Ikonen, Niina; Rönkkö, Esa; Strengell, Mari; Mäkelä, Sanna M.; Broman, Mia; Hamming, Ole J.; Hartmann, Rune; Ziegler, Thedi; Julkunen, Ilkka

    2010-01-01

    In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges. PMID:19939920

  19. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  20. Antioxidative and antiviral properties of flowering cherry fruits (Prunus serrulata L. var. spontanea).

    PubMed

    Yook, Hong-Sun; Kim, Kyoung-Hee; Park, Jung-Eun; Shin, Hyun-Jin

    2010-01-01

    The phenolic compounds of many fruits have been known to be efficient cellular protective antioxidants. In this study, antioxidative and antiviral properties of flowering cherry cultivars (Prunus yedoensis, Prunus sargentii, Prunus lannesiana, and Prunus cerasus) in Korea were investigated. The antioxidant property was assayed for specific activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH) hydroxy radical scavenging activity, reducing power capacity, and superoxide dismutase (SOD) like activity. In addition, antiviral activity was determined by inhibition studies on the infection cycle of porcine epidemic diarrhea virus (PEDV), measured as minimum concentration of cherry extracts that inhibited 50% of cytopathic effect (CPE) on PEDV. Our results show that the four varieties of cherries contain substantially high antioxidants and antiviral activities. In particular, P. cerasus contains higher antioxidants and antiviral activities as well as polyphenolic content than other varieties. Our data indicate that Korean native cherry cultivars could be beneficial supplements of dietary antioxidants and natural antiviral agents. PMID:20821824

  1. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  2. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  3. Antiviral activity of Quercus persica L.: High efficacy and low toxicity

    PubMed Central

    Karimi, Ali; Moradi, Mohammad-Taghi; Saeedi, Mojtaba; Asgari, Sedigheh; Rafieian-kopaei, Mahmoud

    2013-01-01

    Background: Drug-resistant strain of Herpes simplex virus type 1 (HSV-I) has increased the interest in the use of natural substances. Aims: This study was aimed to determine minimum inhibitory concentration of hydroalchoholic extract of a traditionally used herbal plant, Quercus persica L., on HSV-1 replication on baby hamster kidney (BHK) cells. Setting: The study was conducted in Shahrekord University of Medical Sciences, Iran. Design: This was an experimental study. Materials and Methods: BHK cells were grown in monolayer culture with Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% fetal calf serum and plated onto 48-well culture plates. Fifty percent cytotoxic concentration (CC50%) of Q. persica L. on BHK cells was determined. Subsequently, 50% inhibitory concentration (IC50%) of the extract on replication of HSV-1 both in interacellular and exteracellular cases was assessed. Statistical Analysis: Statistic Probit model was used for statistical analysis. The dose-dependent effect of antiviral activity of the extracts was determined by linear regression. Results: Q. persica L. had no cytotoxic effect on this cell line. There was significant relationship between the concentration of the extract and cell death (P<0.01). IC50s of Q. persica L. on HSV-1, before and after attachment to BHK cells were 1.02 and 0.257 μg/mL, respectively. There was significant relationship between the concentration of this extract and inhibition of cytopathic effect (CPE) (P<0.05). Antioxidant capacity of the extract was 67.5%. Conclusions: The hydroalchoholic extract of Q. persica L. is potentially an appropriate and promising anti herpetic herbal medicine. PMID:24516836

  4. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  5. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  6. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  7. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  8. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  9. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  10. NS Reassortment of an H7-Type Highly Pathogenic Avian Influenza Virus Affects Its Propagation by Altering the Regulation of Viral RNA Production and Antiviral Host Response▿ †

    PubMed Central

    Wang, Zhongfang; Robb, Nicole C.; Lenz, Eva; Wolff, Thorsten; Fodor, Ervin; Pleschka, Stephan

    2010-01-01

    Highly pathogenic avian influenza viruses (HPAIV) with reassorted NS segments from H5- and H7-type avian virus strains placed in the genetic background of the A/FPV/Rostock/34 HPAIV (FPV; H7N1) were generated by reverse genetics. Virological characterizations demonstrated that the growth kinetics of the reassortant viruses differed from that of wild-type (wt) FPV and depended on whether cells were of mammalian or avian origin. Surprisingly, molecular analysis revealed that the different reassortant NS segments were not only responsible for alterations in the antiviral host response but also affected viral genome replication and transcription as well as nuclear ribonucleoprotein (RNP) export. RNP reconstitution experiments demonstrated that the effects on accumulation levels of viral RNA species were dependent on the specific NS segment as well as on the genetic background of the RNA-dependent RNA polymerase (RdRp). Beta interferon (IFN-β) expression and the induction of apoptosis were found to be inversely correlated with the magnitude of viral growth, while the NS allele, virus subtype, and nonstructural protein NS1 expression levels showed no correlation. Thus, these results demonstrate that the origin of the NS segment can have a dramatic effect on the replication efficiency and host range of HPAIV. Overall, our data suggest that the propagation of NS reassortant influenza viruses is affected at multiple steps of the viral life cycle as a result of the different effects of the NS1 protein on multiple viral and host functions. PMID:20739516

  11. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  12. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  13. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota.

    PubMed

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D

    2015-01-13

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.

  14. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  15. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  18. TLR3 activation efficiency by high or low molecular mass poly I:C.

    PubMed

    Zhou, Yu; Guo, Ming; Wang, Xu; Li, Jielang; Wang, Yizhong; Ye, Li; Dai, Ming; Zhou, Li; Persidsky, Yuri; Ho, Wenzhe

    2013-01-01

    Toll-like receptor 3 (TLR3) plays a critical role in initiating type I IFN-mediated innate immunity against viral infections. TLR3 recognizes various forms of double stranded (ds) RNA, including viral dsRNA and a synthetic mimic of dsRNA, poly I:C, which has been used extensively as a TLR3 ligand to induce antiviral immunity. The activation efficiency of TLR3 by poly I:C is influenced by various factors, including size of the ligands, delivery methods and cell types. In this study, we examined the stimulatory effect of two commercially-available poly I:Cs [high molecular mass (HMM) and low molecular mass (LMM)] on TLR3 activation in various human cell types by determining the induction of type I and type III IFNs, as well as the antiviral effect. We demonstrated that the direct addition of both HMM- and LMM-poly I:C to the cultures of primary macrophages or a neuroplastoma cell line could activate TLR3. However, the transfection of poly I:C was necessary to induce TLR3 activation in other cell types studied. In all the cell lines tested, the efficiency of TLR3 activation by HMM-poly I:C was significantly higher than that by LMM-poly I:C. These observations indicate the importance and necessity of developing effective TLR3 ligands for antiviral therapy.

  19. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  20. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota

    PubMed Central

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D.

    2015-01-01

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o’nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens. PMID:25548172

  1. A High-Throughput Screening Assay for the Identification of Flavivirus NS5 Capping Enzyme GTP-Binding Inhibitors: Implications for Antiviral Drug Development

    PubMed Central

    GEISS, BRIAN J.; STAHLA-BEEK, HILLARY J.; HANNAH, AMANDA M.; GARI, HAMID H.; HENDERSON, BRITTNEY R.; SAEEDI, BEJAN J.; KEENAN, SUSAN M.

    2012-01-01

    There are no effective antivirals currently available for the treatment of flavivirus infection in humans. As such, the identification and characterization of novel drug target sites are critical to developing new classes of antiviral drugs. The flavivirus NS5 N-terminal capping enzyme (CE) is vital for the formation of the viral RNA cap structure, which directs viral polyprotein translation and stabilizes the 5′ end of the viral genome. The structure of the flavivirus CE has been solved, and a detailed understanding of the CE–guanosine triphosphate (GTP) and CE–RNA cap interactions is available. Because of the essential nature of the interaction for viral replication, disrupting CE–GTP binding is an attractive approach for drug development. The authors have previously developed a robust assay for monitoring CE–GTP binding in real time. They adapted this assay for high-throughput screening and performed a pilot screen of 46 323 commercially available compounds. A number of small-molecule inhibitors capable of displacing a fluorescently labeled GTP in vitro were identified, and a second functional assay was developed to identify false positives. The results presented indicate that the flavivirus CE cap-binding site is a valuable new target site for antiviral drug discovery and should be further exploited for broad-spectrum anti-flaviviral drug development. PMID:21788392

  2. High conservation of herpes simplex virus UL5/UL52 helicase-primase complex in the era of new antiviral therapies.

    PubMed

    Collot, Marianne; Rouard, Caroline; Brunet, Christel; Agut, Henri; Boutolleau, David; Burrel, Sonia

    2016-04-01

    The emergence of herpes simplex virus (HSV) resistance to current antiviral drugs, that all target the viral DNA polymerase, constitutes a major obstacle to antiviral treatment effectiveness of HSV infections, especially in immunocompromised patients. A novel and promising class of inhibitors of the HSV UL5/UL52 helicase-primase (HP) complex has been reported to hinder viral replication with a high potency. In this study, we describe the low natural polymorphism (interstrain identity >99.1% at both nucleotide and amino acid levels) of HSV HP complex subunits pUL5 and pUL52 among 64 HSV (32 HSV-1 and 32 HSV-2) clinical isolates, and we show that the HSV resistance profile to the first-line antiviral drug acyclovir (ACV) does not impact on the natural polymorphism of HSV HP complex. Genotypic tools and polymorphism data concerning HSV HP complex provided herein will be useful to detect drug resistance mutations in a relevant time frame when HP inhibitors (HPIs), i.e., amenamevir and pritelivir, will be available in medical practice. PMID:26826441

  3. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  4. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  5. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  6. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  7. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  8. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  9. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  10. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  11. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  12. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  13. Highlights in antiviral drug research: antivirals at the horizon.

    PubMed

    De Clercq, Erik

    2013-11-01

    This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.

  14. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  15. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    PubMed

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  17. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  18. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  19. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  20. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  1. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  2. Nonclassical MHC-restricted invariant Vα6 T cells are critical for efficient early innate anti-viral immunity in the amphibian X. laevis1

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; De Jesús, Francisco; Robert, Jacques

    2015-01-01

    Nonclassical MHC class Ib (class Ib)-restricted invariant T (iT) cell subsets are attracting interest because of their potential to regulate immune responses against various pathogens. The biological relevance and evolutionary conservation of iT cells has recently been strengthened by the identification of iT cells (iVα6) restricted by the class Ib molecule XNC10 in the amphibian Xenopus laevis. These iVα6 T cells are functionally similar to mammalian CD1d-restricted iNKT cells. Using the amphibian pathogen frog virus 3 (FV3) in combination with XNC10 tetramers and RNAi loss-of-function by transgenesis, we show that XNC10-restricted iVα6 T cells are critical for early antiviral immunity in adult X. laevis. Within hours following intraperitoneal FV3 infection, iVα6 T cells were specifically recruited from the spleen into the peritoneum. XNC10-deficiency and concomitant lack of iVα6 T cells resulted in less effective antiviral and macrophage antimicrobial responses, which lead to impaired viral clearance, increased viral dissemination and more pronounced FV3-induced kidney damage. Together, these findings imply that X. laevis XNC10-restricted iVα6 T cells play important roles in the early anti-FV3 response and that, as has been suggested for mammalian iNKT cells, they may serve as immune regulators polarizing macrophage effector functions towards more effective antiviral states. PMID:26062996

  3. Polar profile of antiviral peptides from AVPpred Database.

    PubMed

    Polanco, Carlos; Samaniego, José Lino; Castañón-González, Jorge Alberto; Buhse, Thomas

    2014-11-01

    Diseases of viral origin in humans are among the most serious threats to health and the global economy. As recent history has shown the virus has a high pandemic potential, among other reasons, due to its ability to spread by air, hence the identification, investigation, containment, and treatment of viral diseases should be considered of paramount importance. In this sense, the bioinformatics research has focused on finding fast and efficient algorithms that can identify highly toxic antiviral peptides and to serve as a first filter, so that trials in the laboratory are substantially reduced. The work presented here contributes to this effort through the use of an algorithm already published by this team, called polarity index method, which identifies with high efficiency antiviral peptides from the exhaustive analysis of the polar profile, using the linear sequence of the peptide. The test carried out included all peptides in APD2 Database and 60 antiviral peptides identified by Kumar and co-workers (Nucleic Acids Res 40:W199-204, 2012), to build its AVPpred algorithm. The validity of the method was focused on its discriminating capacity so we included the 15 sub-classifications of both Databases. PMID:24993579

  4. High efficiency advanced absorption heat pump

    NASA Astrophysics Data System (ADS)

    Reid, E. A., Jr.

    1982-03-01

    A high efficiency absorption heat pump for the residential market is investigated. The performance targets established for this high efficiency absorption heat pump are a heating coefficient of performance of 1.5 and a cooling coefficient of performance of 0.8 at rating conditions, including parasitic electric power consumption. The resulting heat pump would have a space heating capacity of 68,000 BTU/hour, and a space cooling capacity of 36,000 BTU/hour at rating conditions. A very simplified schematic block diagram of the high efficiency absorption heat pump cycle is shown. High temperature, high pressure, refrigerant vapor is produced in the refrigerant generator and heat exchange system, is condensed to a liquid in the condenser, expanded to a low pressure vapor in the evaporator, and mixed with and reabsorbed into the weakened solution returned from the refrigerant generator and heat exchange system in the absorber.

  5. Antiviral activity of alcohol for surface disinfection.

    PubMed

    Moorer, W R

    2003-08-01

    Bacteria and viruses from the patient's mouth travel with dental splatter and spills. A surface disinfectant should possess antiviral activity as well as antibacterial action. Because of frequent and 'open' application in the dental office, such a disinfectant should be non-toxic, non-allergenic and safe for the hygienist. It now appears that high-concentration alcohol mixtures (i.e. 80% ethanol + 5% isopropanol) are not only excellent antibacterials, but quickly inactivate HIV as well as hepatitis B and hepatitis C viruses. Compared to alternative surface disinfectants, use of high-concentration alcohol for the spray-wipe-spray method of surface disinfection in dentistry appears safe and efficient. However, dried matter should be wiped and hydrated first.

  6. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-06-16

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.

  7. Antiviral susceptibility of highly pathogenic avian influenza A(H5N1) viruses isolated from poultry, Vietnam, 2009-2011.

    PubMed

    Nguyen, Ha T; Nguyen, Tung; Mishin, Vasiliy P; Sleeman, Katrina; Balish, Amanda; Jones, Joyce; Creanga, Adrian; Marjuki, Henju; Uyeki, Timothy M; Nguyen, Dang H; Nguyen, Diep T; Do, Hoa T; Klimov, Alexander I; Davis, Charles T; Gubareva, Larisa V

    2013-12-01

    We assessed drug susceptibilities of 125 avian influenza A(H5N1) viruses isolated from poultry in Vietnam during 2009-2011. Of 25 clade 1.1 viruses, all possessed a marker of resistance to M2 blockers amantadine and rimantadine; 24 were inhibited by neuraminidase inhibitors. One clade 1.1 virus contained the R430W neuraminidase gene and reduced inhibition by oseltamivir, zanamivir, and laninamivir 12-, 73-, and 29-fold, respectively. Three of 30 clade 2.3.4 viruses contained a I223T mutation and showed 7-fold reduced inhibition by oseltamivir. One of 70 clade 2.3.2.1 viruses had the H275Y marker of oseltamivir resistance and exhibited highly reduced inhibition by oseltamivir and peramivir; antiviral agents DAS181 and favipiravir inhibited H275Y mutant virus replication in MDCK-SIAT1 cells. Replicative fitness of the H275Y mutant virus was comparable to that of wildtype virus. These findings highlight the role of drug susceptibility monitoring of H5N1 subtype viruses circulating among birds to inform antiviral stockpiling decisions for pandemic preparedness.

  8. [Ribonucleases as antiviral agents].

    PubMed

    Il'inskaia, O N; Shakh Makhmud, R

    2014-01-01

    Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but molecular mechanisms of their antiviral activity remain unclear. The review observes the most known RNases which possess established antiviral effects, actually intracellular RNases (RNase L, MCPIPI protein, eosinophylic RNases) as well as exogenously applied ones (RNase A, BS-RNase, onconase, binase, synthetic RNases). Attention is given on two important but not always obligatory aspects in molecule of RNases, which have antiviral properties: catalytic activity and ability to the dimerization. The hypothetic scheme of virus elimination by exogenous RNases, that reflects possible types of interaction of viruses and RNases with a cell, is proposed. The evidence for RNases as classical components of immune defense which are perspective agents for development of new antiviral therapeutics is produced.

  9. Ineffectiveness of daily standard and high-dose antiviral therapy in preventing short episodes of genital HSV-2 reactivation: three randomized, open-label cross-over trials

    PubMed Central

    Johnston, Christine; Saracino, Misty; Kuntz, Steve; Magaret, Amalia; Selke, Stacy; Huang, Meei-li; Schiffer, Joshua T.; Koelle, David M.; Corey, Lawrence; Wald, Anna

    2012-01-01

    Background Recent studies indicate that short subclinical episodes of herpes simplex virus type 2 (HSV-2) are the predominant form of skin and mucosal viral shedding. We evaluated whether standard or high-dose antiviral therapy reduced the frequency of such shedding. Methods To determine whether short episodes of genital HSV shedding are suppressed on standard dose (SD) and high-dose (HD) antiviral therapy, HSV-2 seropositive, HIV seronegative persons in Seattle, WA were enrolled into three separate but complementary randomized, open-label, cross-over studies comparing 1) no medication to aciclovir 400 mg twice daily (SD-ACV), 2) valaciclovir 500 mg daily (SD-VAL) to aciclovir 800 mg three times daily (TID) (HD-ACV), and 3) SD-VAL to HD-VAL (1 gm TID). Study arms lasted 4–7 weeks, separated by one week wash-out. Participants obtained genital swabs four times daily for quantitative HSV DNA PCR. The primary endpoint was within-person comparison of shedding rate on each study arm. Results Of 113 participants randomized, 90 were eligible for analysis of the primary endpoint. Participants collected 23,605 swabs; of these 1272 (5·4%) had HSV detected. HSV shedding was significantly higher during the no medication arm (18·1% of swabs) compared with SD-ACV (1.2% of swabs, IRR=0·05, 95% CI=0·03–0·08). Breakthrough reactivations occurred on all doses (SD-ACV 1·2%, SD-VAL 5·2%, HD-ACV 4·2%, and HD-VAL 3·3% of swabs). HD-VAL was associated with less shedding compared with SD-VAL (IRR=0·54, 95% CI=0·44–0·66), likely due to more rapid clearance of mucosal HSV (4·7 logs/6 hours on HD-VAL vs. 4·4 logs/6 hours on SD-VAL, (p=0·02)). However, the annualized breakthrough episodes was similar on SD-VAL (22·6) and HD-ACV (20·2, p=0·54) and SD-VAL (14.9) and HD-VAL (16·5, p=0·34). Regardless of dose, breakthrough episodes were short (median 7–10 hours) and 80% were subclinical. Studies were not designed to make inter-trial comparisons between antiviral doses

  10. Therapeutic Potential of Spirooxindoles as Antiviral Agents.

    PubMed

    Ye, Na; Chen, Haiying; Wold, Eric A; Shi, Pei-Yong; Zhou, Jia

    2016-06-10

    Antiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model. This review highlights recent advances in the development of biologically active spirooxindoles for their antiviral potential, primarily focusing on the structure-activity relationships (SARs) and modes of action, as well as future directions to achieve more potent analogues toward a viable antiviral therapy. PMID:27627626

  11. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  12. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  13. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  14. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  15. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  16. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  17. Highly efficient heralding of entangled single photons.

    PubMed

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  18. Enabling the Intestinal Absorption of Highly Polar Anti-Viral Agents: Ion-Pair Facilitated Membrane Permeation of Zanamivir Heptyl Ester and Guanidino Oseltamivir

    PubMed Central

    Miller, Jonathan M.; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L.

    2012-01-01

    Anti-viral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability anti-viral agents zanamivr heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-napthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K11aq) of 388 M−1 for ZHE-HNAP and 2.91 M−1 for GO.-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (Papp) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial Papp (0.8 – 3.0 × 10−6 cm/s) was observed in the presence of 6–24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 Papp versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (Peff) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 × 10−5 cm/s with 10 mM HNAP, matching the Peff of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K11aq versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this work

  19. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  20. High efficiency novel window air conditioner

    DOE PAGES

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  1. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  2. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  3. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  4. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  5. Highly efficient charged particle veto detector CUP

    NASA Astrophysics Data System (ADS)

    Palacz, M.; Nyberg, J.; Bednarczyk, P.; Dworski, J.; Górska, M.; Iwanicki, J.; Kapusta, M.; Kownacki, J.; Kulczycka, E.; Lagergren, K.; Moszyński, M.; Pieńkowski, L.; Stolarz, A.; Wolski, D.; Ziębliński, M.

    2005-09-01

    A novel, highly efficient, plastic scintillator detector has been constructed. The primary application of the detector is to act as a veto device in heavy-ion-induced fusion-evaporation reactions, in which the structure of proton-rich nuclides is investigated by γ-ray spectroscopy methods. The detector rejects events in which light charged particles, like protons and α particles, are emitted in the evaporation process, facilitating selection of reaction channels associated with emission of only neutrons. The detector was used in a EUROBALL experiment, with achieved efficiencies of 80% and 63% for protons and α particles, respectively. The design of the detector, its performance and limitations are discussed.

  6. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  7. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  8. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  9. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  10. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  11. Breeding for high water-use efficiency.

    PubMed

    Condon, A G; Richards, R A; Rebetzke, G J; Farquhar, G D

    2004-11-01

    There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may

  12. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  13. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  14. High efficiency silicon concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua

    1990-06-01

    Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

  15. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  16. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  17. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. PMID:26979473

  18. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future.

  19. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  20. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  1. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  2. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  3. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  4. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

  5. Antiviral therapy: a perspective

    PubMed Central

    Shahidi Bonjar, Amir Hashem

    2016-01-01

    sufficient research has yielded positive results in animal models, EVAC could be used as a supportive treatment in humans along with conventional antiviral therapies. EVAC would not be suitable for all viral infections, but could be expected to decrease the casualties resulting from blood-borne viral infections. The EVAC approach would be efficient in terms of time, effort, and expenditure in the research and treatment of blood-borne viral infections. PMID:26893542

  6. Antiviral Roles of Plant ARGONAUTES

    PubMed Central

    Carbonell, Alberto; Carrington, James C.

    2015-01-01

    ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions. PMID:26190744

  7. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  8. New line of high efficiency turbochargers

    SciTech Connect

    Chellini, R,

    1994-11-01

    The French firm Hispano Suiza has recently introduced the first of a new family of high-efficiency turbochargers. The design objectives for these turbochargers is to combine the most advanced technology in both the compressor and turbine components. The HS 5800 New Generation Turbocharger is suited for diesel engines in the 1700-3000 kW power range for a single turbocharger unit. When the HS 4800 and HS 6800 sizes are introduced the line will cover a range of engines from 1200 to 9000 kW. 5 figs.

  9. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  10. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  11. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  12. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  13. Current Landscape of Antiviral Drug Discovery

    PubMed Central

    Blair, Wade; Cox, Christopher

    2016-01-01

    Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV) and influenza (flu). Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections. PMID:26962437

  14. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  15. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  16. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  17. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  18. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  19. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  20. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  1. High efficiency francium trap for precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Aubin, Seth Andre Morgan

    We cooled and trapped francium in a high efficiency magneto-optical trap. The francium is produced artificially in a nuclear fusion reaction using the Stony Brook superconducting LINAC. We observed an average trap population of 50,000 210Fr, corresponding to a trapping efficiency of 1.2%. The trapped atoms are cooled to a temperature of 75 muK. We used the new trapping apparatus for spectroscopic studies of the 9S 1/2 level of 210Fr to test the precision of atomic theory. We measured the hyperfine splitting of the 9S1/2 level, and with time-correlated single photon counting, we measured its radiative lifetime. We found a lifetime of 107.53 +/- 0.80 ns and a hyperfine splitting of 4045.1 +/- 1.1 MHz. We characterized the optical properties of a dipole trap based on an axicon lens to provide a low perturbation environment for precision spectroscopy. The axicon generates a region of darkness surrounded by light. For blue-detuned light, cold atoms are trapped in the dark region and experience almost no perturbing fields. This work continues the spectroscopic studies of francium for tests of atomic theory and opens the way for nuclear anapole moment measurements.

  2. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors.

    PubMed

    Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-Hai

    2016-06-22

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms.

  3. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors

    PubMed Central

    Huang, Chen; Du, Yinping; Yu, Zhibin; Zhang, Qiong; Liu, Yihao; Tang, Jun; Shi, Jishu; Feng, Wen-hai

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms. PMID:27329948

  4. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  5. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  6. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method.

  7. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  8. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  9. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  10. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  11. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  12. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  13. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  14. Innate Antiviral Defenses Independent of Inducible IFNα/β Production.

    PubMed

    Paludan, Søren R

    2016-09-01

    The type I interferons (IFNs) (IFNα and IFNβ) not only have potent antiviral activities, but also have pathological functions if produced at high levels or over a long time. Recent articles have described antiviral immune mechanisms that are activated in response to virus infection at epithelial surfaces independently of IFNα and IFNβ. This may allow the host to exert rapid local antiviral activity and only induce a full-blown, and potentially pathological, type I IFN response in situations where stronger protective immunity is needed. Here, I describe the emerging understanding of early antiviral defenses, which are independent of type I IFN responses, and also discuss how this enables tissues to exert rapid antiviral activities and to limit type I IFN production. PMID:27345728

  15. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  16. Antiviral options for biodefense.

    PubMed

    Byrd, Chelsea M; Grosenbach, Douglas W; Hruby, Dennis E

    2013-10-01

    A key to biodefense strategies is an assessment of current therapies available as well as the expedited development of new antiviral therapeutic options. Viruses make up the majority of the National Institute of Allergy and Infectious Diseases (NIAID) Category A Priority Pathogens, agents that are considered to pose the greatest risk to public health and national security, and yet there are currently no approved treatments for most of these viral biodefense threats. A review of the Category A viral biothreat agents and strategies for the development of new therapeutics are presented here. PMID:23773331

  17. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  18. A high-efficiency aerothermoelastic analysis method

    NASA Astrophysics Data System (ADS)

    Wan, ZhiQiang; Wang, YaoKun; Liu, YunZhen; Yang, Chao

    2014-06-01

    In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier's law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

  19. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  20. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  1. Antimicrobial and antiviral effect of high-temperature short-time (HTST) pasteurization applied to human milk.

    PubMed

    Terpstra, Fokke G; Rechtman, David J; Lee, Martin L; Hoeij, Klaske Van; Berg, Hijlkeline; Van Engelenberg, Frank A C; Van't Wout, Angelica B

    2007-03-01

    In the United States, concerns over the transmission of infectious diseases have led to donor human milk generally being subjected to pasteurization prior to distribution and use. The standard method used by North American milk banks is Holder pasteurization (63 degrees C for 30 minutes). The authors undertook an experiment to validate the effects of a high-temperature short-time (HTST) pasteurization process (72 degrees C for 16 seconds) on the bioburden of human milk. It was concluded that HTST is effective in the elimination of bacteria as well as of certain important pathogenic viruses.

  2. High efficiency transformation of E. coli by high voltage electroporation.

    PubMed

    Dower, W J; Miller, J F; Ragsdale, C W

    1988-07-11

    E. coli can be transformed to extremely high efficiencies by subjecting a mixture of cells and DNA to brief but intense electrical fields of exponential decay waveform (electroporation). We have obtained 10(9) to 10(10) transformants/micrograms with strains LE392 and DH5 alpha, and plasmids pUC18 and pBR329. The process is highly dependent on two characteristics of the electrical pulse: the electric field strength and the pulse length (RC time constant). The frequency of transformation is a linear function of the DNA concentration over at least six orders of magnitude; and the efficiency of transformation is a function of the cell concentration. Most of the surviving cells are competent with up to 80% transformed at high DNA concentration. The mechanism does not appear to include binding of the DNA to the cells prior to entry. Possible mechanisms are discussed and a simple procedure for the practical use of this technique is presented. PMID:3041370

  3. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  4. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  5. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Epand, Raquel F.; Epand, Richard M.

    2014-01-01

    Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. PMID:24463069

  6. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments.

    PubMed

    Wang, Guangshun; Mishra, Biswajit; Epand, Raquel F; Epand, Richard M

    2014-09-01

    Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina

  7. Sensitivity of hepatitis C virus RNA to the antiviral enzyme ribonuclease L is determined by a subset of efficient cleavage sites.

    PubMed

    Han, Jian-Qiu; Wroblewski, Gerggory; Xu, Zan; Silverman, Robert H; Barton, David J

    2004-11-01

    Ribonuclease L (RNase L) cleaves RNA predominantly at single-stranded UA and UU dinucleotides. Intriguingly, hepatitis C virus (HCV) RNAs have a paucity of UA and UU dinucleotides, and relatively interferon (IFN)-resistant strains have fewer UA and UU dinucleotides than do more IFN-sensitive strains. In this study, we found that contextual features of UA and UU dinucleotides dramatically affected the efficiency of RNase L cleavage in HCV RNA. HCV genotype la RNA was cleaved by RNase L into fragments 200-1000 bases in length, consistent with 10-50 RNase L cleavage sites within the 9650-base long viral RNA. Using primer extension, we found that HCV RNA structures with multiple single-stranded UA and UU dinucleotides were cleaved most efficiently by RNase L. UA and UU dinucleotides with 3' proximal C or G residues were cleaved infrequently, whereas UA and UU dinucleotides within dsRNA structures were not cleaved. 5'-GUAC-3' and 5'-CUUC-3' were particularly unfavorable contexts for cleavage by RNase L. More than 60% of the UA and UU dinucleotides in HCV la RNA were not cleaved by RNase L because of these contextual features. The 10-30 most efficiently cleaved sites were responsible for approximately 50%-85% of all RNase L cleavage events. Our data indicate that a relatively small number of the UA and UU dinucleotides in HCV RNA mediate the overall sensitivity of HCV RNA to cleavage by RNase L.

  8. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  9. High Efficiency Submillimeter-Wave Imaging Array

    NASA Technical Reports Server (NTRS)

    Llombart, Nuria; Skalare, Anders; Gill, John J.; Siegel, Peter H.

    2008-01-01

    The period of a focal array is limited by the angular sampling and the f number of the system. This fact will limit the efficiency of imaging array systems to around 50%. Recently it been demonstrated that the use of a dielectric layer on top of an array of apertures can improve this efficiency limit. In this paper, we describe a similar structure that improves the efficiency in imaging applications and that it is easy to manufacture due to its compatibility with planar lithographic techniques.

  10. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  11. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism.

    PubMed

    Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka; Guo, Peixuan

    2016-09-15

    The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially. PMID:27356896

  12. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism.

    PubMed

    Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka; Guo, Peixuan

    2016-09-15

    The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.

  13. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  14. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  15. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Yuan, Runyu; Song, Yafen; Cui, Pengfei; Guo, Xuchen; Zheng, Bofang; Jia, Weixin; Qi, Wenbao; Ren, Tao; Liao, Ming

    2013-05-15

    In mammals, Toll-like receptor 7 (TLR7) is an important membrane-bound receptor triggered by antiviral compounds and single-stranded RNA. It is implicated in the immune response to viruses such as influenza virus. It was not known whether geese, a natural host for avian influenza viruses, possess a homologue of mammalian TLR7 for recognizing avian influenza virus. In this study, we cloned the full-length of goose TLR7 and partial sequences of its adaptor protein, myeloid differentiation factor 88 (MyD88), some antiviral molecules such as RNA-dependent protein kinase (PKR) and 2',5'-oligoadenylate synthetase (OAS). Goose TLR7 has a protein secondary structure identical to that of mammals, consisting of several leucine-rich domains, a transmembrane domain, and Toll/interleukin-1 receptor domain. To further understand whether the MyD88-dependent pathway of TLR7 is involved in the antiviral innate immune response against highly pathogenic avian influenza virus (HPAIV) infection in geese, we inoculated geese with an H5N1 HPAIV isolated from ducks in 2004. The virus, A/Duck/Guangdong/212/2004, replicated in various tissues resulting in 40% mortality. Quantitative real-time PCR analysis showed upregulation of mRNA transcripts for TLR7, MyD88, PKR and OAS in the lungs of geese at 1, 2 and 3 days post-inoculation. Therefore, the MyD88-dependent pathway of TLR7 was involved in the early stage of antiviral innate immune response in geese during H5N1 HPAIV infection.

  16. Antiviral immunity in amphibians.

    PubMed

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  17. Antiviral Immunity in Amphibians

    PubMed Central

    Chen, Guangchun; Robert, Jacques

    2011-01-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission. PMID:22163335

  18. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  19. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  20. Value of the dorsal cutaneous guinea pig model in selecting topical antiviral formulations for the treatment of recurrent herpes simplex type 1 disease.

    PubMed

    Poli, G; Dall'Ara, P; Binda, S; Santus, G; Poli, A; Cocilovo, A; Ponti, W

    2001-01-01

    Recurrent herpes simplex labialis represents a disease still difficult to treat, despite the availability of many established antiviral drugs used in clinical research since 30 years ago. Although differences between the human disease and that obtained in experimental animal suggest caution in predicting an effective clinical response from the experimental results, some of the animal models seem to be useful in optimising the topical formulation of single antiviral drugs. In the present work the dorsal cutaneous guinea pig model was used to compare 5 different topical antiviral formulations with clinical promise (active molecule: 5% w/w micronized aciclovir, CAS 59277-89-3), using both roll-on and lipstick application systems. The aim being to evaluate which vehicle (water, oil, low melting and high melting fatty base) and application system (roll-on, lipstick) enhances the skin penetration and the antiviral activity of the drug, after an experimental intradermal infection with Herpes simplex virus type 1 (HSV-1). As reference, a commercial formulation (5% aciclovir ointment) was used. The cumulative results of this study showed that the formulation A, containing 5% aciclovir in an aqueous base in a roll-on application system, has the better antiviral efficacy in reducing the severity of cutaneous lesions and the viral titer; among the lipsticks preparations, the formulation D, containing 5% aciclovir in a low melting fatty base, demonstrates a very strong antiviral activity, though slightly less than formulation A. This experimental work confirms the validity of the dorsal cutaneous guinea pig model as a rapid and efficient method to compare the antiviral efficacy of new formulations, with clinical promise, to optimise the topical formulation of the active antiviral drugs. PMID:11413746

  1. Value of the dorsal cutaneous guinea pig model in selecting topical antiviral formulations for the treatment of recurrent herpes simplex type 1 disease.

    PubMed

    Poli, G; Dall'Ara, P; Binda, S; Santus, G; Poli, A; Cocilovo, A; Ponti, W

    2001-01-01

    Recurrent herpes simplex labialis represents a disease still difficult to treat, despite the availability of many established antiviral drugs used in clinical research since 30 years ago. Although differences between the human disease and that obtained in experimental animal suggest caution in predicting an effective clinical response from the experimental results, some of the animal models seem to be useful in optimising the topical formulation of single antiviral drugs. In the present work the dorsal cutaneous guinea pig model was used to compare 5 different topical antiviral formulations with clinical promise (active molecule: 5% w/w micronized aciclovir, CAS 59277-89-3), using both roll-on and lipstick application systems. The aim being to evaluate which vehicle (water, oil, low melting and high melting fatty base) and application system (roll-on, lipstick) enhances the skin penetration and the antiviral activity of the drug, after an experimental intradermal infection with Herpes simplex virus type 1 (HSV-1). As reference, a commercial formulation (5% aciclovir ointment) was used. The cumulative results of this study showed that the formulation A, containing 5% aciclovir in an aqueous base in a roll-on application system, has the better antiviral efficacy in reducing the severity of cutaneous lesions and the viral titer; among the lipsticks preparations, the formulation D, containing 5% aciclovir in a low melting fatty base, demonstrates a very strong antiviral activity, though slightly less than formulation A. This experimental work confirms the validity of the dorsal cutaneous guinea pig model as a rapid and efficient method to compare the antiviral efficacy of new formulations, with clinical promise, to optimise the topical formulation of the active antiviral drugs.

  2. Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening.

    PubMed

    Towner, Jonathan S; Paragas, Jason; Dover, Jason E; Gupta, Manisha; Goldsmith, Cynthia S; Huggins, John W; Nichol, Stuart T

    2005-02-01

    Zaire ebolavirus causes large outbreaks of severe and usually fatal hemorrhagic disease in humans for which there is no effective treatment or cure. To facilitate examination of early critical events in viral pathogenesis and to identify antiviral compounds, a recombinant Zaire ebolavirus was engineered to express a foreign protein, eGFP, to provide a rapid and sensitive means to monitor virus replication in infected cells. This genetically engineered virus represents the first insertion of a foreign gene into ebolavirus. We show that Ebola-eGFP virus (EboZ-eGFP) infects known early targets of human infections and serves as an ideal model to screen antiviral compounds in less time than any previously published assay.

  3. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  4. Highly Efficient Self-Replicating RNA Enzymes

    PubMed Central

    Robertson, Michael P.; Joyce, Gerald F.

    2014-01-01

    SUMMARY An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic efficiency of the enzyme. Directed evolution was used to improve the efficiency of the enzyme and increase its exponential growth rate to 0.14 min−1, corresponding to a doubling time of 5 min. This is close to the limit of 0.21 min−1 imposed by the rate of product release, but sufficient to enable more than 80 logs of growth per day. PMID:24388759

  5. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  6. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  7. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  8. Exploiting Genetic Interference for Antiviral Therapy.

    PubMed

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  9. Antiviral therapy effects upon hepatitis C cholestatic syndrome.

    PubMed

    Vere, C C; Gofiţă, Eliza; Forţofoiu, C; Streba, Letiţia Adela Maria; Genunche, Amelia

    2007-01-01

    Cholestasis includes, as a syndrome, all clinical and biological manifestations caused by the deficient or simply absent biliar secretion or caused by the obstruction of the biliary ducts. The hepatic cholestasis from the chronic hepatitis C (HC VHC) is a result of the altered interlobular biliary canalicules, caused by the modified cellular transport mechanisms and it is associated with a medium to severe degree of fibrosis. The aim of this study was to evaluate the efficiency of antiviral therapy in HC VHC patients. The study included a number of 37 HC VHC patients admitted at the Medical Department no. 1 of the Emergency County Hospital of Craiova; they were treated with Pegasys, 180 microg/week and Copegus, 1000 or 1200 mg/day, taking in consideration their weight, for 48 weeks and they were monitored for 24 weeks after the treatment. The following parameters were analyzed: direct bilirubine, total cholesterol, alkaline phosphatase, gamma-glutamiltranspeptidase and leucin-aminopeptidase. Under treatment, the clinical status caused by the cholestasis (pruritus, icteric syndrome, hemoragipary syndrome) was improved in six of the given cases (16.22%). Before therapy, the hepatic cholestasis was present in 20 patients (54.05%), and after treatment in 14 patients (37.83%). During therapy, the average values for all the monitored parameters decreased: direct bilirubine (0.38 +/- 0.18 mg/dl vs. 0.34 +/- 0.24 mg/dl, p = 0.0867), total cholesterol (198.53 md/dl vs. 183.16 mg/dl, p = 0.0808), alkaline phosphatase (236.99 +/- 79.09 iu/l vs. 227.82 +/- 87.59 iu/l, p = 0.0845), gamma-glutamiltranspeptidase (47 +/- 32.89 iu/l vs. 43.91 +/- 29.66 iu/l, p = 0.1509), and leucin-aminopeptidase (32.33 +/- 13.22 iu/l vs. 28.95 +/- 14.22 iu/l, p = 0.0038). Under antiviral treatment there was noticed an improvement of the cholestasis clinical status in a small number of cases. Antiviral therapy favorably influenced the liver cholestasis associated in patients with chronic hepatitis

  10. A high-efficiency mode coupler autotracking feed

    NASA Astrophysics Data System (ADS)

    Cipolla, Frank; Seck, Gerry

    The design, construction, and installation of high-efficiency autotracking feeds using a tracking mode coupler at both S, C, and X band are presented. These feeds have shown greater than 65 percent efficiencies when mounted in a doubly shaped dual reflector antenna. The mode coupler feed attributes include high-efficiency in both the data and track channels, full waveguide bandwidth operation, good feed error gradients, high-power handling, and active cross talk correction.

  11. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  12. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shiang, Yen-Chun; Ou, Chung-Mao; Chen, Shih-Ju; Ou, Ting-Yu; Lin, Han-Jia; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-03-01

    We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45

  13. Emerging antiviral drugs.

    PubMed

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025.

  14. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  15. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides. PMID:15308605

  16. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides.

  17. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  18. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  19. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    PubMed

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  20. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  1. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  2. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  3. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  4. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  5. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  6. Identification of Three Antiviral Inhibitors against Japanese Encephalitis Virus from Library of Pharmacologically Active Compounds 1280

    PubMed Central

    Peng, Guiqing; Xu, Jia; Zhou, Rui; Cao, Shengbo; Chen, Huanchun; Song, Yunfeng

    2013-01-01

    Japanese encephalitis virus (JEV) can cause severe central nervous disease with a high mortality rate. There is no antiviral drug available for JEV-specific treatment. In this study, a cytopathic-effect-based, high-throughput screening assay was developed and applied to screen JEV inhibitors from Library of Pharmacologically Active Compounds 1280. The antiviral effects of three hit compounds including FGIN-1-27, cilnidipine, and niclosamide were evaluated in cells by western blotting, indirect immunofluorescence assay, and plaque reduction assay. A time-of-addition assay proved that all three compounds inhibited JEV at the stage of replication. The EC50s of FGIN-1-27, cilnidipine, and niclosamide were 3.21, 6.52, and 5.80 µM, respectively, while the selectivity indexes were 38.79, 30.67, and 7.49. FGIN-1-27 and cilnidipine have high efficiency and selectivity against JEV. This study provided two JEV antiviral inhibitors as candidates for treatment of JEV infection. PMID:24348901

  7. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  8. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  9. Perspective of Use of Antiviral Peptides against Influenza Virus.

    PubMed

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-10-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  10. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  11. Current and new cytomegalovirus antivirals and novel animal model strategies.

    PubMed

    McGregor, Alistair

    2010-09-01

    Cytomegalovirus (CMV) is a significant health problem among immunosuppressed individuals. In particular, transplant and AIDS patients and the developing fetus in utero are highly susceptible to CMV. In these vulnerable populations, infection leads to life threatening end organ viral disease or in surviving newborn babies to deafness or to mental retardation. Currently, the most effective way to control CMV infection, given the lack of an effective vaccine, is by antiviral therapy. However, available antivirals suffer from complications associated with prolonged use, such as drug toxicity as well as the emergence of resistant strains of virus. Additionally, since CMV has multiple complex immune evasion strategies, to avoid innate and adaptive immune responses, there is a need for new antiviral development. Any antiviral should be tested in a controlled animal model but species specificity of HCMV precludes the direct study of the virus in an animal model. Consequently, animal CMV in their respective animal host are used to study intervention strategies. In this review, both current and new antiviral strategies are discussed as are the various animal models and strategies to improve existing antiviral animal models by humanizing animal CMV.

  12. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  13. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV)

    PubMed Central

    2009-01-01

    Background Influenza virus (IV) infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV) in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir) is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF) in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV) of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1), were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options for IV replication and

  14. Interferon lambda induces antiviral response to herpes simplex virus 1 infection.

    PubMed

    Lopušná, K; Režuchová, I; Kabát, P; Kúdelová, M

    2014-01-01

    Lambda interferons (IFN-λ) are known to induce potent antiviral response in a wide variety of target cells. They activate the same intracellular signalling pathways and have similar biological activities as IFN-α/β, including antiviral activity, but signal via distinct receptor complex, which is expressed in a cell- and species-specific manner. IFN-λ was reported to induce in vitro marked antiviral activity against various RNA viruses, but corresponding data on DNA viruses are sparse. Therefore we examined the IFN-λ1 induced antiviral activity against two strains of herpes simplex virus 1, a highly pathogenic ANGpath and moderately pathogenic KOS. The antiviral response was determined in vitro in Vero cells, known as deficient in production of type I IFNs and in Vero E6 cells, responding to viral infection with abundant IFN-λ production, although deficient in production of type I IFNs. The results showed that IFN-λ1 induced in Vero cells higher antiviral activity against ANGpath strain than against KOS strain. In Vero E6 cells endogenous IFN-λ induced higher antiviral activity against ANGpath strain than against KOS strain, but because of the virus induction of IFN-λ expression the antiviral activity was detected later. The observed differences between the IFN-λ1-induced antiviral activities against viral strains of various pathogenicity suggest that virus attributes may play role in the antiviral state of cells induced by IFN-λ. PMID:25518713

  15. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed Central

    Nelson, Frank E.; Ortega, Justus D.; Jubrias, Sharon A.; Conley, Kevin E.; Kushmerick, Martin J.

    2011-01-01

    Summary Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca2+ cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca2+ cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo. PMID:21795559

  16. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed

    Nelson, Frank E; Ortega, Justus D; Jubrias, Sharon A; Conley, Kevin E; Kushmerick, Martin J

    2011-08-15

    Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.

  17. Towards antivirals against chikungunya virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2015-09-01

    Chikungunya virus (CHIKV) has re-emerged in recent decades, causing major outbreaks of chikungunya fever in many parts of Africa and Asia, and since the end of 2013 also in Central and South America. Infections are usually associated with a low mortality rate, but can proceed into a painful chronic stage, during which patients may suffer from polyarthralgia and joint stiffness for weeks and even several years. There are no vaccines or antiviral drugs available for the prevention or treatment of CHIKV infections. Current therapy therefore consists solely of the administration of analgesics, antipyretics and anti-inflammatory agents to relieve symptoms. We here review molecules that have been reported to inhibit CHIKV replication, either as direct-acting antivirals, host-targeting drugs or those that act via a yet unknown mechanism. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."

  18. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  19. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  20. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  1. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  2. Development of an Improved High Efficiency Thin Solar Cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C.; Storti, G.

    1979-01-01

    High efficiency cells (up to 14 AMO at 25 C)were fabricated from 10 - 15 ohm-cm silicon by using screen printed aluminum paste as the alloy source for the production of back surface fields. Thick consistency pastes that have been cured prior to a short heat treatment at 850 C were most effective in achieving these efficiency levels.

  3. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  4. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  5. Regenerative fuel cell combines high efficiency with low cost

    NASA Technical Reports Server (NTRS)

    Doyle, H.; Frank, H.; Stephens, C. W.

    1965-01-01

    Hydrogen/oxygen regenerative fuel cell stores electrical energy efficiently and inexpensively. The fuel cell has a high energy-to-weight ratio, and is adapted for a large number of cycles with deep discharge.

  6. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  7. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  8. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  9. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  10. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  11. High-efficiency silicon concentrator solar cell research

    NASA Astrophysics Data System (ADS)

    Greene, M. A.; Blakers, A. W.; Zhao, Jianhua; Wang, Ahua; Milne, A. M.; Ximing, Dai; Chong, C. M.

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells.

  12. High-efficiency silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Blakers, A.W.; Jianhua, Zhao; Aihua, Wang; Milne, A.M.; Dai, Ximing; Chong, C.M. . Solar Photovoltaic Lab.)

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready'' cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells. 22 refs., 23 figs., 9 tabs.

  13. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  14. The emerging High Efficiency Video Coding standard (HEVC)

    NASA Astrophysics Data System (ADS)

    Raja, Gulistan; Khan, Awais

    2013-12-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC.

  15. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  16. A high efficiency architecture for cascaded Raman fiber lasers.

    PubMed

    Supradeepa, V R; Nichsolson, Jeffrey W; Headley, Clifford E; Yan, Man F; Palsdottir, Bera; Jakobsen, Dan

    2013-03-25

    We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously. In this work we demonstrate a 1480nm laser pumped by an 1117nm Yb-doped fiber laser with maximum output power of 204W and conversion efficiency of 65% (quantum-limited efficiency is ~75%). We believe both the output power and conversion efficiency (relative to quantum-limited efficiency) are the highest reported for cascaded Raman fiber lasers.

  17. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  18. Mid-infrared interband cascade photodetectors with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Tian, Zhao-Bing; Singh, Anjali; Rigg, Kevin; Krishna, Sanjay

    2016-02-01

    Antimony-based Interband Cascade (IC) photodetectors are emerging as viable candidates for highperformance infrared applications, especially at high operating temperatures. In our previous IC detector designs using InAs/GaSb Type-II superlattices, the quantum efficiency was relatively low as the designs were optimized for high signal to noise ratio. Here we report our recent development of low-noise mid-IR IC photodetectors with high external quantum efficiency. By adopting IC detectors with thicker absorber designs, the quantum efficiency of these mid-IR IC detectors has been increased up to 35%. These IC devices continue to have low-dark current and high temperature operations. Some further analysis on the device characteristics is also presented.

  19. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  20. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  1. Conversion efficiency of high-Z backlighter materials

    SciTech Connect

    Keiter, Paul A.; Tierney, Heidi; Workman, Jonathan; Comely, Andrew; Morton, John; Taylor, Mark

    2008-10-15

    High-Z backlighter materials are commonly used as x-ray sources for diagnosing laser-driven experiments. In order to properly plan for experiments and analyze the data, it is important to understand both the number and distribution of photons emitted by the x-ray source when it is irradiated by a laser. The conversion efficiency of L-shell and M-shell emitters is not as well understood as K-shell emitters. The conversion efficiency of the former is typically presented in terms of the entire L- or M-shell spectral region. However, for some applications, one may only want to use a subset of this spectral region. Laser conversion efficiency for L-shell and M-shell emitters suitable for high-energy (>3 keV) absorption spectroscopy is presented at multiple laser intensities. The measured conversion efficiency of the materials ranges from 0.2% to 0.6%.

  2. Development of an Improved High Efficiency Thin Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Wrigley, C.

    1979-01-01

    Breakage and front contact failure in high efficiency, textured ultrathin cells was reduced as a consequence of the introduction of process modifications. In a small production run, over one hundred ultrathin cells, having an average AMO efficiency of 13%, were fabricated from 10-25 ohm cm silicon. An in-house aluminum paste for back surface field formation was developed that resulted in cell efficiencies equivalent to those from commercial pastes. The quality of the back surface field was found to be dependent on the orientation of the silicon slice during alloying.

  3. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  4. Design of dense transmission diffraction gratings for high efficiency.

    PubMed

    Golub, Michael A

    2015-01-01

    We propose a design method for dense surface-relief diffraction gratings with high efficiency in transmission mode. Closed-form analytical relations between diffraction efficiency, polarization, and grating parameters are derived and verified in the resonance domain of diffraction under general three-dimensional angles of incidence traditionally termed conical mounting. A powerful tool for rigorous design of computer-generated holograms and diffractive optical elements with spectroscopic scale periods is now enabled.

  5. High efficiency inorganic/organic hybrid tandem solar cells.

    PubMed

    Seo, Ji Hoon; Kim, Dong-Ho; Kwon, Se-Hun; Song, Myungkwan; Choi, Min-Seung; Ryu, Seung Yoon; Lee, Hyung Woo; Park, Yun Chang; Kwon, Jung-Dae; Nam, Kee-Seok; Jeong, Yongsoo; Kang, Jae-Wook; Kim, Chang Su

    2012-08-28

    Hybrid tandem solar cells comprising an inorganic bottom cell and an organic top cell have been designed and fabricated. The interlayer combination and thickness matching were optimized in order to increase the overall photovoltaic conversion efficiency. A maximum power conversion efficiency of 5.72% was achieved along with a V(oc) of 1.42 V, reaching as high as 92% of the sum of the subcell V(oc) values. PMID:22807214

  6. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  7. Evaluation of antiseptic antiviral activity of chemical agents.

    PubMed

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  8. Multiple Exciton Generation for Highly Efficient Solar Cells

    NASA Astrophysics Data System (ADS)

    Nozik, Arthur

    2007-03-01

    In order to utilize solar power for the production of electricity and fuel on a massive scale, it will be necessary to develop solar photon conversion systems that have an appropriate combination of high efficiency and low capital cost (/m^2). One new potential approach to high solar cell efficiency is to utilize the unique properties of semiconductor quantum dot nanostructures to control the relaxation dynamics of photogenerated carriers to produce either enhanced photocurrent through efficient multiple exciton generation (MEG) or enhanced photopotential through hot electron transport and transfer processes. To achieve these desirable effects it is necessary to understand and control the dynamics of electron relaxation, cooling, multiple exciton generation , transport, and interfacial electron transfer of the photogenerated carriers with fs to ns time resolution. We have been studying these fundamental dynamics in bulk and nanoscale semiconductors (quantum dots, quantum wires, and quantum wells) using femtosecond transient absorption, photoluminescence, and THz spectroscopy. This work will be summarized and recent advances in creating multiple excitons from a single photon will be discussed, including a unique model to explain efficient MEG based on the coherent superposition of multiple excitonic states. Various possible configurations for quantum dot solar cells that could produce ultra-high conversion efficiencies for the production of electricity, as well as for producing solar fuels (for example, hydrogen from water splitting), will be discussed, along with associated thermodynamic calculations that show the increase in the maximum theoretical gain in solar photon conversion efficiency for both electricity and fuel production.

  9. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...

  10. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  11. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  12. High Efficient Synthesis of Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    We have performed systematic investigations aimed at high efficient synthesis of the 1111 family iron-based superconductors. By using meta-stable reactive starting materials of LnAs and FeO, assisted by mechanical alloying and fast heating, high purity samples with Tconset greater than 50K can be made with sintering temperatures between 1433K-1073K, and sintering time from 20 min to 40 h. High purity phase with sintering temperature as low as 973K was demonstrated successfully although Tconset fall below 50K and weak grain boundary suppressed greatly the zero resistance temperature. Ultra fast microwave sintering brings the sintering time further down to 5 min. Samples prepared by the above high efficient methods typically posses submicron grain and very high upper critical field, indicating very high pinning power. Besides offering cost advantages, the developed methods may play important roles in the exploit of novel superconductors.

  13. High efficiency, high temperature separations on silica based monolithic columns.

    PubMed

    Rogeberg, Magnus; Wilson, Steven Ray; Malerod, Helle; Lundanes, Elsa; Tanaka, Nobuo; Greibrokk, Tyge

    2011-10-14

    The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.

  14. A high-efficiency thermoelectric converter for space applications

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1990-12-31

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

  15. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  16. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  17. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures.

    PubMed

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  18. Efficiency enhancement in high power backward-wave oscillators

    SciTech Connect

    Goebel, D.M.; Feicht, J.R. Adler, E.A. ); Ponti, E.S. ); Eisenhart, R.L. ); Lemke, R.W. )

    1999-06-01

    High power microwave (HPM) sources based on the backward-wave oscillator (BWO) have been investigated for the past two decades primarily because of their potential for very high efficiency (15 to 40%) operation. Several different effects have been proposed to explain this high efficiency compared to conventional BWO's. One of the major contributors to the high efficiency of the plasma-filled Pasotron HPM BWO source is the presence of optimally phased end reflections. The Pasotron uses a long pulse ([ge]100 [micro]s) plasma-cathode electron-gun and plasma-filled slow-wave structure to produce microwave pulses in the range of 1 to 10 MW without the use of externally produced magnetic fields. The efficiency of the Pasotron can be enhanced by up to a factor of two when the device is configured as a standing-wave oscillator in which properly phased reflections from the downstream collector end of the finite length SWS constructively interfere with the fundamental backward-wave modes and improve the coupling of the beam to the circuit. Operation in this configuration increases the efficiency up to 30% but causes the frequency to vary in discrete steps and the output power to change strongly with beam parameters and oscillation frequency.

  19. Antiviral Strategies Against Chikungunya Virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2016-01-01

    In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections.

  20. Antiviral Strategies Against Chikungunya Virus.

    PubMed

    Abdelnabi, Rana; Neyts, Johan; Delang, Leen

    2016-01-01

    In the last few decades the Chikungunya virus (CHIKV) has evolved from a geographically isolated pathogen to a virus that is widespread in many parts of Africa, Asia and recently also in Central- and South-America. Although CHIKV infections are rarely fatal, the disease can evolve into a chronic stage, which is characterized by persisting polyarthralgia and joint stiffness. This chronic CHIKV infection can severely incapacitate patients for weeks up to several years after the initial infection. Despite the burden of CHIKV infections, no vaccine or antivirals are available yet. The current therapy is therefore only symptomatic and consists of the administration of analgesics, antipyretics, and anti-inflammatory agents. Recently several molecules with various viral or host targets have been identified as CHIKV inhibitors. In this chapter, we summarize the current status of the development of antiviral strategies against CHIKV infections. PMID:27233277

  1. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  2. Investigation of beat-waves generation with high efficiency

    SciTech Connect

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  3. High-efficiency transmission gratings fabricated in bulk fused silica

    SciTech Connect

    Nguyen, H.T.; Shore, B.W.; Britten, J.A.; Bryan, S.J.; Falabella, S.; Boyd, R.D.; Perry, M.D.

    1996-03-01

    The authors present the design and performance of high-efficiency transmission gratings fabricated in bulk fused silica for use in ultraviolet high-power laser systems. The gratings exhibit a diffraction efficiency exceeding 95% in the m = {minus}1 order and damage threshold greater than 13 J/cm{sup 2} for 1 nsec pulses at 351 nm. Model calculations and experimental measurements are in good agreement. They describe the design and fabrication of these gratings based on the transfer ion etching of photoresist patterns produced by interference lithography.

  4. Investigation of beat-waves generation with high efficiency

    NASA Astrophysics Data System (ADS)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-01

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  5. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  6. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  7. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  8. Antiviral selection in the management of acute retinal necrosis

    PubMed Central

    Tam, Patrick MK; Hooper, Claire Y; Lightman, Susan

    2010-01-01

    There is no consensus on the optimal antiviral regimen in the management of acute retinal necrosis, a disease caused by herpetic viruses with devastating consequences for the eye. The current gold standard is based on retrospective case series. Because the incidence of disease is low, few well-designed, randomized trials have evaluated treatment dosage and duration. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for inpatient intravenous treatment. Drug resistance is uncommon but may also be difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients who have underlying renal disease, are pregnant or are immunocompromised. PMID:20169044

  9. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    PubMed Central

    Linero, Florencia N.; Sepúlveda, Claudia S.; Giovannoni, Federico; Castilla, Viviana; García, Cybele C.; Scolaro, Luis A.; Damonte, Elsa B.

    2012-01-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection. PMID:23170173

  10. Exploiting Genetic Interference for Antiviral Therapy.

    PubMed

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings. PMID:27149616

  11. Exploiting Genetic Interference for Antiviral Therapy

    PubMed Central

    Kirkegaard, Karla A.; Weinberger, Leor S.

    2016-01-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings. PMID:27149616

  12. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  13. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  14. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  15. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  16. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  17. Evaluation of a high-efficiency, filter-bank system.

    PubMed

    Martin, Stephen B; Beamer, Bryan R; Moyer, Ernest S

    2006-04-01

    National Institute for Occupational Safety and Health (NIOSH) investigators evaluated filtration efficiencies at three U.S. Postal Service (USPS) facilities. Ventilation and filtration systems (VFSs) had been installed after the 2001 bioterrorist attacks when the USPS unknowingly processed letters laden with B. anthracis spores. The new VFS units included high-efficiency particulate air (HEPA) filters and were required by USPS contract specifications to provide an overall filtration efficiency of at least 99.97% for particles between 0.3 microm and 3.0 micro m. The USPS evaluation involved a modification of methodology used to test total filtration system efficiency in agricultural tractor cab enclosures. The modified sampling strategy not only proved effective for monitoring the total filtration system component of VFS performance but also distinguished between filtration systems performing to the high USPS performance criteria and those needing repair or replacement. The results clearly showed the importance of choosing a pair of optical particle counters that have been closely matched immediately prior to testing. The modified methodology is readily adaptable to any workplace wishing to evaluate air filtration systems, including high-efficiency systems. PMID:16531293

  18. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    SciTech Connect

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-07-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  19. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  20. Overview of SERI's high efficiency solar cell research

    NASA Technical Reports Server (NTRS)

    Benner, J. P.; Cole, L. A.; Leboeuf, C. M.

    1985-01-01

    The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process.

  1. Low Threshold and High Efficiency Nd:S-VAP Laser

    NASA Astrophysics Data System (ADS)

    Zhao, Shengzhi; Wang, Qingpu; Zhang, Xingyu; Wang, Xiaojie; Wang, Xiangtai; Sun, Lianke; Zhang, Shaojun

    1995-06-01

    The absorption spectrum of a new sort of crystal Nd:S-VAP was measured, which showed that Nd:S-VAP can be appropriately pumped at 583.0 and 809.0 nm. By using tunable dye-laser (570.0-600.0 nm) as pumping light, the performance of low threshold and high efficiency Nd:S-VAP laser has been realized. The characteristics of the output laser, such as 1.5 nm linewidth, 5 ns pulse width, almost total polarity, up to 50% conversion efficiency, down to 2 mJ threshold energy and so on, were presented. Meanwhile, the prospect of Nd:S-VAP crystal for low threshold, high efficiency miniature laser was discussed.

  2. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  3. High efficiency micro solar cells integrated with lens array

    NASA Astrophysics Data System (ADS)

    Fidaner, Onur; Suarez, Ferran A.; Wiemer, Michael; Sabnis, Vijit A.; Asano, Tetsuya; Itou, Akihiro; Inoue, Daijiro; Hayashi, Nobuhiko; Arase, Hidekazu; Matsushita, Akio; Nakagawa, Tohru

    2014-03-01

    We demonstrate high efficiency triple junction solar cells with submillimeter dimensions in an all-back-contact architecture. 550 × 550 μm2 cells flash at 41.3% efficiency under the air mass 1.5 direct normal spectrum at 50 W/cm2 at 25 °C. Compared to standard size production cells, the micro cells have reduced performance at 1-sun due to perimeter recombination, but the performance gap closes at higher concentrations. Micro cells integrated with lens arrays were tested on-sun with an efficiency of 34.7%. All-back-contact architecture and submillimeter dimensions are advantageous for module integration and heat dissipation, allowing for high-performance, compact, lightweight, and cost-effective concentrated photovoltaic modules.

  4. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  5. Basic studies of 3-5 high efficiency cell components

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. )

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  6. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Progress is reported in an attempt to realize higher specific power output and radiation resistance from thin solar cells for space applications. The efforts applied to establishing the technological base for fabricating high efficiency thin solar cells are described. Progress is characterized by continuous improvements in all parameters of the space cell.

  7. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Specific power output and radiation resistance characteristics developed for thin film silicon solar cells are reported. The technological base for fabricating these high efficiency cells and limitations of cell photovoltage are included. In addition, optical and electronic measurement instrumentation and mathematical analyses aids are included. Antireflection coatings for these cells are discussed.

  8. Development of High Efficiency (14%) Solar Cell Array Module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1979-01-01

    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.

  9. Basic studies of 3-5 high efficiency cell components

    NASA Astrophysics Data System (ADS)

    Lundstrom, M. S.; Melloch, M. R.; Pierret, R. F.; Carpenter, M. S.; Chuang, H. L.; Dodd, P. E.; Keshavarzi, A.; Klausmeier-Brown, M. E.; Lush, G. B.; Stellwag, T. B.

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell 'building blocks' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p(sup +) and n(sup +) GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  10. High-efficiency K-band tracking antenna feed

    NASA Technical Reports Server (NTRS)

    Beavin, R. L.; Simanyi, A. I.

    1975-01-01

    Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.

  11. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  12. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  13. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  14. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  15. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  16. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  17. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  18. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  19. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  20. High-efficiency heteroepitaxial solar cells for space power applications

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Keavney, C. J.; Wojtczuk, S. J.

    1989-01-01

    The experimental results for several technical approaches aimed at achieving highly efficient solar cells for space-power applications are reported. Efficiencies of up to 24.5 percent (170X, AM0) and 21.7 percent (1X, AM0) have been achieved with homoepitaxial GaAs p/n cells. This one-sun AM0 efficiency value is believed to be the highest reported to date. Tandem solar cells utilizing GaAs-on-Ge structures have been fabricated and shown to have efficiencies up to 21.3 percent (1X, AM0), and a GaAs-on-Si cell at 15.2 percent (1X, AM0) is reported. Homoepitaxial n/p InP cells with an efficiency of 18.8 percent (1X, AM0) are also reported. The fabrication of heteroepitaxial InP solar cells with one-sun AM0 efficiency values of 9.4 percent (on GaAs) and 7.2 percent (on Si) is described.

  1. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect

    Lowes, Ted

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today's commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  2. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  3. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a useful technique for functional characterization of plant genes. However, the silencing efficiency of the VIGS system is variable largely depending on compatibility between the host and the virus. Antiviral RNA silencing is involved in plant antiviral defense...

  4. Neonatal Plasmacytoid Dendritic Cells (pDCs) Display Subset Variation but Can Elicit Potent Anti-Viral Innate Responses

    PubMed Central

    Zhang, Xiaoming; Lepelley, Alice; Azria, Elie; Lebon, Pierre; Roguet, Gwenaelle; Schwartz, Olivier; Launay, Odile; Leclerc, Claude; Lo-Man, Richard

    2013-01-01

    Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV), human immunodeficiency virus (HIV) or herpes-simplex virus (HSV) by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses. PMID:23326320

  5. Gettering and passivation of high efficiency multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Narasimha, S.; Cai, L.

    1997-02-01

    A detailed study was conducted on aluminum and phosphorus gettering in HEM mc-Si and defect passivation by PECVD SiN in EFG mc-Si to achieve high efficiency solar cells on these promising photovoltaic materials. Solar cells with efficiencies as high as 18.6% (1 cm2 area) were achieved on multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM) by a process which implements impurity gettering, an effective back surface field, front surface passivation, and forming gas annealing. This represents the highest reported solar cell efficiency on mc-Si to date. PCD analysis revealed that the bulk lifetime in certain HEM samples after phosphorus gettering can be as high as 135 μs. By incorporating a deeper aluminum back surface field (Al-BSF), the back surface recombination velocity (Sb) for 0.65 Ω-cm HEM mc-Si solar cells was lowered from 10,000 cm/s to 2,000 cm/s resulting in the 18.6% efficient device. It was also observed that a screen-printed/RTP alloyed Al-BSF process could raise the efficiency of both float zone and relatively defect-free mc-Si solar cells by lowering Sb. However, this process was found to increase the electrical activity of extended defects so that mc-Si devices with a significant defect density showed an overall degradation in performance. In the case of EFG mc-Si, neural network modeling in conjunction with a study of post deposition annealing was used to provide guidelines for effective defect passivation by PECVD SiN films. Appropriate deposition and annealing conditions resulted in a 45% increase in cell efficiency due to AR coating and another 25-30% increase due to defect passivation by atomic hydrogen.

  6. Improving the efficiency of high purity water systems

    SciTech Connect

    Bukay, M.; Youngberg, D.

    1994-05-01

    High purity water (HPW) production involves the consumption of substantial amounts of energy, precious potable water, harsh/hazardous chemicals, and other environmental/impact materials. The discharge of some of the waste products from HPW systems is also a concern. The purpose of this paper is to discuss techniques to improve the efficiency of HPW production and thereby reduce any negative effects on the environment. It provides specific examples of how end-users and equipment suppliers are increasing the efficiency of their pretreatment, reverse osmosis, ion-exchange, and sanitization technology while frequently citing capital and operating cost reductions.

  7. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  8. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  9. Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xue, Ya-Nan; Liu, Min; Zhuo, Ren-Xi; Huang, Shi-Wen

    2010-11-01

    An amphiphilic disulfide-containing polyamidoamine was synthesized by Michael-type polyaddition reaction of piperazine to equimolar N, N'-bis(acryloyl)cystamine with 90% yield. The polycationic micelles (198 nm, 32.5 mV), prepared from the amphiphilic polyamidoamine by dialysis method, can condense foreign plasmid DNA to form nanosized polycationic micelles/DNA polyelectrolyte complexes with positive charges, which transfected 293T cells with high efficiency. Under optimized conditions, the transfection efficiencies of polycationic micelles/DNA complexes are comparable to, or even higher than that of commercially available branched PEI (Mw 25 kDa).

  10. High-efficiency heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Coutts, T. J.; Ward, J. S.; Emery, K. A.

    1991-01-01

    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet

  11. Analytic scaling analysis of high harmonic generation conversion efficiency.

    PubMed

    Falcão-Filho, E L; Gkortsas, M; Gordon, Ariel; Kärtner, Franz X

    2009-06-22

    Closed form expressions for the high harmonic generation (HHG) conversion efficiency are obtained for the plateau and cutoff regions. The presented formulas eliminate most of the computational complexity related to HHG simulations, and enable a detailed scaling analysis of HHG efficiency as a function of drive laser parameters and material properties. Moreover, in the total absence of any fitting procedure, the results show excellent agreement with experimental data reported in the literature. Thus, this paper opens new pathways for the global optimization problem of extreme ultraviolet (EUV) sources based on HHG.

  12. Development of high efficiency (14 percent) solar cell array module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1980-01-01

    Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.

  13. High-efficiency, 200 watt, 12-gigahertz traveling wave tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.; Mcnary, B. D.; Sauseng, O.

    1974-01-01

    Design and performance of a highly efficient experimental 200-watt traveling wave tube for space communications are described. The tube uses a coupled cavity slow wave structure with periodic permanent magnet focusing. A two-step velocity taper is incorporated in the slow wave structure for velocity resynchronization with the modulated beam. The spent beam is reconditioned in a refocusing section before it is collected in a novel multistage depressed collector. The collector is radiation cooled and heat insulated from the tube body. At saturation the tube provides peak output power of 240 watts with a 35-db gain and an overall maximum efficiency of 56 percent.

  14. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  15. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  16. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  17. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.

    PubMed

    Devlin, Robert C; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-09-20

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  18. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  19. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.

    PubMed

    Devlin, Robert C; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-09-20

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.

  20. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  1. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D.; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > $10^4$), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3$\\sim$5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  2. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  3. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A.

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  4. Predicting High Harmonic Ion Cyclotron Heating Efficiency in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Berry, L. A.; Chen, G.; Ryan, P. M.; Canik, J. M.; Jaeger, E. F.

    2011-09-01

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (˜kVm-1) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  5. Invited Article: Broadband highly efficient dielectric metadevices for polarization control

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (˜90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ˜99% polarization conversion efficiency.

  6. High efficiency particulate removal with sintered metal filters

    NASA Astrophysics Data System (ADS)

    Kirstein, B. E.; Paplawsky, W. J.; Pence, D. T.; Hedahl, T. G.

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off gas treatment system for a proposed transuranic waste treatment facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 C and 24 vol % water vapor in the gas stream.

  7. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas.

    PubMed

    Green, D L; Berry, L A; Chen, G; Ryan, P M; Canik, J M; Jaeger, E F

    2011-09-30

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (∼kV m(-1)) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  8. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  9. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  10. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-01

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage.

  11. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  12. Lightweight High Efficiency Electric Motors for Space Applications

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  13. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  14. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  15. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  16. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  17. Laser doping for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jäger, Ulrich; Wolf, Andreas; Steinhauser, Bernd; Benick, Jan; Nekarda, Jan; Preu, Ralf

    2012-10-01

    Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of Δ ƞ= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high quality n-type silicon.

  18. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  19. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  20. High voltage generator circuit with low power and high efficiency applied in EEPROM

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Shilin, Zhang; Yiqiang, Zhao

    2012-06-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  1. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  2. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  3. The high efficiency steel filters for nuclear air cleaning

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs.

  4. Blanket options for high-efficiency fusion power

    SciTech Connect

    Usher, J L; Lazareth, O W; Fillo, J A; Horn, F L; Powell, J R

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by argon) utilizing Li/sub 2/O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  5. Highly efficient reflective Dammann grating with a triangular structure.

    PubMed

    Wang, Jin; Zhou, Changhe; Ma, Jianyong; Zong, Yonghong; Jia, Wei

    2016-07-01

    A highly efficient reflective Dammann grating with a triangular structure operating at 1064 nm wavelength under normal incidence for TE polarization is designed and fabricated. Rigorous coupled wave analysis and particle swarm optimization algorithms are adopted to design and analyze the properties. The triangular reflective grating could cancel the 0th order, and the mechanism is clarified by the simplified modal method. The gratings are fabricated by direct laser writing lithography. The diffraction efficiency of fabricated grating is more than 86% at 1064 nm wavelength (97.6% in theory). This reflective grating should be a useful optical element in the field of high-power lasers as well as other reflective applications. PMID:27409211

  6. High Energy-Efficiency Retrofits to Baltimore's Row Homes

    SciTech Connect

    Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

    1999-04-19

    The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

  7. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Rai-Choudhury, P.

    1986-01-01

    Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.

  8. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  9. High-efficiency GaAs concentrator space cells

    NASA Technical Reports Server (NTRS)

    Werthen, J. G.; Virshup, G. F.; Macmillan, H. F.; Ford, C. W.; Hamaker, H. C.

    1987-01-01

    High efficiency Al sub x Ga sub 1-x As/GaAs heteroface solar concentrator cells have been developed for space applications. The cells, which were grown using metalorganic chemical vapor deposition (MOCVD), have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as the p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm by 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C.

  10. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  11. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  12. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  13. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  14. High-efficiency multi-colored photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Hovel, H. J.

    1983-09-01

    The objective of this project was to explore tandem/solar cell structures and methods to produce them. One was made with amorphous Si on crystalline Si. Other combinations of well-established materials such as Ge, Si, GaAs, and GaAiAs have a potential of producing solar cell efficiency in a high range (30 to 50%). The theoretical performances of several material combinations were computed under single load operation, and the effects of series and shunt resistances are shown. Computations also were made of optimal optical coatings and ohmic grid designs that are needed to construct high efficiency working devices. The epitaxial growth of GaAs, Ge AlAs and Si are then described for use in several configurations. Additionally, measurements of individual solar cells and tandem solar cells at several suns intensity (starting at one sun) are described.

  15. Development of an improved high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Wrigley, C.; Storti, G.

    1978-01-01

    Efforts were directed towards investigating means of producing more effective high-low junctions at the back of the cell. Cells with output power up to 77 mW (AM0 efficiency of 14.2 percent) were fabricated. Some reflectivity studies were also made. Deliveries of 2 cm x 2 cm experimental cells included a number having AM0 outputs greater than 70 mW.

  16. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  17. HEPA (high efficiency particulate air) filter optimization/implementation

    SciTech Connect

    Nenni, J.A.

    1988-02-10

    Prefilters were installed in high efficiency particularly air (HEPA) filter plenums at the Rocky Flats Plant. It was determined that prefiltration systems would extend the life of first-stage HEPA filters and reduce the amount of HEPA filter waste in the transuranic waste category. A remote handling system was designed to remove prefilters without entry into the plenum to reduce secondary waste and decrease exposure to Filter Technicians. 3 figs., 4 tabs.

  18. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  19. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  20. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  1. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  2. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  3. Flexible, highly efficient all-polymer solar cells.

    PubMed

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  4. High efficiency of collisional Penrose process requires heavy particle production

    NASA Astrophysics Data System (ADS)

    Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei

    2016-02-01

    The center-of-mass energy of two particles can become arbitrarily large if they collide near the event horizon of an extremal Kerr black hole, which is called the Bañados-Silk-West effect. We consider such a high-energy collision of two particles which started from infinity and follow geodesics in the equatorial plane and investigate the energy extraction from such a high-energy particle collision and the production of particles in the equatorial plane. We analytically show that, on the one hand, if the produced particles are as massive as the colliding particles, the energy-extraction efficiency is bounded by 2.19 approximately. On the other hand, if a very massive particle is produced as a result of the high-energy collision, which has negative energy and necessarily falls into the black hole, the upper limit of the energy-extraction efficiency is increased to (2 +√{3 })2≃13.9 . Thus, higher efficiency of the energy extraction, which is typically as large as 10, provides strong evidence for the production of a heavy particle.

  5. Flexible, highly efficient all-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-10-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  6. Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells.

    PubMed

    Choi, Hyeju; Jo, Hyeonjun; Paek, Sanghyun; Koh, Kyungkuk; Ko, Haye Min; Lee, Jae Kwan; Ko, Jaejung

    2016-02-18

    Efficient hole-transporting materials (HTMs), TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 incorporating two electron-rich diphenylamino side arms, through direct linkage or thiophen bridges, respectively, on the C3- and C5-positions of a 4-phenyl-1,2,4-triazole core were synthesized. These synthetic HTMs with donor-acceptor type molecular structures exhibited effective intramolecular charge transfer for improving the hole-transporting properties. The structural modification of HTMs by thiophene bridging might increase intermolecular π-π stacking in the solid state and afford a better spectral response because of their increased π-conjugation length. Perovskite-based cells using TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 as HTMs afforded high power conversion efficiencies of 10.9 % and 14.4 %, respectively, showing a photovoltaic performance comparable to that obtained using spiro-OMeTAD. These synthetically simple and inexpensive HTMs hold promise for replacing the more expensive spiro-OMeTAD in high-efficiency perovskite solar cells. PMID:26573775

  7. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  8. High-efficiency absorber for damping transverse wakefields

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Seeman, J.; Weathersby, S.

    2007-04-01

    Transverse wakefields generated by intense beams may propagate long distances in a vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves, or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate a high efficiency for this device. This absorber may be useful in super B-factories, the International Linear Collider, the Large Hadron Collider, or synchrotron light sources.

  9. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  10. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... to prevent seasonal influenza . Antiviral drugs are a second line of defense to treat the flu (including seasonal flu and variant flu viruses ) if you get sick. What are the benefits of antiviral drugs? When used for treatment, antiviral ...

  11. Antiviral therapy for human rabies.

    PubMed

    Appolinario, Camila M; Jackson, Alan C

    2015-01-01

    Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.

  12. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  13. High efficiency CIP 10-I personal inhalable aerosol sampler

    NASA Astrophysics Data System (ADS)

    Görner, P.; Wrobel, R.; Simon, X.

    2009-02-01

    The CIP 10 personal aerosol sampler was first developed by Courbon for sampling the respirable fraction of mining dust. This respirable aerosol sampler was further improved by Fabries, then selectors for sampling thoracic and inhalable aerosols were designed. Kenny et al. evaluated the particle-size dependent sampling efficiency of the inhalable version in a large-scale wind tunnel using a life-size dummy. The authors found that the overall sampling efficiency decreases more rapidly than the CEN-ISO-ACGIH target efficiency curve. Görner and Witschger measured the aspiration efficiency of the CIP 10 omni-directional inlet. They found that the aspiration efficiency was high enough for inhalable aerosol sampling. This result led to the conclusion that the low sampling efficiency is due to some internal losses of the aspirated particles before they reach the final sampling stage, namely the CIP 10 rotating filter. Based on the assumption that the inhalable particles are selected at selector aspiration level, an experimental research project was conducted to improve particle transmission to the collection stage of the sampler. Two different inhalable selectors were designed by Görner and tested in a laboratory wind tunnel. The transmission efficiency of both models was measured by Roger following an experimental protocol described by Witschger. The T-shaped air flow circuit was finally adopted to draw the aspirated particles into the final collection stage of the CIP 10. Actually, in this selector, the almost horizontally aspirated particles should be conducted vertically to the rotating cup. In two previous prototypes, particles could be deposited in certain places by inertia (where the aerosol was forced to deviate drastically) or by sedimentation (where the aerosol decelerated). The aerodynamic behaviour of the adopted solution causes the particles to accelerate radially between two horizontal plates before they enter a vertical tube. This acceleration avoids the

  14. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications.

    PubMed

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E; Kavaldzhiev, Mincho; Contreras, Maria F; Thoroddsen, Sigurdur T; Khashab, Niveen M; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  15. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    NASA Astrophysics Data System (ADS)

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-06-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  16. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    PubMed Central

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  17. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  18. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2006-06-30

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  19. IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS

    SciTech Connect

    G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

    2006-05-22

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  20. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    PubMed Central

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  1. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.

    PubMed

    Borzenets, I V; Shimazaki, Y; Jones, G F; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  2. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-03-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  3. Evaluation of Parameters for High Efficiency Transformation of Acinetobacter baumannii

    PubMed Central

    Yildirim, Suleyman; Thompson, Mitchell G.; Jacobs, Anna C.; Zurawski, Daniel V.; Kirkup, Benjamin C.

    2016-01-01

    Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to a paucity of genetic tools and methods. While whole genome sequence data from several epidemic and environmental strains have recently become available, the functional characterization of genes is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools that can be used to address these shortcomings. Here we report parameters allowing high efficiency transformation of A. baumannii. Using a multi-factorial experimental design we found that growth phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest efficiency (4.3 × 108 Transformants/μg DNA) was obtained at the stationary growth phase of the bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The optimized electroporation parameters reported here provide a useful tool for genetic manipulation of A. baumannii. PMID:26911658

  4. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection.

    PubMed

    Egerer, Lisa; Volk, Andreas; Kahle, Joerg; Kimpel, Janine; Brauer, Frances; Hermann, Felix G; von Laer, Dorothee

    2011-07-01

    Gene therapeutic strategies for human immunodeficiency virus type 1 (HIV-1) infection could potentially overcome the limitations of standard antiretroviral drug therapy (ART). However, in none of the clinical gene therapy trials published to date, therapeutic levels of genetic protection have been achieved in the target cell population for HIV-1. To improve systemic antiviral efficacy, C peptides, which are efficient inhibitors of HIV-1 entry, were engineered for high-level secretion by genetically modified cells. The size restrictions for efficient peptide export through the secretory pathway were overcome by expressing the C peptides as concatemers, which were processed into monomers by furin protease cleavage. These secreted antiviral entry inhibitory (SAVE) peptides mediated a substantial protective bystander effect on neighboring nonmodified cells, thus suppressing virus replication even if only a small fraction of cells was genetically modified. Accordingly, these SAVE peptides may provide a strong benefit to AIDS patients in future, and, if applied by direct in vivo gene delivery, could present an effective alternative to antiretroviral drug regimen. PMID:21364540

  5. Fabrication of High power, High-Efficiency Linear Array Diode Lasers by Pulse Anodic Oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Jing; Li, Hui; Qu, Yi; Bo, Baoxue

    2006-09-01

    InGaAlAs/AlGaAs/GaAs double-quantum-well (DQW) linear array diode lasers with asymmetric wide waveguide have been successfully fabricated by pulse anodic oxidation upon molecular beam epitaxy material growth. High-efficiency and high-power quasi-continuous-wave (QCW) output has been realized at 808 nm wavelength. The threshold current and slope efficiency of the prepared high-fill-factor QCW devices are 24 A and 1.25 A/W, respectively, and a maximum wall-plug efficiency of 51% has been achieved.

  6. Highly efficient baculovirus-mediated multigene delivery in primary cells.

    PubMed

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S; Xie, Ye; Boyce, Frederick M; Davis, M Wayne; Neuhauss, Stephan C F; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  7. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  8. Highly efficient baculovirus-mediated multigene delivery in primary cells

    PubMed Central

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S.; Xie, Ye; Boyce, Frederick M.; Davis, M. Wayne; Neuhauss, Stephan C. F.; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  9. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.

    PubMed

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|(2) ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  10. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  11. Cascaded parametric amplification for highly efficient terahertz generation.

    PubMed

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  12. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  13. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed.

  14. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  15. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  16. High-efficiency ballistic electrostatic generator using microdroplets.

    PubMed

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J; de Boer, Hans L; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J; van den Berg, Albert; Eijkel, Jan C T

    2014-01-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle ('ballistic' conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m(-2) and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion. PMID:24709899

  17. High-efficiency ballistic electrostatic generator using microdroplets

    NASA Astrophysics Data System (ADS)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J.; de Boer, Hans L.; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J.; van den Berg, Albert; Eijkel, Jan C. T.

    2014-04-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle (‘ballistic’ conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m-2 and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion.

  18. Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C

    PubMed Central

    Steinmann, Daniel; Barth, Heidi; Gissler, Bettina; Schürmann, Peter; Adah, Mohammed I.; Gerlach, J. Tilman; Pape, Gerd R.; Depla, Erik; Jacobs, Dirk; Maertens, Geert; Patel, Arvind H.; Inchauspé, Geneviève; Liang, T. Jake; Blum, Hubert E.; Baumert, Thomas F.

    2004-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic viral hepatitis worldwide. The study of antibody-mediated virus neutralization has been hampered by the lack of an efficient and high-throughput cell culture system for the study of virus neutralization. The HCV structural proteins have been shown to assemble into noninfectious HCV-like particles (HCV-LPs). Similar to serum-derived virions, HCV-LPs bind and enter human hepatocytes and hepatoma cell lines. In this study, we developed an HCV-LP-based model system for a systematic functional analysis of antiviral antibodies from patients with acute or chronic hepatitis C. We demonstrate that cellular HCV-LP binding was specifically inhibited by antiviral antibodies from patients with acute or chronic hepatitis C in a dose-dependent manner. Using a library of homologous overlapping envelope peptides covering the entire HCV envelope, we identified an epitope in the N-terminal E2 region (SQKIQLVNTNGSWHI; amino acid positions 408 to 422) as one target of human antiviral antibodies inhibiting cellular particle binding. Using a large panel of serum samples from patients with acute and chronic hepatitis C, we demonstrated that the presence of antibodies with inhibition of binding activity was not associated with viral clearance. In conclusion, antibody-mediated inhibition of cellular HCV-LP binding represents a convenient system for the functional characterization of human anti-HCV antibodies, allowing the mapping of envelope neutralization epitopes targeted by naturally occurring antiviral antibodies. PMID:15308699

  19. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  20. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-07

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  1. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  2. Tunable C2N Membrane for High Efficient Water Desalination

    PubMed Central

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  3. Tunable C2N Membrane for High Efficient Water Desalination

    NASA Astrophysics Data System (ADS)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  4. Highly-efficient electrotransformation of the yeast Hansenula polymorpha.

    PubMed

    Faber, K N; Haima, P; Harder, W; Veenhuis, M; AB, G

    1994-04-01

    A highly-efficient method for transformation of the methylotrophic yeast Hansenula polymorpha has been developed. Routinely, transformation frequencies of up to 1.7 x 10(6)/micrograms plasmid DNA were obtained by applying an electric pulse of the exponential decay type of 7.5 kV/cm to a highly-concentrated cell mixture during 5 ms. Efficient transformation was dependent on: (1) pretreatment of the cells with the reducing agent dithiotreitol, (2) the use of sucrose as an osmotic stabilizer in an ionic electroporation buffer, and (3) the use of cells grown to the mid-logarithmic phase. Important parameters for optimizing the transformation frequencies were field strength, pulse duration, and cell concentration during the electric pulse. In contrast to electrotransformation protocols described for Saccharomyces cerevisiae and Candida maltosa, transformation frequencies (transformants per microgram DNA) for H. polymorpha remained high when large amounts (up to 10 micrograms) of plasmid DNA were added. This feature renders this procedure pre-eminently advantageous for gene cloning experiments when high numbers of transformants are needed.

  5. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  6. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin.

    PubMed

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  7. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    PubMed Central

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  8. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode.

  9. Generating clean energy at high efficiency and low cost

    NASA Astrophysics Data System (ADS)

    Chang, Yan P.

    1991-06-01

    This paper is related to thermal energy conversion with particular attention to the utilization of thermal energy from environmental fluids according to concepts in equilibrium and nonequilibrium thermodynamics. The first step is to prove that a single fluid heat source can produce useful work, so that thermal energy of environmental fluids is not at 'dead state.' An ocean thermal energy conversion (OTEC) system can be easily constructed at higher efficiency and lower cost than existing OTEC systems. An atmosphere thermal energy conversion (ATEC) system of high efficiency and low cost is more sophisticated. It requires open or closed counter-clockwise cycles comprising isothermal compressible flow with or without heat transfer. Combination of one of such ATEC System and a cyclic system, and supplementation of fossil or nuclear fission fuel as an additional heat source are discussed for particular applications.

  10. Efficient high-quality volume rendering of SPH data.

    PubMed

    Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger

    2010-01-01

    High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.

  11. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  12. High efficiency copper ternary thin film solar cells

    SciTech Connect

    Basol, B.M.; Kapur, V.K. )

    1991-04-01

    This report describes work to develop a high efficiency, thin film CuInSe{sub 2} solar cell using a potentially low-cost process. The technique used in this development program is a two-stage process. The two-stage process involves depositing the metallic elements of the CuInSe{sub 2} compound (i.e., Cu and In) on a substrate in the form of stacked layers, and then selenizing this stacked metallic film in an atmosphere containing Se. Early results showed that the electrodeposition/selenization technique could yield CuInSe{sub 2} films with good electrical and optical properties on small-area substrates. This report concentrates on the later half of the research effort; this portion was directed toward developing a two-stage process using evaporated Cu-In layers. The selenization technique has the potential of yielding solar cells with efficiencies in excess of 15 percent. 7 refs., 12 figs.

  13. High efficiency silicon nanohole/organic heterojunction hybrid solar cell

    SciTech Connect

    Hong, Lei; Wang, Xincai; Zheng, Hongyu; He, Lining; Wang, Hao; Rusli E-mail: erusli@ntu.edu.sg; Yu, Hongyu E-mail: erusli@ntu.edu.sg

    2014-02-03

    High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1 μm. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

  14. High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance.

    PubMed

    Calmels, T; Parriche, M; Durand, H; Tiraby, G

    1991-09-01

    A convenient and efficient transformation system has been developed for the filamentous fungus Tolypocladium geodes. In contrast to most of the commonly described techniques requiring prior preparation of protoplasts or spheroplasts, this method leads to high efficiency transformation of T. geodes conidiospores following moderate lytic enzyme treatment. Competent cells so obtained are still resistant to osmotic pressure and can be stored frozen without loss of viability. The highest transformation frequency (3-5 x 10(3) transformants per microgram of DNA) was obtained with plasmid pUT737 containing the Sh ble gene conferring phleomycin resistance under the control of a strong promoter isolated from Trichoderma reesei. Southern hybridization revealed multiple integration sites of plasmid DNA into the T. geodes nuclear DNA despite the absence of homology between the transforming DNA and the recipient genome. Instability could not be detected for the phleomycin phenotype during more than five generations of mitotic growth under non-selective conditions.

  15. Highly efficient source for indistinguishable single photons of controlled shape

    NASA Astrophysics Data System (ADS)

    Nisbet-Jones, Peter B. R.; Dilley, Jerome; Ljunggren, Daniel; Kuhn, Axel

    2011-10-01

    We demonstrate a straightforward implementation of a push-button like single-photon source, which is based on a strongly coupled atom-cavity system. The device operates intermittently for periods of up to 100 μs, with single-photon repetition rates of 1.0 MHz and an efficiency of 60%. Atoms are loaded into the cavity using an atomic fountain, with the upper turning point near the cavity's mode centre. This ensures long interaction times without any disturbances induced by trapping potentials. The latter is the key to reaching deterministic efficiencies as high as obtained in probabilistic photon-heralding schemes. The price to pay is the random loading of atoms into the cavity and the resulting intermittency. However, for all practical purposes, this has a negligible impact as an individual atom may emit up to 100 successive photons.

  16. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  17. Highly efficient mid-infrared dysprosium fiber laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-05-15

    A new, highly efficient and power scalable pump scheme for 3 μm class fiber lasers is presented. Using the free-running 2.8 μm emission from an Er3+-doped fluoride fiber laser to directly excite the upper laser level of the H13/26→H15/26 transition of the Dy3+ ion, output at 3.04 μm was produced with a record slope efficiency of 51%. Using comparatively long lengths of Dy3+-doped fluoride fiber, a maximum emission wavelength of 3.26 μm was measured. PMID:27176955

  18. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode. PMID:24977887

  19. High efficiency rare-earth emitter for thermophotovoltaic applications

    SciTech Connect

    Sakr, E. S.; Zhou, Z.; Bermel, P.

    2014-09-15

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573 K (1300 °C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  20. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  1. Interferons lambda, new cytokines with antiviral activity.

    PubMed

    Lopušná, K; Režuchová, I; Betáková, T; Skovranová, L; Tomašková, J; Lukáčiková, L; Kabát, P

    2013-01-01

    Interferons (IFNs) are key cytokines in the establishment of a multifaceted antiviral response. Three distinct types of IFNs are now recognized (type I, type II, and type III) based on their receptor usage, structural features and biological activities. Although all IFNs are important mediators of antiviral protection, their roles in antiviral defence vary. Interferon lambda (IFN-λ) is a recently discovered group of small helical cytokines capable of inducing an antiviral response both in vitro as well as in vivo. They were discovered independently in 2003 by the groups of Sheppard and Kotenko. This family consists of three structurally related IFN-λ subtypes called IFN-λ1 (IL-29), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). In this study we investigate the antiviral activities of IFN-λ1, λ2, and λ3 on some medically important viruses, influenza viruses, herpes viruses and lymphocytic choriomeningitis virus. PMID:23600875

  2. Antiviral strategies: the present and beyond.

    PubMed

    Burke, J D; Fish, E N

    2009-01-01

    Historically, vaccine strategies have proven to be most effective at eradicating the targeted virus infections. With the advent of new or re-emerging altered viruses, some of which jump species to infect humans, the threat of viral pandemics exists. The protracted time to develop a vaccine during a pandemic necessitates using antiviral drugs in the intervening months prior to vaccine availability. Antiviral drugs that are pathogen specific, for example Amantidine, Tamiflu and Relenza, targeted against influenza viruses, are associated with the emergence of virus strains that are drug resistant. The use of ribavirin, a more broad spectrum antiviral, in combination therapies directed against influenza and hepatitis C virus, has proven effective, albeit to a modest extent. Attention is focused on the potential use of interferons (IFN)-alpha/beta as broad spectrum antivirals in acute infections, to invoke both direct antiviral effects against viruses and activation of specific immune effector cells. PMID:20021443

  3. Hepatitis C Virus and Antiviral Drug Resistance

    PubMed Central

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  4. High-efficiency multilayer-dielectric diffraction gratings

    SciTech Connect

    Perry, M.D.; Boyd, R.D.; Britten, J.A.

    1996-06-01

    The ability to produce short laser pulses of extremely high power and high irradiance, as is needed for fast ignitor research in inertial confinement fusion, places increasing demands on optical components such as amplifiers, lenses, and mirrors that must remain undamaged by the radiation. The higher refractive index in the center of an intense laser beam acts as a focusing lens. The resulting wavefront distortion, left uncorrected, eventually leads to catastrophic filamentation. Major advances in energy extraction and resulting increases in focused irradiance have been made possible by the use of chirped-pulse amplification (CPA), long used in radar applications and newly applied to optical frequencies. Optical-frequency CPA systems begin with a mode-locked oscillator that produces low-energy seed pulses with durations of ten to a few hundred femtoseconds. As a result of the classical uncertainty relation between time and frequency, these short pulses have a very broad frequency distribution. A pair of diffraction gratings (or other dispersive elements) lengthens the laser pulse and induces a time-varying frequency (or chirp). Following amplification, diffraction gratings compress the pulse back to nearly the original duration. Typically a nanojoule, femtosecond pulse is stretched by a factor of several thousand and is amplified by as much as 12 orders of magnitude before recompression. By producing the short pulse only after amplification, this technique makes possible efficient extraction of energy from a variety of broadband solid state materials. Achieving high focused irradiance from a pulse ultimately requires both high peak power and excellent beam quality. There is therefore a demand for diffraction gratings that produce a high-quality diffracted wavefront, have high diffraction efficiency, and exhibit a high threshold for laser damage.

  5. Highly Efficient Transfection of Human THP-1 Macrophages by Nucleofection

    PubMed Central

    Maeß, Marten B.; Wittig, Berith; Lorkowski, Stefan

    2014-01-01

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings. PMID:25226503

  6. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation

    NASA Astrophysics Data System (ADS)

    Wang, Shiwen; Chen, Wei; He, Sha; Zhao, Qilong; Li, Xiaohong; Sun, Jiashu; Jiang, Xingyu

    2014-05-01

    In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications.In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01166j

  7. A Watermarking Scheme for High Efficiency Video Coding (HEVC)

    PubMed Central

    Swati, Salahuddin; Hayat, Khizar; Shahid, Zafar

    2014-01-01

    This paper presents a high payload watermarking scheme for High Efficiency Video Coding (HEVC). HEVC is an emerging video compression standard that provides better compression performance as compared to its predecessor, i.e. H.264/AVC. Considering that HEVC may will be used in a variety of applications in the future, the proposed algorithm has a high potential of utilization in applications involving broadcast and hiding of metadata. The watermark is embedded into the Quantized Transform Coefficients (QTCs) during the encoding process. Later, during the decoding process, the embedded message can be detected and extracted completely. The experimental results show that the proposed algorithm does not significantly affect the video quality, nor does it escalate the bitrate. PMID:25144455

  8. High efficiency beam splitting for H/sup -/ accelerators

    SciTech Connect

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H/sup -/ accelerators. This technique uses a high intensity flash of light to strip a fraction of the H/sup -/ beam to H/sup 0/ which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10/sup -3/ to 10/sup -2/ splitting of a 50 MeV H/sup -/ beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction.

  9. A watermarking scheme for High Efficiency Video Coding (HEVC).

    PubMed

    Swati, Salahuddin; Hayat, Khizar; Shahid, Zafar

    2014-01-01

    This paper presents a high payload watermarking scheme for High Efficiency Video Coding (HEVC). HEVC is an emerging video compression standard that provides better compression performance as compared to its predecessor, i.e. H.264/AVC. Considering that HEVC may will be used in a variety of applications in the future, the proposed algorithm has a high potential of utilization in applications involving broadcast and hiding of metadata. The watermark is embedded into the Quantized Transform Coefficients (QTCs) during the encoding process. Later, during the decoding process, the embedded message can be detected and extracted completely. The experimental results show that the proposed algorithm does not significantly affect the video quality, nor does it escalate the bitrate.

  10. Holey graphene frameworks for highly efficient capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Yuxi; Lin, Zhaoyang; Zhong, Xing; Huang, Xiaoqing; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2014-08-01

    Supercapacitors represent an important strategy for electrochemical energy storage, but are usually limited by relatively low energy density. Here we report a three-dimensional holey graphene framework with a hierarchical porous structure as a high-performance binder-free supercapacitor electrode. With large ion-accessible surface area, efficient electron and ion transport pathways as well as a high packing density, the holey graphene framework electrode can deliver a gravimetric capacitance of 298 F g-1 and a volumetric capacitance of 212 F cm-3 in organic electrolyte. Furthermore, we show that a fully packaged device stack can deliver gravimetric and volumetric energy densities of 35 Wh kg-1 and 49 Wh l-1, respectively, approaching those of lead acid batteries. The achievement of such high energy density bridges the gap between traditional supercapacitors and batteries, and can open up exciting opportunities for mobile power supply in diverse applications.

  11. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  12. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection.

    PubMed

    Lee, Suki Man-Yan; Yen, Hui-Ling

    2012-12-01

    Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.

  13. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus.

    PubMed

    Wang, Xiao; Li, Yongfeng; Li, Lian-Feng; Shen, Liang; Zhang, Lingkai; Yu, Jiahui; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2016-04-01

    Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs.

  14. RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus.

    PubMed

    Wang, Xiao; Li, Yongfeng; Li, Lian-Feng; Shen, Liang; Zhang, Lingkai; Yu, Jiahui; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2016-04-01

    Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs. PMID:26868874

  15. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  16. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  17. High-efficiency target-ion sources for RIB generation

    SciTech Connect

    Alton, G.D.

    1993-12-31

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory.

  18. Basic studies of 3-V high efficiency cell components

    NASA Astrophysics Data System (ADS)

    Lundstrom, M. S.; Melloch, M. R.; Pierret, R. F.; Carpenter, M. S.; Chuang, H. L.; Keshavarzi, A.; Klausmeier-Brown, M. E.; Lush, G. B.; Morgan, J. M.; Stellwag, T. B.

    1990-07-01

    This project's objective is to improve our fundamental understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research consists of fabricating and characterizing solar cell building blocks such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. We expect that the insight into III-V device physics occurring during the course of this work will help to identify paths toward higher efficiency III-V cells. This report describes our progress during the fourth year of the project. The past year's efforts centered on completing studies of heavy doping effects in p(sup +)-GaAs and assessing the importance of similar effects in n(sup +)-GaAs, and at continuing research on characterizing, controlling, and passivating perimeter recombination currents. We also initiated work to identify the dominant loss mechanism in Al(sub 0.2)Ga(sub 0.8) As solar cells and brought on-line a new MBE growth facility and demonstrated the high-quality of the films by fabricating, with assistance from Spire Corporation, 23.8 percent 1-sun solar cells.

  19. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  20. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state.

    PubMed

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-20

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant's known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  1. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    PubMed Central

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakaimarkedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  2. Superlattices and multilayer structures for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Possible applications of superlattices to photovoltaic structures are discussed. A new concept based on doping superstructures (NIPI) can be exploited to significantly reduce recombination losses in III-V compound solar cells. A novel multijunction structure with lateral current transport is proposed. A computer simulation has been performed which shows that by optimizing the multilayer structure, short circuit current is substantially increased with minimum drop in open circuit voltage. An additional advantage of the structure is enhanced radiation tolerance. It is anticipated that this multilayer structure can be incorporated in multibandgap cells to achieve high efficiencies.

  3. Highly efficient projection system for a single DLP panel

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Cho, Kunho; Kim, Sungha; Lee, Heejoong

    2003-11-01

    We propose and demonstrate a single DLP projection system with high illumination efficiency by the moving color stripe method. White light from the lamp is split and focused as color images by the color filter and lens cells of spiral lens wheel (SLW). Fly eye lens and relay lens superpose color bars on the light valve, and then 3 color strips are scrolled linearly by rotating SLW. As a result, the system output is evaluated as 1.7 times compared to a typical single panel DLP system.

  4. Plasmonic energy nanofocusing for high-efficiency laser fusion ignition

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-08-01

    We propose an efficient laser fusion ignition system consisting of metal nanoparticles or nanoshells embedded in conventional deuterated polystyrene fuel targets. The incident optical energy of the heating laser is highly concentrated around the metallic particulates randomly dispersed inside imploded targets due to the electromagnetic-field-enhancement effect by surface plasmon resonance, and thus effectively triggers nuclear-fusion chain reactions. Our preliminary calculations exhibit field enhancement factors of around 50 and 1100 for spherical Ag nanoparticles and Ag/SiO2 nanoshells, respectively, in the 1-µm band.

  5. Optimizing energy transfer efficiency in highly branched nanoplasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Traverso, Andrew; Wang, Kai; Yi, Zhenhuan; Sokolov, Alexei

    2011-03-01

    Energy transfer in highly branched nanoplasmonic particle waveguides is simulated and optimized by varying the waveguide branching geometry and composition. The periodically branched nanostructures provide a new route towards efficient nanoscale light concentration and local field enhancement. On the one hand, they mimick the analogous randomly branched plasmonic nanostructures which have been previously used for surface-enhanced optical spectroscopy such as SERS. On the other hand, the design is inspired by branched molecular aggregates used for energy funneling. The proposed nanostructures may find applications in sensing, light harvesting and nanophotonics.

  6. Energy efficient high speed vessels: Design developments, 1991--1997

    SciTech Connect

    Copestake, H.

    1997-12-31

    Reviews research work to develop a generic vessel design that could be readily adapted to specific Arctic applications, specifically to produce design concepts that contribute to energy efficiency in a fisheries application. Project activities included consultations with Arctic fishermen, development and testing of a prototype 28-foot aluminium boat used to deliver fish in Hudson Bay, development of the concept of modular high-speed hulls that can be adapted for varying conditions or engine configurations, and building new vessels according to this concept for commercial service.

  7. Stable, high efficiency gyrotron backward-wave oscillator

    SciTech Connect

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-15

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3 GHz with a peak power of 149 kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  8. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  9. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  10. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  11. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  12. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  13. Stable, high efficiency gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-01

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3GHz with a peak power of 149kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  14. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  15. Features of photoconversion in highly efficient silicon solar cells

    SciTech Connect

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, N. R.; Sokolovskyi, I. O.

    2015-02-15

    The photoconversion efficiency η in highly efficient silicon-based solar cells (SCs) is analyzed depending on the total surface-recombination rate S{sub s} on illuminated and rear surfaces. Solar cells based on silicon p-n junctions and α-Si:H or α-SiC:H-Si heterojunctions (so-called HIT structures) are considered in a unified approach. It is shown that a common feature of these SCs is an increased open-circuit voltage V{sub oc} associated with an additional contribution of the rear surface. Within an approach based on analysis of the physical features of photoconversion in SCs, taking into account the main recombination mechanisms, including Shockley-Read-Hall recombination, radiative recombination, surface recombination, recombination in the space-charge region, and band-to-band Auger recombination, expressions for the photoconversion efficiency of such SCs are obtained. The developed theory is compared with experiments, including those for SCs with record parameters, e.g., η = 25% and 24.7% for SCs with a p-n junction for HIT structures, respectively, under AM1.5 conditions. By comparing theory and experiment, the values of S{sub s} achieved as a result of recombination-loss minimization by various methods are determined. The results of calculations of the maximum possible value η{sub max} in silicon SCs are compared with the data of other papers. Good agreement is observed.

  16. Antiviral perspectives for chikungunya virus.

    PubMed

    Parashar, Deepti; Cherian, Sarah

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that has a major health impact in humans and causes acute febrile illness in humans accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. CHIKV reemerged in 2005-2006 in several parts of the Indian Ocean islands and India after a gap of 32 years, causing millions of cases. The re-emergence of CHIKV has also resulted in numerous outbreaks in several countries in the eastern hemisphere, with a threat to further expand in the near future. However, there is no vaccine against CHIKV infection licensed for human use, and therapy for CHIKV infection is still mainly limited to supportive care as antiviral agents are yet in different stages of testing or development. In this review we explore the different perspectives for chikungunya treatment and the effectiveness of these treatment regimens and discuss the scope for future directions.

  17. Virus assembly, allostery, and antivirals

    PubMed Central

    Zlotnick, Adam; Mukhopadhyay, Suchetana

    2010-01-01

    Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. Here we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is, regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus. PMID:21163649

  18. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  19. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  20. Roadmap for High Efficiency Solid-State Neutron Detectors

    SciTech Connect

    Nikolic, R; Cheung, C; Reinhardt, C; Wang, T

    2005-07-12

    Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-alpha converter material onto a semiconductor. The as-created alpha particles in the material are expected to impinge the semiconductor and create electron-hole pairs which provide the electrical signal. These devices are limited in efficiency to a range near (2-5%)/cm{sup 2} due to the conflicting thickness requirements of the converter layer. In this case, the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to allow the alpha particles to reach the semiconductor. A three dimensional matrix structure has great potential to satisfy these two requirements in one device. Such structures can be realized by using PIN diode pillar elements to extend in the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is based on both ''top-down'' and ''bottom-up'' approaches. The ''top down'' approach employs high-density plasma etching techniques, while the ''bottom up'' approach draws on the growth of nanowires by chemical vapor deposition. From our simulations for structures with pillar diameters from 2 {micro}m down to 100 nm, the detector efficiency is expected to increase with a decrease in pillar size. Moreover, in the optimized configuration, the detector efficiency could be higher than 75%/cm{sup 2}. Finally, the road map for the relationship between detector diameter and efficiency will be outlined.

  1. High-efficiency photonic crystal narrowband thermal emitters

    NASA Astrophysics Data System (ADS)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  2. Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza

    PubMed Central

    Dayem, Ahmed Abdal; Choi, Hye Yeon; Kim, Young Bong; Cho, Ssang-Goo

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids. PMID:25806943

  3. Antiviral effect of methylated flavonol isorhamnetin against influenza.

    PubMed

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Kim, Young Bong; Cho, Ssang-Goo

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3', and 4' positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3'-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70-80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.

  4. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    PubMed Central

    Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Katze, Michael G.; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds. PMID:22532686

  5. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2004-07-20

    The mineral processing industry has commonly utilized hydraulic separators throughout history for classification and gravity concentration of various minerals. More commonly referred to as hindered-bed or fluidized-bed separators, these units make use of differential particle settling rates to segregate particles according to shape, size, and/or density. As with any equipment, there are inefficiencies associated with its operation, which prompted an industry driven research program to further evaluate two novel high-efficiency hindered bed separators. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). This report describes the results of Phase I activities (laboratory and pilot-scale tests) conducted with the CrossFlow and HydroFloat separators at several locations in the minerals and coal industries. Details of the testing programs (equipment setup, shakedown testing and detailed testing) associated with four coal plants and two phosphate plants are summarized in this work. In most of these applications, the high-efficiency units proved to provide a higher quality product at reduced costs when compared against the performance of conventional separators. Based on promising results obtained from Phase I, full-scale prototypes will be purchased by several mining companies for use in Phase II of this project. Two of the prototype units, which will be constructed by Eriez Manufacturing, are expected to be installed by a major U.S. phosphate producer and a large eastern U.S. coal company. Negotiations are also underway to purchase and install additional prototype units by a mineral sands producer and a second phosphate producer. The data obtained from the full-scale evaluations will be used to further promote commercialization and industrial applications of these innovative

  6. High Efficiency Hybrid Silicon Nanopillar-Polymer Solar Cells

    PubMed Central

    Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Sharma, Manisha; Elam, David; Ponce, Arturo; Ayon, Arturo A

    2014-01-01

    Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ~10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell. PMID:24032746

  7. Reflection type metasurface designed for high efficiency vectorial field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2016-07-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.

  8. Uniformity compensation for high-quantum-efficiency focal plane arrays

    NASA Astrophysics Data System (ADS)

    Horman, Stephen R.; Zurasky, Matthew W.; Talamonti, James J.; Hepfer, Kenneth C.

    1997-08-01

    NSWCDD has developed a new nonuniformity correction (NUC) technique that has been demonstrated to significantly reduce both fixed pattern and temporal noise in sensors using high quantum efficiency (QE) infrared (IR) staring focal plane arrays (FPA). Sensors using this technique have been shown to have good response in every pixel, i.e., there are no dead or anomalously noisy pixels anywhere in the field of view (FOV). This technique will also enable development of sensors with very small apertures as well as those which can dynamically trade off sensitivity, resolution and frame rate. In addition, effective yield of detector production will be enhanced, since these benefits can be obtained using arrays that would be rejected for most applications, were conventional NUC used. This technique has been demonstrated to work as specified through analysis of real time data. A high performance, concept demonstration sensor, is in the final stages of acceptance testing, with delivery planned for April 1997.

  9. Uniformity compensation for high-quantum-efficiency focal plane arrays

    NASA Astrophysics Data System (ADS)

    Horman, Stephen R.; Hepfer, Kenneth C.; Zurasky, Matthew W.

    1996-06-01

    NSWCDD has developed a new nonuniformity correction (NUC) technique that promises to significantly reduce both fixed pattern and temporal noise in sensors using high quantum efficiency (QE) infrared (IR) staring focal plane arrays (FPA). Sensors using this technique will also have good response in every pixel. There will be no dead or anomalously noisy pixels anywhere in the field of view (FOV). This technique will also enable development of sensors with very small apertures as well as those which can dynamically trade off sensitivity, resolution and frame rate. In addition, effective yield of detector production will be enhanced, since these benefits can be obtained using arrays that would be rejected for most applications, were conventional NUC used. This technique has been demonstrated to work as claimed through non-real time post-processing of field data. A high performance, concept demonstration sensor, is being developed, with delivery planned for August 1996.

  10. Reflection type metasurface designed for high efficiency vectorial field generation.

    PubMed

    Wang, Shiyi; Zhan, Qiwen

    2016-01-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries. PMID:27417150

  11. Noise performance of high-efficiency germanium quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Siontas, Stylianos; Liu, Pei; Zaslavsky, Alexander; Pacifici, Domenico

    2016-08-01

    We report on the noise analysis of high performance germanium quantum dot (Ge QD) photodetectors with responsivity up to ˜2 A/W and internal quantum efficiency up to ˜400%, over the 400-1100 nm wavelength range and at a reverse bias of -10 V. Photolithography was performed to define variable active-area devices that show suppressed dark current, leading to a higher signal-to-noise ratio, up to 105, and specific detectivity D * ≃ 6 × 10 12 cm Hz 1 / 2 W-1. These figures of merit suggest Ge QDs as a promising alternative material for high-performance photodetectors working in the visible to near-infrared spectral range.

  12. Optimization of a high efficiency free electron laser amplifier

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-03-01

    The free electron laser (FEL) amplifier is implemented in x-ray FEL facilities to generate short wavelength radiation. The problem of an efficiency increase of an FEL amplifier is now of great practical importance. The technique of undulator tapering in the postsaturation regime is used at the existing x-ray FELs LCLS, SACLA and FERMI, and is planned for use at FLASH, European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform a detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Analysis of the radiation properties from the modulated electron beam and application of similarity techniques allows us to derive the universal law of the undulator tapering.

  13. OM-VPE grown materials for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Saxena, R.; Cooper, B., III; Ludowise, M.; Borden, P.; Gregory, P.

    1980-01-01

    Organometallic sources are available for all the III-V elements and a variety of dopants; thus it is possible to use the technique to grow a wide variety of semiconductor compounds. AlGaAsSb and AlGaInAs alloys for multijunction monolithic solar cells were grown by OM-VPE. While the effort concentrated on terrestrial applications, the success of OM-VPE grown GaAs/AlGaAs concentrator solar cells (23% at 400 suns) demonstrates that OM-VPE is suitable for growing high efficiency solar cells in large quantities for space applications. In addition, OM-VPE offers the potential for substantial cost reduction of photovoltaic devices with scale up and automation and due to high process yield from reproducible, uniform epitaxial growths with excellent surface morphology.

  14. Reflection type metasurface designed for high efficiency vectorial field generation

    PubMed Central

    Wang, Shiyi; Zhan, Qiwen

    2016-01-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries. PMID:27417150

  15. High efficiency triple-junction amorphous solar cells

    NASA Astrophysics Data System (ADS)

    Ishihara, T.; Terazono, S.; Sasaki, H.; Kawabata, K.; Itagaki, T.

    A fabrication technique for high-efficiency triple-junction a-SiGe:H and a-Si:H pin solar cells is described. The interfacial characteristics of the a-SiGe:H pin cell, which is used for the bottom cell, have been improved by inserting graded bandgap layers at both p/i and n/i interfaces. The photoconductivity of the a-SiGe:H film, prepared by diluting the silane and germane discharge with a large amount of H2 gas, has also been improved. For the a-Si:H pin cell, Vocs as high as 0.99 V have been achieved by optimizing deposition conditions for the microc-Si:H p-layer and a-Si:H i-layer. Thickness of each layer in the triple-junction cell has been adjusted to get maximum output current. A cell with conversion efficiency of 10.6 percent has been obtained for a cell size of 100 sq cm.

  16. A high-efficiency cellular extraction system for biological proteomics

    PubMed Central

    Dhabaria, Avantika; Cifani, Paolo; Reed, Casie; Steen, Hanno; Kentsis, Alex

    2015-01-01

    Recent developments in quantitative high-resolution mass spectrometry have led to significant improvements in the sensitivity and specificity of biochemical analyses of cellular reactions, protein-protein interactions, and small molecule drug discovery. These approaches depend on cellular proteome extraction that preserves native protein activities. Here, we systematically analyzed mechanical methods of cell lysis and physical protein extraction to identify those that maximize the extraction of cellular proteins while minimizing their denaturation. Cells were mechanically disrupted using Potter-Elvehjem homogenization, probe or adaptive focused acoustic sonication, and in the presence of various detergents, including polyoxyethylene ethers and esters, glycosides, and zwitterions. Using fluorescence spectroscopy, biochemical assays, and mass spectrometry proteomics, we identified the combination of adaptive focused acoustic (AFA) sonication in the presence of binary poloxamer-based mixture of octyl-β-glucoside and Pluronic F-127 to maximize the depth and yield of proteome extraction while maintaining native protein activity. This binary poloxamer extraction system allowed native proteome extraction, comparable in coverage to proteomes extracted using denaturing SDS or guanidine containing buffers, including efficient extraction of all major cellular organelles. This high-efficiency cellular extraction system should prove useful for a variety of cell biochemical studies, including structural and functional proteomics. PMID:26153614

  17. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  18. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  19. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  20. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  1. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    Gravel, Roland; Maronde, Carl; Gehrke, Chris; Fiveland, Scott

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  2. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Yumoto, K.; Hiratsuka, Y.

    2015-12-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper.

  3. High-Performance Permanent Magnets for Energy-Efficient Devices

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  4. Progress toward steady-state, high-efficiency vircators

    SciTech Connect

    Poulsen, P.; Pincosy, P.A.; Morrison, J.J.

    1990-12-05

    The resonance at which high-efficiency operation of virtual cathode oscillators is obtained occurs when the beam frequency equals the reflex frequency to within 2%. This tolerance limit in the frequency ratio implies that cathode closure in the anode-cathode gap is not acceptable. We have developed and tested a 6-cm{sup 2} cathode that will operate longer than 1 {mu}s at 300 A/cm{sup 2} without significant closure. As yet, the full-scale (>80-cm{sup 2}) cathode has not worked quite as well. In many tests, the cathode will operate in the emission-limited temperature/field (T/F) mode for approximately 300 ns, and then transition into explosive emission with a relatively slow ({approximately}0.5 cm/{mu}s) closure rate. The current density was 45 to 90 A/cm{sup 2}. We have not run high-power rf-emission tests under conditions where the diode stays open and in resonance for the duration of the rf pulse at a current density of 250 A/cm{sup 2}, which is required for 3-GHz operation; that test remains the focus of our continuing research. We have obtained long (600-ns) duration rf pulses at low power. We have also extended the data base on microwave generation at lower power and have shown that high-efficiency resonances will occur when a multiple of the reflex frequency equals the beam frequency. This allows greater flexibility in the design and scaling of the microwave device. 6 refs., 14 figs.

  5. Riverbed methanotrophy sustained by high carbon conversion efficiency

    PubMed Central

    Trimmer, Mark; Shelley, Felicity C; Purdy, Kevin J; Maanoja, Susanna T; Chronopoulou, Panagiota-Myrsini; Grey, Jonathan

    2015-01-01

    Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. PMID:26057842

  6. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  7. Preliminary field evaluation of high efficiency steel filters

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  8. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state.

    PubMed

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-08-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.

  9. Development of a high-efficiency, high-performance air filter medium

    NASA Astrophysics Data System (ADS)

    Bergman, W.; Sawyer, S. R.

    1988-08-01

    A unique high-efficiency particulate air (HEPA) filter medium has been developed for applications in high temperature and high pressure environments. This filter medium is a composite made from quartz and stainless-steel fibers that have been sintered together. The composite medium has the same efficiency and pressure drop as standard HEPA glass media, but has four times the tensile strength and can operate continuously at temperatures up to 500 C. In a conventional HEPA, the binder burns out above 250 C and the medium loses its strength; our composite filter medium has no comparable loss of strength even at 500 C.

  10. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  11. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  12. Current-matched high-efficiency, multijunction monolithic solar cells

    SciTech Connect

    Olson, J.M.; Kurtz, S.R.

    1993-06-29

    A high-efficiency multijunction photovoltaic solar cell is described, consisting essentially of: a top semiconductor cell fabricated from Ga[sub x]In[sub l[minus]x]P wherein x is (0 < x < 0.5) a light-sensitive n/p homojunction therein for absorbing higher energy photons; a bottom semiconductor cell fabricated from GaAs with a light sensitive n/p homojunction therein for absorbing lower energy photons; and wherein the top cell thickness is optimized by thinning to from 0.5 to 1.7 microns and less than the bottom cell thickness in order to provide current matching between the top cell and the bottom cell in order to obtain improved conversion efficiency, a low-resistance attachment between the top cell and the bottom cell, wherein the top cell is lattice matched to the bottom cell; and electrical contact means attached to opposite sides of the solar cell to conduct current away from and into the solar cell.

  13. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air. PMID:25084346

  14. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    NASA Astrophysics Data System (ADS)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  15. Study on High Efficient Electric Vehicle Wireless Charging System

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  16. High efficiency holographic Bragg grating with optically prolonged memory

    PubMed Central

    Khoo, Iam Choon; Chen, Chun-Wei; Ho, Tsung-Jui

    2016-01-01

    In this paper, we show that photosensitive azo-dye doped Blue-phase liquid crystals (BPLC) formed by natural molecular self-assembly are capable of high diffraction efficiency holographic recording with memory that can be prolonged from few seconds to several minutes by uniform illumination with the reference beam. Operating in the Bragg regime, we have observed 50 times improvement in the grating diffraction efficiency and shorter recording time compared to previous investigations. The enabling mechanism is BPLC’s lattice distortion and index modulation caused by the action of light on the azo-dopant; upon photo-excitation, the azo-molecules undergo transformation from the oblong-shaped Trans-state to the bent-shaped Cis-state, imparting disorder and also cause the surrounding BPLC molecules to undergo coupled flow & reorientation leading to lattice distortion and index modulation. We also showed that the same mechanism at work here that facilitates lattice distortion can be used to frustrate free relaxation of the lattice distortion, thereby prolonging the lifetime of the written grating, provided the reference beam is kept on after recording. Due to the ease in BPLC fabrication and the availability of azo-dopants with photosensitivity throughout the entire visible spectrum, one can optimize the controlling material and optical parameters to obtain even better performance. PMID:27782197

  17. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  18. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  19. High power-efficiency terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ˜ 3.27 THz and has a maximum CW operating temperature of ˜ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).

  20. High power-efficiency terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ∼ 3.27 THz and has a maximum CW operating temperature of ∼ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).